
Language abstractions and scheduling techniques
for efficient execution of parallel algorithms on
multicore hardware

Arthur Charguéraud (Inria), 2020

Foreword

The Multicore OCaml team has made significant progress in the recent years.
There now seems to be interest in working on the high-level parallelism constructs.
Such constructs are also tightly connected to the problem of controlling the
granularity of parallel tasks.

I’ve been working on parallel constructs and granularity control from 2011 to
2019, together with Umut Acar and Mike Rainey. We published a number of
papers, each of them coming with theoretical bounds, an implementation, and
evaluation on state-of-the-art benchmark of parallel algorithms.

While we mainly focused on C++ code, I speculate that nearly all of our
ideas could be easily applied to Multicore OCaml. Porting these ideas would
deliver what seems to be currently missing in Multicore OCaml for efficiently
implementing a large class of parallel algorithms.

Gabriel Scherer and François Pottier recently suggested to me that it appears
timely to share these results with the OCaml community. I’ll thus try to give
an easily-accessible, OCaml-oriented introduction to the results that we have
produced. Note, however, that most of the ideas presented would apply essentially
to another other programming language that aims to support nested parallelism.

I plan to cover the semantics of high-level parallelism constructs, to describe and
argue for work-stealing scheduling, to present a number of tricks that are critical
for efficiency, and to advertise for our modular, provably-efficient approach to
granularity control. I’ll post these parts one after the other, as I write them.

Historical background

Umut, Mike and I pursued a long line of work on nested parallelism that started
long before we even started our academic career. I’d like to point out the lines
of work that certainly had direct impact on our work.

Work stealing is an old idea. The reference paper on the analysis of work stealing
traces the idea back to Burton and Sleep’s 1981 research on parallel execution
of functional programs and Halstead’s 1984 implementation of Multilisp. Here
we are, 35 years later, discussing the implementation of Multicore OCaml.

1

http://supertech.csail.mit.edu/papers/steal.pdf

Robert Blumofe and Charles Leiserson’s theoretical bound for work stealing
published in 1993 was a major breakthrough. Their theorem was generalized
and its proof simplified over the years. This theoretical result was the starting
point of the work on the the Cilk project. Cilk is an extension of C/C++ that
provides support for parallel-for loops and the fork-join (spawn-sync) constructs.
A reference paper on the implementation of Cilk is that on Cilk5 (PLDI’98).

In passing, I should also mention the X10 language, developed at IBM since
2004. X10 is class-based language, featuring the async-finish construct, and
implemented using a work-stealing scheduler. Numerous papers have been
published about X10, including on language semantics, optimimizations, and
granularity control techniques.

Guy Blelloch has a rich line of work on parallelism. He worked on NESL in the
90’s, then developed numerous parallel algorithms and techniques for multicore
programming. Most of his recent work is implemented in Cilk/C++, and delivers
the state-of-the-art results, on a state-of-the art collection of benchmarks for
irregular parallelism called PBBS.

John Reppy worked on Concurrent ML (CML) in the early 90’s, a concurrent
extension of SML. In the year 2000s, the rise of multicore hardware motivated
work on optimizing CML. This motivated the Manticore project, which included
not only CML-style constructs, but also NESL-style parallel arrays.

Matthew Fluet is the main developer of MLton, a whole-program optimizing com-
piler for Standard ML, with support for CML. MLton is extend by MultiMLton,
which provides various kinds of fine-grained parallelism.

Umut Acar published his first paper together with Guy Blelloch and Robert
Blumofe in 2000, on the Data locality of work stealing, Umut also was a collegue
of Matthew Fluet for a couple of years, and he was also familiar with the line of
work on Manticore.

Mike Rainey worked for his master and his PhD on the Manticore project,
together with John Reppy and Matthew Fluet and others. a reference paper on
the implementation of Manticore is the JFP’11 paper.

I personnally had no background knowledge about parallel programming when
I joined Umut and Mike at MPI-SWS in 2011. My main experience was on
programming sequential algorithms, and in complexity analysis.

For the first few months, we hacked using Manticore, but then quickly switched
to C++, which offered us better absolute performance, avoided interference with
the GC while working on scheduling and granularity control, and enabled us to
reuse existing benchmarks. We implemented all of our work in the form of a
C++ library called PASL, which allowed us to not spend time hacking into the
back-end of a specific compiler.

Whenever possible, we evaluated the performance of our scheduling techniques
by comparing our port of the PBBS benchmarks against Blelloch et al’s Cilk

2

http://cilk.mit.edu/publications/
http://cilk.mit.edu/history/
http://supertech.csail.mit.edu/papers/cilk5.pdf
http://x10-lang.org/x10-community/publications-using-x10.html
https://www.cs.cmu.edu/~guyb/pubs.html
http://www.cs.cmu.edu/~scandal/nesl.html
http://www.cs.cmu.edu/~pbbs/index.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.7965
http://manticore.cs.uchicago.edu/
http://mlton.org/
https://multimlton.cs.purdue.edu/mML/Welcome.html
https://13a75b74-a-62cb3a1a-s-sites.googlegroups.com/site/umutacar/publications/tocs2002.pdf
http://people.cs.uchicago.edu/~adamshaw/papers/jfp-implicit.pdf
https://github.com/deepsea-inria/pasl

programs. In 2012, our work continued at Inria and at CMU, funded in part by
the ERC DeepSea project.

In the recent years, Umut Acar’s group at CMU has developed extensions to
the MLton compiler to support fork-join parallel programs. The implementation
is called MPL (MaPLe), and it is used at CMU both for research and teaching
purposes.

This historical background section is meant to give a broad picture of the line
of works and implementations involved. I’ll be citing some specific papers
throughout the text. I do not plan, however, to discuss all the related work in
depth—for that, I refer to the related work sections from the publications.

Part 1: Semantics of parallel constructs

Published: 2020-05-22

In this first part, I discuss fork-join, parallel-pairs, n-ary fork-join and parallel-
tuples, async-finish, parallel-for loops, and futures. For each construct, I describe
its semantics in a couple of sentences, explain in which kind of algorithms it is
relevant, compare its expressive power with other constructs, and say just a few
words regarding their benefits in terms of performance. Then, I’ll present the
DAG-calculus, which presents a simple, unified semantics that handles arbitrary
nesting of all these constructs. Finally, I’ll discuss the semantics of exceptions in
parallel code.

Throughout the text, a “fiber” refers to a lightweight thread managed by the
runtime of the language, as opposed to a a heavyweight thread managed directly
by the operating system.

Fork-join

The semantics of:

t0;
fork_join (fun () -> t11) (fun () -> t12);
t2

is to execute t0, then execute the two “branches” t11 and t12 potentially in
parallel, then move on to the execution of the “continuation” t2 only after the
two branches have completed.

With fork-join, the two branches must return unit. We’ll discuss shortly after-
wards the generalization to parallel-tuple, which allows collecting results from
each of the branches.

3

http://deepsea.inria.fr/
https://github.com/MPLLang

The two branches may concurrently act over memory, according to the semantics
of concurrency—i.e. the rules provided by the memory model for Multicore
OCaml. One essential point is that all the write operations performed in either
of the two branches must be visible to the continuation t2. Likewise, all the
operations performed in t0, before the fork-join operation, must be visible to
both branches.

Fork-join operations typically appear nested in recursive algorithms. For example,
consider a function that increments in parallel all the cells in the range [i,j] from
an array “a”. Its code is as follows, where the base case includes granularity
control: batches of fewer than 1000 cells are processed sequentially.

let rec parallel_incr a i j =
if j - i <= 1000 then begin (* base case *)

for k = i to j do
a.(k) <- a.(k) + 1

done
end else begin

let m = (j - i) / 2 in
fork_join (fun () -> parallel_incr a i m)

(fun () -> parallel_incr a (m+1) j)
end

A surprisingly-large number of algorithmic problems can be handled using the
exact same pattern as in the function above, and in many cases deliver the
best-known speedups (when executed with a work-stealing scheduler).

Parallel-pairs

A parallel-pair is a variant of fork-join that allows gathering return values from
the two branches. The semantics of:

t0;
let (x1,x2) = parallel_pair (fun () -> t11) (fun () -> t12) in
t2

is similar to that of fork-join, except that x1 denotes the result of t11 and x2
denotes the result of t12. These two variables are bound in the continuation t2.

Remark: papers on parallel-ML used the syntax (|t11,t12|) for describing a
parallel pair; but let’s not discuss syntax in this document.

Fork-join can be trivially encoded using parallel pairs, by just ignoring the unit
result values, as follows.

let fork_join f1 f2 =
ignore (parallel_pair f1 f2)

4

https://kcsrk.info/papers/pldi18-memory.pdf
https://kcsrk.info/papers/pldi18-memory.pdf

Reciprocally, parallel-pair can be encoded using fork-join, using an array for
storing the results from each of the two branches.

let parallel_pair f1 f2 =
let r = [| None; None |] in
fork_join (fun () -> r.(0) <- Some (f1()))

(fun () -> r.(1) <- Some (f2()));
(unsome r.(0), unsome r.(1))

Observe that I do not use an atomic array to store the results, and use conven-
tional reads and writes to manipulate the array r. Doing so is correct because of
the rule that operations performed before fork_join are visible by both branches,
and operations performed in the two branches are visible in the continuation,
after the fork_join. Anyway, a low-level implementation of parallel-pairs could
coordinate with the GC to avoid the allocation of the options in the array r.

N-ary fork-join and parallel-tuples

So far, I have presented binary versions of fork-join and parallel-pairs.

A number of algorithms naturally require 4-way branching. For example, matrix-
multiply starts by making 4 recursive calls in parallel, one of each quarter of the
input matrix.

In theory, n-ary fork-join can be easily encoded using a (possibly incomplete)
binary tree of binary fork-join constructs. Likewise for parallel-tuples, which
generalize parallel-pairs.

For example, one can encode a 3-way and 4-way fork-join as follows:

let fork_join_3 f1 f2 f3 =
fork_join (fun () -> fork_join f1 f2) f3

let fork_join_4 f1 f2 f3 f4 =
fork_join (fun () -> fork_join f1 f2)

(fun () -> fork_join f3 f4)

In practice, however, it may be possible to reduce the synchronization costs and
delays by providing primitive support for bounded-arity n-ary fork-join and/or
parallel-tuples. For example, one could synchronize 4 branches using a single
concurrent counter, rather than involving 3 concurrent counters as the encoding
would do. We’ll get back in another section to these implementation details.

Note that it is not hard to implement a function called fork_join_list that is
able to handle a list of branches, by applying a divide and conquer approach to
build a binary fork-join tree.

In practice, it is handy for writing programs to have reasonable syntax for
parallel-tuples and fork-join. But let me postpone discussion of syntax for now.

5

Async-finish

Async-finish is a construct that allows forking a variable number of branches
with more flexibility than n-ary fork-join.

The finish construct introduces a semantic block in which the evaluation may
spawn branches using the async construct. The async operation is non-blocking,
it simply creates a parallel sub-computation. These async-ed sub-computations
may themselves spawn additional branches using async, within the same finish
block. When the execution reaches the last instruction from the finish block,
the finish construct blocks until all the branches spawned (either directly or
indirectly) in the scope of the finish block have completed.

The basic version of async-finish can be captured by a pair of two functions.

finish : (unit -> unit) -> unit
async : (unit -> unit) -> unit

Let me illustrate their use on a program that counts the number of ways to solve
a puzzle starting from an initial configuration. A single finish block is introduced.
During the exhaustive, recursive search, each recursive call gives rise to an async.
Those async-ed branch may themselves execute recursive calls and produce
further async-ed branches. The program terminates with the synchronization of
the finish block, that is, when all async-ed branches have completed.

let nb = Atomic.make 0

let _ =
finish (fun () ->

let rec search config =
if problem_solved config then

Atomic.incr nb
else begin

let parallel_search config2 =
async (fun () -> search config2) in

List.iter parallel_search (get_transitions config)
end in

search initial_config)

Observe that the number of “async-ed” branches that synchronize on the same
finish can be huge. There exists specially-crafted concurrent data structures called
SNZI (sum-non-zero-indicators) that are able to implement the “termination
detection” (a.k.a. the “join resolution”) efficiently (without suffering from
contention). I’ll get back to that structure later on.

Async-finish can trivially encode fork-join. The traditional encoding is:

let fork_join f1 f2 =
finish (fun () ->

6

http://www.cs.cmu.edu/~nbendavi/ppopp_2017_conf.pdf

async f2;
f1 ())

Note that a single async suffices. It would be also correct to write async f1
instead of just f1(), however this would be redundant, because the main body
of the finish block already accounts for one thread. It would also be correct
to async f1 then execute f2(), however the above presentation ensures, with
work-stealing schedulers, that f1 gets executed locally, i.e. using the same core
as the one that handled the function call to fork_join f1 f2.

Reciprocally, a program written using async-finish can be rewritten, using fork-
join. Intuitively, every async can be implemented as a binary fork join between
that async-ed branch and the continuation. Encoding async-finish using fork-join
thus requires a continuation- passing style (CPS) translation, which is impractical
to perform by hand.

Let me conclude this section by arguing that it makes sense for a surface language
to include a fork-join construct in addition to async-finish.

• fork-join has a key advantage: its arity is known at compile time, thus the
synchronization of its branches can be implemented more efficiently than
if fork-join was encoded using async-finish.

• async-finish enables describing more complex spawn patterns, without the
need for a CPS-translation of the code. Moreover, if many branches need to
synchronize on a single finish, an encoding using fork-join would introduce
an inefficient cascade of intermediate synchronizations.

Nested async-finish

When programming modularly, different finish blocks can be nested. Some
languages restrict the async-finish construct by allowing threads to async only
with respect to the nearest finish block. Nevertheless, it can be useful to async
with respect to outer finish blocks—just like it can be useful to break out of a
loop that is not the nearest one.

To support the general case, we need each finish block to introduce an identifier,
so that each async operation may specify on which finish block it should “join”.
In that presentation, the constructs are typed as follows.

labelled_finish : (block_id -> unit) -> unit
labelled_async : block_id -> (unit -> unit) -> unit

One question is whether OCaml should provide: - only the restricted opera-
tions finish and async, - only the general operations labelled_finish and
labelled_async, - or both.

The general API is unnecessarily heavy for most practical usages. The restricted
API is limited for some applications, and does not seem to be trivially derivable
from the general API. Keeping track of the current finish block of each fiber

7

can be done at the runtime level, but is hard if at all possible to do at the user
level. It seems to me, at this point, preferable to expose both the general and
the restricted version of async-finish.

Parallel-for loops

Parallel-for is an extremely useful construct in practice. For example, to incre-
ment all the cells of an array in parallel, it suffices to write:

parallel_for 0 (n-1) (fun i ->
a.(i) <- a.(i) + 1)

Parallel-for loops can be encoded using binary fork-join, following the same
scheme as for the function parallel_incr presented earlier on.

let rec parallel_for i j f =
if j - i <= threshold then begin

for k = i to j do
a.(i) <- a.(i) + 1)

end else begin
let m = i + (j-i)/2 in
fork_join (fun () -> parallel_for i m f)

(fun () -> parallel_for (m+1) j f)
end

One absolutely essential question is what value of threshold one should use. If
f denotes a trivial operation, threshold should be in the order of magnitude
of 1000. If, however, f denotes a large computation, f should be just 1. A
poor-man’s solution would be for parallel_for to take the value of threshold
as argument. This approach is very invasive and requires hard-coding constants
in ways that make the performance of the code not portable. Later on, I’ll
present general solutions to this granularity control problem.

There also exists a way to avoid the granularity control problem specific to
parallel-for loops (and to certain classes of tree computations). The idea is that
parallel-for loops can also be scheduled using a “lazy splitting” technique. In
that approach, the loop begin executing just like a sequential loop. During the
execution of that loop, if another core queries for work, the range of remaining
loop iterations gets split in two halves, and the upper half is sent to the other
core. This lazy splitting scheme can be emulated using the async-finish construct,
provided some support for polling for queries.

I’ll cover the implementation details of lazy splitting in another section. For
most applications, if we assume that granularity control can be properly handled,
then the simple encoding of parallel-for based on fork-join suffices.

8

Priorities and evaluation order

The evaluation of a structured parallel construct such as fork-join, parallel-pair,
or async-finish spawns branches. The scheduler has an important decisions to
make: among the branches, which one should the current core (i.e., the core that
executed the parallel construct) work on first?

For a binary fork-join, it probably makes most sense to execute the left branch
before the right branch. This way, a single-core execution of fork_join f1 f2
is equivalent to f1(); f2(), matching the left-to-right reading order.

For a parallel-pair, we may similarly want the execution of a parallel pair to
match the evaluation order of a sequential pair. The evaluation of tuples in
OCaml is famously unspecified. Even though the evaluation of parallel-order
should presumably be just as unspecified, it would be useful in practice to have
it implemented in the same order. Thus, for a parallel-pair, currently written
parallel_pair f1 f2, to match the sequential evaluation order of (f1(),
f2()), we should have the current core work first on f2, the second branch.

For a async-finish construct, there is also a choice to make. At each async point,
the scheduler has a choice between executing the body of the async first, or
executing the continuation (that is, the remaining of the finish block) first. An
equivalent sequential program would naturally be obtained by simply removing
the async calls, replacing async f with f(). To match the evaluation order,
the scheduler should get the current core to work on the async first.

However, there are applications for which it may be desirable (more efficient) to
get the current core to complete its work on the finish block first, and then only
start working on the async-ed branches. Depending on the code, terminating the
finish block may allow accessing data while it is still in the cache; this data may
be gone from the cache after the evaluation of the async-ed branch. Terminating
the finish block may also enable freeing auxiliary data earlier.

In summary, I believe that it may be desirable for an implementation of async-
finish to allow the user specifying the relative priority between an async branch
and its continuation.

Futures

Interface

A “future” captures a computation that can be performed concurrently to the
rest of the program. The result of a future can be queried for at any point of
the program after the creation of that future.

A future is thus similar to an object of type Lazy.t, except that its evaluation
may take place concurrently to the execution of the rest of the program. We say
that a future is “forced” (or “touched”) when its result is queried.

9

There are several possible variants of futures, but they all share the same
programming interface, essentially the same as for Lazy thunks.

future : (unit -> 'a) -> 'a future
force : 'a future -> 'a

There are many possible use cases for futures. Let me illustrate just one of them,
for highlighting the notion of speculation. Consider the sequential program,
where t1 and t2 denote two expensive computations, of similar duration.

if t1 then t2 else 0

Now, assume that the programmer knows that t1 returns true most of the time.
It is possible, using speculative parallelism, to get the program to run twice
faster, by rewriting it in the following form.

let x = future (fun () -> t2) in
if t1 then force x else 0

In this code, the result of t2 is created as a future, named x, which may be
executed in parallel of t1. If t1 returns true, the force operation either reads
the result of the future, or waits for the completion of the future. If t1 returns
false, the result of x is discarded. The evaluation of x may even be cancelled
(though with some care in case I/O computations are involved).

Semantics

The creation of a future is a constant-time, non-blocking operation. The force
operation can encounter several cases:

• If the force operation sees that the future has already been evaluated, it
may simply read the corresponding result, which was stored in the memory
representation of the future.

• If the force operation sees that the evaluation of the future has never begun,
it atomically flips a flag to indicate that the execution of the future has
begun, and starts evaluating the future.

• If the force operation sees that another thread is currently processing the
future, the currently-running thread needs to suspend its current execution.
In that case, the scheduler would typically assign to the current core
another available task. The suspended task needs to be registered somehow
with the future, so that it receives a notification when the result of the
future becomes ready.

The semantics of futures admits several variants, depending on the desired
priority and degree of strictness in the evaluation of futures. As far as I know,
there is no completely standard naming scheme for these variants. I will use the
following names:

• A “lazy” future describes a computation whose evaluation must not start
before it is first forced.

10

• A “strict” future describes a computation that will be performed at some
point before the end of the program, even if the future is never forced.

• An “eager” future is a strict “future” that is moreover assigned a higher
priority of evaluation than the continuation. In other words, as soon as a
future is created, its evaluation begins. The continuation may be evaluated
in parallel if another core is available to process it.

• A “speculative” future is one whose strictness/laziness is left unspecified:
its evaluation may start as soon as the future is created, or it may never
take place if the future is never forced.

Speculative futures have the main drawback that whether a future gets executed
or not may depend on a random scheduling process. This property makes it a
nightmare to debug or profile the program.

Lazy futures usually make a lot of senses in languages with laziness by default.
However, in a strict language such as OCaml, using lazy futures only would
mean that opportunities for parallelism will be missed. A typical situation would
see, on the one hand, a lazy future ready to execute, and, on the other hand,
cores sitting idle, just because it is not yet known that the result of the future
will eventually be needed. That said, it may be easy for an implementation to
provide the option to choose between a lazy future or a strict future at the time
of creating a future.

Regarding strict futures, there are essentially two choices: whether they should
be eager or not, i.e., whether the body of the future should be executed first
by the local core, or whether the continuation should be executed first. As far
as I understand, both variants may be interesting, depending on the situation.
It really is a scheduling issue, which I’ll come back to when discussing work
stealing schedulers.

Preemption

The operation system scheduler may decide, at any time, to suspend a (system)
thread, resume another thread, or migrate a thread to a different core. On
the contrary, if we use our own scheduler for scheduling the execution of fibers,
we have full control, and are able to impose different rules. (Typically, such
a scheduler would be set up by allocating one (system) thread per available
core, each of these threads running an instance of the scheduler that handles the
execution of the fibers.)

An important question is whether the scheduler should be “preemptive” or not.
The question of preemption may appear to be only related to the scheduler,
and not to the semantics of the parallel language. However, it is related to
the semantics, because if preemption is possible, then (1) a larger number of
instruction interleavings are possible, and (2) the cost semantics can be affected,
in particular the peak memory usage.

Depending on the class of programs that one has in mind, preemption can be
tempting For example, in Racket, the speculative execution of a future may

11

begin but then be suspended and resumed later.

However, in general, I would strongly advise against any preemptive scheduler,
because it leads to uncontrolled memory usage. Typically, a future may begin
by allocating tons of data in its very first instructions. If several such futures are
started and not executed to completion, the peak memory usage can be orders
of magnitude larger than what could happen in the worst-case execution of a
non-preemptive scheduler.

More generally, for programs that perform a lot of arithmetic computations
and few memory operations, it does not matter much when computations are
evaluated. However, for programs that do allocate or manipulate a significant
amount of memory, it does matter very much.

Encodings based on futures

The “future” construct is the most expressive parallel construct. Indeed, futures
can encode fork-join, async-finish, and parallel-for loops.

Futures can be used to encode fork-join.

let fork_join f1 f2 =
let b = future f2 in
f1;
force f2

Futures can be used to encode async-finish. A block-id consists of the address
of an atomic reference on a list of futures. Each of these futures in the list
correspond to one async-ed branch. At the end of the finish block, we force all
the futures from that list.

type block_id = ((unit future) list) Atomic.t

let finish f =
let b : block_id = atomic_ref [] in
f b; (* evaluate the contents of the finish block *)
List.iter force !b

let async b f =
atomic_push b (future f)

Other applications of futures

Futures are probably quite useful for programming programs performing I/O
and depending on the external world. Besides, some researchers have speculated
about the benefits of using future for pipelined computations such as graphics
processing. Recent work also argues for the interest of futures of hiding the
latency of I/O operations. On this topic, there is a SPAA’16 paper by Stefan
Muller and Umut Acar (implemented in parallel SML) and, and work a SIAM’20
paper by Singer et al. (implemented in an extension of Cilk with support for
futures).

12

http://www.umut-acar.org/publications/spaa2016-full.pdf?attredirects=0
https://www.cse.wustl.edu/~angelee/home_page/papers/futureIO.pdf
https://www.cse.wustl.edu/~angelee/home_page/papers/futureIO.pdf

I haven’t personnally written many programs involving futures. It appears to
me that most parallel algorithms can be efficiently implemented without futures,
using only well-structured parallel constructs. Nevertheless, it looks to me like a
good idea to include support for futures. If given sufficient control over how the
futures are scheduled, the programmer might be able to put them to good use
in specific application domains.

The work from Daniel Spoonhower’s PhD thesis show that scheduling policies for
futures can be devised, implemented, and proved to deliver good performance,
at least under sufficiently-strong assumptions.

Unified semantics for all constructs: the DAG calculus

Motivation

Assume that Multicore OCaml comes with an API including fork-join, parallel-
tuples, async-finish (with and/or without labels), and futures. What would be
the simplest way to explain to the programmer the semantics of a program that
can arbitrarily nest all these constructs?

Technically, the encoding of all constructs in terms of futures does provide a
semantics. However, this answer is unsatisfactory for three reasons.

• First, it requires a deep understanding of futures, which we should not
assume if we are not advertising the broad use of futures.

• Second, it requires the programmer to understand all these encodings.
• Third, while it provides a model for the semantics, it does not tell the

right story with respect to the cost semantics, i.e. it would not suggest
where the scheduling overheads come from. It would be more satisfying to
present a model for the semantics that can also be used to describe the
cost semantics.

With my colleagues, we published at ICFP’16 a paper that precisely addresses
the question of providing a simple, unifying semantics. We named our semantics
the “DAG calculus”. We show that the state of the program during an execution
can be represented as a dynamically-constructed graph, where nodes represent
tasks/fibers/subcomputations, and where edges represent dependencies. The
graph is directed and acyclic, thus is a DAG.

In what follows, I’ll summarize at a high-level the main ideas of the DAG calculus.
I’ll discuss how it can be implemented later on.

The DAG calculus offers a low-level programming API, essentially with a function
for dynamically adding nodes and edges. The nodes and edges get consumed as
the execution proceeds: if a node completes its execution, it is removed from the
DAG, together with its outgoing edges. If a node has zero incoming edges, it is
“ready”: its execution may begin.

13

https://www.cs.cmu.edu/~rwh/theses/spoonhower.pdf
http://www.chargueraud.org/research/2016/dag_calculus/dag_calculus_icfp16.pdf

The parallel constructs are encoded in a very simple manner using these basic
operations. Our semantics specifies accurately when it is legitimate to add an
edge, and when it is not.

Our semantics thus remains given by an encoding, but, compared with encoding
based on futures, our presentation is much simpler and matches closely what a
realistic, optimized runtime could implement. For example, our C++ library-
based implementation of a parallel runtime faithfully follows our encodings.

Note also that the low-level programming API offered by the DAG-calculus
may also be directly manipulated by the programmer, to describe more complex
parallelism patterns than what can be encoded using any of the parallel constructs
presented so far.

Interface

The DAG-calculus operations are:

• newNode, adds a node, which captures a piece of computation (represented
as a “fiber”). When created, the node is not available for execution until
the release operation is invoked on that node. This two-step process is
necessary to leave the time to set up incoming edges on that node.

• newEdge, adds a dependency between two nodes. There are restrictions, for
example no cycles must be created, and it is not allowed for the target edge
to be a ready task, because its execution might get started concurrently.

• release should be invoked on a node to hand it over to the scheduler.
After release is called, as soon as a node has no incoming edges left, it
becomes ready for scheduling.

• yield is an operation that suspends the currently running thread (fiber),
and updates the contents node associated with that thread with “what
remains of the current computation”. It is a specific form of a “capture
continuation” operation.

• self returns a pointer on the currently running thread. This operation
is useful to add incoming edges onto the current node, which will then
describe a “continuation” after a yield operation.

These operations can be type-checked as follows.

type node
newNode : (unit -> unit) -> node
newEdge : node -> node -> unit
release : node -> unit
yield : unit -> unit
self : unit -> node

Implementation

To DAG calculus can serve as a basis for an efficient implementation. It suffices
to extend the API to allow specifying, for each node, the strategy to be employed
for representing the set (or number) of incoming edges and the set of outgoing

14

edges. Indeed, depending on the arity, and on whether the arity is statically
known or not, more or less efficient strategies are available.

Moreover, an implementation based on the DAG calculus can accommodate
very important optimisations specific to work-stealing executions, such as an
optimisation for fork-join when a core discovers, after completing the left branch,
that the right branch has not been migrated to another core.

Encoding of parallel constructs in the DAG-calculus

The fork-join construct is encoded as follows.

let fork_join f1 f2 =
let t1 = newNode f1 in
let t2 = newNode f2 in
newEdge t1 (self());
newEdge t2 (self());
release t1;
release t2;
yield()

The n-ary fork-join construct follows exactly the same pattern as above, simply
adjusting the number of branches.

The parallel-pair construct is similar, except that one has to deal with returned
values. The DAG-calculus, which aims at simplicity, does not integrate support
for nodes that deliver a return value. Instead, operations encoded in the DAG-
calculus are responsible for allocating a cell to store the results of their branches.

The parallel-tuple construct can be encoded using n-ary fork-join, or can be
encoded directly as follows (example for arity 2).

let parallel_tuple_2 f1 f2 =
let r1 = ref None in
let r2 = ref None in
let t1 = newNode (fun () -> r1 := Some (f1())) in
let t2 = newNode (fun () -> r2 := Some (f2())) in
newEdge t1 (self());
newEdge t2 (self());
release t1;
release t2;
yield();
(unsome !r1, unsome !r2)

The labelled async-finish construct is encoded as follows, where b denotes a finish
block identifier.

let labelled_async b f =
let t = newNode f in
newEdge t b;
release t

15

let labelled_finish f =
let b = self() in
let t = newNode (fun () -> f b) in
newEdge t b;
release t;
yield()

The future construct is encoded as follows.

type 'a future = (node * 'a ref)

let future f =
let r = ref None in
let t = newNode (fun () -> r := Some (f())) in
release t;
(t, r)

let force (t,r) =
newEdge t (self());
yield();
unsome !r

A concrete proposal

It seems to me that, to maximize backward and compatibility and accommodate
for extensions, it would be best to present all constructions in the form of
functions. Only the case of parallel tuples is a bit tricky, because we’d like this
construct to work for all arities, with a reasonable syntax and a simple enough
type-checking rule.

API for constructs

(* Parallel-for *)
parallel_for : int -> int -> (int -> unit) -> unit

(* Fork-join *)
type branch = unit -> unit
fork_join_2 : branch -> branch -> unit
fork_join_3 : branch -> branch -> branch -> unit
fork_join_4 : branch -> branch -> branch -> branch -> unit
fork_join_list : branch list -> unit

(* Parallel-pairs, without ad-hoc syntax;
unclear how to typecheck higher arities. *)

parallel_pair : (unit -> 'a) -> (unit -> 'b) -> ('a, 'b)

16

(* Async-finish *)
finish : (unit -> unit) -> unit
async : (unit -> unit) -> unit

(* Labelled async-finish *)
type block_id
labelled_finish : (block_id -> unit) -> unit
labelled_async : block_id -> (unit -> unit) -> unit

(* Futures *)
future : (unit -> 'a) -> 'a future
force : 'a future -> 'a

(* DAG-calculus *)
type node
newNode : (unit -> unit) -> node
newEdge : node -> node -> unit
release : node -> unit
yield : unit -> unit
self : unit -> node

Syntax for parallel-tuples

Let me talk about syntax—breaking the golden rule, for just a few lines, to point
out that it is not completely obvious what is the best way to deal with parallel
tuples or arbitrary arities.

Solution 1 : don’t use any ad-hoc syntax, just extend somehow the typechecker
(or use GADTs?) to deal with the list of arguments.

let (x,y,z) = Parallel.tuple [
(fun () -> f a);
(fun () -> g b);
(fun () -> h c)]

The main drawback of this approach is that it is super heavy as syntax. It’s
basically as bad as what one needs to write in C++ (without macros).

parallel::tuple([&]{ f(a); };
[&]{ f(b); };
[&]{ f(c); };);

Solution 2 : introduce a dedicated syntax. To indicate that f a and g b can be
evaluated in parallel, one could write:

let (x,y,z) = (| f a, g b, h c |)

The first drawback of this approach is that it requires modifying the syntax
in a nontrivial way. The second drawback of this approach is that it does not
allow for providing optional arguments that are useful for specifying scheduling

17

parameters related, e.g., to the choice of a particular join-resolution strategy, or
to granularity control.

Solution 3 : use binding extensions. Gabriel Scherer pointed out the possibility
to write:

let| x = f a
and| y = g b
and| z = h c

This solution has the same problem in terms of providing optional scheduling
options to the parallel-tuple operation.

Solution 4 : introduce parallel as a function to be put in front of the conven-
tional tuple syntax, or in front of a list of arguments, or in front of curried
arguments; and introduce in OCaml a way to make function arguments “lazy by
default”, that is, with an implicit fun () -> ...

let (x,y,z) = Parallel.tuple (f a, g b, h c)
let (x,y,z) = Parallel.tuple [f a; g b; h c]
let (x,y,z) = Parallel.tuple (f a) (g b) (h c)

One drawback of this approach is that it the implicit fun () -> .. might be
found confusing.

Refinements to come

I’ll later refine the interface by adding a few optional arguments to allow tuning
implementation details.

For example, for nodes it is useful to specify which data structures should be
used to represent the edges. The instrategy provides support for represent-
ing incoming edges, while the outstrategy provides support for representing
outgoing edges.

newNode : ?instrategy:instrategy -> ?outstrategy:outstrategy ->
(unit -> unit) -> node

As another example, it will be useful to equip parallel-for loop with information
helpful for granularity control. Concretely, a function that gives the asymptotic
cost of a range of iterations is useful.

parallel_for : ?complexity:(int -> int -> int) ->
int -> int -> (int -> unit) -> unit

Semantics of exceptions for parallel constructs

Let’s forget for now about unstructured concurrent programming involving
futures, and consider first a strongly structured parallel programming pattern
such as fork-join (or parallel-tuples), async-finish, and parallel-for. If one or

18

several branches throw exceptions, how should these exceptions be handled?
How do they interact with the execution of the other branches?

Let’s first take a step back. In sequential programming, there are (at least) two
important applications for exceptions:

1. exceptions for tracing errors,
2. exceptions for terminating algorithms early.

Regarding the tracing of errors, the desirable property for debugging a parallel
program are determinacy and reproducibility. If the randomness of scheduling
decisions affect which exception comes back to you, then you are in deep trouble,
for sure. To ensure reproducibility in the presence of randomized scheduling
and branches performing arbitrary side-effects, it is necessary to execute all the
branches until completion, even if one of the branches is detected to raise an
exception. (Moreover, beyond reproducibility concerns, abruptly killing running
threads is generally a bad idea for programs that interact with the outside world.)

There are two obvious possibilities for dealing with exceptions in parallel branch-
ing constructs:

1. Execute all branches until the end; if one or more branches throw an
exception, combine the exceptions from all branches and return a single
exception carrying the list of those exceptions (or, more generally, use
some kind of custom function for combining exceptions into one).

2. Exploit the fact there exists an implicit order on the branches, and propa-
gate only the exception raised by the “first” branch that raises an exception,
with respect to that order. This allows, potentially, for killing (cancelling)
certain branches early, if a prior branch already raised an exception.

Both behaviors seem acceptable to me.

The solution (1) is that implemented in the X10 language, which offers async-
finish as main parallel construct (See the paragraph “The rooted exception model”
from the introduction to X10.

There are, in my opinion, two key benefits to the solution (2). First, it does not
require introducing additional tooling for handling “an exception that bundles a
list of exceptions”. Second, it means that an execution of the parallel program
using several cores always raises exactly the same exception as an execution of
that same program using a single core, and interpreting the parallel constructs
as sequential composition—i.e. executing the “sequential elision” of the parallel
program.

The property that a parallel program should deliver the same results as its se-
quential elision is particularly desirable because several approaches to granularity
control rely on this assumption. We’ll come back to that point.

Let’s come back to the question of whether it is desirable or feasible to cancel
the execution of a branch whose execution has already started and whose result
will certainly not be needed. As far as I know, both the Cilk project and the

19

http://x10-lang.org/documentation/intro/latest/html/node4.html

Manticore project provided some amount of support for cancellable async-ed
tasks. However, the implementation details are quite complex, because the task
to cancel may have spawned numerous subtasks, and these subtasks may be
scattered around numerous cores. Moreover, note that a given subtask may get
“cancelled” as a result of any of its ancestor fork-join operations having a left
branch raising an exception. Thus, a basic polling mechanism may be insufficient
for detecting cancellation.

If you are nevertheless interested in understanding what it takes to support
cancellable tasks, you cna find details in the description of the implementations
of cancellable exceptions in Manticore and of exceptions in JCilk. (JCilk was a
prototype extension of Java with support for the Cilk constructs.)

Support for early termination in parallel algorithms

Let’s take a step back. I wrote that exceptions have two important applications:
for tracing errors, and for terminating algorithms early. For tracing errors, it
is not important to cancel branches early, one can presumably afford to wait
until completion of all the parallel branches. Regarding early termination of
algorithms such as in branch-and-bound algorithms, I’ll argue in what follows
that it is not hard to implement task cancellation via polling.

Recall the program that performs a parallel search to count the number of
solutions of a puzzle. Assume now that we are only interested in finding one
solution, and want to interrupt the parallel search as soon as have found one
solution.

This early termination pattern can be implemented easily by having all parallel
branches of the search polling on a shared cell, whose contents indicate whether
a solution has been found. Note that, although this shared cell is accessed
concurrently by several threads, it is safe to read and update it using non-atomic
operations.

let found = ref false

let _ =
finish (fun () ->

let rec search config =
if !found then

() (* branch is interrupted *)
else if problem_solved config then

found := true
else begin

let parallel_search config2 =
async (fun () -> search config2) in

List.iter parallel_search (get_transitions config)

20

http://manticore.cs.uchicago.edu/papers/icfp08-sched.pdf
https://core.ac.uk/download/pdf/82684165.pdf
http://supertech.csail.mit.edu/jCilkImp.html

end in
search initial_config)

This programming pattern can be captured through an API that generalizes the
labelled async-finish as follows. The cell used for polling is handled by the library.
A function labelled_interrupt updates this cell to mark the finish block as
interrupted. A function labelled_interrupted should be used in the client
code to check whether the branch should continue its execution. An additional
function labelled_check_interrupt is included; it is explained further on.

(* Interruptible labelled async-finish *)
type block_id
labelled_finish : (block_id -> unit) -> unit
labelled_async : block_id -> (unit -> unit) -> unit
labelled_interrupt : block_id -> unit
labelled_interrupted : block_id -> bool
labelled_check_interrupt : block_id -> unit

The fact that polling takes place only at specific places is both a weakness and a
strength. It is a weakness because it might take some time for a branch to be
interrupted if it called another time-consuming function. At the same time, it is
a strength because the programmer controls the point of interruption, and is
able, e.g., to cleanly close ongoing I/O operations.

Using the above interface, the code for the interruptible puzzle resolution can be
rewritten as follows.

let _ =
labelled_finish (fun b ->

let rec search config =
if labelled_interrupted b then

() (* interrupt the branch *)
else if problem_solved config then begin

print config;
labelled_interrupt b (* interrupt the finish *)

end else begin
let parallel_search config2 =

labelled_async b (fun () -> search config2) in
List.iter parallel_search (get_transitions config)

end in
search initial_config)

For more complex programs, it might be convenient for the user to kill
the current branch by raising an exception when labelled_interrupted
returns true. For that purpose, we extend the interface with a func-
tion call labelled_check_interrupted, whose behavior is to invoke
labelled_interrupted and raise a specific exception if the result is true. This
exception is caught and ignored by the finish block.

21

Our example can be rewritten by writing labelled_check_interrupt b at the
entry point of the search function. Additionnally, if we would like to be able to
interrupt the branch during the iteration over the neighbor configurations, we
can add another instance of this polling operation inside the parallel_search
function. The resulting code is:

let _ =
labelled_finish (fun b ->

let rec search config =
labelled_check_interrupt b;
if problem_solved config then begin

print config;
labelled_interrupt b (* interrupt the finish *)

end else begin
let parallel_search config2 =

labelled_check_interrupt b;
labelled_async b (fun () -> search config2) in

List.iter parallel_search (get_transitions config)
end in

search initial_config)

Considering the parallel algorithms concerned by “early termination” that I know
of, I would tend to think that it is sufficient to offer support for interruptible
branches only for async-finish. For introducing interruptible branches in a code
written using fork-join or parallel-pairs, there are two easy way out: either use
the async-finish encoding for these constructs, or manually introduce a cell for
polling on termination.

Overall, I speculate that it is not needed to bother tackling the challenge of
implementing support for cancellable tasks in the parallel runtime, because for
most applications this can be done easily in the user code. Maybe it will appear
useful to support cancellable tasks in the future, but at the moment support for
cancellable tasks does not appear to me as a top-priority.

Semantics of exceptions for futures

There are not so many choices for the semantics of exceptions in futures.

If we mimic the semantics of exceptions for lazy thunks, the rule would be: if the
evaluation of the future raises an exception, then this same exception is raised
upon every force operation on that future.

There is a big issue, however. What if a future is executed, its execution raises
an exception, but the future is never forced? What should happen to that
exception?

Raising the exception at top-level out of any context would be problematic.
It means that scheduling decisions may affect whether a program raises an

22

exception or not. Such lack of determinacy makes debugging intractable.

Silently dropping the exception without any feedback to the user would also be
quite problematic. Usually, it means that the code contains a bug, and that this
bug was not revealed only because the result of the future turned out to not
be needed to compute the final result for the particular input data considered,
although it might have been needed for a slightly different input.

The only reasonable way out that comes to my mind is to ensure that this
situation never happens. In other words, a future that is executed and that may
raise an exception should be forced at least once.

If we follow this rule, then it leaves us with three acceptable programming
patterns for futures.

1. Lazy futures are always acceptable, because they are never executed before
they are forced.

2. Strict futures are acceptable if the programmer is certain that the future
will be forced at least once.

3. Strict futures are acceptable if the programmer is certain that the future
will never raise an exception (other than out-of-memory).

Of course, the notion of “being certain” is quite questionable. Many program-
mers are certain that their code is correct until proven otherwise! Could a
static analysis ensure that a future is enforced at least once, for many useful
programming patterns?

Exceptions in the presence of non-termination

One last observation I’d like to point out regarding exceptions is that the order
of evaluation of the branches, and the property of whether branches can be
cancelled while they execute, both affect whether a program reports an exception
or whether it diverges. Consider for example the (minimalistic) example program:

finish (fun () ->
let rec f () =

async f;
async (fun () -> raise Not_found);
f()
in

f())

This program spawns infinitely-many branches, half of which diverge and half
of which raise an exception. Depending on the details of the scheduler, this
program would either diverge or raise an exception.

I believe that this situation is somehow inevitable. It seems hard to define a
deterministic semantics for a parallel program that diverges, because doing so

23

would require some form of preemption to ensure fairness among all the threads,
and I have argued earlier on for the drawbacks preemption.

Semantics of exceptions in the DAG calculus

The DAG-calculus paper left exceptions to future work. Whatever semantics we
settle on for parallel constructs and for futures, it would be highly desirable in
my opinion to describe it as a (possibly-trivial) extension of the DAG-calculus.

Acknowledgements

I’d like to thank François Pottier (Inria), Mike Rainey (CMU), Guillaume Ryder
(Google), and Gabriel Scherer (Inria) for their feedback on drafts of this material.

24

	Language abstractions and scheduling techniques for efficient execution of parallel algorithms on multicore hardware
	Foreword
	Historical background

	Part 1: Semantics of parallel constructs
	Fork-join
	Parallel-pairs
	N-ary fork-join and parallel-tuples
	Async-finish
	Nested async-finish
	Parallel-for loops
	Priorities and evaluation order
	Futures
	Unified semantics for all constructs: the DAG calculus
	A concrete proposal
	Semantics of exceptions for parallel constructs
	Support for early termination in parallel algorithms
	Semantics of exceptions for futures
	Exceptions in the presence of non-termination
	Semantics of exceptions in the DAG calculus
	Acknowledgements

