Set Implicit Arguments.
Require Export LambdaExn_Syntax.
Import BehaviorsWithoutErrors.
Implicit Types v : val.
Implicit Types t : trm.
Implicit Types b : beh.
Inductive bigred : trm -> beh -> Prop :=
| bigred_val : forall v,
bigred v v
| bigred_abs : forall x t,
bigred (trm_abs x t) (val_clo x t)
| bigred_app : forall t1 t2 x t3 v2 o,
bigred t1 (val_clo x t3) ->
bigred t2 v2 ->
bigred (subst x v2 t3) o ->
bigred (trm_app t1 t2) o
| bigred_app_exn_1 : forall t1 t2 v,
bigred t1 (beh_exn v) ->
bigred (trm_app t1 t2) (beh_exn v)
| bigred_app_exn_2 : forall t1 t2 v1 v,
bigred t1 v1 ->
bigred t2 (beh_exn v) ->
bigred (trm_app t1 t2) (beh_exn v)
| bigred_try : forall t1 t2 v1,
bigred t1 v1 ->
bigred (trm_try t1 t2) v1
| bigred_try_1 : forall t1 t2 o2 v,
bigred t1 (beh_exn v)->
bigred (trm_app t2 v) o2 ->
bigred (trm_try t1 t2) o2
| bigred_raise : forall t1 v1,
bigred t1 v1 ->
bigred (trm_raise t1) (beh_exn v1)
| bigred_raise_exn_1 : forall t1 v,
bigred t1 (beh_exn v) ->
bigred (trm_raise t1) (beh_exn v)
| bigred_rand : forall k,
(ParamDeterministic -> k = 0) ->
bigred trm_rand (val_int k).
CoInductive bigdiv : trm -> Prop :=
| bigdiv_app_1 : forall t1 t2,
bigdiv t1 ->
bigdiv (trm_app t1 t2)
| bigdiv_app_2 : forall t1 v1 t2,
bigred t1 v1 ->
bigdiv t2 ->
bigdiv (trm_app t1 t2)
| bigdiv_app_3 : forall t1 t2 x t3 v2,
bigred t1 (val_clo x t3) ->
bigred t2 v2 ->
bigdiv (subst x v2 t3) ->
bigdiv (trm_app t1 t2)
| bigdiv_try_1 : forall t1 t2,
bigdiv t1 ->
bigdiv (trm_try t1 t2)
| bigdiv_try_2 : forall t1 t2 v,
bigred t1 (beh_exn v) ->
bigdiv (trm_app t2 v) ->
bigdiv (trm_try t1 t2)
| bigdiv_raise_1 : forall t1,
bigdiv t1 ->
bigdiv (trm_raise t1).
Section BigredInd.
Inductive bigredh : nat -> trm -> beh -> Prop :=
| bigredh_val : forall n v,
bigredh (S n) v v
| bigredh_abs : forall n x t,
bigredh (S n) (trm_abs x t) (val_clo x t)
| bigredh_app : forall n t1 t2 x t3 v2 b,
bigredh n t1 (val_clo x t3) ->
bigredh n t2 v2 ->
bigredh n (subst x v2 t3) b ->
bigredh (S n) (trm_app t1 t2) b
| bigredh_app_exn_1 : forall n t1 t2 v,
bigredh n t1 (beh_exn v) ->
bigredh (S n) (trm_app t1 t2) (beh_exn v)
| bigredh_app_exn_2 : forall n t1 t2 v1 v,
bigredh n t1 v1 ->
bigredh n t2 (beh_exn v) ->
bigredh (S n) (trm_app t1 t2) (beh_exn v)
| bigredh_try : forall n t1 t2 v1,
bigredh n t1 v1 ->
bigredh (S n) (trm_try t1 t2) v1
| bigredh_try_1 : forall n t1 t2 o2 v,
bigredh n t1 (beh_exn v)->
bigredh n (trm_app t2 v) o2 ->
bigredh (S n) (trm_try t1 t2) o2
| bigredh_raise : forall n t1 v1,
bigredh n t1 v1 ->
bigredh (S n) (trm_raise t1) (beh_exn v1)
| bigredh_raise_exn_1 : forall n t1 v,
bigredh n t1 (beh_exn v) ->
bigredh (S n) (trm_raise t1) (beh_exn v)
| bigredh_rand : forall n k,
(ParamDeterministic -> k = 0) ->
bigredh (S n) trm_rand (val_int k).
Hint Constructors bigred bigredh.
Hint Extern 1 (_ < _) => math.
Lemma bigredh_lt : forall n n' t b,
bigredh n t b -> n < n' -> bigredh n' t b.
Proof.
introv H. gen n'. induction H; introv L;
(destruct n' as [|n']; [ false; math | auto* ]).
Qed.
Lemma bigred_bigredh : forall t b,
bigred t b -> exists n, bigredh n t b.
Proof. hint bigredh_lt. introv H. induction H; try induct_height. Qed.
End BigredInd.
|