Efficient Primitives for Creating and
Scheduling Parallel Computations

Umut Acar Arthur Charguéraud Mike Rainey

Max Planck Institute for Software Systems

DAMP'12 Philadelphia, 2012/01/28

Programming efficient parallel algorithm on multicore architectures

speedup
A

T L L
LU | 8 ;
_'ﬂ!_w i

want to leave implicit:

— thread creation

— dynamic load balancing
— synchronization on joins

Constructs for implicit parallelism:

— fork-join

— sync-spawn

— parallel loops

— map-reduce

— graph traversal

— futures

— Invoke, ContinueWith, ContinueWhenAll, WaitAll,
Nested Tasks, Child Task$/icrosoft's TPL interface)

T00 many constructs! - high cost of entry

Still not enough! _. doesn't seem complete

What are the fundamental constructs
for implicit parallel programming?

Can we find a concise interface that

— generalizes existing constructs,

— lets us express any implicitly parallel program,
— lends itself to efficient implementations?

We can view parallel computations as DAGs to anaillyse efficiency

Ve
/ _
/
/
/ /
/

work /'\
% depth
R
. /{#
.\

Couldn't we program parallel computations directly as dynamic DAGS?

Towards a dynamic DAG programming interface...

node* add node(closure®)
void add edge(node*, node*)

.A 4

I . “ <« ready nodes
A

— we here assume tasks to perform side-effects hubrreturn a value

-~ need to be able to allocate a node before addiogiie DAG

node* create node(closure*)
void add node(node*)

- need to be able to replace a node with a sub-DAG

/

|

void transfer _outedges tdnode?*)

Our dynamic DAG programming interface:

node* create node(closure*)

void add node(node*)

void add edge(node*, node*)
void transfer outedges tgnode*)

Rest of the talk:
— EXpressiveness
- Efficiency

Encoding fork-join

fork-join as last > o
instruction » 4@ <« branches
J .\4<r «—Join node
e o 0 e o o

void fork join(closure* cl, closure* c2, closure* cj)
node* nl = create_node(cl)
node* n2 = create_node(c2)
node* nj = create_node(cj)
t ransfer outedges to(nj)
add _edge(nl, nj)
add _edge(n2, nj)
add _node(nl)
add _node(n2)
add _node(nj)

Encoding graph traversal using a big join

% bigjor

10

Encoding futures

futuretask » e
(ready) A

.

forced

task requiring
the future to be

»

e - future executed

<
®

«— become ready

Note: alazy future becomes ready only after first out-edgedideal

11

The dynamic DAG interface is simple and expressivéut...

Can we schedule dynamic
DAGs efficiently?

12

Three key ingredients

1) Load balancing
— assume some variant of work stealing

2) Number of incoming edges 3) List of outgoing edges
- a.k.a. join counters — dual problem (see paper)
«x

list of pointers

join counter = 10

13

Big-arity joins: distributed counters
— USe one counter per processor (# edges addeddge®# eemoved)
— periodic check by one particular processor tofsée sum is zero

owner = processor #4
counters =[23; -9; 97, 67, 20 |

14

Small arity joins: atomic counters

join counter = 2

\

join counter = 1

e

fetch-and-add(-1)

<« ¥

join counter =0

Can we avoid synchronization?

- clone translation supports fork-join but not admyr DAGS

15

Small arity joins: owner counters

— one owner for each task, in charge of updatingtumter

— other processors send messages over producermoenbuffers

\V4

owner = proc X
owner counter = 2

owner = proc X
owner counter =1

— but delays can be incurred

owner = proc X
owner counter = 0

16

Small arity joins: optimistic counters

— same as previous slide, plus a shared counter

— works if no dynamic addition of incoming edges

o / ° o ° [

owner = proc X owner = proc X owner = proc X
owner counter = 2 owner counter =0 owner counter =0
shared counter = 2 shared counter =0 shared counter = 1

No race the shared Race messages are
counter reaches zero used to recover

17

Representation of edges on a per-node basis
— aninstrategyfor representing the number of incoming edges

— anoutstrategyfor representing the list of outgoing edges

node* create node(closure*, instrategy*, outstrategy*)

Examples of in-strategies:
— distributed

— atomically-updated

— owner-based

— optimistic

18

Dynamic DAGs, with per-node specification of edgagpresentation

VOIO
VOIC
VOIC

node* create node(closure*, instrategy*, outstrategy*)

add_node(node*)
add_edge(node*, node*)
transfer_outedges tdnode?*)

- concise, expressive, efficient interface
— define and explain other constructs in terms o thierface
- Implemented in our C++ scheduldtASL"

More details in our paper, available from the DAERIFL2 website

19

