
1

DAMP'12 Philadelphia, 2012/01/28

Umut Acar Arthur Charguéraud Mike Rainey

Efficient Primitives for Creating and
Scheduling Parallel Computations

Max Planck Institute for Software Systems

2

Programming efficient parallel algorithm on multicore architectures

cores

speedup

want to leave implicit:

– thread creation

– dynamic load balancing

– synchronization on joins

3

Constructs for implicit parallelism:

– fork-join

– sync-spawn

– parallel loops

– map-reduce

– graph traversal

– futures

Too many constructs! → high cost of entry

Still not enough! → doesn't seem complete

– Invoke, ContinueWith, ContinueWhenAll, WaitAll,

Nested Tasks, Child Tasks(Microsoft's TPL interface)

4

What are the fundamental constructs

for implicit parallel programming?

Can we find a concise interface that

– generalizes existing constructs,

– lets us express any implicitly parallel program,

– lends itself to efficient implementations?

5

depth

work

We can view parallel computations as DAGs to analyse their efficiency

Couldn't we program parallel computations directly as dynamic DAGs?

6

Towards a dynamic DAG programming interface...

node* add_node (closure*)

void add_edge (node*, node*)

ready nodes

...

→ we here assume tasks to perform side-effects but not to return a value

7

→ need to be able to allocate a node before adding it to the DAG

node* create_node (closure*)
void add_node (node*)

→ need to be able to replace a node with a sub-DAG

void transfer_outedges_to (node*)

8

node* create_node (closure*)
void add_node (node*)

void add_edge (node*, node*)
void transfer_outedges_to (node*)

Our dynamic DAG programming interface:

Rest of the talk:

→ Expressiveness

→ Efficiency

9

branches

join node

Encoding fork-join

fork-join as last
instruction

void fork_join(closure* c1, closure* c2, closure* cj)

node* n1 = create_node(c1)

node* n2 = create_node(c2)

node* nj = create_node(cj)

transfer_outedges_to(nj)

add_edge(n1,nj)

add_edge(n2,nj)

add_node(n1)

add_node(n2)

add_node(nj)

10

processed node

Encoding graph traversal using a big join

big join

11

future task
(ready)

Encoding futures

Note: a lazy future becomes ready only after first out-edge is added

task requiring
the future to be
forced

future executed

become ready

12

Can we schedule dynamic
DAGs efficiently?

The dynamic DAG interface is simple and expressive, but...

13

Three key ingredients

3) List of outgoing edges

→ dual problem (see paper)

2) Number of incoming edges

→ a.k.a. join counters

1) Load balancing

→ assume some variant of work stealing

join counter = 10

list of pointers

14

Big-arity joins: distributed counters

– use one counter per processor (# edges added - # edges removed)

– periodic check by one particular processor to see if the sum is zero

owner = processor #4
counters = [23; -9; 97; 67; 20]

15

Small arity joins: atomic counters

join counter = 2 join counter = 1 join counter = 0

→ clone translation supports fork-join but not arbitrary DAGs

Can we avoid synchronization?

fetch-and-add(-1)

16

Small arity joins: owner counters

owner = proc X
owner counter = 2

owner = proc X
owner counter = 1

owner = proc X
owner counter = 0

– one owner for each task, in charge of updating the counter

– other processors send messages over producer-consumer buffers

→ but delays can be incurred

17

Small arity joins: optimistic counters

owner = proc X
owner counter = 2
shared counter = 2

owner = proc X
owner counter = 0
shared counter = 0

owner = proc X
owner counter = 0
shared counter = 1

No race: the shared
counter reaches zero

Race: messages are
used to recover

→ works if no dynamic addition of incoming edges

→ same as previous slide, plus a shared counter

18

Representation of edges on a per-node basis

– an instrategyfor representing the number of incoming edges

– an outstrategyfor representing the list of outgoing edges

node* create_node (closure*, instrategy*, outstrategy*)

Examples of in-strategies:

– distributed

– atomically-updated

– owner-based

– optimistic

19

node* create_node (closure*, instrategy*, outstrategy*)
void add_node (node*)

void add_edge (node*, node*)
void transfer_outedges_to (node*)

Dynamic DAGs, with per-node specification of edges representation

→ concise, expressive, efficient interface

→ define and explain other constructs in terms of this interface

→ implemented in our C++ scheduler "PASL"

More details in our paper, available from the DAMP 2012 website

