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Programming efficient parallel algorithm on multicore architectures

cores

speedup

want to leave implicit: 

– thread creation

– dynamic load balancing

– synchronization on joins
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Constructs for implicit parallelism:

– fork-join

– sync-spawn

– parallel loops

– map-reduce

– graph traversal

– futures

Too many constructs! → high cost of entry

Still not enough! → doesn't seem complete

– Invoke, ContinueWith, ContinueWhenAll, WaitAll, 

Nested Tasks, Child Tasks(Microsoft's TPL interface)
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What are the fundamental constructs 

for implicit parallel programming?

Can we find a concise interface that

– generalizes existing constructs,

– lets us express any implicitly parallel program,

– lends itself to efficient implementations?



5

depth

work

We can view parallel computations as DAGs to analyse their efficiency

Couldn't we program parallel computations directly as dynamic DAGs? 
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Towards a dynamic DAG programming interface...

node* add_node (closure*)

void add_edge (node*, node*) 

ready nodes

...

→ we here assume tasks to perform side-effects but not to return a value
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→ need to be able to allocate a node before adding it to the DAG

node* create_node (closure*)
void add_node (node*) 

→ need to be able to replace a node with a sub-DAG

void transfer_outedges_to (node*) 
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node* create_node (closure*)
void add_node (node*) 

void add_edge (node*, node*)
void transfer_outedges_to (node*) 

Our dynamic DAG programming interface:

Rest of the talk:

→ Expressiveness

→ Efficiency
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branches

join node

Encoding fork-join 

fork-join as last 
instruction

void fork_join(closure* c1, closure* c2, closure* cj)

node* n1 = create_node(c1)

node* n2 = create_node(c2)

node* nj = create_node(cj)

transfer_outedges_to(nj) 

add_edge(n1,nj)

add_edge(n2,nj)

add_node(n1)

add_node(n2)

add_node(nj)
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processed node

Encoding graph traversal using a big join

big join
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future task
(ready)

Encoding futures

Note: a lazy future becomes ready only after first out-edge is added

task requiring 
the future to be 
forced

future executed

become ready
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Can we schedule dynamic 
DAGs efficiently?

The dynamic DAG interface is simple and expressive, but...
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Three key ingredients

3) List of outgoing edges

→ dual problem (see paper)

2) Number of incoming edges

→ a.k.a. join counters

1) Load balancing

→ assume some variant of work stealing

join counter = 10

list of pointers
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Big-arity joins: distributed counters

– use one counter per processor (# edges added  - # edges removed)

– periodic check by one particular processor to see if the sum is zero

owner = processor #4
counters = [ 23; -9; 97; 67; 20 ]
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Small arity joins: atomic counters

join counter = 2 join counter = 1 join counter = 0

→ clone translation supports fork-join but not arbitrary DAGs

Can we avoid synchronization?

fetch-and-add(-1)
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Small arity joins: owner counters

owner = proc X
owner counter = 2

owner = proc X
owner counter = 1

owner = proc X
owner counter = 0

– one owner for each task, in charge of updating the counter

– other processors send messages over producer-consumer buffers

→ but delays can be incurred
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Small arity joins: optimistic counters

owner = proc X
owner counter = 2
shared counter = 2

owner = proc X
owner counter = 0
shared counter = 0

owner = proc X
owner counter = 0
shared counter = 1

No race: the shared 
counter reaches zero

Race: messages are 
used to recover

→ works if no dynamic addition of incoming edges

→ same as previous slide, plus a shared counter
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Representation of edges on a per-node basis

– an instrategyfor representing the number of incoming edges

– an outstrategyfor representing the list of outgoing edges

node* create_node (closure*, instrategy*, outstrategy*)

Examples of in-strategies:

– distributed

– atomically-updated

– owner-based

– optimistic



19

node* create_node (closure*, instrategy*, outstrategy*)
void add_node (node*) 

void add_edge (node*, node*)
void transfer_outedges_to (node*) 

Dynamic DAGs, with per-node specification of edges representation

→ concise, expressive, efficient interface

→ define and explain other constructs in terms of this interface

→ implemented in our C++ scheduler "PASL"

More details in our paper, available from the DAMP 2012 website


