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Motivation

– many tedious cases

– never 100% confident

– hard to reuse

A metatheory 
paper proof

A metatheory 
mechanized proof

use automation

machine-checked

re-run proof script

Mechanize



The POPLMark Challenge

How to formalize metatheory:

– with a generally applicable method,

– faithful to informal practice style,

– with reasonable infrastructure overhead,

– and using a technology with low cost of entry

Our contribution is the proposal of a novel style for 
formalizing metatheory that achieve these goals. 

?

1) Locally nameless representation of syntax 

2) Cofinite quantification of free variable names 



1– Locally Nameless



Representation of Binders

Two basic approaches:

– first-order: represents variables "concretely"

– higher-order: encode object language binders into 
the function space of another language

Lot of work have been completed with both 
approaches. 

The general perception is that first-order approaches 
require a lot more low-level work. 

→ Our goal: make this as light as possible.



First-Order Representations

– Names, α-quotiented 

→ quotient, α-conversion, capture

– names without quotient → severe restrictions

– nominal techniques → significant tool support 

– De Bruijn indices → shifting of indices

– Distinguishing bound and free variables 

– locally named → α-conversion

– locally nameless → our choice...



Locally Nameless Syntax

Representation:

– bound variables represented by de Bruijn indices 

– free variables represented by names

t := bvar i | fvar x | app t1 t2 | abs t

Benefits:

– each λ-term has a unique representation 

→ no quotient structure, no α-conversion

– straight-forward implementation of substitution

→ no shifting necessary, no variable capture

app (abs t) u  -->  tu



β-reduction in Locally Nameless
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This is a textual replacement: no renaming, no shifting.

β-reduces to



Operations on Syntax

Operations on locally nameless terms:

– substitution for bound variables

→ to open up abstractions

– substitution for free variables

→ to reason about reductions

– computation of the set of free variables

→ to state freshness properties

The definitions of these operations are simple, and
it follows that their properties have simple proofs. 

,



Restriction to Terms
Problem:

The locally nameless syntax contains objects that do 
not correspond to a lambda term, e.g. (bvar 3).

Solution:

We define the predicate "term" to characterize objects 
in which all bound variables resolve to a binder. 

– Definitions → relations restricted to terms
– Infrastructure → operations compatible with term 
– Core proofs → obligations handled by automation



2– Cofinite Quantification



How to Introduce Free Names?

Existential 

Introduction Elimination

Universal 

Cofinite

very
weak

maximally 
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maximally 
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very 
weak

 strong enough, 
provided cofinite 
used everywhere

nearly always 
sufficient; easy to 
strengthen if not

Quantification



Cofinite Quantification in Practice

2) induction and inversion principles are available
→ automatically generated (in Coq)

3) to apply: instantiate L so as to avoid name clashes
→ a generic tactic automates this

1) state all rules using cofinite quantification
→ no need to worry about freshness details



Developments Completed

A step is defined as the application of a non-trivial tactic 
(i.e. not "intro" or "auto" or a simple variations of these two).

STLC System F<: ML ML+features λ-calculus CoC
soundness soundness soundness soundness confluence subj.red.

steps



Conclusion

Formalize programming language metatheory with:

locally nameless  +  cofinite quantification

– this leads to a generally applicable method,
– directly usable in general-purpose theorem provers,
– proofs closely follow their informal equivalents,
– amount of infrastructure required is reasonable,
– support by the OTT tool is work in progress.

Give it a try!  

Developments scripts: http://arthur.chargueraud.org
Tutorial material: http://plclub.org/popl08-tutorial


