
POPL'08 San Francisco, 2008-01-10

Arthur Charguéraud

Engineering Formal Metatheory

Joint work with Brian Aydemir, Benjamin C. Pierce,

Randy Pollack and Stephanie Weirich

Motivation

– many tedious cases

– never 100% confident

– hard to reuse

A metatheory
paper proof

A metatheory
mechanized proof

use automation

machine-checked

re-run proof script

Mechanize

The POPLMark Challenge

How to formalize metatheory:

– with a generally applicable method,

– faithful to informal practice style,

– with reasonable infrastructure overhead,

– and using a technology with low cost of entry

Our contribution is the proposal of a novel style for
formalizing metatheory that achieve these goals.

?

1) Locally nameless representation of syntax

2) Cofinite quantification of free variable names

1– Locally Nameless

Representation of Binders

Two basic approaches:

– first-order: represents variables "concretely"

– higher-order: encode object language binders into
the function space of another language

Lot of work have been completed with both
approaches.

The general perception is that first-order approaches
require a lot more low-level work.

→ Our goal: make this as light as possible.

First-Order Representations

– Names, α-quotiented

→ quotient, α-conversion, capture

– names without quotient → severe restrictions

– nominal techniques → significant tool support

– De Bruijn indices → shifting of indices

– Distinguishing bound and free variables

– locally named → α-conversion

– locally nameless → our choice...

Locally Nameless Syntax

Representation:

– bound variables represented by de Bruijn indices

– free variables represented by names

t := bvar i | fvar x | app t1 t2 | abs t

Benefits:

– each λ-term has a unique representation

→ no quotient structure, no α-conversion

– straight-forward implementation of substitution

→ no shifting necessary, no variable capture

app (abs t) u --> tu

β-reduction in Locally Nameless
app

app

abs app

fvar yabs

bvar 0app

fvar x bvar 0

abs

app

bvar 1 bvar 0

app

app

fvar x

abs

app

bvar 0app

fvar yabs

bvar 0

app

abs

bvar 0

fvar y

function's body

argument

argument

argument

redex result

This is a textual replacement: no renaming, no shifting.

β-reduces to

Operations on Syntax

Operations on locally nameless terms:

– substitution for bound variables

→ to open up abstractions

– substitution for free variables

→ to reason about reductions

– computation of the set of free variables

→ to state freshness properties

The definitions of these operations are simple, and
it follows that their properties have simple proofs.

,

Restriction to Terms
Problem:

The locally nameless syntax contains objects that do
not correspond to a lambda term, e.g. (bvar 3).

Solution:

We define the predicate "term" to characterize objects
in which all bound variables resolve to a binder.

– Definitions → relations restricted to terms
– Infrastructure → operations compatible with term
– Core proofs → obligations handled by automation

2– Cofinite Quantification

How to Introduce Free Names?

Existential

Introduction Elimination

Universal

Cofinite

very
weak

maximally
strong

maximally
strong

very
weak

 strong enough,
provided cofinite
used everywhere

nearly always
sufficient; easy to
strengthen if not

Quantification

Cofinite Quantification in Practice

2) induction and inversion principles are available
→ automatically generated (in Coq)

3) to apply: instantiate L so as to avoid name clashes
→ a generic tactic automates this

1) state all rules using cofinite quantification
→ no need to worry about freshness details

Developments Completed

A step is defined as the application of a non-trivial tactic
(i.e. not "intro" or "auto" or a simple variations of these two).

STLC System F<: ML ML+features λ-calculus CoC
soundness soundness soundness soundness confluence subj.red.

steps

Conclusion

Formalize programming language metatheory with:

locally nameless + cofinite quantification

– this leads to a generally applicable method,
– directly usable in general-purpose theorem provers,
– proofs closely follow their informal equivalents,
– amount of infrastructure required is reasonable,
– support by the OTT tool is work in progress.

Give it a try!

Developments scripts: http://arthur.chargueraud.org
Tutorial material: http://plclub.org/popl08-tutorial

