
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A Core Language for Extended Pattern Matching and Binding
Boolean Expressions

ARTHUR CHARGUÉRAUD and YANNI LEFKI, Inria & ICube lab, CNRS, Université de Strasbourg,

France

Functional programming languages include various pattern matching features, such as guarded patterns,

matching by custom predicate, active patterns, synonymous patterns, etc. Besides, several languages include

mechanisms for binding names as part of a boolean expression that appears in either an if-statement, a

while-loop condition, or a pattern guard. These names may be bound either with a simple let-binding or

via a test performed using pattern-matching. All these features are useful in practice, yet it appears that no

mainstream language supports them all at once. In this work, we present a core language that consists of a

small number of constructs that suffice to encode and combine all the desired features of pattern matching

and binding boolean expressions. Thereby, we hope to consolidate existing knowledge on the topics of pattern

matching and generalized forms of boolean expressions, through a streamlined presentation. We expect it

to be useful not only for pedagogical purposes, but also potentially for simplifying the work of compiler

developers.

1 INTRODUCTION
Pattern-matching has been popularized by ML languages. Existing functional languages include

a number of extensions beyond plain pattern-matching over data constructors. There are also

interesting interactions when pattern matching is used as part of a boolean test. In such case, one

may wish to export bound names in the then branch.

This paper addresses the challenge of presenting a language that supports all these extensions at

once. What we seek for is not to consider the union of several languages, but instead to identify a

core language in which all of these interesting features can be encoded. In this work, we leave aside

the questions about checking pattern-matching exhaustivity (a.k.a. completeness). This question is

certainly interesting, yet in the presence of when-clauses or view-functions, checking exhaustivity

is beyond reach without recourse to an advanced program logic.

Our work is closely related to the work by Cheng and Parreaux [2024], who also aim to give

a unified presentation of generalized conditionals with pattern matching. We believe that our

formalism is slightly simpler, and that it makes it corresponds to a conservative extension of the

conditional and standard pattern-matching constructs.

We begin by reviewing the pattern-matching and boolean-binding-expressions features. We then

present a set of core constructs, as well as encodings for derived constructs. We present evaluation

rules as well as ML-style typing rules for the core language, then establish type preservation.

Moerover, we establish derived evaluation rules and derived typing rules for the derived constructs,

thereby showing that our encodings satisfy the expected properties.

2 SURVEY
Traditional pattern-matching. The basic idea of the pattern-matching construct is to test one

value against a set of patterns, for deciding which continuation to follow. Patterns can test for

constants, data constructors, or records. Patterns may bind variables, and may include subpatterns

recursively.Wildcard-patterns match any value, without binding a name. Or-patterns allows testing
if a value satisfies one of several patterns, in which case all these patterns must export the same set

of variables. Here is an example using OCaml syntax:

Authors’ address: Arthur Charguéraud, arthur.chargueraud@inria.fr; Yanni Lefki, yanni.lefki@inria.fr, Inria & ICube lab,

CNRS, Université de Strasbourg, France.

HTTPS://ORCID.ORG/0000-0001-7764-4507
HTTPS://ORCID.ORG/0009-0000-6437-0201
https://orcid.org/0000-0001-7764-4507
https://orcid.org/0009-0000-6437-0201

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Arthur Charguéraud and Yanni Lefki

match l with

| ((Some x, None) | (None, Some x)) :: t -> (Some x, Some x) :: t

| _ -> l

Dual to or-patterns are and-patterns, a.k.a. intersection-patterns. They allow testing if the value

satisfies several patterns at once. Intersection patterns become particularly useful in the presence

of more advanced features in patterns such as guarded patterns. They may also be used to encode

alias-patterns, written “p as x” in OCaml.

When-clauses, a.k.a. guards. Most functional programming languages allow the branches of a

pattern-matching to be guarded by a when-clause. A branch is only considered if the pattern is

satisfied and if the boolean condition in the when-clause evaluates to true. For example:

match l with

| Cons(Some(x), t) when x > 0 -> t

| _ -> false

A more general approach allows when-clauses to appear in depth, inside any subpattern. This

possibility can be useful in combination of or-patterns, as argued in a recent RFC for Rust [Rust

2025a]. Here is an example using Rust syntax:

match user.subscription_plan () {

(Plan:: Regular if user.credit () >= 100)

| (Plan:: Premium if user.credit () >= 80) => // continuation

The authors of this RFC point out that such guard patterns have previously appeared in particular

in the Unison language [Unison 2025], in Wolfram’s language [Wolfram 2025], as well as in the

E-language (under the name such-that pattern) [ELanguage 2025].

Predicate patterns. Instead of binding a variable then testing whether this variable satisfies a

boolean predicate as part of a guard, one may wish to directly include in the grammar of patterns the

possibility of satisfying a boolean predicate. Here is an example in C#, where “<= 10” is a boolean

predicate testing if a number is no greater than 10, and where “and” denotes pattern intersection.

temperature switch {

(<= 10) => "cold",

(> 10 and <= 25) => "warm",

(> 25) => "hot"};

Views. Pattern-matching on algebraic data types is very effective for implementing a data struc-

ture. However, for modular programming, the internal representations as an algebraic data type

should not be exposed. The mechanism of views has been introduced to reconcile pattern matching
with data abstraction. Here is an example of views in Haskell syntax.

type Bag -- any bag implementation , e.g., a list or a tree

data BagView = Empty | Add int Bag -- type used for iterating over bags

view :: Bag -> BagView

size :: Bag -> Integer

size (view -> Empty) = 0

size (view -> Add x b) = 1 + size b

This mechanism has been described by Okasaki in the context of Standard-ML [1998], it has been

implemented in Haskell [Licata and Peyton Jones 2025], it appears under the name of extractor in
Scala [Scala 2025] and under the name active pattern in F# [Syme et al. 2007]. Views can be also be

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

A Core Language for Extended Pattern Matching and Binding Boolean Expressions 1:3

𝑡, 𝑓 ,𝑔 ∶= ⋃︀ 𝑥 variable
⋃︀ 𝜆(𝑥1, ..., 𝑥𝑛).𝑡 function
⋃︀ 𝑓 (𝑡1, ..., 𝑡𝑛) application
⋃︀ switchtrm

𝑐1 ⋃︀ ... ⋃︀ 𝑐𝑛 branching, as part of a term

𝑐 ∶= ⋃︀ case 𝑏 then 𝑡 branch of a switchtrm

𝑉 ∶= a set of variables

𝑏 ∶= ⋃︀ 𝑡 is 𝑝 match against a pattern
⋃︀ switchbbe

𝑑1 ⋃︀ ... ⋃︀ 𝑑𝑛 branching, as part of a BBE
⋃︀ restrict𝑉 𝑏 filter exported bindings

𝑑 ∶= ⋃︀ case 𝑏1 then 𝑏2 branch of a switchbbe

⋃︀ restrict𝑉 𝑑 filter exported bindings

𝑝 ∶= ⋃︀ 𝑥 ? pattern variable
⋃︀ 𝑝1 ⋃︀ 𝑝2 pattern disjunction
⋃︀ 𝑝1 & 𝑝2 pattern intersection
⋃︀ 𝐶 (𝑝1, ..., 𝑝𝑛) constructor pattern
⋃︀ 𝑝 when 𝑏 guarded pattern
⋃︀ restrict𝑉 𝑝 filter exported bindings

Fig. 1. Grammar of our core language

encoded by means of the more general notion of first-class patterns [Tullsen 2000][Jay and Kesner

2009]. An example implementation of first-class patterns is the one provided in OCaml by means

of the source code preprocessor named Ast_pattern [ppxlib 2025].

Binding boolean expressions. SSReflect [Gonthier and Le Roux 2009] is an extension to the Rocq

proof assistant that has made use, since the early 2000s, of the construct “if 𝑡0 is𝑝 then 𝑡1 else 𝑡2”,
as a syntactic sugar for “match 𝑡0 with 𝑝 ⇒ 𝑡1 ⋃︀ _⇒ 𝑡2”. The SSReflect manual indicates that this

construct could previously be found in ML variants such as the 𝜌-calculus [Cirstea and Kirchner

2001] or the pattern calculus [Jay 2004].

A more general possibility is to perform on-the-fly pattern-matching as part of boolean conditions
has been recently added to the Rust language [Rust 2025b]. The idea is that in an if-statement, one

may exploit pattern matching to implement part of the test, and the variables obtained from the

pattern matching can be exported into the then-branch of the if-statement. In the Rust example

below, the variables fn_name, aft_name and args_str are bound in the then-branch.

if let Some((fn_name , aft_name)) = s.split_once("(")

&& !fn_name.is_empty ()

&& is_legal_ident(fn_name)

&& let Some((args_str , "")) = aft_name.rsplit_once(")") {

return fn_name + args_str;

}

3 SYNTAX
Figure 1 presents the grammar of our core language, which consists of 𝜆-calculus with n-ary

functions, extended with a switch construct. We let 𝑡 range over terms. The meta-variables 𝑓 and 𝑔

also range over terms that represent functions. This switch construct is made of a list of branches,

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Arthur Charguéraud and Yanni Lefki

Derived terms
let 𝑝 = 𝑡1 in 𝑡2 ≡ switchtrm case (𝑡1 is 𝑝) then 𝑡2

iftrm 𝑏 then 𝑡1 else 𝑡2 ≡ switchtrm case 𝑏 then 𝑡1 ⋃︀ case true then 𝑡2

Derived BBEs
𝑡 ≡ 𝑡 is true where 𝑡 ∶ bool
ifbbe 𝑏0 then 𝑏1 else 𝑏2 ≡ switchbbe case 𝑏0 then 𝑏1 ⋃︀ case true then 𝑏2

𝑏1 and 𝑏2 ≡ ifbbe 𝑏1 then 𝑏2 else false
𝑏1 or 𝑏2 ≡ ifbbe 𝑏1 then true else 𝑏2
not 𝑏 ≡ ifbbe 𝑏 then false else true

Derived patterns
𝑝 as 𝑥 ? ≡ 𝑝 & (𝑥 ?)
_ ≡ 𝑥 ? for a fresh 𝑥

𝑔 ≡ 𝑥 ? when 𝑔 (𝑥) where 𝑔 ∶ (𝑇 → bool) for a fresh 𝑥

𝑓 (𝑝1, ..., 𝑝𝑛) ≡ 𝑥 ? when 𝑓 (𝑥) is Some (𝑝1, ..., 𝑝𝑛) for a fresh 𝑥

Fig. 2. Encoding of derived language constructs in term of core constructs

where each branch consists of a binding-boolean-expression (BBE) and a continuation. A BBE is an

expression that evaluates to a boolean and, in case the result is true, binds a number of variables.

In the core language, there are only three constructs for introducing BBEs. Firstly, the construct

𝑡 is 𝑝 tests whether the result of 𝑡 satisfies the pattern 𝑝 , and if so, binds the appropriate pattern

variables. Secondly, a switch can be viewed as a BBE if all its continuations consist of BBEs. Such

switch constructs are used in particular to encode conjunctions and disjunctions of BBEs, as detailed

further. Thirdly, the construct restrict𝑉 𝑏 can be used to reduce the set of bindings that are exported

by a BBE. We have found the need to introduce the restrict construct to enable the set up of a

semantics that does not depend on types. We present a motivating example at the end of the present

section.

Remark: in the current presentation, we have deliberately chosen to separate the grammar of

BBEs from the grammar of terms, to improve clarity, at the expense of preventing a few possible

factorizations in the evaluation and typing rules.

The grammar of patterns includes the traditional constructs, namely variables, disjunction,

intersection, testing against a constructor. In addition, the grammar of patterns includes the guard

construct, written 𝑝 when𝑏. Such a guarded pattern exports all the variables bound by the pattern 𝑝
as well as all the variables bound by the binding boolean expression 𝑏. One specificity of our design

is that for an intersection pattern 𝑝1 & 𝑝2, the variables bound by 𝑝1 scope over 𝑝2. In particular,

the variables bound by 𝑝1 may appear as parts of the pattern guards that appear inside 𝑝2.

Figure 2 presents our encodings for the remaining constructs. The constructs let 𝑝 = 𝑡1 in 𝑡2,

and if 𝑏 then 𝑡1 else 𝑡2 can be encoded using a switch. Any boolean expression 𝑡 can be viewed as

a binding-boolean-expression that binds no variable. The logical combinators 𝑏1 and 𝑏2, as well

as 𝑏1 or 𝑏2 and not 𝑏 can all be encoded using conditionals, which themselves are encoded using

switches. An alias-pattern of the form 𝑝 as 𝑥 ? can be encoded using a pattern intersection. The

wildcard-pattern can be encoded using a pattern variable that does not occur anywhere else in the

program. A boolean predicate 𝑔, i.e. a function of type𝑇 → bool, can be viewed as a pattern filtering

values of type 𝑇 . Finally, the view-pattern takes the form 𝑓 (𝑝1, ..., 𝑝𝑛), where 𝑓 is a user-defined

function and 𝑝𝑖 are sub-patterns. If each pattern 𝑝𝑖 has type 𝑇𝑖 , the function 𝑓 must have type

𝑇 → (𝑇1, ...,𝑇𝑛) option. When testing a value 𝑣 against the view pattern 𝑓 (𝑝1, ..., 𝑝𝑛), there are two

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

A Core Language for Extended Pattern Matching and Binding Boolean Expressions 1:5

𝑣 ∶= ⋃︀ 𝜆(𝑥1, ..., 𝑥𝑛).𝑡 𝜆-abstraction
⋃︀ 𝐶 (𝑣1, ..., 𝑣𝑛) constructor

(includes booleans, integers, options, tuples)

𝑀 ∶= map from variable to values

𝑟 ∶= ⋃︀ Mismatch ⋃︀ Match𝑀 result of evaluating a BBE

Fig. 3. Entities involved in the statement of the semantics

cases. If 𝑓 (𝑣) produces None, then the matching fails. Otherwise, if 𝑓 (𝑣) produces Some (𝑣1, ..., 𝑣𝑛),
then the matching succeeds if and only if each of the values 𝑣𝑖 satisfy the corresponding patterns 𝑝𝑖 .

Let us now come back on the need for the restrict construct. Consider the pattern shown below.

In this pattern, the or-pattern on the right-hand side of the conjunction produces in all cases a

binding on 𝑥 , while the pattern on the left-hand side of the conjunction produces a binding on 𝑦.

Hence, overall, we expect the pattern to produce bindings for 𝑥 and 𝑦.

(((𝑥 ?, 𝑦?) when 𝑥 > 0 and 𝑦 > 0) ⋃︀ (𝑥 ?, _) when 𝑥 > 1) & (𝑦?, _)
Consider now the evaluation of this pattern against the pair (2, 1) using a naive interpreter. The
evaluation of the sub-pattern “(𝑥 ?, 𝑦?)when 𝑥 > 0 and 𝑦 > 0” succeeds, resulting in a map {𝑥 ↦ 2,

𝑦 ↦ 1}. Because the left-branch of the or-pattern has already succeeded, the sub-pattern “(𝑥 ?,
_) when 𝑥 > 1” is not evaluated at all. Then, the evaluation of the sub-pattern (𝑦?, _) succeeds,
resulting in a map {𝑦 ↦ 2}. The problem that now arises is that an interpreter lacks sufficient

information for properly merging {𝑥 ↦ 2, 𝑦 ↦ 1} with {𝑦 ↦ 2} and output the expected result

{𝑥 ↦ 2, 𝑦 ↦ 2}. By introducing a restrict on the name 𝑥 around the or-pattern, as shown below,

we remedy the situation: the interpreter now only needs to compute the disjoint union of {𝑥 ↦ 2}
and {𝑦 ↦ 2}.

(restrict{𝑥} (((𝑥 ?, 𝑦?) when 𝑥 > 0 and 𝑦 > 0) ⋃︀ (𝑥 ?, _) when 𝑥 > 1)) & (𝑦?, _)
In summary, the restrict construct can be used to ensure that all the branches of or-patterns (or of

switches) produce the same set of bindings, and its presence is needed to provide formal evaluation

rules that depend only on the grammar and not on the types. In practice, the programmer needs

not insert restrict constructs explicitly. Indeed, they can be easily elaborated by the typechecker.

Concretely, the typechecker could compute the set of bindings exported by each branch, compute

the intersection of these sets, then wrap each of the branches with a restrict to filter the names

that belong to the intersection. We leave to future work the formalization of this elaboration phase.

The restrict construct may also be useful for the encodings. The 3 derived pattern constructions

that appears at the bottom of Figure 2 rely on the introduction of a fresh variable 𝑥 . It may be

more satisfying, in particular with respect to error messages, to make sure that the generated

name 𝑥 does not escape the local scope. To that end, it suffices to wrap the encoded pattern into a

restrict construct. For example the boolean predicate 𝑔 viewed as a pattern could be encoded as

restrict∅(𝑥 ? when 𝑔 (𝑥)).

4 SEMANTICS
Figure 3 presents the grammar entities involved for semantics. We let 𝑣 range over values, which

include functions and data constructors. We let 𝑀 denote a set of bindings from variables to

values, arising from a successful pattern-matching or BBE evaluation. We let 𝑟 denote the result of

evaluating a matching or a BBE. Such a result is either Mismatch, or of the form Match 𝑀 for a

map𝑀 describing the bindings obtained.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Arthur Charguéraud and Yanni Lefki

The operation Subst(𝑀, 𝑡) substitutes a set of bindings into a term 𝑡 . Likewise, Subst(𝑀, 𝑏)
substitutes a set of bindings into a BBE 𝑏, and Subst(𝑀, 𝑝) substitutes a set of bindings into a

pattern 𝑝 . Substituting inside patterns is required because terms and BBEs can recursively occur

inside patterns.

For simplicity, in the statements of the evaluation rules, we omit details about the threading

of the mutable store. That said, the reader should keep in mind that the evaluation of guards and

of view functions may involve arbitrary side-effects. Hence, the evaluation order is critical. In

particular, certain rewriting rules and certain pattern compilation schemes that could be devised

might be correct only under specific purity assumptions.

There are 3 evaluation judgments. The judgment 𝑡 ⇓trm 𝑣 asserts that the term 𝑡 evaluates to the

value 𝑣 . The judgment 𝑏 ⇓bbe 𝑟 asserts that the BBE 𝑏 evaluates to a result 𝑟 . The judgment 𝑣 ⊳ 𝑝 ⇓pat
𝑟 asserts that the matching of the value 𝑣 against the pattern 𝑝 evaluates to a result 𝑟 . The notation

𝑀1#𝑀2 expresses that the two maps𝑀1 and𝑀2 have disjoint domains, i.e. dom(𝑀1)∩dom(𝑀2) = ∅.
The notation 𝑀

⋃︀𝑉 denotes the restriction of the map 𝑀 to the bindings on the names listed in

the set 𝑉 . By extension, 𝑟
⋃︀𝑉 denotes the restriction of the bindings exported by a result. Formally,

Mismatch
⋃︀𝑉 =Mismatch and (Match𝑀)

⋃︀𝑉 =Match (𝑀
⋃︀𝑉).

Figure 4 presents the type-agnostic evaluation rules for the core language. These rules consist of

definitions. Figure 5 presents the evaluation rules for the derived constructs. These rules consist of

lemmas, proved correct with respect to the encodings presented in Figure 2.

5 TYPING RULES
We consider simple types, with n-ary arrow types and type constructors. Figure 6 presents the

typing entities. A typing environment is written 𝐸. A binding boolean expression (BBE) admits

as type a map from variables to types, written 𝐵. This map describes the types of the variables

exported by the BBE in case it evaluates to true. The bindings in such a map 𝐵 are unordered.

Certain typing rules extend a context 𝐸 with the set of bindings from a map 𝐵. The result, written

“𝐸, 𝐵”, can be obtained by placing the bindings form 𝐵 in an arbitrary order.

There are 3 typing judgments. The judgment 𝐸 ⊢trm 𝑡 ∶ 𝑇 asserts that, in the environment 𝐸, the

term 𝑡 admits the type 𝑇 . The judgment 𝐸 ⊢bbe 𝑏 ↝ 𝐵 asserts that the BBE 𝑏, in case it evaluates

to true, binds a set of variables whose names and types are described by the map 𝐵. The judgment

𝐸 ⊢pat 𝑝 ∶ 𝑇 ↝ 𝐵 asserts that the pattern 𝑝 filters values of type 𝑇 and, in case of success, binds a

set of variables whose names and types are described by the map 𝐵.

Figure 7 presents the typing rules for the core language. The definitions are straightforward

and follow the usual patterns, except for the typechecking a branch of our switchbbe
construct.

Consider a branch case 𝑏1 then 𝑏2. How should we define the map 𝐵 that describes the bindings

exported by the branch in case the evaluation of this branch succeeds? In general, 𝐵 should

be defined as the union of the bindings exported by 𝑏1 and 𝑏2 (rule Typ-bbe-case-1). However,

there is a particular case that we need to handle differently, in particular for the purpose of

typechecking as we expect the intersection pattern construct 𝑏1 and 𝑏2. Recall that this construct

is encoded as “switchbbe case 𝑏1 then 𝑏2 ⋃︀ case true then false”. Consider a branch of the form

“case 𝑏′ then false”. The evaluation of such a branch never succeeds. Hence, it is sound to consider
that this branch admits as type 𝐵, for any map 𝐵, as captured by the rule Typ-bbe-case-2.

Figure 8 presents derived typing rules for the derived constructs. Here again, those derived rules

consist of lemmas proved correct with respect to the encodings presented in Figure 2. Observe, in

particular, how the lemma Typ-bbe-and captures that the set of bindings exported by 𝑏1 and 𝑏2
corresponds to the union of the set of bindings coming from 𝑏1 and 𝑏2, and that the bindings of 𝑏1
scope inside 𝑏2.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

A Core Language for Extended Pattern Matching and Binding Boolean Expressions 1:7

Eval-trm-val

𝑣 ⇓trm 𝑣

Eval-trm-beta

∀𝑖 . 𝑡𝑖 ⇓trm 𝑣𝑖 Subst({𝑥1 ↦ 𝑣1, ..., 𝑥𝑛 ↦ 𝑣𝑛}, 𝑡) ⇓trm 𝑣

(𝜆(𝑥1, ..., 𝑥𝑛).𝑡) (𝑡1, ..., 𝑡𝑛) ⇓trm 𝑣

Eval-trm-switch-1

𝑏1 ⇓bbe Mismatch switchtrm
𝑐2 ⋃︀ ... ⋃︀ 𝑐𝑛 ⇓trm 𝑣

switchtrm (case 𝑏1 then 𝑡1) ⋃︀ 𝑐2 ⋃︀ ... ⋃︀ 𝑐𝑛 ⇓trm 𝑣

Eval-trm-switch-2

𝑏1 ⇓bbe Match𝑀1 Subst(𝑀1, 𝑡1) ⇓trm 𝑣

switchtrm (case 𝑏1 then 𝑡1) ⋃︀ 𝑐2 ⋃︀ ... ⋃︀ 𝑐𝑛 ⇓trm 𝑣

Eval-bbe-is

𝑡 ⇓trm 𝑣 𝑣 ⊳ 𝑝 ⇓pat 𝑟
𝑡 is 𝑝 ⇓bbe 𝑟

Eval-bbe-switch-1

𝑑1 ⇓bbe Mismatch switchbbe
𝑑2 ⋃︀ ... ⋃︀ 𝑑𝑛 ⇓bbe 𝑟

switchbbe
𝑑1 ⋃︀ ... ⋃︀ 𝑑𝑛 ⇓bbe 𝑟

Eval-bbe-switch-2

𝑑1 ⇓bbe Match𝑀1

switchbbe
𝑑1 ⋃︀ ... ⋃︀ 𝑑𝑛 ⇓bbe Match𝑀1

Eval-bbe-restrict

𝑏 ⇓bbe 𝑟
restrict𝑉 𝑏 ⇓bbe 𝑟

⋃︀𝑉

Eval-bbe-case-1

𝑏1 ⇓bbe Mismatch
case 𝑏1 then 𝑏2 ⇓bbe Mismatch

Eval-bbe-case-2

𝑏1 ⇓bbe Match𝑀1 Subst(𝑀1, 𝑏2) ⇓bbe Mismatch
case 𝑏1 then 𝑏2 ⇓bbe Mismatch

Eval-bbe-case-3

𝑏1 ⇓bbe Match𝑀1 Subst(𝑀1, 𝑏2) ⇓bbe Match𝑀2 𝑀1#𝑀2

case 𝑏1 then 𝑏2 ⇓bbe Match (𝑀1 ⊎𝑀2)

Eval-bbe-case-restrict

𝑑 ⇓bbe 𝑟
restrict𝑉 𝑑 ⇓bbe 𝑟

⋃︀𝑉

Eval-pat-var

𝑣 ⊳ 𝑥 ? ⇓pat Match {𝑥 ↦ 𝑣}

Eval-pat-or-1

𝑣 ⊳ 𝑝1 ⇓pat Match𝑀1

𝑣 ⊳ 𝑝1 ⋃︀ 𝑝2 ⇓pat Match𝑀1

Eval-pat-or-2

𝑣 ⊳ 𝑝1 ⇓pat Mismatch 𝑣 ⊳ 𝑝2 ⇓pat 𝑟
𝑣 ⊳ 𝑝1 ⋃︀ 𝑝2 ⇓pat 𝑟

Eval-pat-and-1

𝑣 ⊳ 𝑝1 ⇓pat Mismatch
𝑣 ⊳ 𝑝1 & 𝑝2 ⇓pat Mismatch

Eval-pat-and-2

𝑣 ⊳ 𝑝1 ⇓pat Match𝑀1

𝑣 ⊳ Subst(𝑀1, 𝑝2) ⇓pat Mismatch
𝑣 ⊳ 𝑝1 & 𝑝2 ⇓pat Mismatch

Eval-pat-and-3

𝑣 ⊳ 𝑝1 ⇓pat Match𝑀1

𝑣 ⊳ Subst(𝑀1, 𝑝2) ⇓pat Match𝑀2 𝑀1#𝑀2

𝑣 ⊳ 𝑝1 & 𝑝2 ⇓pat Match (𝑀1 ⊎𝑀2)

Eval-pat-cstr-1

𝑣 not of the form 𝐶(𝑣1, ..., 𝑣𝑛)
𝑣 ⊳ 𝐶 (𝑝1, ..., 𝑝𝑛) ⇓pat Mismatch

Eval-pat-cstr-2

𝑣 = 𝐶(𝑣1, ..., 𝑣𝑛) ∃𝑖 . 𝑣𝑖 ⊳ 𝑝𝑖 ⇓pat Mismatch
𝑣 ⊳ 𝐶 (𝑝1, ..., 𝑝𝑛) ⇓pat Mismatch

Eval-pat-cstr-3

𝑣 = 𝐶(𝑣1, ..., 𝑣𝑛) ∀𝑖 . 𝑣𝑖 ⊳ 𝑝𝑖 ⇓pat Match𝑀𝑖 ∀𝑖 ≠ 𝑗 . 𝑀𝑖#𝑀 𝑗

𝑣 ⊳ 𝐶 (𝑝1, ..., 𝑝𝑛) ⇓pat Match (⋃𝑖 𝑀𝑖)

Eval-pat-when-1

𝑣 ⊳ 𝑝 ⇓pat Mismatch
𝑣 ⊳ 𝑝 when 𝑏 ⇓pat Mismatch

Eval-pat-when-2

𝑣 ⊳ 𝑝 ⇓pat Match𝑀 Subst(𝑀, 𝑏) ⇓bbe Mismatch
𝑣 ⊳ 𝑝 when 𝑏 ⇓pat Mismatch

Eval-pat-when-3

𝑣 ⊳ 𝑝 ⇓pat Match𝑀1 Subst(𝑀1, 𝑏) ⇓bbe Match𝑀2 𝑀1#𝑀2

𝑣 ⊳ 𝑝 when 𝑏 ⇓pat Match (𝑀1 ⊎𝑀2)

Eval-pat-restrict

𝑣 ⊳ 𝑝 ⇓pat 𝑟
𝑣 ⊳ restrict𝑉 𝑝 ⇓pat 𝑟 ⋃︀𝑉

Fig. 4. Semantics of core constructs

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Arthur Charguéraud and Yanni Lefki

Eval-trm-let

𝑡1 ⇓trm 𝑣1 𝑣1 ⊳ 𝑝 ⇓pat Match𝑀 Subst(𝑀, 𝑡2) ⇓trm 𝑣2

let 𝑝 = 𝑡1 in 𝑡2 ⇓trm 𝑣2

Eval-trm-if-1

𝑏 ⇓bbe Mismatch 𝑡2 ⇓trm 𝑣

iftrm 𝑏 then 𝑡1 else 𝑡2 ⇓trm 𝑣

Eval-trm-if-2

𝑏 ⇓bbe Match𝑀 Subst(𝑀, 𝑡1) ⇓trm 𝑣

iftrm 𝑏 then 𝑡1 else 𝑡2 ⇓trm 𝑣

Eval-bbe-trm-1

𝑡 ⇓trm false
𝑡 ⇓bbe Mismatch

Eval-bbe-trm-2

𝑡 ⇓trm true
𝑡 ⇓bbe Match ∅

Eval-bbe-if-1

𝑏0 ⇓bbe Mismatch 𝑏2 ⇓bbe 𝑟
ifbbe 𝑏0 then 𝑏1 else 𝑏2 ⇓bbe 𝑟

Eval-bbe-if-2

𝑏0 ⇓bbe Match𝑀0 Subst(𝑀0, 𝑏1) ⇓bbe Mismatch
ifbbe 𝑏0 then 𝑏1 else 𝑏2 ⇓bbe Mismatch

Eval-bbe-if-3

𝑏0 ⇓bbe Match𝑀0 Subst(𝑀0, 𝑏1) ⇓bbe Match𝑀1 𝑀0#𝑀1

ifbbe 𝑏0 then 𝑏1 else 𝑏2 ⇓bbe Match (𝑀0 ⊎𝑀1)

Eval-bbe-and-1

𝑏1 ⇓bbe Mismatch
𝑏1 and 𝑏2 ⇓bbe Mismatch

Eval-bbe-and-2

𝑏1 ⇓bbe Match𝑀1 Subst(𝑀1, 𝑏2) ⇓bbe Mismatch
𝑏1 and 𝑏2 ⇓bbe Mismatch

Eval-bbe-and-3

𝑏1 ⇓bbe Match𝑀1 Subst(𝑀1, 𝑏2) ⇓bbe Match𝑀2 𝑀1#𝑀2

𝑏1 and 𝑏2 ⇓bbe Match (𝑀1 ⊎𝑀2)

Eval-bbe-or-1

𝑏1 ⇓bbe Match𝑀1

𝑏1 or 𝑏2 ⇓bbe Match𝑀1

Eval-bbe-or-2

𝑏1 ⇓bbe Mismatch 𝑏2 ⇓bbe 𝑟
𝑏1 or 𝑏2 ⇓bbe 𝑟

Eval-bbe-not-1

𝑏 ⇓bbe Mismatch
not 𝑏 ⇓bbe Match ∅

Eval-bbe-not-2

𝑏 ⇓bbe Match𝑀

not 𝑏 ⇓bbe Mismatch

Eval-pat-as-1

𝑣 ⊳ 𝑝 ⇓pat Mismatch
𝑣 ⊳ 𝑝 as 𝑥 ? ⇓pat Mismatch

Eval-pat-as-2

𝑣 ⊳ 𝑝 ⇓pat Match𝑀 𝑥 ∉ dom(𝑀)
𝑣 ⊳ 𝑝 as 𝑥 ? ⇓pat Match (𝑀 ⊎ {𝑥 ↦ 𝑣})

Eval-pat-wild

𝑣 ⊳ _ ⇓pat Match ∅

Eval-pat-view-1

𝑓 (𝑣) ⇓trm None
𝑣 ⊳ 𝑓 (𝑝1, ..., 𝑝𝑛) ⇓pat Mismatch

Eval-pat-view-2

𝑓 (𝑣) ⇓trm Some (𝑣1, ..., 𝑣𝑛) ∃𝑖 . 𝑣𝑖 ⊳ 𝑝𝑖 ⇓pat Mismatch
𝑣 ⊳ 𝑓 (𝑝1, ..., 𝑝𝑛) ⇓pat Mismatch

Eval-pat-view-3

𝑓 (𝑣) ⇓trm Some (𝑣1, ..., 𝑣𝑛) ∀𝑖 . 𝑣𝑖 ⊳ 𝑝𝑖 ⇓pat Match𝑀𝑖 ∀𝑖 ≠ 𝑗 . 𝑀𝑖#𝑀 𝑗

𝑣 ⊳ 𝑓 (𝑝1, ..., 𝑝𝑛) ⇓pat Match (⋃𝑖 𝑀𝑖)

Eval-pat-pred-1

𝑔 (𝑣) ⇓trm false
𝑣 ⊳ 𝑔 ⇓pat Mismatch

Eval-pat-pred-2

𝑔 (𝑣) ⇓trm true
𝑣 ⊳ 𝑔 ⇓pat Match ∅

Fig. 5. Semantics of derived constructs

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

A Core Language for Extended Pattern Matching and Binding Boolean Expressions 1:9

𝑇 ∶= ⋃︀ 𝐷 (𝑇1, ...,𝑇𝑛) type constructor (includes bool, int and “option𝑇 ”)
⋃︀ (𝑇1, ...,𝑇𝑛) → 𝑇𝑟 n-ary arrow type (might also be viewed as a contructor)

𝐸 ∶= ⋃︀ ∅ ⋃︀ 𝐸, 𝑥 ∶ 𝑇 typing environment

𝐵 ∶= map from variables to types typing of the variables bound by a BBE

Fig. 6. Typing entities

Typ-trm-var

(𝑥 ∶ 𝑇) ∈ 𝐸
𝐸 ⊢trm 𝑥 ∶ 𝑇

Typ-trm-fun

𝐸, 𝑥1 ∶ 𝑇1, ..., 𝑥𝑛 ∶ 𝑇𝑛 ⊢trm 𝑡 ∶ 𝑇
𝐸 ⊢trm 𝜆(𝑥1, ..., 𝑥𝑛).𝑡 ∶ (𝑇1, ...,𝑇𝑛) → 𝑇

Typ-trm-app

𝐸 ⊢trm 𝑓 ∶ (𝑇1, ...,𝑇𝑛) → 𝑇 ∀𝑖 . 𝐸 ⊢trm 𝑡𝑖 ∶ 𝑇𝑖
𝐸 ⊢trm 𝑓 (𝑡1, ..., 𝑡𝑛) ∶ 𝑇

Typ-trm-switch

∀𝑖 . 𝐸 ⊢trm 𝑐𝑖 ∶ 𝑇
𝐸 ⊢trm (switchtrm

𝑐1 ⋃︀ ... ⋃︀ 𝑐𝑛) ∶ 𝑇

Typ-trm-case

𝐸 ⊢bbe 𝑏 ↝ 𝐵 𝐸, 𝐵 ⊢trm 𝑡 ∶ 𝑇
𝐸 ⊢trm (case 𝑏 then 𝑡) ∶ 𝑇

Typ-bbe-is

𝐸 ⊢trm 𝑡 ∶ 𝑇 𝐸 ⊢pat 𝑝 ∶ 𝑇 ↝ 𝐵

𝐸 ⊢bbe (𝑡 is 𝑝) ↝ 𝐵

Typ-bbe-switch

∀𝑖 . 𝐸 ⊢bbe 𝑑𝑖 ↝ 𝐵

𝐸 ⊢bbe (switchbbe
𝑑1 ⋃︀ ... ⋃︀ 𝑑𝑛) ↝ 𝐵

Typ-bbe-restrict

𝐸 ⊢bbe 𝑏 ↝ 𝐵 𝑉 ⊆ dom(𝐵)
𝐸 ⊢bbe (restrict𝑉 𝑏) ↝ 𝐵

⋃︀𝑉

Typ-bbe-case-1

𝐸 ⊢bbe 𝑏1 ↝ 𝐵1 𝐸, 𝐵1 ⊢bbe 𝑏2 ↝ 𝐵2 𝐵1#𝐵2

𝐸 ⊢bbe (case 𝑏1 then 𝑏2) ↝ 𝐵1 ⊎ 𝐵2

Typ-bbe-case-2

𝐸 ⊢bbe 𝑏1 ↝ 𝐵1

𝐸 ⊢bbe (case 𝑏1 then false) ↝ 𝐵

Typ-bbe-case-restrict

𝐸 ⊢bbe 𝑑 ↝ 𝐵 𝑉 ⊆ dom(𝐵)
𝐸 ⊢bbe (restrict𝑉 𝑑) ↝ 𝐵

⋃︀𝑉

Typ-pat-var

𝐸 ⊢pat 𝑥 ? ∶ 𝑇 ↝ {𝑥 ∶ 𝑇}

Typ-pat-or

𝐸 ⊢pat 𝑝1 ∶ 𝑇 ↝ 𝐵 𝐸 ⊢pat 𝑝2 ∶ 𝑇 ↝ 𝐵

𝐸 ⊢pat (𝑝1 ⋃︀ 𝑝2) ∶ 𝑇 ↝ 𝐵

Typ-pat-and

𝐸 ⊢pat 𝑝1 ∶ 𝑇 ↝ 𝐵1 𝐸 ⊢pat 𝑝2 ∶ 𝑇 ↝ 𝐵2 𝐵1#𝐵2

𝐸 ⊢pat (𝑝1 & 𝑝2) ∶ 𝑇 ↝ 𝐵1 ⊎ 𝐵2

Typ-pat-cstr

𝐸 ⊢trm 𝐶 ∶ (𝑇1, ...,𝑇𝑛) → 𝑇 ∀𝑖 . 𝐸 ⊢pat 𝑝𝑖 ∶ 𝑇𝑖 ↝ 𝐵𝑖 ∀𝑖 ≠ 𝑗 . 𝐵𝑖#𝐵 𝑗

𝐸 ⊢pat 𝐶 (𝑝1, ..., 𝑝𝑛) ∶ 𝑇 ↝ ⋃𝑖 𝐵𝑖

Typ-pat-when

𝐸 ⊢pat 𝑝 ∶ 𝑇 ↝ 𝐵1 𝐸, 𝐵1 ⊢bbe 𝑏 ↝ 𝐵2 𝐵1#𝐵2

𝐸 ⊢pat (𝑝 when 𝑏) ∶ 𝑇 ↝ 𝐵1 ⊎ 𝐵2

Typ-pat-restrict

𝐸 ⊢pat 𝑝 ∶ 𝑇 ↝ 𝐵 𝑉 ⊆ dom(𝐵)
𝐸 ⊢pat (restrict𝑉 𝑝) ∶ 𝑇 ↝ 𝐵

⋃︀𝑉

Fig. 7. Typing rules for the core language

Remark: if we had tried to unify the grammar of BBEs and that of terms, wemight have considered

a single typing judgment for both. This judgment would be written 𝐸 ⊢trm 𝑡 ∶ 𝑇 , where 𝑡 could be a

BBE, and where 𝑇 could be a special type of the form boolbinds(B). In other words, our judgment

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Arthur Charguéraud and Yanni Lefki

Typ-trm-let

𝐸 ⊢pat 𝑝 ∶ 𝑇1 ↝ 𝐵 𝐸 ⊢trm 𝑡1 ∶ 𝑇1 𝐸, 𝐵 ⊢trm 𝑡2 ∶ 𝑇2
𝐸 ⊢trm let 𝑝 = 𝑡1 in 𝑡2 ∶ 𝑇2

Typ-trm-if

𝐸 ⊢bbe 𝑏 ↝ 𝐵 𝐸, 𝐵 ⊢trm 𝑡1 ∶ 𝑇 𝐸 ⊢trm 𝑡2 ∶ 𝑇
𝐸 ⊢trm iftrm 𝑏 then 𝑡1 else 𝑡2 ∶ 𝑇

Typ-bbe-trm

𝐸 ⊢trm 𝑡 ∶ bool
𝐸 ⊢bbe 𝑡 ↝ ∅

Typ-bbe-if

𝐸 ⊢bbe 𝑏0 ↝ 𝐵0 𝐸, 𝐵0 ⊢bbe 𝑏1 ↝ 𝐵1 𝐵0#𝐵1 𝐵 = 𝐵0 ⊎ 𝐵1

𝐸 ⊢bbe 𝑏2 ↝ 𝐵

𝐸 ⊢bbe iftrm 𝑏0 then 𝑏1 else 𝑏2 ↝ 𝐵

Typ-bbe-and

𝐸 ⊢bbe 𝑏1 ↝ 𝐵1 𝐸, 𝐵1 ⊢bbe 𝑏2 ↝ 𝐵2 𝐵1#𝐵2

𝐸 ⊢bbe 𝑏1 and 𝑏2 ↝ 𝐵1 ⊎ 𝐵2

Typ-bbe-or

𝐸 ⊢bbe 𝑏1 ↝ 𝐵 𝐸 ⊢bbe 𝑏2 ↝ 𝐵

𝐸 ⊢bbe 𝑏1 or 𝑏2 ↝ 𝐵

Typ-bbe-not

𝐸 ⊢bbe not 𝑏 ↝ ∅

Typ-pat-as

𝐸 ⊢pat 𝑝 ∶ 𝑇 ↝ 𝐵 𝑥 ∉ dom(𝐵)
𝐸 ⊢pat 𝑝 as 𝑥 ? ∶ 𝑇 ↝ 𝐵 ⊎ {𝑥 ∶ 𝑇}

Typ-pat-wild

𝐸 ⊢pat _ ∶ 𝑇 ↝ ∅

Typ-pat-pred

𝐸 ⊢trm 𝑔 ∶ 𝑇 → bool
𝐸 ⊢pat 𝑔 ∶ 𝑇 ↝ ∅

Typ-pat-view

𝐸 ⊢trm 𝑓 ∶ 𝑇 → (𝑇1, ...,𝑇𝑛) option ∀𝑖 . 𝐸 ⊢pat 𝑝𝑖 ∶ 𝑇𝑖 ↝ 𝐵𝑖 ∀𝑖 ≠ 𝑗 . 𝐵𝑖#𝐵 𝑗

𝐸 ⊢pat 𝑓 (𝑝1, ..., 𝑝𝑛) ∶ 𝑇 ↝ ⋃𝑖 𝐵𝑖

Fig. 8. Typing rules for the derived constructs

𝐸 ⊢bbe 𝑏 ↝ 𝐵 would be encoded as 𝐸 ⊢trm 𝑏 ∶ boolbinds(B). By collapsing BBEs and terms also in

the evaluation rules would bring us closer to the presentation used by first-class patterns.

6 TYPE SOUNDNESS
For a type system, one usually establishes preservation and progress. Establishing the progress

property for pattern-matching crucially depends on exhaustivity. Yet, as said earlier, this property

is hard to obtain in the presence of arbitrary guards and view functions. Hence, we will here focus

solely on type preservation, which asserts that if a term 𝑡 has type 𝑇 , and if 𝑡 evaluates to a value 𝑣 ,

then 𝑣 has type 𝑇 .

Because the grammars of terms, of BBEs, and of patterns are mutually recursive, we need to also

establish, as part of a proof by mutual induction, preservation statements for BBEs and for patterns.

The preservation statement for BBEs is as follows. If a BBE 𝑏 exports a set of bindings 𝐵 (described

as a map from variables to types), and if 𝑏 evaluates positively to a result of the form Match 𝑀

(where𝑀 maps variables to values), then this set of result𝑀 contains exactly the entries advertised

by 𝐵, at the appropriate types. Formally, we write ⊢map 𝑀 ∶ 𝐵 this relation, which asserts that if 𝐵

binds a name 𝑥 to a type 𝑇 , then𝑀 binds the same name 𝑥 to a value of type 𝑇 .

⊢map 𝑀 ∶ 𝐵 ∶= dom(𝑀) = dom(𝐵) ∧ ∀(𝑥, 𝑇) ∈ 𝐵. ∃ 𝑣 . (𝑥, 𝑣) ∈𝑀 ∧ ⊢trm 𝑣 ∶ 𝑇

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

A Core Language for Extended Pattern Matching and Binding Boolean Expressions 1:11

The preservation statement for patterns is as follows. If a pattern 𝑝 filters values of type 𝑇 and

exports a set of bindings 𝐵, and if 𝑣 is a value of type 𝑇 , and if the evaluation of the pattern 𝑝

against the value 𝑣 evaluates positively to a result of the form Match𝑀 , then this set of result𝑀

contains the entries advertised by 𝐵, again in the sense that ⊢map 𝑀 ∶ 𝐵 holds.

In the formal statements shown below, we omit the empty typing environments, e.g., we write

⊢trm 𝑡 ∶ 𝑇 for ∅ ⊢trm 𝑡 ∶ 𝑇 .
Theorem 1 (Type Preservation). The following statements hold:
(1) (𝑡 ⇓trm 𝑣) ∧ (⊢trm 𝑡 ∶ 𝑇) ⇒ (⊢trm 𝑣 ∶ 𝑇)
(2) (𝑏 ⇓bbe Match𝑀) ∧ (⊢bbe 𝑏 ↝ 𝐵) ⇒ (⊢map 𝑀 ∶ 𝐵)
(3) (𝑣 ⊳ 𝑝 ⇓pat Match𝑀) ∧ (⊢pat 𝑝 ∶ 𝑇 ↝ 𝐵) ∧ (⊢trm 𝑣 ∶ 𝑇) ⇒ (⊢map 𝑀 ∶ 𝐵)
We have carried out the proof on paper. Our proof goes by induction on the evaluation judgments.

The proof depends on the following substitution lemmas.

Lemma 1 (Substitution lemmas). Assume ⊢map 𝑀 ∶ 𝐵. Then, the following implications hold:
(1) (𝐸, 𝐵 ⊢trm 𝑡 ∶ 𝑇) ⇒ (𝐸 ⊢trm Subst(𝑀, 𝑡) ∶ 𝑇)
(2) (𝐸, 𝐵 ⊢bbe 𝑏 ↝ 𝐵′) ⇒ (𝐸 ⊢bbe Subst(𝑀, 𝑏) ↝ 𝐵′)
(3) (𝐸, 𝐵 ⊢pat 𝑝 ∶ 𝑇 ↝ 𝐵′) ⇒ (𝐸 ⊢pat Subst(𝑀, 𝑝) ∶ 𝑇 ↝ 𝐵′)
We look forward to formalizing our definitions and proofs using Rocq.

REFERENCES
Luyu Cheng and Lionel Parreaux. 2024. The Ultimate Conditional Syntax. Proc. ACM Program. Lang. 8, OOPSLA2, Article

306 (Oct. 2024), 30 pages. https://doi.org/10.1145/3689746

H Cirstea and K Kirchner. 2001. The rewriting calculus - part I. Logic Journal of the IGPL 9, 3 (2001), 339–375. https:

//doi.org/10.1093/jigpal/9.3.339

ELanguage. 2025. E-Language, Pattern Grammar. http://www.erights.org/elang/index.html

Georges Gonthier and Stéphane Le Roux. 2009. An Ssreflect Tutorial. https://rocq-prover.org/doc/V8.9.1/refman/proof-

engine/ssreflect-proof-language.html#gallina-extensions

Barry Jay and Delia Kesner. 2009. First-class patterns. J. Funct. Program. 19, 2 (March 2009), 191–225.

C. Barry Jay. 2004. The pattern calculus. ACM Trans. Program. Lang. Syst. 26, 6 (Nov. 2004), 911–937. https://doi.org/10.

1145/1034774.1034775

Daniel Licata and Simon Peyton Jones. 2025. View patterns: lightweight views for Haskell. https://ghc.gitlab.haskell.org/

ghc/doc/users_guide/exts/view_patterns.html

Chris Okasaki. 1998. Views for standard ML. In SIGPLAN Workshop on ML. Citeseer, 14–23. https://www.cs.tufts.edu/~nr/

cs257/archive/chris-okasaki/views.pdf

ppxlib. 2025. The Ast-pattern Module. https://ocaml-ppx.github.io/ppxlib/ppxlib/Ppxlib/Ast_pattern/index.html

Rust. 2025a. Guard Patterns. https://rust-lang.github.io/rfcs//3637-guard-patterns.html

Rust. 2025b. If let chains. https://rust-lang.github.io/rfcs/2497-if-let-chains.html

Scala. 2025. Extractors Objects. https://docs.scala-lang.org/fr/tour/extractor-objects.html

Don Syme, Gregory Neverov, and James Margetson. 2007. Extensible pattern matching via a lightweight language extension.

In Proceedings of the 12th ACM SIGPLAN International Conference on Functional Programming (Freiburg, Germany) (ICFP
’07). Association for Computing Machinery, New York, NY, USA, 29–40. https://doi.org/10.1145/1291151.1291159

Mark Tullsen. 2000. First Class Patterns. In Proceedings of the Second International Workshop on Practical Aspects of Declarative
Languages (PADL ’00). Springer-Verlag, Berlin, Heidelberg, 1–15.

Unison. 2025. Guard Patterns. https://www.unison-lang.org/docs/fundamentals/control-flow/pattern-matching/#guard-

patterns

Wolfram. 2025. Conditions. https://reference.wolfram.com/language/ref/Condition.html

https://doi.org/10.1145/3689746
https://doi.org/10.1093/jigpal/9.3.339
https://doi.org/10.1093/jigpal/9.3.339
http://www.erights.org/elang/index.html
https://rocq-prover.org/doc/V8.9.1/refman/proof-engine/ssreflect-proof-language.html#gallina-extensions
https://rocq-prover.org/doc/V8.9.1/refman/proof-engine/ssreflect-proof-language.html#gallina-extensions
https://doi.org/10.1145/1034774.1034775
https://doi.org/10.1145/1034774.1034775
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/view_patterns.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/view_patterns.html
https://www.cs.tufts.edu/~nr/cs257/archive/chris-okasaki/views.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/chris-okasaki/views.pdf
https://ocaml-ppx.github.io/ppxlib/ppxlib/Ppxlib/Ast_pattern/index.html
https://rust-lang.github.io/rfcs//3637-guard-patterns.html
https://rust-lang.github.io/rfcs/2497-if-let-chains.html
https://docs.scala-lang.org/fr/tour/extractor-objects.html
https://doi.org/10.1145/1291151.1291159
https://www.unison-lang.org/docs/fundamentals/control-flow/pattern-matching/#guard-patterns
https://www.unison-lang.org/docs/fundamentals/control-flow/pattern-matching/#guard-patterns
https://reference.wolfram.com/language/ref/Condition.html

	Abstract
	1 Introduction
	2 Survey
	3 Syntax
	4 Semantics
	5 Typing Rules
	6 Type Soundness
	References

