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A Core Language for Extended Pattern Matching and Binding
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ARTHUR CHARGUERAUD and YANNI LEFKI, Inria & ICube lab, CNRS, Université de Strasbourg,

France

Functional programming languages include various pattern matching features, such as guarded patterns,
matching by custom predicate, active patterns, synonymous patterns, etc. Besides, several languages include
mechanisms for binding names as part of a boolean expression that appears in either an if-statement, a
while-loop condition, or a pattern guard. These names may be bound either with a simple let-binding or
via a test performed using pattern-matching. All these features are useful in practice, yet it appears that no
mainstream language supports them all at once. In this work, we present a core language that consists of a
small number of constructs that suffice to encode and combine all the desired features of pattern matching
and binding boolean expressions. Thereby, we hope to consolidate existing knowledge on the topics of pattern
matching and generalized forms of boolean expressions, through a streamlined presentation. We expect it
to be useful not only for pedagogical purposes, but also potentially for simplifying the work of compiler
developers.

1 INTRODUCTION

Pattern-matching has been popularized by ML languages. Existing functional languages include
a number of extensions beyond plain pattern-matching over data constructors. There are also
interesting interactions when pattern matching is used as part of a boolean test. In such case, one
may wish to export bound names in the then branch.

This paper addresses the challenge of presenting a language that supports all these extensions at
once. What we seek for is not to consider the union of several languages, but instead to identify a
core language in which all of these interesting features can be encoded. In this work, we leave aside
the questions about checking pattern-matching exhaustivity (a.k.a. completeness). This question is
certainly interesting, yet in the presence of when-clauses or view-functions, checking exhaustivity
is beyond reach without recourse to an advanced program logic.

Our work is closely related to the work by Cheng and Parreaux [2024], who also aim to give
a unified presentation of generalized conditionals with pattern matching. We believe that our
formalism is slightly simpler, and that it makes it corresponds to a conservative extension of the
conditional and standard pattern-matching constructs.

We begin by reviewing the pattern-matching and boolean-binding-expressions features. We then
present a set of core constructs, as well as encodings for derived constructs. We present evaluation
rules as well as ML-style typing rules for the core language, then establish type preservation.
Moerover, we establish derived evaluation rules and derived typing rules for the derived constructs,
thereby showing that our encodings satisfy the expected properties.

2 SURVEY

Traditional pattern-matching. The basic idea of the pattern-matching construct is to test one
value against a set of patterns, for deciding which continuation to follow. Patterns can test for
constants, data constructors, or records. Patterns may bind variables, and may include subpatterns
recursively. Wildcard-patterns match any value, without binding a name. Or-patterns allows testing
if a value satisfies one of several patterns, in which case all these patterns must export the same set
of variables. Here is an example using OCaml syntax:
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match 1 with
| ((Some x, None) | (None, Some x)) :: t -> (Some x, Some x) :: t
| - —>1

Dual to or-patterns are and-patterns, a.k.a. intersection-patterns. They allow testing if the value
satisfies several patterns at once. Intersection patterns become particularly useful in the presence
of more advanced features in patterns such as guarded patterns. They may also be used to encode
alias-patterns, written “p as x” in OCaml.

When-clauses, a.k.a. guards. Most functional programming languages allow the branches of a
pattern-matching to be guarded by a when-clause. A branch is only considered if the pattern is
satisfied and if the boolean condition in the when-clause evaluates to true. For example:

match 1 with
| Cons(Some(x), t) when x > @ -> t
| _ -> false

A more general approach allows when-clauses to appear in depth, inside any subpattern. This
possibility can be useful in combination of or-patterns, as argued in a recent RFC for Rust [Rust
2025a]. Here is an example using Rust syntax:

match user.subscription_plan() {
(Plan::Regular if user.credit() >= 100)
| (Plan::Premium if user.credit() >= 80) => // continuation

The authors of this RFC point out that such guard patterns have previously appeared in particular
in the Unison language [Unison 2025], in Wolfram’s language [Wolfram 2025], as well as in the
E-language (under the name such-that pattern) [ELanguage 2025].

Predicate patterns. Instead of binding a variable then testing whether this variable satisfies a
boolean predicate as part of a guard, one may wish to directly include in the grammar of patterns the
possibility of satisfying a boolean predicate. Here is an example in C#, where “<= 10” is a boolean
predicate testing if a number is no greater than 10, and where “and” denotes pattern intersection.

temperature switch {

(<= 10) => s
(> 10 and <= 25) => ,
(> 25) => };

Views. Pattern-matching on algebraic data types is very effective for implementing a data struc-
ture. However, for modular programming, the internal representations as an algebraic data type
should not be exposed. The mechanism of views has been introduced to reconcile pattern matching
with data abstraction. Here is an example of views in Haskell syntax.

type Bag -- any bag implementation, e.g., a list or a tree

data BagView = Empty | Add int Bag -- type used for iterating over bags
view :: Bag -> BagView

size :: Bag -> Integer

size (view -> Empty) = 0

size (view -> Add x b) = 1 + size b

This mechanism has been described by Okasaki in the context of Standard-ML [1998], it has been

implemented in Haskell [Licata and Peyton Jones 2025], it appears under the name of extractor in
Scala [Scala 2025] and under the name active pattern in F# [Syme et al. 2007]. Views can be also be
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A Core Language for Extended Pattern Matching and Binding Boolean Expressions 1:3

Lf.g = | x variable
| A(x1y e Xp) function
| f(t1y e tn) application
| switch"™c; | ...|c, branching, as part of a term
c = | casebthent branch of a switch"™
Vv = aset of variables
b = | tisp match against a pattern
| switch™d, | ...|d, branching, as part of a BBE
| restrictVb filter exported bindings
d = | case b, then b, branch of a switch"®
| restrictVd filter exported bindings
p = | A pattern variable
| p1]p2 pattern disjunction
| p1&p2 pattern intersection
| C(p1,espn) constructor pattern
| pwhenb guarded pattern
| restrictVp filter exported bindings

Fig. 1. Grammar of our core language

encoded by means of the more general notion of first-class patterns [Tullsen 2000][Jay and Kesner
2009]. An example implementation of first-class patterns is the one provided in OCaml by means
of the source code preprocessor named Ast_pattern [ppxlib 2025].

Binding boolean expressions. SSReflect [Gonthier and Le Roux 2009] is an extension to the Rocq
proof assistant that has made use, since the early 2000s, of the construct “if #; is p then t; else t,”,
as a syntactic sugar for “match to with p = t; | _ = t,”. The SSReflect manual indicates that this
construct could previously be found in ML variants such as the p-calculus [Cirstea and Kirchner
2001] or the pattern calculus [Jay 2004].

A more general possibility is to perform on-the-fly pattern-matching as part of boolean conditions
has been recently added to the Rust language [Rust 2025b]. The idea is that in an if-statement, one
may exploit pattern matching to implement part of the test, and the variables obtained from the
pattern matching can be exported into the then-branch of the if-statement. In the Rust example
below, the variables fn_name, aft_name and args_str are bound in the then-branch.

if let Some((fn_name, aft_name)) = s.split_once( )
&& !fn_name.is_empty ()
&& is_legal_ident(fn_name)
&& let Some((args_str, )) = aft_name.rsplit_once( ) {
return fn_name + args_str;

3 SYNTAX

Figure 1 presents the grammar of our core language, which consists of A-calculus with n-ary
functions, extended with a switch construct. We let t range over terms. The meta-variables f and g
also range over terms that represent functions. This switch construct is made of a list of branches,
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1:4 Arthur Charguéraud and Yanni Lefki

Derived terms

letp=tint = switch"™ case (1, is p) then t;
if ™ bthent elset, = switch"™ case b then t; | case true then t;
Derived BBEs
t = tistrue where t : bool
if°®® by then b, else b, =  switch™ case b, then b, | case true then b,
b; and b, = if°*® b, then b, else false
b, or b, = if°"® b, then true else b,
not b = if"* b then false else true
Derived patterns
pasx’ = p&(x)
_ = X for a fresh x
g = x’wheng(x) where g : (T — bool) for a fresh x
f(p1sees pn) = x’ when f(x) is Some (p1,.... pn) for a fresh x

Fig. 2. Encoding of derived language constructs in term of core constructs

where each branch consists of a binding-boolean-expression (BBE) and a continuation. A BBE is an
expression that evaluates to a boolean and, in case the result is true, binds a number of variables.

In the core language, there are only three constructs for introducing BBEs. Firstly, the construct
t is p tests whether the result of ¢ satisfies the pattern p, and if so, binds the appropriate pattern
variables. Secondly, a switch can be viewed as a BBE if all its continuations consist of BBEs. Such
switch constructs are used in particular to encode conjunctions and disjunctions of BBEs, as detailed
further. Thirdly, the construct restrict V b can be used to reduce the set of bindings that are exported
by a BBE. We have found the need to introduce the restrict construct to enable the set up of a
semantics that does not depend on types. We present a motivating example at the end of the present
section.

Remark: in the current presentation, we have deliberately chosen to separate the grammar of
BBEs from the grammar of terms, to improve clarity, at the expense of preventing a few possible
factorizations in the evaluation and typing rules.

The grammar of patterns includes the traditional constructs, namely variables, disjunction,
intersection, testing against a constructor. In addition, the grammar of patterns includes the guard
construct, written p when b. Such a guarded pattern exports all the variables bound by the pattern p
as well as all the variables bound by the binding boolean expression b. One specificity of our design
is that for an intersection pattern p; & p,, the variables bound by p; scope over p;. In particular,
the variables bound by p; may appear as parts of the pattern guards that appear inside p,.

Figure 2 presents our encodings for the remaining constructs. The constructs let p = ¢, in f;,
and if b then t; else t; can be encoded using a switch. Any boolean expression ¢ can be viewed as
a binding-boolean-expression that binds no variable. The logical combinators b; and by, as well
as by or b, and not b can all be encoded using conditionals, which themselves are encoded using
switches. An alias-pattern of the form p as x’ can be encoded using a pattern intersection. The
wildcard-pattern can be encoded using a pattern variable that does not occur anywhere else in the
program. A boolean predicate g, i.e. a function of type T — bool, can be viewed as a pattern filtering
values of type T. Finally, the view-pattern takes the form f (p, ..., pn ), where f is a user-defined
function and p; are sub-patterns. If each pattern p; has type T;, the function f must have type
T - (Ty, ..., T,,)) option. When testing a value v against the view pattern f (p1, ..., pn ), there are two



197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

A Core Language for Extended Pattern Matching and Binding Boolean Expressions 1:5

o = | Alxg,enxp)t A-abstraction
| C(ov1,...0n) constructor
(includes booleans, integers, options, tuples)

M := map from variable to values

| Mismatch | Match M result of evaluating a BBE

~
Il

Fig. 3. Entities involved in the statement of the semantics

cases. If f(v) produces None, then the matching fails. Otherwise, if f(v) produces Some (o1, ...,0,),
then the matching succeeds if and only if each of the values v; satisfy the corresponding patterns p;.

Let us now come back on the need for the restrict construct. Consider the pattern shown below.
In this pattern, the or-pattern on the right-hand side of the conjunction produces in all cases a
binding on x, while the pattern on the left-hand side of the conjunction produces a binding on y.
Hence, overall, we expect the pattern to produce bindings for x and y.

(((x?,y?) whenx>0andy>0) | (x,.) whenx>1) & (¥',))

Consider now the evaluation of this pattern against the pair (2, 1) using a naive interpreter. The

evaluation of the sub-pattern “(x’, y°) when x > 0 and y > 0” succeeds, resulting in a map {x + 2,
y + 1}. Because the left-branch of the or-pattern has already succeeded, the sub-pattern “(x?,
_) when x > 1” is not evaluated at all. Then, the evaluation of the sub-pattern (y°, _) succeeds,
resulting in a map {y ~ 2}. The problem that now arises is that an interpreter lacks sufficient
information for properly merging {x — 2, y — 1} with {y — 2} and output the expected result
{x ~ 2, y ~» 2}. By introducing a restrict on the name x around the or-pattern, as shown below,
we remedy the situation: the interpreter now only needs to compute the disjoint union of {x — 2}
and {y — 2}.

(restrict {x} (((x",y") whenx >0andy>0) | (x’,_)whenx>1)) & (v’,_)

In summary, the restrict construct can be used to ensure that all the branches of or-patterns (or of
switches) produce the same set of bindings, and its presence is needed to provide formal evaluation
rules that depend only on the grammar and not on the types. In practice, the programmer needs
not insert restrict constructs explicitly. Indeed, they can be easily elaborated by the typechecker.
Concretely, the typechecker could compute the set of bindings exported by each branch, compute
the intersection of these sets, then wrap each of the branches with a restrict to filter the names
that belong to the intersection. We leave to future work the formalization of this elaboration phase.

The restrict construct may also be useful for the encodings. The 3 derived pattern constructions
that appears at the bottom of Figure 2 rely on the introduction of a fresh variable x. It may be
more satisfying, in particular with respect to error messages, to make sure that the generated
name x does not escape the local scope. To that end, it suffices to wrap the encoded pattern into a
restrict construct. For example the boolean predicate g viewed as a pattern could be encoded as
restrict @ (x’ when g (x)).

4 SEMANTICS

Figure 3 presents the grammar entities involved for semantics. We let v range over values, which
include functions and data constructors. We let M denote a set of bindings from variables to
values, arising from a successful pattern-matching or BBE evaluation. We let r denote the result of
evaluating a matching or a BBE. Such a result is either Mismatch, or of the form Match M for a
map M describing the bindings obtained.
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1:6 Arthur Charguéraud and Yanni Lefki

The operation Subst(M, t) substitutes a set of bindings into a term t. Likewise, Subst(M, b)
substitutes a set of bindings into a BBE b, and Subst(M, p) substitutes a set of bindings into a
pattern p. Substituting inside patterns is required because terms and BBEs can recursively occur
inside patterns.

For simplicity, in the statements of the evaluation rules, we omit details about the threading
of the mutable store. That said, the reader should keep in mind that the evaluation of guards and
of view functions may involve arbitrary side-effects. Hence, the evaluation order is critical. In
particular, certain rewriting rules and certain pattern compilation schemes that could be devised
might be correct only under specific purity assumptions.

There are 3 evaluation judgments. The judgment ¢ |}t v asserts that the term ¢ evaluates to the
value v. The judgment b |y 7 asserts that the BBE b evaluates to a result 7. The judgment v & p | pa
r asserts that the matching of the value v against the pattern p evaluates to a result r. The notation
M;#M, expresses that the two maps M; and M, have disjoint domains, i.e. dom(M; ) ndom(M;) = @.
The notation M,y denotes the restriction of the map M to the bindings on the names listed in
the set V. By extension, r|y denotes the restriction of the bindings exported by a result. Formally,
Mismatch)y = Mismatch and (Match M)y, = Match (My).

Figure 4 presents the type-agnostic evaluation rules for the core language. These rules consist of
definitions. Figure 5 presents the evaluation rules for the derived constructs. These rules consist of
lemmas, proved correct with respect to the encodings presented in Figure 2.

5 TYPING RULES

We consider simple types, with n-ary arrow types and type constructors. Figure 6 presents the
typing entities. A typing environment is written E. A binding boolean expression (BBE) admits
as type a map from variables to types, written B. This map describes the types of the variables
exported by the BBE in case it evaluates to true. The bindings in such a map B are unordered.
Certain typing rules extend a context E with the set of bindings from a map B. The result, written
“E, B”, can be obtained by placing the bindings form B in an arbitrary order.

There are 3 typing judgments. The judgment E ., t : T asserts that, in the environment E, the
term t admits the type T. The judgment E . b ~ B asserts that the BBE b, in case it evaluates
to true, binds a set of variables whose names and types are described by the map B. The judgment
Evrpap ¢ T ~ Basserts that the pattern p filters values of type T and, in case of success, binds a
set of variables whose names and types are described by the map B.

Figure 7 presents the typing rules for the core language. The definitions are straightforward
and follow the usual patterns, except for the typechecking a branch of our switch®™ construct.
Consider a branch case b; then b,. How should we define the map B that describes the bindings
exported by the branch in case the evaluation of this branch succeeds? In general, B should
be defined as the union of the bindings exported by b; and b, (rule TypP-BBE-cASE-1). However,
there is a particular case that we need to handle differently, in particular for the purpose of
typechecking as we expect the intersection pattern construct b; and b;. Recall that this construct
is encoded as “switch®™ case b; then b; | case true then false”. Consider a branch of the form
“case b’ then false”. The evaluation of such a branch never succeeds. Hence, it is sound to consider
that this branch admits as type B, for any map B, as captured by the rule TyP-BBE-CASE-2.

Figure 8 presents derived typing rules for the derived constructs. Here again, those derived rules
consist of lemmas proved correct with respect to the encodings presented in Figure 2. Observe, in
particular, how the lemma TyP-BBE-AND captures that the set of bindings exported by b; and b,
corresponds to the union of the set of bindings coming from b; and b5, and that the bindings of b;
scope inside b;.
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295 EVAL-TRM-VAL EVAL-TRM-BETA
296 Vi. t; Ytm 0 Subst({x; = 01,0 X P Op b, £) Ytrm ©
297 0 Jtrm © (A1, e xn)ot) (s tn) Ytrm ©
298
2099  EVAL-TRM-SWITCH-1 EVAL-TRM-SWITCH-2
50 b1 Ubbe Mismatch switch™ ¢, | ... | cn Jirm © by |pbe Match M; Subst(My, t1) Jtrm ©
301 switch"™ (case by thent;) [cz | ...|cn Jtm v switch™ (case by then t;) [ ¢z | ... | ¢n Jtrm ©
302
203 FVAL-BBE-IS EVAL-BBE-SWITCH-1
o t gm0 0> p Upar 7 d; Jpbe Mismatch switch®™ d, | ...]dn Ybbe 7
- 1 bb
505 tisp lppe 7 switch™%d; | ... | dy bbe 7
?06 EVAL-BBE-SWITCH-2 EVAL-BBE-RESTRICT
307 d] Ubbe Match Ml b Ubbe r
308 "
. switch”*®d, | ...]dn Ubbe Match M; restrict Vb [ppe 1y
310 EVAL-BBE-CASE-1 EVAL-BBE-CASE-2
311 b1 |pbe Mismatch b1 |bbe Match M; Subst(Mj, bs) Upbe Mismatch
312 case b; then by |ppe Mismatch case b; then by |ppe Mismatch
313
314 EVAL-BBE-CASE-3 EVAL-BBE-CASE-RESTRICT
315 b1 Ubbe Match M1 SUbSt(Ml, bz) Ubbe Match M2 MI#MZ d Ubbe r
316 case b; then by |ppe Match (M; v M,) restrictVd |ppe v
317
318 EVAL-PAT-VAR EVAL-PAT-OR-1
:519 0 > pq par Match M,
0 o> X’ Upat Match {x 0} v > p1|p2 Upar Match M,
321 EvAL-PAT-OR-2 EVAL-PAT-AND-1
322 0 > p1 |pat Mismatch o> py par 7 0 > p1 |pat Mismatch
323 o> pi|p2 lpar 7 v > p1 &Pz par Mismatch
324
395 EvAL-PAT-AND-2 EvAL-PAT-AND-3
326 [Ny 51 Upat Match M oD Py Upat Match M,
207 v > Subst(M, p2) pat Mismatch v > Subst(My, p2) pat Match M, M;#M,
398 v > p1 & pz par Mismatch v > p1 & py Ypar Match (M w My)
329
N EVAL-PAT-CSTR-1 EVAL-PAT-CSTR-2
330 o not of the form C(vy, ...,v;) v =C(01,...,0p) Ji. v; > p; Jpar Mismatch
zz; 0 > C (p1,..oPn) lpat Mismatch 0 > C (p1,.spn) pat Mismatch
333 EVAL-PAT-CSTR-3
334 0 =C(v1,..0n) Vi. ;> p; Jpar Match M; Vi# j. Mi#M;
335 0 > C (p1,..pn) pat Match (U; M;)
336
337 EVAL-PAT-WHEN-1 EVAL-PAT-WHEN-2
138 0 > p [pat Mismatch 0> p Jpar Match M Subst(M, b) |pbe Mismatch
330 v > pwhenb |y Mismatch v > pwhenb |y Mismatch
0 EvAL-PAT-WHEN-3 EVAL-PAT-RESTRICT
4l 0 > p |par Match M, Subst(Mj, b) |pbe Match M, M;#M, o> p lpar 7
zi v > pwhenb |y Match (M; wM;) o > restrict Vp | pa v

Fig. 4. Semantics of core constructs
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1:8 Arthur Charguéraud and Yanni Lefki

EVAL-TRM-LET
t1 Jtrm 01 01 > p |pat Match M Subst(M, t2) Jtrm 02

letp =hint Utrm U2

EvAL-TRM-1F-1 EvVAL-TRM-1F-2
b Jpbe Mismatch t2 Jtrm © b Jpre Match M Subst(M, t1) Jtrm ©
if "™ b then t; else t; |iym © if "™ b then t; else t, |ym ©
EvAL-BBE-TRM-1 EvAL-BBE-TRM-2 EvAL-BBE-IF-1
t trm false t Jtrm true bo pbe Mismatch bz Jpbe 7
t Ipbe Mismatch t |pbe Match @ if®™ b, then b else b, Ubbe 7

EVAL-BBE-IF-2
bo Jpbe Match M, Subst(My, b1) Ubbe Mismatch

if®™ b, then b, else b, Upbe Mismatch

EVAL-BBE-IF-3 EvAL-BBE-AND-1
b() Ubbe Match M() SubSt(M(), bl) Ubbe Match M] M()#M] bl Ubbe Mismatch
1fPbe by then b; else by |ppe Match (Myw M;) b1 and b, |ppe Mismatch

EvVAL-BBE-AND-2
b1 |bbe Match M; Subst(Mj, bs) Upbe Mismatch

by and b, |ppe Mismatch

EVAL-BBE-AND-3
b1 Jpbe Match M, Subst(Mj, by) Upbe Match M, M;#M,

bl and bz Ubbe Match (M] W] Mz)

EVAL-BBE-OR-1 EVAL-BBE-OR-2 EVAL-BBE-NOT-1
b1 Jpbe Match M, b1 |bbe Mismatch by Jpbe 7 b Jpbe Mismatch
by or by phe Match M; by or by pbe ¥ not b |Jppe Match @
EvAL-BBE-NOT-2 EvAaL-PAT-AS-1
b Jppe Match M 0 > p par Mismatch
not b |lphe Mismatch o> pasx’ Jpat Mismatch
EVAL-PAT-AS-2 EVAL-PAT-WILD
0> p Jpar Match M x ¢ dom(M)
v pasx’ |pa Match (M® {x~0}) v > _ |par Match @
EvAL-PAT-VIEW-1 EvAL-PAT-VIEW-2
f(v) Jtrm None f(v) Jtrm Some (v1,...,0,) 3i. v; > p; Jpar Mismatch
0 > f(p1spn) Upat Mismatch 0 > f(p1spn) Upat Mismatch

EvAL-PAT-VIEW-3
f(©) Jtrm Some (v1,...,0,) Vi. 0; > pi {pat Match M; Vi#j. Mi#M;

0 > f(p1,spn) Upar Match (U; M;)

EVAL-PAT-PRED-1 EVAL-PAT-PRED-2
g (0) Jerm false g (0) Jtrm true
0 > g pat Mismatch 0 > g |par Match &

Fig. 5. Semantics of derived constructs
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A Core Language for Extended Pattern Matching and Binding Boolean Expressions 1:9

T:= | D(L..T,) type constructor (includes bool, int and “option T”)
| (Th,...T,) - T, n-ary arrow type (might also be viewed as a contructor)
E= | @ | Ex:T typing environment

B := map from variables to types typing of the variables bound by a BBE

Fig. 6. Typing entities

TyYP-TRM-VAR TyYP-TRM-FUN
(x:T)€eE Exi:T,euxn:Tyrtgmt:T
Erimx:T Ebrpm A(xt, e xn) t i (T, Ty) = T
TyYP-TRM-APP TYP-TRM-SWITCH
Etrim f: (Tl,..., Tn) - T Vi. E Ftrm L - Tl Vi. E Htrm Ci ¢ T
E Firm f(tl, ey tn) :T EFirm (SWitChtrmcl | ‘ Cn) :T
TYP-TRM-CASE TyP-BBE-IS
Erppe b~ B E,Briymt:T Erymt:T Evrpap:T~B
Etym (case bthent): T Epbe (tisp) ~ B
TyP-BBE-SWITCH TyYP-BBE-RESTRICT
Vi. Etrpped; ~ B Erppe b~ B Vc dOl’Il(B)
E pbe (switchbbe di|..|d,) ~ B E rphe (restrictVb) ~ Bjy
TyP-BBE-CASE-1 TYP-BBE-CASE-2
E pbe b1 ~ By E, By Fbbe by ~ By B#B; E ppe b1 ~ By
E tppe (case by then by) ~ B;w B, E tppe (case b; then false) ~ B

TYP-BBE-CASE-RESTRICT

Erpped~B  Vcdom(B) Typ-pAT-VAR

E pbe (restrictVd) ~ By E pat x' T ~ {x:T}
Typ-PAT-OR TYP-PAT-AND
El—patpliT’\"B E'_patPZ:T’\’B E'_patpl:T'\"Bl El—patpziT’\"Bz B#B,
E'_pat (p1|p2) : T ~ B E"pat (pl &pg) : T ~ B1L+JB2

TyP-PAT-CSTR
E Ftrm C: (Tl, ceey Tn) T Vi. E '_pat pi: Tl ~r Bi Vi#+ _] Bl#Bj

E'_patC (Pl;m’pn) T ~ U B

TyYP-PAT-WHEN TYP-PAT-RESTRICT
E '_pat p: T ~ Bl E, Bl Fbbe b~ Bz Bl#Bz E Fpat P ¢ T ~ B Vc dom(B)
Etrpat (pwhend) : T ~ ByuB, E tpat (restrictVp) : T ~ By

Fig. 7. Typing rules for the core language

Remark: if we had tried to unify the grammar of BBEs and that of terms, we might have considered
a single typing judgment for both. This judgment would be written E ¢, t : T, where t could be a
BBE, and where T could be a special type of the form boolbinds(B). In other words, our judgment
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TYP-TRM-LET
E'_patP:Tl“”B Erimti:Th E,Brymta:Th
E +4m Ietp =hinty: T

TyYP-TRM-IF TyYP-BBE-TRM
Etppe b~ B E,Brymti: T Ergmt: T E +ym t 2 bool
Etymif™ bthentyelset,: T Etrppet ~ O
TyYP-BBE-IF
E pbe by ~ By E, By Fpbe b1 ~ By By#B, B =By ¥B;
E Fbbe bz ~ B
E Fppe if ™ by then by else b, ~ B
TYP-BBE-AND TyYP-BBE-OR
E ppe b1 ~ By E, B Fpbe by ~ By B1#B, E rype b1 ~ B E ppe by ~ B
E Fppe b1 and bz ~r Bl W] Bz E Fbbe bl or bg ~ B
TYP-BBE-NOT Typ-PAT-AS TYP-PAT-WILD
Erpip:T~B x ¢ dom(B)
Erppe NOth ~ & Evrpgpasx’ : T ~ Bu{x:T} Erpst_:T ~ @

TYP-PAT-PRED
Ertymg: T — bool

Etpag: T ~ @

TyYP-PAT-VIEW
Etym f:T - (T, ..., T,) option Vi. Evrpapi:T; ~ B; Vi# j. Bi#B;

Etpat f(p1,eupn) = T ~ U;B;

Fig. 8. Typing rules for the derived constructs

E +pbe b ~ B would be encoded as E +m, b : boolbinds(B). By collapsing BBEs and terms also in
the evaluation rules would bring us closer to the presentation used by first-class patterns.

6 TYPE SOUNDNESS

For a type system, one usually establishes preservation and progress. Establishing the progress
property for pattern-matching crucially depends on exhaustivity. Yet, as said earlier, this property
is hard to obtain in the presence of arbitrary guards and view functions. Hence, we will here focus
solely on type preservation, which asserts that if a term ¢ has type T, and if t evaluates to a value v,
then v has type T.

Because the grammars of terms, of BBEs, and of patterns are mutually recursive, we need to also
establish, as part of a proof by mutual induction, preservation statements for BBEs and for patterns.
The preservation statement for BBEs is as follows. If a BBE b exports a set of bindings B (described
as a map from variables to types), and if b evaluates positively to a result of the form Match M
(where M maps variables to values), then this set of result M contains exactly the entries advertised
by B, at the appropriate types. Formally, we write ~myap, M : B this relation, which asserts that if B
binds a name x to a type T, then M binds the same name x to a value of type T.

Fmap M @ B = dom(M) =dom(B) A V(x,T)eB. Jv. (x,0) e M A Fymo:T
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The preservation statement for patterns is as follows. If a pattern p filters values of type T and
exports a set of bindings B, and if v is a value of type T, and if the evaluation of the pattern p
against the value v evaluates positively to a result of the form Match M, then this set of result M
contains the entries advertised by B, again in the sense that ., M : B holds.

In the formal statements shown below, we omit the empty typing environments, e.g., we write
Fam t: T for @ ym t:T.

THEOREM 1 (TYPE PRESERVATION). The following statements hold:

(1) (t Utrm U) A ('_trm t: T) = ('_trm 0: T)
(2) (b Ubbe Match M) A ("bbeb «»B) = (I—mapM : B)
(3) (0> p lpae MatchM) A (Fparp:T~B) A (Fgmv:T) = (Fmap M : B)

We have carried out the proof on paper. Our proof goes by induction on the evaluation judgments.
The proof depends on the following substitution lemmas.

LEMMA 1 (SUBSTITUTION LEMMAS). Assume tmq, M : B. Then, the following implications hold:
(1) (E,Bruymt:T) = (E g Subst(M, t) : T)
(2) (E, Btppe b ~ B,) = (E - bbe 5ubst(M, b) ~ B,)
(3) (E,Brparp:T ~ B") = (E tpg Subst(M, p) : T ~ B')

We look forward to formalizing our definitions and proofs using Rocq.
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