
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

OptiTrust: Producing Trustworthy High-Performance Code
via Source-to-Source Transformations
GUILLAUME BERTHOLON, ARTHUR CHARGUÉRAUD, THOMAS KŒHLER, BEGATIM

BYTYQI, and DAMIEN ROUHLING, Inria & ICube lab, CNRS, Université de Strasbourg, France

Developments in hardware have delivered formidable computing power. Yet, the increased hardware complexity

has made it a real challenge to develop software that exploits hardware to its full potential. Numerous

approaches have been explored to help programmers turn naive code into high-performance code, finely tuned

for the targeted hardware. However, these approaches have inherent limitations, and it remains common

practice for programmers seeking maximal performance to follow the tedious and error-prone route of writing

optimized code by hand.

This paper presents OptiTrust, an interactive source-to-source optimization framework. The programmer

develops a script describing a series of code transformations. The framework provides continuous feed-

back in the form of human-readable diff s over conventional C syntax. OptiTrust supports advanced code

transformations, including transformations exploited by the state-of-the-art DSL tools Halide and TVM, and

transformations beyond the reach of existing tools. OptiTrust also supports user-defined transformations, as

well as defining complex transformations by composition of simpler transformations.

Crucially, to check the validity of code transformations, OptiTrust leverages a static resource analysis in
a simplified form of Separation Logic. Our analysis exploits user-provided annotations on functions and

loops, and deduces precise resource usage throughout the code. Through three representative case studies, we

demonstrate how OptiTrust can be employed to produce state-of-the-art, high-performance programs.

1 INTRODUCTION
1.1 Motivation
Performance matters in numerous fields of computer science, and in particular in applications from

machine learning, computer graphics, and numerical simulation. Massive speedups can be achieved

by fine-tuning the code to best exploit the available hardware [Kelefouras and Keramidas 2022].

Between a naive implementation and an optimized implementation, it is common to see a speedup

of the order of 50×, on a single core. For many applications, the code can then be accelerated further

by one or two orders of magnitude by exploiting multicore parallelism or GPUs.

Yet, producing high performance code is hard. Over the past decades, nontrivial mechanisms

with subtle interactions were integrated into hardware architectures. Reasoning about performance

requires reasoning about the effects of multiple levels of caches, the limitations of memory band-

width, the intricate rules of atomic operations, and the diversity of vector instructions (SIMD).

These aspects and their interactions make it challenging to build cost models. For example, the

cost of a memory access can range from one CPU cycle to hundreds of CPU cycles, depending on

whether the corresponding data is already in cache. In the general case, accurately modeling cache

behavior requires a deep understanding of the algorithm and hardware at play.

Accurately predicting runtime behavior is challenging for expert programmers, and appears

beyond the capabilities of automated tools. Therefore, compilers struggle to navigate the expo-

nentially large search space of all possible code candidates [Vachharajani et al. 2003], resorting to

best-effort heuristics, and often failing to produce competitive code [Barham and Isard 2019].

Today, it remains common practice in industry for programmers to write optimized code by
hand [Amaral et al. 2020; Evans et al. 2022]. However, manual code optimization is unsatisfactory

for at least three reasons. First, manually implementing optimized code is time-consuming. Second,

the optimized code is hard to maintain through hardware and software evolutions. Third, the

Authors’ address: Guillaume Bertholon; Arthur Charguéraud, arthur.chargueraud@inria.fr; Thomas Kœhler; Begatim Bytyqi;

Damien Rouhling, Inria & ICube lab, CNRS, Université de Strasbourg, France.

HTTPS://ORCID.ORG/0000-0001-7000-382X
HTTPS://ORCID.ORG/0000-0001-7764-4507
HTTPS://ORCID.ORG/0000-0001-8461-8075
HTTPS://ORCID.ORG/0000-0001-5556-3634
HTTPS://ORCID.ORG/0000-0001-5556-3634
HTTPS://ORCID.ORG/0009-0007-9279-4766
https://orcid.org/0000-0001-7000-382X
https://orcid.org/0000-0001-7764-4507
https://orcid.org/0000-0001-8461-8075
https://orcid.org/0000-0001-5556-3634
https://orcid.org/0009-0007-9279-4766

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

rewriting process is error-prone: not only every manual code edition might introduce a bug, but the

code complexity also increases, especially when introducing parallelism. These three factors are

exacerbated by the fact that optimizations typically make code size grow by an order of magnitude

(Section 2 contains examples).

In summary, neither fully automatic nor fully manual approaches are satisfying for generating

high performance code. Semi-automatic code optimization aims at combining the benefits of machine

automation with the strength of human insight. Before reviewing tools for semi-automatic code

optimization, let us introduce a number of qualitative properties on which to evaluate these tools.

● Generality: How large is the domain of applicability of the tool? In particular, is it restricted

to a domain-specific language (DSL)?

● Expressiveness: How advanced are the code transformations supported by the tool? Is it

possible to express state-of-the-art code optimizations?

● Control: Howmuch control over the final code is given to the user by the tool? In particular,

is there a monolithic code generation stage?

● Feedback: Does the tool provide easily readable intermediate code after each transforma-

tion?

● Composability: Is it possible to define transformations as the composition of existing

transformations? Can transformations be higher-order, i.e., parameterized by other trans-

formations?

● Extensibility of transformations: Does the tool facilitate defining custom transformations

that are not expressible as the composition of built-in ones?

● Modularity of analyses: for transformations whose correctness depends on a code analysis,

can the tool deal with specifications that summarize the effects of each function, or are all

functions inlined during the analyses?

● Trustworthiness: Does the tool ensure that user-requested transformations preserve the

semantics of the code? Can it moreover provide mechanized proofs?

There exists other properties for optimization tools, such as the ease of integration in an existing

code base, the maintainability of optimized code, or the steepness of the learning curve for new

users. These are certainly important aspects, yet they are even harder to evaluate objectively. Hence,

we omit them from the discussion, and focus on the aforementioned technical properties.

1.2 Closely Related Work
Table 1 summarizes the properties of existing approaches, highlighting their diversity. For the tools

considered, generality appears negatively correlated with expressiveness, i.e., with how advanced

the supported transformations are. For each property considered, at least two tools show strengths

on that property. However, even if we leave out the ambition of achieving mechanized proofs, each

tool considered shows weaknesses on several properties. Hence, it appears that there remains a lot

of room for improvement. Before presenting the contribution of the OptiTrust framework, we first

describe the tools listed in the table.

Halide [Ragan-Kelley et al. 2013] is an industrial-strength domain-specific compiler for image

processing, used e.g. to optimize code running in Photoshop and YouTube. Halide popularized the

idea of separating an algorithm describing what to compute from a schedule describing how to

optimize the computation. This separation makes it easy to try different schedules. TVM [Chen

et al. 2018] is a tool directly inspired by Halide, but tuned for machine learning applications; it

is used by most of the major CPU/GPU manufacturers. Other tools inspired by Halide include

Fireiron [Hagedorn et al. 2020a], used at Nvidia, as well as PartIR [Alabed et al. 2024], used at

Google. All these tools are inherently limited to the domains (DSLs) that they target. They do

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:3

Halide/TVM Elevate+Rise Exo Clay/LoopOpt ATL Alpinist Clava+LARA

Generality

Expressiveness

Control

Feedback

Composability

Extensibility

Modularity (not applicable)

Trustworthiness

Table 1. Overview of user-guided tools for high-performance code generation. Darker is better.

not support higher-order composition of transformations, and are not extensible [Barham and

Isard 2019; Ragan-Kelley 2023]. Moreover, understanding their output is difficult as the applied

transformations are not detailed to the user, even though interactive scheduling systems have been

proposed to mitigate this difficulty [Ikarashi et al. 2021].

Elevate [Hagedorn et al. 2020b] is a functional language for describing optimization strategies
as composition of simple rewrite rules. Advanced optimizations from TVM and Halide can be

reproduced using Elevate. One key benefit is extensibility: adding rewrite rules is much easier than

changing complex and monolithic compilation passes [Ragan-Kelley 2023]. Elevate strategies are

applied on programs expressed in a functional array language named Rise, followed by compilation

to imperative code. The use of a functional array language greatly simplifies rewriting, however it

restricts applicability and makes controlling imperative aspects difficult (e.g. memory reuse).

Exo [Ikarashi et al. 2022] is an imperative DSL embedded in Python, geared towards the de-

velopment of high-performance libraries for specialized hardware. The strength of Exo lies in

externalizing target-specific code generation to user-level code instead of compilation backends.

Exo programs can be optimized by applying a series of source-to-source transformations. These

transformations are described in a Python script, with a cursor mechanism for targeting code points.

The user can add custom transformations, possibly defined by (higher-order) composition. A major

limitation of Exo is that it is restricted to static control programs with linear integer arithmetic.

Another important limitation of Exo is that the transformations are performed on code in which all

functions are inlined. This approach, which lacks modularity, may harm scalability to larger or

more complex programs.

Clay [Bagnères et al. 2016a] is a framework to assist in the optimization of loop nests that can be

described in the polyhedral model [Feautrier 1992]. The polyhedral model only covers a specific

class of loop transformations, with restriction over the code contained in the loop bodies, however

it has proved extremely powerful for optimizing code falling in that fragment. Clay provides a

decomposition of polyhedral optimizations as a sequence of basic transformations with integer

arguments. The corresponding transformation script can then be customized by the programmer.

Clint [Zinenko et al. 2018b] adds visual manipulation of polyhedral schedules through interactive

2D diagrams. LoopOpt [Chelini et al. 2021] provides an interactive interface that helps users design

optimization sequences (featuring unrolling, tiling, interchange, and reverse of iteration order) that

can be bound in a declarative fashion to loop nests satisfying specific patterns.

ATL [Liu et al. 2022] is a purely functional array language for expressing Halide-style programs.

Its particularity is to be embedded into the Coq proof assistant. ATL programs can be transformed

through the application of rewrite rules expressed as Coq theorems. With this approach, transfor-

mations are inherently accompanied by machine-checked proofs of correctness. The set of rules

includes expressive transformations, some beyond the scope of Halide, and can be extended by the

user. Once optimized, ATL programs are then compiled into imperative C code. Like Rise, generality

and control are restricted by the functional array language nature of ATL.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

Alpinist [Sakar et al. 2022] is a pragma-based tool for optimizing GPU-level, array-based code. It

is able to apply basic transformations such as loop tiling, loop unrolling, data prefetching, matrix

linearization, and kernel fusion. The key characteristic of Alpinist is that it operates over code

formally verified using the VerCors framework [Blom et al. 2017]. Concretely, Alpinist transforms

not only the code but also its formal annotations. If Alpinist were to leverage transformation scripts

instead of pragmas, it might be possible to chain and compose transformations; yet, this possibility

remains to be demonstrated.

Clava [Bispo and Cardoso 2020] is a general-purpose C++ source-to-source analysis and trans-

formation framework implemented in Java. The framework has been instantiated mainly for code

instrumentation purpose and auto-tuning of parameters. Clava can also be used in conjunction

with a DSL called LARA [Silvano et al. 2019] for optimizing specific programs. LARA allows ex-

pressing user-guided transformations by combining declarative queries over the abstract syntax

tree and imperative invocations of transformations, with the option to embed JavaScript code. The

application paper on the Pegasus tool [Pinto et al. 2020] illustrates this approach on loop tiling and

interchange operations.

1.3 Contribution
This paper introduces OptiTrust, the first interactive optimization framework that operates, from

the perspective of the user, at the level of C syntax, and that supports and validates state-of-the-art

optimizations. OptiTrust is open-source, and available from: https://github.com/charguer/optitrust.

Overview. In OptiTrust, the user starts from an unoptimized code in C syntax, and develops a

transformation script describing a series of optimization steps. Each step consists of an invocation

of a specific transformation at specified targets. OptiTrust provides an expressive target mechanism

for describing, in a concise and robust manner, one or several code locations. On any step of the

transformation script, the user can press a key shortcut to view the diff associated with that step,

in the form of a comparison between two human-readable programs in C syntax. Concretely,

a transformation script consists of an OCaml program linked against the OptiTrust library of

transformations.

A central aspect of OptiTrust is that it guarantees that the code transformations requested by

the programmer preserve the semantics of the program. To that end, OptiTrust leverages our static
resource analysis, which concretely takes the form of a type checking algorithm in a type system

featuring linear resources. Technically, OptiTrust’s type system consists of a scaled down version

of Separation Logic [Reynolds 2002].

For type-checking resources, functions and loops need to be equipped with contracts describing
their resource usage. These contracts may be inserted either directly as annotations (in the form of

no-op instructions) in the C source code, or they may be inserted by dedicated commands as part

of the transformation script. OptiTrust is able to automatically infer simple loop contracts, thus not

all loops need to be annotated manually. Crucially, every OptiTrust transformation takes care of

updating contracts in order to reflect changes in the code. In other words, a well-typed program

must remain well-typed after a successful transformation. This property is essential to ensure that

subsequent transformations in the optimization chain can be validated by exploiting information

from our resource analysis.

The implementation of OptiTrust distinguishes between basic transformations and combined
transformations. On the one hand, a basic transformation applies minimalistic changes to the

abstract syntax tree (AST). The validity of a basic transformation is checked by leveraging the

resource analysis. On the other hand, a combined transformation is implemented as a composition

of basic transformations. Combined transformations aim to implement high-level strategies, that

https://github.com/charguer/optitrust

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:5

may trigger the execution of dozens of basic transformation. These more complex combined trans-

formations need not be accompanied with code for checking validity: their validity is guaranteed

by the validity checks performed by the basic transformations. This two-layer approach enables us

to minimize the size of the trusted code base (TCB) of OptiTrust.

OptiTrust operates on a subset of the C language, with a slightly simplified semantics, and

augmented with typing annotations—function and loop contracts, as well as ghost code. We call this

user-level language OptiC. OptiTrust does not directly manipulate an abstract syntax tree (AST)

for OptiC. Instead, it operates on an intermediate representation that essentially consists of an

imperative 𝜆-calculus. We call this internal language Opti𝜆. Concretely, the OptiC code, expressed

in C syntax, is first parsed using Clang. Then, the OptiC code is translated into Opti𝜆. In particular,

our translation eliminates mutable variables and operations involving l-values. Importantly, our

translation is bidirectional, allowing to print back C syntax after transformations are applied on

the internal AST. Considering a syntax and semantics simpler than that of C considerably helps to

tame the complexity of the design and implementation of typing rules, code transformations, and

correctness criteria associated with transformations.

Limitations. In the long term, our aim is for OptiTrust to perform full-score on all the aforemen-

tioned evaluation criteria. On the way towards this highly ambitious goal, we have considered four

simplifications that apply to the work described in the present paper.

(1) We restrict ourselves to OptiC, which includes a subset of the C language. As our case studies

show, this subset nevertheless suffices to express numerous practical, high-performance

programs, in an idiomatic programming style both for the unoptimized and for the optimized

code. For simplicity, we currently ignore complications related to arithmetic overflows, and

we treat floating point numbers as reals. Besides, due to the complexity of the semantics of

the C language, we have not yet formalized the relationship between OptiC and C.

(2) We have already implemented dozens of transformations, among the most standard ones.

We believe that these transformations suffice to assess the interest of the OptiTrust approach

to code optimization. However, for production usage, dozens of additional transformations

remain to implement.

(3) We have so far restricted ourselves to a subset of Separation Logic. Our resource-based type

system is able to describe the ownership of arrays, matrices, or individual cells, however it

does not allow specifying properties about the values stored in data structures. Nevertheless,

as our case studies show, shape-based resources suffice to justify the correctness of many

practical code optimization patterns.

(4) We present formal definitions and theorems for our typing judgment, and describe a proof

strategy for justifying semantic-preservation for individual transformations. However, we

do not present correctness proofs for the transformations that we have implemented. Such

correctness proofs are extremely tedious and error-prone, thus it would only make sense

to carry them out using a proof assistant. Yet, completing such mechanized proofs will

presumably require a couple years of additional work. Note that state-of-the-art compilers

such as Halide have been described in publications that did not include correctness proofs.

In the long term, our resource-based system aims to be similar in spirit to RefinedC [Sammler

et al. 2021], a Separation Logic-based type system for C code. The effectiveness of Separation Logic

has been successfully demonstrated across a broad range of applications, both for low-level and

high-level code [Charguéraud 2020a; O’Hearn 2019]. By building OptiTrust on Separation Logic,

we are confident that our framework has the potential to be generally applicable.

In summary, we present a framework that can readily be exploited to optimize certain classes of

programs, and acknowledge that future work remains necessary to achieve full generality. Note

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

that we have taken great care in our design and implementation to anticipate for the extensions to

a richer programming language and to a richer Separation Logic.

1.4 Contents of the Paper
We first present the features of OptiTrust by means of example, in Section 2. Then, we present the

construction of OptiTrust. In Section 3, we present Opti𝜆, the language used internally by OptiTrust,

and describe at a high level the bidirectional translation between OptiC and Opti𝜆. In Section 4,

we explain the core of our resource-based typechecker. This part presents relatively standard

Separation Logic concepts, but following an algorithmic rather than a declarative presentation

of the reasoning rules. In Section 5, we explain a key addition to the typechecker, namely the

computation of usage information for every resource and for every subterm. In Section 6, we present

a set of representative code transformations, illustrating in particular how usage information is

exploited to guide transformations and to justify their correctness. Finally, we discuss additional

related work in Section 7, then conclude in Section 8.

2 OPTITRUST IN PRACTICE
Let us present the features of OptiTrust through three case studies. In Section 2.1, we reproduce a

manually written code from OpenCV—a very popular, optimized computer vision library. In Sec-

tion 2.2, we consider a physics simulation program featuring a kernel typical of particle simulations;

we demonstrate how to apply, using OptiTrust, several optimizations that are ubiquitous in this

kind of applications. In Section 2.3, we reproduce an optimized implementation of matrix-multiply,

similar to the one produced by TVM, the state-of-the-art specialized compiler for machine learn-

ing applications. Then, in Section 2.4, we evaluate OptiTrust against the desirable properties for

semi-automatic code optimization frameworks.

2.1 The OpenCV Row-Based Blur Case Study
In image processing, a blur is typically used to remove noise and smoothen images. A two-

dimensional blur can be decomposed as a combination of column-based blur, row-based blur, and
(optionally) the application of a normalization pass. Our case study focuses on a row-based blur
function, as implemented in the state-of-the-art OpenCV library [Bradski et al. 2000].

Unoptimized Code. If performance was not a concern at all, the row-based blur function would

be implemented as shown in Fig. 1. The output is a single-row image, stored in an array named D,

made of n pixels. The input is a single-row image, stored in an array named S, made of n+w-1 pixels,

where the parameter w corresponds to the width of the blur. The input pixels in S are encoded on cn

integers of type T, whereas the output pixels in D are encoded on cn integers of type ST. Typically,

the type ST is represented on more bits than the type S. The output pixel D[i] is computed as the

sum of the values of the input pixels in the range from S[i] to S[i+w-1]. This sum is computed

independently for each of the cn color channels. The code accommodates any value of cn, but

practical values include cn=1 for grayscale, cn=3 for RGB, cn=4 for RGBA.

Optimized Code. The handwritten OpenCV library includes an implementation of row-sum blur

structured like the code shown in Fig. 2. The original OpenCV code may be viewed online.
1
The

code from Fig. 2 corresponds to the code that we produce using OptiTrust.

1
https://github.com/opencv/opencv/blob/4.10.0/modules/imgproc/src/box_filter.simd.hpp#L75: The OpenCV code is im-

plemented as a class with the types S and ST as template arguments, whereas for the moment our code refers to fixed yet

unspecified integer types; we look forward to add support for template polymorphism in the future. The OpenCV code

also traverses certain arrays by incrementing pointers, whereas we use explicit array indexing everywhere. In general, this

choice is not performance critical and we leave OptiTrust support for pointer shifting to future work.

https://github.com/opencv/opencv/blob/4.10.0/modules/imgproc/src/box_filter.simd.hpp#L75

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:7

void rowSum(const int n, const int cn, const int w, const T S[n+w-1][cn], ST D[n][cn]) {

for (int i = 0; i < n; i++) { // for each target pixel in the row described by D

for (int c = 0; c < cn; c++) { // for each channel (e.g., red, green, and blue)

ST s = 0;

for (int k = i; k < i+w; k++) // for each source pixel nearby to the right

s += (ST) S[k][c];

D[i][c] = s;

} } }

Fig. 1. Unoptimized C code for the OpenCV case study, using multidimensional arrays.

void rowSum(const int n, const int cn,

const int w, const T* S, ST* D) {

if (w == 3) {

for (int ic = 0; ic < cn * n; ic++) {

D[ic] = (ST) S[ic]

+ (ST) S[cn + ic]

+ (ST) S[2 * cn + ic];

}

} else if (w == 5) {

for (int ic = 0; ic < cn * n; ic++) {

D[ic] = (ST) S[ic]

+ (ST) S[cn + ic]

+ (ST) S[2 * cn + ic]

+ (ST) S[3 * cn + ic]

+ (ST) S[4 * cn + ic];

}

} else if (cn == 1) {

ST s = (ST) 0;

for (int i = 0; i < w; i++) {

s += (ST) S[i];

}

D[0] = s;

for (int i = 0; i < n - 1; i++) {

s += (ST) S[i + w] - (ST) S[i];

D[i + 1] = s;

}

} else if (cn == 3) {

ST s0 = (ST) 0;

ST s1 = (ST) 0;

ST s2 = (ST) 0;

for (int i = 0; i < 3 * w; i += 3) {

s0 += (ST) S[i];

s1 += (ST) S[i + 1];

s2 += (ST) S[i + 2];

}

D[0] = s0;

D[1] = s1;

D[2] = s2;

for (int i = 0; i < 3 * n - 3; i += 3) {

s0 += (ST) S[3 * w + i] - (ST) S[i];

s1 += (ST) S[3 * w + i + 1] - (ST) S[i + 1];

s2 += (ST) S[3 * w + i + 2] - (ST) S[i + 2];

D[i + 3] = s0;

D[i + 4] = s1;

D[i + 5] = s2;

}

} else if (cn == 4) {

// [...] similar to cn == 3, with one more variable

} else {

for (int c = 0; c < cn; c++) {

ST s = (ST) 0;

for (int i = 0; i < cn * w; i += cn) {

s += (ST) S[c + i];

}

D[c] = s;

for (int i = c; i < cn * n - cn + c; i += cn) {

s += (ST) S[cn * w + i] - (ST) S[i];

D[cn + i] = s;

} } } }

Fig. 2. Our optimized C code for the OpenCV case study, showing the body of the rowSum function. This code

exploits essentially the same optimizations as the original OpenCV code.

This optimized implementation is a multi-versioned code, with dedicated execution paths for

handling specific values of the parameters. The branches w == 3 and w == 5 correspond to values of

the width that are commonly used by library users. For these small constant values of w, the inner

loop on k from Fig. 2 is unfolded. Otherwise, the loop on k is not unfolded and a standard algorithmic

optimization called sliding window is applied. Note that Halide, the state-of-the-art specialized

compiler for image processing, does not support the introduction of sliding windows—and the

developers of Halide do not plan to lift this limitation.
2

The branch of the code that uses the sliding window optimization is then further specialized with

branches for commonly used parameters: cn == 1 and cn == 3 and cn == 4. For these small constant

values of cn, the outer loop on c is unfolded, then the multiple occurrences of the loop on i that

result from this unfolding are fused into a single loop. The final else-branch in the code from Fig. 2

2
Halide does not support sliding windows for reasons explained on: https://github.com/halide/Halide/issues/180. Hence,

the programmer either needs to manually refine the code to introduce the sliding window before scheduling; or needs to

exploit other transformation tools specialized in sliding window optimizations [Chaurasia et al. 2015; Kanetaka et al. 2024].

https://github.com/halide/Halide/issues/180

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

void rowSum(const int n, const int cn, const int w, const T* S, ST* D) {

__requires("w >= 0, n >= 1, cn >= 0");

__reads("S ↝ Matrix2(n+w-1, cn)");

__modifies("D ↝ Matrix2(n, cn)");

for (int i = 0; i < n; i++) { // for each pixel

__xmodifies("for c in 0..cn -> &D[MINDEX2(n, cn, i, c)] ↝ Cell");

for (int c = 0; c < cn; c++) { // for each channel

__xmodifies("&D[MINDEX2(n, cn, i, c)] ↝ Cell");

__ghost(assume, "is_subrange(i..i + w, 0..n + w - 1)");

ST s = 0;

for (int k = i; k < i+w; k++) {

__ghost(in_range_extend, "k, i..i+kn, 0..n+kn-1");

__ghost_begin(focus, matrix2_ro_focus, "S, k, c");

s += (ST) S[MINDEX2(n+w-1, cn, k, c)];

__ghost_end(focus);

}

D[MINDEX2(n, cn, i, c)] = s;

}

}

}

Fig. 3. Unoptimized C code for the OpenCV case study, using flat arrays and resource annotations.

corresponds to the generic implementation. Moreover, in the last three branches, the loops are

reindexed to augment the counter i by steps of cn, thereby saving multiplication operations.

Multidimensional vs Flat Arrays. The code from Fig. 1 is presented using C syntax for multidimen-

sional arrays, for the sake of improved readability. However, the optimized code from Fig. 2 and our

contract-annotated code from Fig. 3 instead use a flat array representation. The flat representation

is frequently used in high-performance code: it allows performing simplifications in array accesses,

moreover it allows for compatibility with C++ parsers. For technical reasons, and to anticipate for

extensions of OptiTrust, OptiTrust relies on a C++ parser. We leave to future work the parsing of

multidimensional arrays and their elimination via a source-to-source transformation.

Annotated Unoptimized Code. Before we can start optimizing the code from Fig. 1 using OptiTrust,

we need to annotate the code with function contracts, loop contracts, as well as ghost instructions. A
contract consists of a description of the assumptions and guarantees associated with a function

or a loop, as well as a description of the side-effects that may be performed. A ghost instruction

behaves, semantically, as a no-op. Its purpose is to guide the typechecker of OptiTrust, typically by

altering the way the memory state is described in the Separation Logic invariants. These invariants

may be exploited for guiding code transformations, and for checking their correctness.

Ghost instructions may also be used to keep track of nontrivial arithmetic reasoning involved

in the typechecking process. Typically, we need to derive arithmetic inequalities, to justify that a

certain range falls within the bounds of an array. The mathematical implications are recorded in

the source code, e.g., ∀𝑖 𝑘 𝑛 𝑤. (0 ≤ 𝑖 < 𝑛)∧ (𝑖 ≤ 𝑘 < 𝑖 +𝑤)→(0 ≤ 𝑘 < 𝑛 +𝑤). They can be validated

at any point during the optimization process using, e.g., an off-the-shelf decision procedure or SMT

solver.

Besides, to ease the manipulation and typechecking of multidimensional arrays, all accesses are

assumed to be written using a family of functions called MINDEX. For example, D[MINDEX2(n,cn,i,c)]

denotes an access in the flat array D, of dimensions n × cn, at the coordinates (i,c) . For the purpose of

readability of generated programs, OptiTrust offers the option to print the same access in the form

D[i;c]. This syntax is purposely out of the syntax of C. The form D[i;c] remains non-ambiguous

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:9

because the size information appears in the description of the Separation Logic resources at hand.

We leave it to future work to support input programs written without explicit dimensions on array

accesses.

Fig. 3 shows the same C code as in Fig. 1 augmented with contracts, relevant ghost instructions,

and MINDEX accesses. The clause __requires contains assumptions about the input parameters. The

clause __reads asserts that the input array S can be accessed in read-only mode. The clause __modifies

asserts that the output array D can be modified in place. The clause __xmodifies describes a loop
contract: it indicates not only that the i-th iteration can modify certain cells, but also that the other

iterations do not access these cells. In other words, the i-th iteration has exclusive access to that

cell. The “x” prefix in __xmodifies stands for “exclusive”.

In particular, the outer loop on i is annotated with a clause involving an iteration construct:

__xmodifies("for c in 0..cn -> &D[MINDEX2(n, cn, i, c)] ↝ Cell"). This clause indicates that the i-th

iteration of that outer loop requires exclusive access to all the cells in the 𝑖-th row of the destination

array D. Further in the paper, this same resource may also be written using the corresponding math

notation, as:⋆𝑐∈0..𝑐𝑛 (&D[i;c] ↝ Cell), where the star symbol is called iterated separating conjunction
in Separation Logic. The iteration construct is also used to define the Matrix2 predicate, which

describes a 2D range of individual cells. Concretely, the resource D ↝ Matrix2(n,cn) is equivalent to

⋆𝑖∈0..𝑛⋆𝑐∈0..𝑐𝑛 (&D[i;c] ↝ Cell), which covers all the n × cn cells of the matrix D.

The lines introduced by __ghost_begin, __ghost_end, or sometimes just __ghost correspond to ghost
instructions: no-ops whose purpose is to change the view on the resources. The need for ghost

instructions is standard in Separation Logic frameworks. The specialized keywords __ghost_begin

and __ghost_end materialize a pair of ghost instructions that are the reciprocal of one another.

For example, the ghost focus operation allows recovering a single memory cell from the array S,

isolating &S[k;c] ↝ Cell from⋆𝑗∈0..𝑛+𝑤−1 ⋆𝑐∈0..𝑐𝑛 (&S[j;c] ↝ Cell). Technically, the focus involves
read-only fractions and a “magic wand” describing the remaining cells. The matching __ghost_end

pseudo-instruction applies the symmetrical operation, recovering the original resource. In the

future, we could try to rely on heuristics for automatically inferring certain ghost operations, and

reduce the number of such ghost operations that need to be explicitly provided by the programmer.

Optimization Script Syntax. Fig. 4 shows our script for generating the optimized code of Fig. 2

starting from the annotated unoptimized code of Fig. 3. In OptiTrust, optimizations are dictated

by means of a script written in the OCaml programming language. For the reader not familiar

with OCaml, f x y denotes the call of f on the arguments x and y; the symbol˜ is used to provide

optional (or named) arguments; [x; y; z] denotes a list; (x, y, z) denotes a tuple; x ^ y denotes

a string concatenation; and let f x = t in introduces a local function.

A transformation script consists of a series of calls to functions from the OptiTrust library.

Each call may depend on a number of arguments controlling the transformations. By convention,

the last argument of a transformation always denotes a target. Before explaining the working

of targets, we first present the transformations involved in our script from Fig. 2. Reduce.intro

introduces a map-reduce operation for computing the sum over a segment. Reduce.elim eliminates

a map-reduce into an explicit summation. Reduce.slide performs a sliding window optimization

on a map-reduce computation. Specialize.variable_multi introduces a cascade of if-statements

for testing specific variable values. Loop.collapse takes two nested loops and replaces them with a

single loop that iterates over the product space. Loop.swap takes two nested loops and swaps them.

Variable.elim_reuse takes two variables with equal values and eliminates the second variable.

Loop.shift_range and Loop.scale_range allow altering the iteration range of a loop. Loop.unroll

unrolls a loop with a statically known number of iterations. Loop.fusion_targets fuses targeted

loops into a single one. Instr.gather_targets reorders instructions in a sequence to make the

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

Reduce.intro [cVarDef "s"];

Specialize.variable_multi ˜mark_then:fst ˜mark_else:"anyw"

["w", int 3; "w", int 5] [cFunBody "rowSum"; cFor "i"];

Reduce.elim ˜inline:true [nbMulti; cMark "w"; cCall "reduce_spe1"];

Loop.collapse [nbMulti; cMark "w"; cFor "i"];

Loop.swap [nbMulti; cMark "anyw"; cFor "i"];

Reduce.slide ˜mark_alloc:"acc" [nbMulti; cMark "anyw"; cArrayWrite "D"];

Reduce.elim [nbMulti; cMark "acc"; cCall "reduce_spe1"];

Variable.elim_reuse [nbMulti; cMark "acc"];

Reduce.elim ˜inline:true [nbMulti; cMark "anyw"; cFor "i"; cCall "reduce_spe1"];

Loop.shift_range (StartAtZero) [nbMulti; cMark "anyw"; cFor "i"];

Loop.scale_range ˜factor:(trm_find_var "cn" []) [nbMulti; cMark "anyw"; cFor "i"];

Specialize.variable_multi ˜mark_then:fst ˜mark_else:"anycn" ˜simpl:custom_specialize_simpl

["cn", int 1; "cn", int 3; "cn", int 4] [cMark "anyw"; cFor "c"];

Loop.unroll [nbMulti; cMark "cn"; cFor "c"];

Target.foreach [cMark "cn"] (fun c ->

Loop.fusion_targets ˜into:FuseIntoLast [nbMulti; c; cFor "i" ˜body:[cArrayWrite "D"]];

Instr.gather_targets [c; cStrict; cArrayWrite "D"];

Loop.fusion_targets ˜into:FuseIntoLast [nbMulti; c; cFor ˜stop:[cVar "w"] "i"];

Instr.gather_targets [c; cFor "i"; cArrayWrite "D"];);

Loop.shift_range (ShiftBy (trm_find_var "c" [cMark "anycn"]))

[cMark "anycn"; cFor ˜body:[cArrayWrite "D"] "i"];

Cleanup.std ();

Fig. 4. Optimization script for the OpenCV case study.

targeted instructions consecutive. Cleanup.std eliminates all dependencies on the OptiTrust header

file and performs arithmetic simplifications in order to produce conventional C syntax as final

output.

Targets. A target provides a way to concisely and robustly refer to one or several code locations,

at which to apply a transformation. The construct Target.foreach, visible in Fig. 2, can also be used

to explicitly iterate over several code locations. A target consists of a list of constraints (prefixed by

“c”) that is satisfied by code paths that go through nodes satisfying each constraint, in the given

order. For example, the constraint cFunBody "rowSum" requires visiting a function definition with

the name "rowSum". The constraint cFor "c" requires visiting a for loop over an index with the

name "c". The constraint cMark "cn" requires visiting an AST node that carries the mark "cn".

Such marks are introduced by transformations, on demand of the programmer.

Constraints may also take targets as arguments: cFor "i"̃ body:[cArrayWrite "D"] requires

visiting a for loop over an index with the name "i", whose body also contains a write on the array D.

Besides, targets may include special modifiers. The modifier nbMulti indicates that the programmer

expects to find not one but multiple AST nodes that match this target. The modifier tBefore, which

appears in the other two case studies, allows targeting the interstice before an instruction.

Interactive Visualization. Each step of an evaluation script may be executed interactively: with

the cursor on a line, the OptiTrust user can press a shortcut key in their code editor to visu-

alize the diff associated with the transformation on that line. Fig. 5 shows the diff associated

with the Loop.scale_range transformation that appears near the middle of the script from Fig. 4.

This transformation reindexes a loop. In the present example, it modifies the indexing from

for (int i = 0; i < w; i++) to for (int i = 0; i < cn*w; i+=cn), and replaces every occurrence of

the index i with the expression exact_div(i,cn). In particular, the array access S[i;c], which is

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:11

Fig. 5. Diff for the Loop.scale_range transformation that appears near the middle of the script from Fig. 4.

The printer uses the abbreviation for MINDEX, e.g., S[i;c] corresponds to S[MINDEX2(n+w-1,cn,i,c)]. OptiTrust

can also produce a more verbose diff that includes contracts, ghost instructions, and all MINDEX arguments.

an abbreviation for S[MINDEX2(n + w - 1, cn, i, c)], becomes S[exact_div(i,cn); c], which is an ab-

breviation for S[MINDEX2(n + w - 1, cn, exact_div(i,cn), c)]. The final cleanup step of our script

unfolds the definition of MINDEX2 to obtain S[cn * exact_div(i, cn)+ c], then applies an arithmetic

simplification to obtain the index S[c + i]. The latter expression appears in the final code presented

in Fig. 2. Additionally, OptiTrust can produce a complete execution trace in the form of an interactive

tree. This tree reports the diff not only for every transformation visible in the script, but also for all

the internal transformations that are leveraged in the process.
3

Validity Checks. The transformation script from Fig. 4 consists of combined transformations,

whose evaluation triggers the application of a chain of basic transformations. As said earlier, basic

transformations are those that directly modify the AST, whereas combined transformations are

defined as the composition of basic transformations. For every basic transformation being applied,

OptiTrust checks that this transformation preserves the semantics of the program, by leveraging

resource typing information. Because the checks performed by OptiTrust depend on resource

typing, every intermediate program must typecheck. In particular, if a transformation modifies

the code, it may need to also modify the annotations, such as the loop contracts and the ghost

instructions. Correctness criteria and preservation of typing are discussed in details in Section 6.

2.2 The Particle Simulation Case Study
Particle-In-Cell (PIC) is a technique commonly used to simulate plasma, where charged particles

are in motion, by approximating the charge distribution using a grid. Our case study is inspired by

the work from Barsamian et al. [2018], who present a PIC implementation featuring state-of-the-art

optimizations. In the present case study, we consider a simplified PIC simulation, focusing on the

computations associated with one particular cell of the grid. Our goal is to illustrate how OptiTrust

can be used to derive a certain number of transformations ubiquitous in particle simulation as well

as other physics simulation code.

Unoptimized Code. Fig. 6 shows the unoptimized simulation kernel that we consider. A number

of particles, all with the same mass and charge, move inside a cubic cell. For simplicitly, we assume

in this case study that the particles do not leave the cube. The initial position and speed of every

particle is given. Positions are described with values in the range (︀0, 1⌋︀, for each axis. We assume

that the particles do not affect each other, and that an external electric field affects the acceleration

of the particles.
4
The electric field is described by 8 vectors, one per corner of the cell. The electric

3
The traces showing the diff for every major step of the script can be browsed online at:

https://www.chargueraud.org/softs/optitrust/traces/index.html. Due to their large size, the traces that include all the substeps

are only available by constructing them using a local installation of OptiTrust.

4
Note that this is a simplification compared to Barsamian et al. [2018], as they also optimize code for the “charge deposit”.

https://www.chargueraud.org/softs/optitrust/traces/index.html

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

void simulate(const vect* fieldAtCorners,

const int nbSteps, const double deltaT,

const double pCharge, const double pMass,

const int nbPart, particle* part) {

__reads("fieldAtCorners ↝ Matrix1(nbCorners)");

__modifies("part ↝ Matrix1(nbPart)");

for (int idStep = 0; idStep < nbSteps; idStep++) {

for (int idPart = 0; idPart < nbPart; idPart++) {

// Each particle is updated at each time step

__xmodifies("&part[MINDEX1(nbPart, idPart)] ↝ Cell");

__ghost_begin(part, particle_open, "&part[MINDEX1(nbPart, idPart)]");

// Interpolate the field based on the position relative to the corners of the cell

double* const coeffs = MALLOC1(double, nbCorners);

compute_corner_interpolation_coeffs(part[MINDEX1(nbPart, idPart)].pos, coeffs);

const vect fieldAtPos = matrix_vect_mul(coeffs, fieldAtCorners);

free(coeffs);

// Compute the acceleration: F = m*a and F = q*E gives a = q/m*E

const vect accel = vect_mul(pCharge / pMass, fieldAtPos);

// Compute the new speed and position for the particle

const vect speed2 = vect_add(part[MINDEX1(nbPart, idPart)].speed, vect_mul(deltaT, accel));

const vect pos2 = vect_add(part[MINDEX1(nbPart, idPart)].pos, vect_mul(deltaT, speed2));

// Update the particle

part[MINDEX1(nbPart, idPart)].speed = speed2;

part[MINDEX1(nbPart, idPart)].pos = pos2;

__ghost_end(part);
} } }

Fig. 6. Unoptimized code for the particle simulation case study, with resource annotations.

field that applies at a given position inside the cubic cell is obtained by linearly interpolating the

vectors associated with the corners—a standard technique in particle-in-cell (PIC) simulations.

The simulation proceeds as follows. At each time step, all the particles are updated. For a given

particle, its speed is first updated, based on the value of the acceleration at the position of this particle.

Then, the position of the particle is updated, based on its speed. Observe how, in Fig. 6, these updates

are described at a high-level of abstraction, using vector operations, as well as a matrix-vector

product for computing the interpolation. The auxiliary function compute_corner_interpolation_coeffs

computes the interpolation coefficients associated with the position of the particle.

Optimized Code. Fig. 7 shows our optimized code for the function simulate. Two preliminary

transformations are applied. First, auxiliary functions are inlined. In particular, the first 14 lines of

the loop on idPart visible in the optimized code (involving the variables rX, rY, rZ, as well as cX, cY,

cZ) correspond to the code inlined from compute_corner_interpolation_coeffs, whose implementation

was not shown in Fig. 6. Second, the allocation of the array coeffs, used to store the interpolation

coefficients, is moved outside the loop.
5
Then, two key optimizations are applied.

First, the vector and matrix operations are replaced with operations over individual fields (named

pos.x, pos.y, pos.z, speed.x, speed.y, and speed.z). Moreover, local vector variables are replaced with

families of variables (e.g., fieldAtPos_x, fieldAtPos_y, and fieldAtPos_z).

Second, a scaling transformation is applied on the data in order to simplify the arithmetic

computations that need to be performed at every time step. To understand how this scaling

optimization works, consider a particle. For simplicity, let us focus on its behavior on the 𝑥-

coordinate. At a given time step, its speed, written 𝑣 , and its position, written 𝑥 , are updated

according to the formulae: 𝑎=𝑞𝐸⇑𝑚 and 𝑣 +=𝑎Δ𝑡 and 𝑥 += 𝑣Δ𝑡 . Here, 𝐸 denotes the electric field

interpolated at the location of this particle. The constants 𝑞,𝑚, and Δ𝑡 corresponds to the program

variables pCharge, pMass, and deltaT, respectively. The idea is to store not the values of 𝐸 and 𝑣 , but

5
In the full-featured Particle-in-Cell code Barsamian et al. [2018], the array coeffs is entirely eliminated by further

optimizations, which generate large-size arithmetic expressions that may then be processed by vector instructions.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:13

void simulate(const vect* fieldAtCorners,

const int nbSteps, const double deltaT,

const double pCharge, const double pMass,

const int nbPart, particle* part) {

const double fieldFactor = deltaT * deltaT * pCharge / pMass;

vect* const lFieldAtCorners = (vect*) malloc(nbCorners * sizeof(vect));
for (int i = 0; i < nbCorners; i++) {

lFieldAtCorners[i].x = fieldAtCorners[i].x * fieldFactor;

lFieldAtCorners[i].y = fieldAtCorners[i].y * fieldFactor;

lFieldAtCorners[i].z = fieldAtCorners[i].z * fieldFactor;

}

for (int i = 0; i < nbPart; i++) {

part[i].speed.x *= deltaT;

part[i].speed.y *= deltaT;

part[i].speed.z *= deltaT;

}

double* const coeffs = (double*) malloc(nbCorners * sizeof(double));
for (int idStep = 0; idStep < nbSteps; idStep++) {

for (int idPart = 0; idPart < nbPart; idPart++) {

const double rX = part[idPart].pos.x;

const double rY = part[idPart].pos.y;

const double rZ = part[idPart].pos.z;

const double cX = 1. - rX;

const double cY = 1. - rY;

const double cZ = 1. - rZ;

coeffs[0] = cX * cY * cZ;

coeffs[1] = cX * cY * rZ;

coeffs[2] = cX * rY * cZ;

coeffs[3] = cX * rY * rZ;

coeffs[4] = rX * cY * cZ;

coeffs[5] = rX * cY * rZ;

coeffs[6] = rX * rY * cZ;

coeffs[7] = rX * rY * rZ;

double fieldAtPos_x = 0.;

double fieldAtPos_y = 0.;

double fieldAtPos_z = 0.;

for (int k = 0; k < nbCorners; k++) {

fieldAtPos_x += coeffs[k] * lFieldAtCorners[k].x;

fieldAtPos_y += coeffs[k] * lFieldAtCorners[k].y;

fieldAtPos_z += coeffs[k] * lFieldAtCorners[k].z;

}

const double speed2_x = part[idPart].speed.x + fieldAtPos_x;

const double speed2_y = part[idPart].speed.y + fieldAtPos_y;

const double speed2_z = part[idPart].speed.z + fieldAtPos_z;

part[idPart].pos.x += speed2_x;

part[idPart].pos.y += speed2_y;

part[idPart].pos.z += speed2_z;

part[idPart].speed.x = speed2_x;

part[idPart].speed.y = speed2_y;

part[idPart].speed.z = speed2_z;

}

}

free(coeffs);

for (int i = 0; i < nbPart; i++) {

part[i].speed.x /= deltaT;

part[i].speed.y /= deltaT;

part[i].speed.z /= deltaT;

}

free(lFieldAtCorners);

}

Fig. 7. Optimized code for the particle simulation case study.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

let ctx = cFunBody "simulate_single_cell" in

let find_var n = trm_find_var n [ctx] in

let vect = typ_find_var "vect" [ctx] in

let particle = typ_find_var "particle" [ctx] in

let dims = ["x"; "y"; "z"] in

Matrix.local_name_tile ˜var:"fieldAtCorners"

˜elem_ty:vect ˜uninit_post:true ˜mark_load:"loadField"

˜local_var:"lFieldAtCorners" [ctx; cFor "idStep"];

Function.inline_multi [ctx; cCalls ["cornerInterpolationCoeff"; "matrix_vect_mul"; "vect_add"; "vect_mul"]];

Variable.inline_and_rename [ctx; cVarDef "fieldAtPos"];

Record.split_fields ˜typs:[particle; vect] [tSpanSeq [ctx]];

Record.to_variables [ctx; cVarDefs ["fieldAtPos"; "pos2"; "speed2"; "accel"]];

let deltaT = find_var "deltaT" in

Variable.insert ˜name:"fieldFactor" ˜value:(trm_mul (trm_mul deltaT deltaT) (trm_exact_div (find_var "pCharge")

(find_var "pMass"))) [ctx; tBefore; cVarDef "lFieldAtCorners"];

let scaleFieldAtPos d =

Accesses.scale_var ˜factor:(find_var "fieldFactor") [nbMulti; ctx; cVarDef ("fieldAtPos_" ^ d)] in

List.iter scaleFieldAtPos dims;

let scaleSpeed2 d = Accesses.scale_immut ˜factor:deltaT [nbMulti; ctx; cVarDef ("speed2_" ^ d)] in

List.iter scaleSpeed2 dims;

let scaleFieldAtCorners d =

let address_pattern = Trm.(struct_access (array_access (find_var "lFieldAtCorners") (pattern_var "i")) d) in

Accesses.scale ˜factor:(find_var "fieldFactor") ˜address_pattern ˜uninit_post:true

[ctx; tSpan [tBefore; cMark "loadField"] [tAfter; cFor "idStep"]] in

List.iter scaleFieldAtCorners dims;

let scaleParticles d =

let address_pattern =

Trm.(struct_access (struct_access (array_access (find_var "part") (pattern_var "i")) "speed") d) in

Accesses.scale ˜factor:deltaT ˜address_pattern ˜mark_preprocess:"partsPrep" ˜mark_postprocess:"partsPostp"

[ctx; tSpanAround [cFor "idStep"]]; in

List.iter scaleParticles dims;

List.iter Loop.fusion_targets [[cMark "partsPrep"]; [cMark "partsPostp"]];

Variable.unfold ˜at:[cFor "idStep"] [cVarDef "fieldFactor"];

Variable.inline [ctx; cVarDefs (Tools.cart_prod (^) ["accel_"; "pos2_"] dims)];

Arith.(simpls_rec [expand; gather_rec]) [ctx];

Loop.hoist_alloc ˜indep:["idStep"; "idPart"] ˜dest:[tBefore; cFor "idStep"] [cVarDef "coeffs"];

Cleanup.std ();

Fig. 8. Optimization script for the particle simulation case study.

instead the values 𝐸′ and 𝑣 ′ defined as: 𝐸′ = 𝑞𝐸Δ2

𝑡 ⇑𝑚 and 𝑣 ′ = Δ𝑡𝑣 . The interest is that the speed and

position updates at a given time step are now described using much simpler formulae that avoid the

need for computing multiplications: 𝑣 ′ +=𝐸′ and 𝑥 += 𝑣 ′. To implement this scaling transformation,

the components of the field speed of the array part are multiplied, in-place, by a factor Δ𝑡 before

starting the simulation; symmetrically, at the end of the simulation, the values are divided by Δ𝑡 . For

the electric field array, which is read-only, the scaling factor is applied on an auxiliary array named

lFieldAtCorners, obtained by multiplying the values of fieldAtCorners by 𝑞Δ2

𝑡 ⇑𝑚. (An in-place update

would be disallowed because the array fieldAtCorners is described using a read-only permission.)

By linearity of the interpolation computations, this scaling propagates to the values computed for

the electric field at the particle location (fieldAtPos_x, fieldAtPos_y, and fieldAtPos_z). Note that we

currently treat floating-point numbers as real numbers during such transformations—reasoning

about precision in the optimized code is an othogonal challenge, which we leave to future work.

Optimization Script. Fig. 8 shows our optimization script. Let us describe the keys steps. The

transformation Function.inline_multi inlines auxiliary functions, in particular vector operations.

Record.split_fields turns record assignments operations into per-field assignment operations.

Variable.insert inserts a definition for the multiplicative factor 𝑞Δ2

𝑡 ⇑𝑚, which is applied to the

electric field. Accesses.scale (as well as scale_var and scale_mut) apply the relevant multiplicative

factors on the values stored in the various data structures at hand. Cruciallly, the correctness

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:15

of the scaling transformation relies on the knowledge that the same arrays are not accessed

by means of other (aliased) pointers. The verification of this property relies on the Separation

Logic information computed during typechecking. Loop.fusion_targets fuses the several loops

that applied per-field scaling. Variable.unfold reveals the definition of a variable at certain of its

occurrences. Variable.inline eliminates a variable definition, replacing all occurrences with the

definition. Loop.hoist_alloc pulls the allocation of the coeffs array outside the loop. Cleanup.std

applies final simplifications, as previously explained.

All these transformations refer to targets, whose purpose is to match AST subtrees. In future

work, we look forward to improve the conciseness of certain targets.
6

Benefits of using OptiTrust. Applied mathematicians commonly write optimized code such as that

of Fig. 7 by hand. Revealing the 𝑥 , 𝑦 and 𝑧 coordinates triples the size of the code, and applying a

scaling transformation by hand is a highly error-prone task. The aim of OptiTrust is to provide them

with an alternative route, more productive and more trustworthy. As we have already explained,

for each of the transformations being applied, OptiTrust exploits the Separation Logic invariants to

check criteria that guarantee that the transformations preserve the semantics of the code.

2.3 The Matrix-Multiply Case Study
TVM [Chen et al. 2018] is the state-of-the-art, industrial-strength, semi-automatic compiler for

machine learning. The TVM tutorial presents an optimization script
7
(a.k.a. schedule) for optimizing

a matrix multiplication function, specialized for square matrices of size 1024. This script has been

carefully tuned to produce code optimized for specific Intel CPUs. On a 4-core Intel i7-8665U

CPU with AVX2 support, the TVM experts thereby achieve a speedup of 150× over a totally naive,

sequential implementation of matrix multiply.
8
The aim of this third case study is to demonstrate

the ability of OptiTrust to produce code that matches the performance delivered by TVM. More

precisely, we show that we are able to generate code that features the exact same optimization

patterns as in the TVM case study, with a reasonably short transformation script.

Unoptimized Code. Fig. 9 shows the unoptimized and annotated matrix-multiply code that we

take as input. Note that some annotations could be inferred automatically with additional tooling.

Optimized Code. TVM output code is expressed not as C code, but directly in the intermediate

representation of LLVM. We manually inspected the TVM schedule, intermediate representation,

and LLVM IR output to infer what C code we should generate. The code we produce using OptiTrust

is shown in Fig. 10. Compared with the naive code from Fig. 9, the optimized code from Fig. 10

integrates 7 key optimizations:

(1) The body of the generic matrix multiply function mm is specialized to the size 1024.

(2) An auxiliary matrix named pB is allocated to store the transpose of the matrix B. The

introduction of this auxiliary matrix induces a cost for the initial copy, but then greatly

improves the memory access patterns.

(3) The matrices are processed by blocks of size 32: each loop over a range of size 1024 is

replaced with 2 loops each of range 32. Blocking improves locality in matrix-multiply.

6
For example, our script evaluates, for each dimension d, the target struct_access (array_access (find_var "
lFieldAtCorners")(pattern_var "i"))d. With a concrete syntax for expressing patterns based on their string rep-

resentation, we could presumably shorten the target to "lFieldAtCorners[?i].{x|y|z}".
7
https://github.com/apache/tvm/blob/v0.19.0/gallery/how_to/optimize_operators/opt_gemm.py

8
The 150× speed up achieved using TVM does not quite match the 204× speedup achieved by the proprietary Intel’s MKL, a

library manually optimized by Intel’s experts. Yet, keep in mind that the MKL provides optimized implementation for a

fixed set of functions, whereas the TVM compiler can be used to optimize entire classes of functions. We leave it to future

work to investigate the extent to which OptiTrust could be used to derive code that matches the performance of MKL.

https://github.com/apache/tvm/blob/v0.19.0/gallery/how_to/optimize_operators/opt_gemm.py

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

void mm(float* C, float* A, float* B, int m, int n, int p) { // naive matrix-multiply

__reads("A ↝ Matrix2(m, p), B ↝ Matrix2(p, n)");

__modifies("C ↝ Matrix2(m, n)");

for (int i = 0; i < m; i++) {

__xmodifies("for j in 0..n -> &C[MINDEX2(m, n, i, j)] ↝ Cell");

for (int j = 0; j < n; j++) {

__xmodifies("&C[MINDEX2(m, n, i, j)] ↝ Cell");

float sum = 0.0f;

for (int k = 0; k < p; k++) {

__ghost_begin(focusA, matrix2_ro_focus, "A, i, k");

__ghost_begin(focusB, matrix2_ro_focus, "B, k, j");

sum += A[MINDEX2(m, p, i, k)] * B[MINDEX2(p, n, k, j)];

__ghost_end(focusA);

__ghost_end(focusB);

}

C[MINDEX2(m, n, i, j)] = sum;

}

}

}

void mm1024(float* C, float* A, float* B) { // specialization to 1024x1024 matrices

__reads("A ↝ Matrix2(1024, 1024), B ↝ Matrix2(1024, 1024)");

__modifies("C ↝ Matrix2(1024, 1024)");

mm(C, A, B, 1024, 1024, 1024);

}

Fig. 9. Unoptimized C code for the matrix-multiply case study, using flat arrays and resource annotations.

(4) Results are not accumulated into a scalar accumulator, but instead into a stack-allocated

array named sum of size 32×32 that contains all scalar accumulators for a block.

(5) Around the inner vectorized loops, the locally relevant row of sum is promoted to a smaller

array s that can be mapped onto a few 256-bit vector registers. On every i iteration, two

memcpy operations are used for synchronizing s with sum.

(6) The various loops are reordered in a particular manner, both to improve cache locality and

to enable parallelization. The outermost loops are executed in parallel by several cores. The

instructions of the inner loop are parallelized by means of SIMD operations.

(7) The 4 loops tagged as #pragma omp simd in Fig. 10 are very similar. However, if we attempt to

factorize them into a loop with 4 iterations, then Intel’s compiler (ICX) produces slower

code. Unfolding the loops as shown makes relying on unrolling heuristics unnecessary.

Again, this particular set of optimizations directly comes from the TVM case study. We demonstrate

how to reproduce the same optimizations using OptiTrust.

Optimization Script. Fig. 11 shows our optimization script, which consists of only 10 lines.

Internally, though, the high-level transformations mentioned in the script trigger the application

of 55 basic transformations. An illustrative example is the call to Loop.reorder_at on Line 4 of

Figure 11. This combined transformation takes as argument a specific instruction (referred to as

“an instruction of the form +=”) as well as a description of the desired order for the loops that

surround this instruction (the list ["bi"; "bj"; "bk"; "i"; "k"; "j"]). The reorder transformation

iteratively “brings down” the loops that need to be swapped closer to the instruction, starting from

the innermost loops, and processing the loops until the outermost one. The call to reorder_at in

our script triggers a total of 4 loop swaps, 6 loop fissions, and 2 loop hoist operations. In particular,

the effect of these 2 hoist operations is to turn local variable named sum in Fig. 9 into the 2D-array

named sum in Fig. 10.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:17

void mm1024(const float* A, const float* B, float* C) {

float* pB = (float*)malloc(1048576 * sizeof(float));
#pragma omp parallel for
for (int bj = 0; bj < 32; bj++) {

for (int bk = 0; bk < 256; bk++) {

for (int k = 0; k < 4; k++) {

for (int j = 0; j < 32; j++) {

pB[32768 * bj + 128 * bk + 32 * k + j] = B[32 * bj + 4096 * bk + 1024 * k + j]; }}}}

#pragma omp parallel for
for (int bi = 0; bi < 32; bi++) {

for (int bj = 0; bj < 32; bj++) {

float* sum = (float*)malloc(1024 * sizeof(float));
for (int i = 0; i < 32; i++) {

for (int j = 0; j < 32; j++) {

sum[32 * i + j] = 0.f; }}

for (int bk = 0; bk < 256; bk++) {

for (int i = 0; i < 32; i++) {

float s[32];

memcpy(&s[0], &sum[32 * i], 32 * sizeof(float));
#pragma omp simd

for (int j = 0; j < 32; j++) {

s[j] += A[32768 * bi + 4 * bk + 1024 * i] * pB[32768 * bj + 128 * bk + j]; }

#pragma omp simd

for (int j = 0; j < 32; j++) {

s[j] += A[32768 * bi + 4 * bk + 1024 * i + 1] * pB[32768 * bj + 128 * bk + j + 32]; }

#pragma omp simd

for (int j = 0; j < 32; j++) {

s[j] += A[32768 * bi + 4 * bk + 1024 * i + 2] * pB[32768 * bj + 128 * bk + j + 64]; }

#pragma omp simd

for (int j = 0; j < 32; j++) {

s[j] += A[32768 * bi + 4 * bk + 1024 * i + 3] * pB[32768 * bj + 128 * bk + j + 96]; }

memcpy(&sum[32 * i], &s[0], 32 * sizeof(float)); }}

for (int i = 0; i < 32; i++) {

for (int j = 0; j < 32; j++) {

C[32768 * bi + 32 * bj + 1024 * i + j] = sum[32 * i + j]; }}

free(sum);

} }

free(pB);

}

Fig. 10. Our optimized C code for the matrix-multiply case study. This code features the same optimization

patterns as the reference output of TVM.

Function.inline_def [cFunDef "mm"];

let tile (id, tile_size) =

Loop.tile (int tile_size) ˜index:("b" ^ id) ˜bound:TileDivides [cFor id] in

List.iter tile [("i", 32); ("j", 32); ("k", 4)];

Loop.reorder_at ˜order:["bi"; "bj"; "bk"; "i"; "k"; "j"] [cPlusEq ()];

Loop.hoist_expr ˜dest:[tBefore; cFor "bi"] "pB" ˜indep:["bi"; "i"] [cArrayRead "B"];

Matrix.stack_copy ˜var:"sum" ˜copy_var:"s" ˜copy_dims:1 [cFor ˜body:[cPlusEq ()] "k"];

Loop.simd [cFor ˜body:[cPlusEq ()] "j"];

Loop.parallel [cFunBody "mm1024"; cStrict; cFor ""];

Loop.unroll [cFor ˜body:[cPlusEq ()] "k"];

Cleanup.std ();

Fig. 11. Optimization script for the matrix-multiply case study.

Comparison Against TVM. The TVM matrix-multiply case study appears in Fig. 12. We only

comment on specific aspects and refer to TVM’s tutorial for further details. In TVM, input programs

are written in a domain-specific language embedded in Python. Ideally, the matrix-multiply program

shown on the left-hand side of Fig. 12 would replace the definitions of pB and C with a simpler

definition of C:

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

k = tvm.reduce_axis ((0, P))

A = tvm.placeholder ((M, P))

B = tvm.placeholder ((P, N))

pB = tvm.compute ((N / 32, P, 32),

lambda bj, k, j:

B[k, bj * 32 + j])

C = tvm.compute ((M, N),

lambda i, j:

sum(A[i, k] * pB[j // 32, k, j \% 32],

axis=k))

CC = s.cache_write(C, "global")

bi, bj, i, j = s[C].tile(
C.op.axis[0], C.op.axis[1], 32, 32)

s[CC]. compute_at(s[C], bj)

i2, j2 = s[CC].op.axis

(kaxis ,) = s[CC].op.reduce_axis

bk, k = s[CC]. split(kaxis , factor =4)

s[CC]. reorder(bk, i2, k, j2)

s[CC]. vectorize(j2)
s[CC]. unroll(k)
s[C]. parallel(bi)
bj3 , _, j3 = s[pB].op.axis

s[pB]. vectorize(j3)
s[pB]. parallel(bj3)

Fig. 12. TVM case study for matrix-multiply. On the left, input code in TVM’s domain specific language. On

the right, TVM optimization script (a.k.a. schedule). Both use Python syntax.

C = tvm.compute ((M, N), lambda i, j: sum(A[i, k] * B[k, j], axis=k))

Yet, TVM is unable to express the introduction of the transposed matrix of B, named pB, as a code

transformation. The programmer therefore needs to introduce this auxiliary structure manually in

the input code. Likewise, the blocking strategy needs to be hardwired in the source code on the

left-hand side of Fig. 12. In contrast, our input program for matrix multiply shown in Fig. 9 builds

upon standard C syntax and, most importantly, includes no optimization. Starting from a totally

unoptimized reference code improves readability, trustworthiness, and maintainability. Besides,

although our input code for matrix-multiply is currently expressed using explicit loops, in the

future we could alternatively express it using higher-order combinators as well.

The right-hand side of Fig. 12 shows TVM’s optimization script. Our optimization script shown

in Fig. 11 is not much more verbose than that of TVM. We have carefully checked that the C code

produced using OptiTrust features the same optimizations as the LLVM IR code produced using

TVM. To the best of our knowledge, OptiTrust is the first general-purpose optimization framework

to demonstrate the ability to reproduce a case study from a state-of-the-art, specialized compiler

such as TVM.

Finally, let us comment on interactivity. Guided by all the contents from Fig. 12, TVM applies

a monolithic compilation pass to produce optimized code. TVM does not provide interactive,

easily-readable feedback for the transformations performed. In contrast, OptiTrust applies a series

of local, source-to-source transformations, manipulating programs expressed in conventional C

syntax. Moreover, it provides human-readable diffs for every step and every substep involved

in the optimization process. Although after the final cleanup step the optimized code contains

somewhat-obfuscated flat array indices (recall Fig. 10), all the previous steps from the optimization

script result in diffs where array accesses are presented as multidimensional accesses.

2.4 Evaluation of OptiTrust
Now that we have given a tour of the features of the OptiTrust framework, let us try to evaluate it

against the set of desirable properties for semi-automatic code optimization listed in Section 1.1.

Generality. As pointed out in Section 1.3, this first release of OptiTrust has a number of limitations:

it includes a subset of the C language, it applies to a simplified version of Separation Logic, and

there remains many useful transformations to implement. Thus, OptiTrust in its current certainly

form does not yet demonstrate full generality. Yet, every aspect of OptiTrust has been designed

towards that goal.

Expressiveness and Control. OptiTrust supports a number of basic transformations that, taken

individually, might appear relatively straightforward. However, by chaining such transformations

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:19

in the desired manner, the OptiTrust user is able to achieve state-of-the-art high-performance code,

similar to what an expert might have written by hand. Moreover, the many basic transformations

involved need not be explicitly invoked by the user: the use of high-level combined transformations

allows us to achieve expressiveness via concise scripts—recall, e.g., the call to Loop.reorder in the

matrix-multiply case study. A key feature of OptiTrust is that, at any stage in the optimization

process, the user remains fully in control.

Expressiveness also depends on the generality of the correctness criteria associated with every

transformation. In practice, there could be situations where the user may want to legitimately apply

a basic transformation, yet OptiTrust’s implementation is unable to recognize this application as

correct. In the short term, one option is for the user to treat this particular step as “user-trusted”, and

to rely on human review of the diff associated with that step. In the long term, users might be able

to replace a piece of code with any other piece of code that provably satisfies the same specification,

by leveraging a full-blown Separation Logic, possibly combined with the use of interactive proofs.

Feedback. For each step in the transformation script, OptiTrust delivers feedback in the form of

human-readable C syntax. The user usually only needs to read the diff against the previous code.

Interestingly, OptiTrust also records a trace that allows investigating all the substeps triggered by

a combined transformation. This information is critically useful when the result of a high-level

transformation does not match the user’s intention. Full traces can also be very useful for third-party

reviewing of an optimization process. Besides, a key feature of OptiTrust is its fast feedback loop.

The production of fast, human-readable feedback in a system with significant control is reminiscent

of interactive proof assistants, and of the aforementioned ATL tool [Liu et al. 2022].

Composability. OptiTrust transformation scripts are expressed as OCaml programs, and each

transformation from our library consists of an OCaml function. Because OCaml is a full-featured

programming language, OptiTrust users may define additional transformations at will by combining

existing transformations. User-defined transformations may query the abstract syntax tree (AST),

allowing to perform analyses before deciding what transformations to apply. Furthermore, because

OCaml is a higher-order programming language, transformation can take other transformations as

argument. We use this programming pattern for example to customize the arithmetic simplifications

to be performed after certain transformations.

Extensibility. If in need of a transformation that is not expressible as a combination of trans-

formations from the OptiTrust library, the user may devise a custom transformation. Because

OptiTrust does not rely on heuristics, adding a new transformation to OptiTrust does not impact

in any way the behavior of existing scripts. To define relatively simple custom transformations,

OptiTrust provides a term-rewriting facility based on pattern matching. For more complicated

transformations, one can follow the patterns employed in the OptiTrust’s library. For all custom

transformations, it is the programmer’s responsibility to work out the criteria under which applying

the transformation preserves the semantics of the code, and to adapt contracts if necessary in order

to produce well-typed code.

Modularity. The Separation Logic contract provided by the programmer for a function f con-

stitutes a complete summary of the side effects that this function may perform. Hence, when a

transformation operates on a piece of code that contains a call to f, the analysis involved in checking

the correctness of that transformation needs not traverse the implementation of f. In that sense,

all our analyses, including the typechecking process, are modular. This modularity has numerous

benefits. First, if implies that one may change the implementation of f without invalidating the

optimization script associated with another function g, provided that the optimization of g was not

relying on an inlining of the function f. Second, it means that analyses can much more easily scale

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

up to larger and more complex programs, without computation costs blowing up. Third, it makes it

easier to devise clearer, more concise error messages. Indeed, in a modular system, errors depend

solely on local information.

In compiler design in general, there exists a tension between modularity and optimizations,

because certain key optimizations need to be applied across abstraction barriers. OptiTrust handles

this tension by leaving it up to the user to decide where functions should be inlined—thereby

deciding on a per-need basis where modularity should be given up to the benefits of performance.

Trustworthiness. Compilers are well-known to be incredibly hard to get 100% correct [Yang

et al. 2011]. Like compilers, interactive optimization tools are highly subject to bugs. OptiTrust

mitigates the risks of producing incorrect code in two ways. First, the diff of every step can be

thoroughly scrutinized. Secondly, as explained in Section 1.3, we have organized the OptiTrust

code base in such a way as to isolate the implementation of the basic transformations, which

consists of transformations that directly modify the AST. Only basic transformations need to be

trusted. We have been careful to systematically minimize the complexity of the interface and

of the implementation of our basic transformations. All other transformations—the combined
transformations—are not part of the trusted computing base (TCB).

This completes our high-level presentation of the OptiTrust framework. The remaining sections

present the implementation of OptiTrust: its internal AST, its typechecking algorithm, and its

transformations.

3 OPTITRUST’S INTERNAL AST
In OptiTrust, input programs written in OptiC (the targeted subset of C, augmented with annota-

tions) are encoded into Opti𝜆 (OptiTrust’s internal imperative 𝜆-calculus). All code transformations

are performed on that internal language Opti𝜆. Then, programs are decoded back into OptiC. As

explained in the introduction, this approach enables OptiTrust to report the diff associated with

every transformation in terms of a concise syntax familiar to the programmer.

The purpose of this section is to present Opti𝜆, whose constructs appear throughout the rest

of the paper, from the statement of the typing rules to the description of the transformations. In

Section 3.1, we present the grammar of Opti𝜆. In Section 3.2, we describe, at a high-level, OptiTrust’s

translation between OptiC and Opti𝜆. Such a translation is relatively standard: C compilers generally

include a phase that eliminates mutable variables and l-values. The specificity of our translation is

that it attaches annotations on certain subterms to allow computing the reciprocal translation.

3.1 OptiTrust’s Internal AST
Fig. 13 gives the grammar of Opti𝜆. In this language, variables are bound by let-bindings and function

definitions, and they are always immutable. Immutable variables allow for a straightforward

implementation of substitution: variables may be substituted with values without concern on

whether occurrences appear as right- or left-values. We next describe the grammar, starting with

the less common features. The standard, call-by-value semantics, may be found in Appendix A.

Sequences. A sequence is a term that consists of a list of subterms with side effects or let-bindings,

to be executed in order, and of a return value. A sequence is written {𝑡1; ...; 𝑡𝑛 ; 𝑟}, where each 𝑡𝑖
could be of the form let 𝑥 = 𝑡 , and where 𝑟 denotes a return value for the sequence. This return value
may be just the unit value (void in C), written ∅. (This presentation of sequences is similar to that

found in, e.g., the Rust language.) We enforce that the expression 𝑟 does not perform side-effects.

In our current implementation, the result value 𝑟 is syntactically restricted to be either unit or a

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:21

𝑅 ∶= ⋃︀ range(𝑡start, 𝑡stop, 𝑡step) range for simple for-loops

𝜋 ∶= ⋃︀ par ⋃︀ ⋅ optional parallel flag on simple for-loops

𝑟 ∶= ⋃︀ ∅ ⋃︀ 𝑥 result of a sequence

𝑡 ∶= ⋃︀ 𝑥 variables

⋃︀ 𝑏 ⋃︀ 𝑛 boolean values, and number values

⋃︀ {𝑡1; ...; 𝑡𝑛 ; 𝑟} sequence with result 𝑟

⋃︀ let 𝑥 = 𝑡 variable definition

⋃︀ fun(𝑎1, ..., 𝑎𝑛) ↦ 𝑡 function definition

⋃︀ 𝑡0(𝑡1, ..., 𝑡𝑛) function call

⋃︀ for𝜋(𝑖 ∈ 𝑅) 𝑡 possibly parallel, simple for-loop

⋃︀ if 𝑡0 then 𝑡1 else 𝑡2 conditional

⋃︀ {𝑓1 = 𝑡1; ...; 𝑓𝑛 = 𝑡𝑛} ⋃︀ (︀𝑡1; ...; 𝑡𝑛⌋︀ structure and array as values

⋃︀ 𝑡1[𝑡2] ⋃︀ 𝑡 .𝑓 projection from array/struct values

⋃︀ 𝑡1 ⊞ 𝑡2 ⋃︀ 𝑡 ⊡ 𝑓 address computation

Fig. 13. Grammar of Opti𝜆, the internal 𝜆-calculus of OptiTrust. The actual abstract syntax tree moreover fea-

tures placeholders for carrying type information, as well as annotations used to guide the reverse translation.

variable. We translate a statement of the form return 𝑡 that appears in terminal position of a C

function into “let 𝑥 = 𝑡 ; 𝑥” where 𝑥 is a fresh variable name.

A sequence {𝑡1; ...; 𝑡𝑛 ; 𝑟} introduces a lexical scope. If 𝑡𝑖 is of the form let 𝑥 = 𝑡 , then the variable

𝑥 may occur in any 𝑡 𝑗 for 𝑗 > 𝑖 . The variable 𝑥 does not scope beyond the closing brace. We impose

in Opti𝜆 the invariant that every function body consists of a sequence block, even if the sequence

contains a single instruction.

Moreover, in Opti𝜆, we enforce that all the instructions in a sequence have type unit. To do so,

we insert calls to the built-in function “ignore” around instructions that are not of type void in the

C code. Eliminating the feature of implicitly ignored returned value coming from the C language

helps to simplify typechecking and transformations.

Sequences in Opti𝜆 may also include ghost instructions. A ghost instruction behaves, semantically,

as a no-op. It guides, however, the typechecker of OptiTrust, typically by altering the way the

memory state is described in the Separation Logic invariants. These invariants may be exploited

for guiding code transformations, and for checking their correctness. A key interest of our design

is that it allows placing instructions after the point at which the return value is computed. Doing

so is specifically useful for ghost instructions that depend on the result value. From the perspective

of our bidirectional translation, ghost instructions are treated exactly like regular function calls.

Manipulation of Heap and Stack Cells. To account for heap-allocated data, OptiTrust provides

the following standard primitive functions: heapAlloc
Cell𝜏

for allocating an uninitialized cell of

type 𝜏 on the heap, get for reading a cell, set for writing a cell, and free for freeing allocated cells.

As usual, a read in an uninitialized memory cell is undefined behavior. More generally, heapAlloc

can be used for matrix allocation. For example heapAlloc
Matrix2int(5,8) allocates an uninitialized

matrix of 5 × 8 integers. Additionally, to account for stack-allocated variables, OptiTrust includes

special functions. The operation stackAllocCell𝜏
() allocates a memory cell of type 𝜏 on the stack

without initializing its contents. The corresponding space is automatically reclaimed at the end

of the surrounding sequence. Like for heapAlloc, stackAlloc can also be used to allocate matrices

on the stack. The operation stackRef(𝑡) also allocates a memory cell on the stack but initializes

it with 𝑡 . These two special operations are meant to occur as part of a let-binding, for example

let 𝑥 = stackRef(3), occurring directly within a sequence. Note that a binding let 𝑥 = stackRef(𝑡)

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

is equivalent to let 𝑥 = stackAllocCell𝜏 (); set(𝑥, 𝑡)where 𝜏 is the type of 𝑡 . The two stack-allocation
operators, apart from their implicit-free behavior, are treated like other primitive functions.

Possibly Parallel, Simple For Loops. The construct for𝜋(𝑖 ∈ range(𝑡start, 𝑡stop, 𝑡step)) 𝑡body describes
a simple-for-loop. In such a loop, the immutable variable 𝑖 denotes the loop index. The loop range

consists of the loop bounds and the per-iteration step, that are evaluated only once before starting

the loop. Following the convention used by Python and other languages, the index goes from the

start value inclusive to the stop value exclusive. If the step value is negative, the loop index iterates

downwards. Optionally, the loop may be tagged with a parallel flag (i.e., setting 𝜋 to par), thereby
asserting that the loop should be treated as a parallel loop by the compiler and the runtime. This

flag corresponds to the directive: #pragma openmp parallel. The restrictions imposed by OpenMP on

the ranges of parallel for-loops essentially constraint them to fit the format range(𝑡start, 𝑡stop, 𝑡step),
which is the format that we use for our simple-for-loops.

Structured Data. The constructs {𝑓1 = 𝑡1; ...; 𝑓𝑛 = 𝑡𝑛} and (︀𝑡1; ...; 𝑡𝑛⌋︀ build records and arrays as

constant values. Mutable record and arrays are allocated by means of a call to the stackAlloc or

heapAlloc functions. OptiTrust features 4 operations to manipulate structured data. If 𝑎 corresponds

to a constant array value, then the operation 𝑎[𝑖] reads the 𝑖-th cell of the array 𝑎. If, however, 𝑎

corresponds to the address of a heap-allocated or a mutable stack-allocated array, then the memory

address of 𝑖-th cell of the array 𝑎 can be computed by the operation 𝑡 ⊞𝜏 𝑖 , where 𝜏 denotes the type
of the elements of 𝑡 . This operation corresponds to the C pointer arithmetic operation t+i. The

contents of that cell may be retrieved by evaluating get(𝑡 ⊞𝜏 𝑖). Likewise, reading the field 𝑓 of a

constant record 𝑟 is described by the operation 𝑟 .𝑓 , whereas the memory address of the field 𝑓 of a

record 𝑟 allocated in memory is described by the operation 𝑟 ⊡𝜏 𝑓 , where 𝜏 denotes the type of 𝑟 .
This operation corresponds to shifting the pointer 𝑟 by the offset associated with the field 𝑓 from

the type 𝜏 . All these projection and address-shifting operations are here presented as constructs

of the grammar. From the perspective of typechecking, however, we treat these operations like

function applications.

Other Language Constructs. The other language constructs of Opti𝜆 are standard. They include

function abstraction, function calls, and conditionals. Our implementation accounts for a diversity

of literal types. For simplicity, we consider in this paper only two kinds of literals: the metavariable

𝑏 denotes a boolean literal (either true or false), and the metavariable 𝑛 denotes an integer literal.

Other Primitive Operations. Besides the aforementioned primitive operations for manipulating

heap and stack cells, Opti𝜆 provides primitive functions that correspond to the arithmetic and

boolean operators of the C language. One notable exception are the short-circuiting operators &&

and || from C. We encoded them in Opti𝜆 using conditionals, carrying annotations for guiding the

reverse translation as detailed further on. Indeed, we wish to keep the simplest possible semantics

for Opti𝜆.

Annotations. In addition to the ghost instructions presented earlier, each subterm of an Opti𝜆

program can carry a number of extra information that do not affect the semantics in the form of

annotations. Currently, our internal AST carries the following information:

● the location of the subterm in the initial source code;

● user-placed marks allow referring to subterms by name in transformation script’s targets;

● Separation Logic contracts for functions and loops;

● type information for all bindings, operators, and for every subterm;

● style annotations to guide the reverse translation from Opti𝜆 to OptiC, as described in more

details in the next subsection.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:23

Unsupported Language Features. As mentioned earlier, the present paper aims at demonstrating

the interest of OptiTrust’s approach to code optimization. It does not aim at covering all the features

of the C language. Let us nevertheless comment on three features that we look forward to support

in the near future.

For while-loops and general forms of for-loops, we plan to use an encoding into a single form of

repeat-loop. Observe that, despite the absence of general loops, the language that we consider in

this paper is Turing-complete thanks to our support for general recursive functions.

To handle abrupt termination, as triggered by break, continue, and non-final return statements,

we need a generalization of our type system. The treatment of abrupt termination in Separation

Logic is well-understood—they are handled, for example, in the VST program verification framework

for C programs [Cao et al. 2018]. Yet, its support introduces a fair amount of additional complexity,

explaining why we have not included them in the present paper.

The C language allows mutation of function arguments, whereas OptiC features only immutable

arguments. Even though mutating function arguments in C is sometimes considered bad practice,

we could support this pattern in OptiTrust by introducing an auxiliary fresh local mutable variable,

and turning the mutated argument into a constant argument.

Implementation of the AST. The Opti𝜆 abstract syntax tree (AST) is represented as an immutable

tree data structure. A program transformation takes as input such an immutable AST, and produces

as output another AST, which may share subtrees with the input AST. There are two major

benefits to following a purely functional programming style using immutable trees. First, this

approach avoids numerous bugs typically associated with inadvertent sharing of subtrees when

modifying data structures in-place. Second, this approach, by enabling sharing, can lead to a more

compact construction of complete execution traces, which are used for reporting to the user all the

intermediate ASTs constructed during the evaluation of the user’s transformation script.

3.2 Bidirectional Translation between OptiC and Opti𝜆
OptiTrust encodes OptiC input programs into the internal Opti𝜆 language. Then, after one or several

transformations on the internal AST, OptiTrust decodes the program back into OptiC. In the rest of

this section, we first explain how C syntax is parsed to produce the OptiC AST. We then present the

key ideas of the encoding from OptiC to Opti𝜆 by means of example, and explain how annotations

in Opti𝜆 are used to ensure that a round-trip property holds. Additional details on our translation

may be found in a separate workshop article [Bertholon and Charguéraud 2025].

Initial Parsing. The implementation of OptiTrust currently relies on Clang for parsing C syntax.

The Clang AST is then translated into the OptiC AST. During this initial translation, some amount

of semantically-irrelevant information may be lost. In particular, we currently do not attempt

to keep in our ASTs information about comments and spacing. Beyond this initial translation,

no more information is lost. Indeed, a round-trip property holds: encoding an OptiC program is

the reciprocal to decoding an Opti𝜆 program. Crucially, a lot of style information is preserved in

normalized OptiC programs through annotations, as described next.

Annotations. To deal with the fact that several OptiC expressions might admit the same encoding

in the Opti𝜆, our translation attaches annotation on certain Opti𝜆 terms. For example,(*r).f and r->f

are both encoded as get(𝑟 ⊡ 𝑓), therefore we instrument the encoding to attach a “dont-use-arrow”

annotation on the get term when translating (*r).f . As another example, the two terms e1 && e2

and e1 ? e2 : false have the same encoding, therefore we attach a “use-&&” on the conditional when

translating e1 && e2. If a transformation step modifies the else-branch from false into something

else, then the annotation “use-&&” is ignored by the decoding operation.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

Encoding Scheme and Pure Variables. The core of OptiTrust’s encoding consists of eliminating

l-values. For a heap allocated piece of data, a read operation *p is encoded as the function call get(𝑝),
and an assignment *p = v is encoded as set(𝑝, 𝑣). For stack-allocated C variables, the encoding

distinguishes two cases, pure and non-pure, depending on whether the address of the variable

needs to be manipulated. A variable x can only be pure if there is no assignment operation on x

and if the address of the variable x is never computed via the address-of operator.
9
Equivalently, a

variable x can be pure if and only if x could have been declared with the modifiers const register,

in the terminology of the C standard. For such a pure variable, its definition, say const int x = 3,

is encoded simply as let 𝑥 = 3. For a non-pure variable, its encoding involves a stack-allocation.

For example, the definition int x = 3 is encoded as let 𝑥 = stackRef(3), the assignment x = 4 is

encoded as set(𝑥, 4), and an occurrence of &x is encoded as 𝑥 .

The programmer may want to translate variables that can be pure into stack-allocated cells, to

enable further code transformations. Hence, we need to rely on a keyword (or attribute) to indicate

which variables should be translated without stack allocation. We could rely on const register, yet

for brevity we decided that in OptiC the keyword const alone would indicate the intention of the

programmer to introduce a pure variable.

Fig. 14 provides an example translation.

const int x = 3; ←→ letint x = 3;
f(x); ←→ f(x);

int z; ←→ letptr
int

z = stackAllocint();
z = 6; ←→ set(z, 6);
const int v = z; ←→ letint v = get(z);

int* const a = malloc(sizeof(int)); ←→ letptr
int

a = heapAlloc
int
();

*a = *a + 2; ←→ set(a, get(a) + 2);
free(a); ←→ free(a);

int y = 5; ←→ letptr
int

y = stackRefint(5);
f(y); ←→ f(get(y));
y = y + 2; ←→ set(y, get(y) + 2);
y += 4; ←→ inplaceAdd(y, 4);
y++; ←→ ignore(getThenIncr(y));

int* const p = &y; ←→ letptr
int

p = y;
*p = *p + 2 ←→ set(p, get(p) + 2);

int* q = &y; ←→ letptr
ptr

int

q = stackRefptr
int

(y);
q = &z; ←→ set(q, z);
*q = *q + 2; ←→ set(get(q), get(get(q)) + 2);

Fig. 14. Example translation from OptiC into the Opti𝜆. The functions ignore, inplaceAdd, and getThenIncr

are provided by OptiTrust’s library. The example assumes a function void f(int) to be defined.

9
For example, a variable x cannot be pure if the code includes an occurrence of &x, or an expression of the form &x.f or

&x[i]. That said, a variable x could be pure despite occurring below an address-of operator. For example, x could be a pure

variable and appear as part of the expression &(x->f), which is encoded as 𝑥 ⊡ 𝑓 .

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:25

4 COMPUTING PROGRAM RESOURCES: CONTEXTS
Traditional typecheckers have a typing judgment of the form Γ ⊢ 𝑡 ∶ 𝜏 . Yet, the OptiTrust type-
checker needs to account also for linear resources. Following the presentation of Separation Logic,

OptiTrust’s typing judgment is written as a triple of the form {{Γ}} 𝑡 {{Γ′}}. The input context Γ
decomposes as ∐︀𝐸 ⋃︀ 𝐹 ̃︀, where 𝐸 consists of pure resources and 𝐹 consists of linear resources. Sym-

metrically, the output context Γ′ contains both pure and linear resources. The pure resources from

Γ′ typically correspond to ghost return values and to pure postconditions. We qualify as ghost,
any entity that is useful during program typechecking but is erased in the final executable code.

Triples will be later extended in Section 5 to the form {{Γ}} 𝑡Δ {{Γ′}}, where Δ denotes a usage map,
providing a summary explaining which resources are used by every subterm, and how they are

used. This section presents the typing entities and the algorithmic typing rules, ignoring usage

maps.

The section is organized as follows. Section 4.1 presents the grammar of pure resources and
linear resources. Section 4.2 presents the grammar of contexts. Section 4.3 presents the grammar

of function contracts and loop contracts. Section 4.4 presents the entailment relation. Section 4.5

presents the subtraction procedure, which corresponds to an algorithmic implementation of the

entailment relation. Section 4.6 presents the typing judgment for logical expressions. Section 4.7

presents our algorithmic typing rules, which define the judgment {{Γ}} 𝑡 {{Γ′}}. Finally, Section 4.8

presents soundness results.

Throughout the section, we assume a substitution operator for every entity. Concretely, given a

map 𝜎 associating variable names to values, we write 𝜎(𝑋) the substitution of the bindings from 𝜎

throughout 𝑋 .

4.1 Grammar of Resources
As mentioned earlier, a context Γ decomposes as ∐︀𝐸 ⋃︀ 𝐹 ̃︀, where 𝐸 contains pure resources and

𝐹 contains linear resources. A pure resource describes a fact that remains true until the end of

the program, or describes a variable permanently bound to a given value. Pure resources may be

freely duplicated during typechecking. Linear resources describe the ownership of a given subset

of the memory. Each linear resource describes a fragment of memory. Two full linear resources that
appear in a same context must describe disjoint parts of the memory. A given full linear resource

may be split into fractional resources, in which case several fractional linear resources may cover

the same parts of memory. Subsequently, resources that were split may be joined back together. In

any case, a linear resource cannot be duplicated and cannot be silently dropped. We next describe

the grammar of pure and of linear resources.

Pure Resources. The pure part of a typing context contains resources that are bindings of the

form “𝑥 ∶ 𝜏”, where 𝜏 corresponds either to a C type or to a logical type. A C type is denoted by the

meta-variable 𝜏 . A logical type corresponds to a type from higher-order logic. Thus, intuitively,

the pure part of a typing context Γ can be thought of as an interleaving of a traditional program

typing context, which binds immutable program variables to C types, and a Coq context, which

binds ghost variables to Coq types. Let us give examples of bindings that may appear in a pure

context—that is, in the pure part of a context.

● “𝜏 ∶ Type” quantifies a type variable, useful for expressing polymorphism in Opti𝜆.

● “𝑥 ∶ 𝜏” quantifies a variable of type 𝜏 ; and “𝑥 ∶ 𝜏” quantifies a variable with the C type 𝜏 .

● “𝑓 ∶ 𝜏1
logicÐ→ 𝜏2” quantifies a logical function, which corresponds to functions that are pure

and terminating.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

Syntax in C Syntax in the theory Description

𝑝 ↝ Cell 𝑝 ↝ Cell𝜏 permission to access the cell at address 𝑝 of type 𝜏

𝑝 ↝ Matrix1(𝑛) 𝑝 ↝Matrix1𝜏(𝑛) permission on an array of length 𝑛

𝑝 ↝ Matrix2(𝑚, 𝑛) 𝑝 ↝Matrix2𝜏(𝑚,𝑛) permission on a𝑚 × 𝑛 matrix

for 𝑖 in 𝑟 -> 𝐻(𝑖) ⋆𝑖∈𝑟 𝐻(𝑖) union of resources 𝐻(𝑖), for 𝑖 in the range 𝑟

_RO(𝛼, 𝐻) 𝛼𝐻 read-only permission on 𝐻 with fraction 𝛼

_Uninit(𝐻) Uninit(𝐻) permission on 𝐻 that disallows reads before a write

_Freeable(𝑝,𝐻) Freeable(𝑝, 𝐻) permission to free 𝑝 by giving away the resource 𝐻

Fig. 15. Grammar of heap predicates. User-defined representation predicates are left to future work.

● “𝑃 ∶ Prop” quantifies an abstract proposition; and “𝑄 ∶ 𝜏 logicÐ→ Prop” quantifies an abstract

logical predicate over values of type 𝜏 .

● “𝑝 ∶ 𝑃” quantifies a proof witness of a proposition 𝑃 ; for example “𝑝 ∶ 𝑖 > 0” captures the
assumption that 𝑖 is positive.

● “𝑝 ∶ Spec(𝑓 , (︀𝑎1, ..., 𝑎𝑛⌋︀, 𝛾)” describes a function specification10 asserting that the function 𝑓

expects arguments named 𝑎𝑖 and admits the function contract 𝛾 .

● “𝐻 ∶ Hprop” quantifies an abstract heap predicate
11
, and “𝐼 ∶ int logicÐ→ Hprop” quantifies an

abstract invariant parameterized by a loop index.

Thereafter, to avoid confusion between the separating conjunction operation ⋆ from Separation

Logic and the star-symbol that denotes a C pointer type, we use the alternative syntax ptrA to

denote the C type A*.

Linear Resources. The linear part of a typing context contains resources. A resource is described

by a binding of the form “𝑦 ∶ 𝐻”, where 𝐻 is a heap predicate, and where 𝑦 is a name. For example,

“𝑦 ∶ 𝑝 ↝ Cell” is a resource. This name 𝑦 is used in particular to refer to resources in usage maps. A

heap predicate 𝐻 describes “ownership” of part of the memory. When a linear context contains

several resources, each resource must describe a disjoint part of the memory. Interestingly, heap

predicates guarantee the absence of hidden aliasing.

Fig. 15 summarizes the most common heap predicates, which have already been discussed in

Section 2, but for which we here introduce math notation, moreover making the type annotations

explicit. The resource 𝑝 ↝ Cell𝜏 corresponds to the ownership of a single cell of type 𝜏 , located at

address 𝑝 . The resource 𝑝 ↝Matrix1𝜏(𝑛) is syntactic sugar for⋆𝑖∈0..𝑛 𝑝(︀𝑖⌋︀ ↝ Cell𝜏 . This resource

corresponds to the ownership of the set of all the cells in the array. The big-star symbol corresponds

to the iterated separating conjunction of Separation Logic. Likewise, 𝑝 ↝Matrix2𝜏(𝑛, 𝑚) denotes
⋆𝑖∈0..𝑛⋆𝑗∈0..𝑚 𝑝(︀𝑖⌋︀(︀ 𝑗⌋︀ ↝ Cell𝜏 . We leave it to future work to provide mechanisms allowing the user

to define representation predicates [Reynolds 2002] for custom data types. The three heap predicates

listed at the bottom of Fig. 15 are explained in the following paragraphs.

Read-Only Fractions. Following standard Separation Logic, we represent read-only resources

using fractional resources [Boyland 2003; Jung et al. 2018a]. Intuitively, possessing a non-zero

fraction of a linear resource gives read-only access to this resource. Possessing the full fraction

(i.e., 1) of a resource gives read-write exclusive access to this resource. Possessing both 𝛼𝐻 and 𝛽𝐻

is equivalent to possessing the single resource (𝛼 + 𝛽)𝐻 . Said differently, if we have 𝛼𝐻 at hand

10
Function contracts may appear in typing contexts, while typing contexts are involved in the statement function contracts.

This form of impredicativity is standard in higher-order Separation Logic [Charguéraud 2020b].

11
In formalizations of Separation Logic, Hprop is typically defined as state

logic

Ð→ Prop, where state denotes the type of a

memory state, however this definition needs not be revealed to the OptiTrust user.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:27

in the context, we can carve out a subfraction 𝛽𝐻 , leaving as remainder (𝛼 − 𝛽)𝐻 . This splitting

operation can be performed for any fraction 𝛽 such that 0 < 𝛽 < 𝛼 .
Every time our typechecker requires a read-only permission on 𝐻 in a context containing 𝛼𝐻 , it

carves out a subfraction 𝛽𝐻 out of 𝛼𝐻 . This strategy ensures that we always keep around a fraction

of the read-only resources initially available. These fractions may be useful for typing subsequent

terms. When a read-only permission is returned after being used, our typing algorithm eagerly

merges back 𝛽𝐻 and (𝛼 − 𝛽)𝐻 into the original form 𝛼𝐻 . Interestingly, carve-out operations may

be performed in cascade, and merge-back operations can be performed in any order. To support

this general pattern, we introduce the operation CloseFracs, which appears in our typing rules.

The operation CloseFracs repeatedly applies the following rewrite rule:

(𝛼 − 𝛽1 − ... − 𝛽𝑛)𝐻 ⋆ (𝛽𝑖 −𝛾1 − ... −𝛾𝑚)𝐻 Ð→ (𝛼 − 𝛽1 − ... − 𝛽𝑖−1 −𝛾1 − ... −𝛾𝑚 − 𝛽𝑖+1 − ... − 𝛽𝑛)𝐻.

In general, if we start with a full permission 𝐻 , that is 1𝐻 , then whatever the order in which we

carve out and merge back all the fractions of 𝐻 , we ultimately recover 1𝐻 .

Resources for Uninitialized Cells. Separation Logic can guarantee that a program never reads from

an uninitialized memory cell. The traditional way to formalize this approach is as follows.

(A1) Allocation of a memory cell at address 𝑝 is specified as producing the heap predicate 𝑝 ↝ �,
where � is a special token denoting uninitialized content.

(A2) The specification of the read operation requires not only a fraction of a permission of the

form 𝑝 ↝ 𝑣 , but also requires the property 𝑣 ≠ �.
OptiTrust operates not on predicates of the form 𝑝 ↝ 𝑣 , but on less precise predicates of the form

𝑝 ↝ Cell. Hence, we follow a slightly different approach for handling uninitialized cells.

(B1) Our heap predicate 𝑝 ↝ Cell denotes not only the ownership of the cell at location 𝑝 but

also the information that its contents is previously initialized.

(B2) Our heap predicate Uninit(𝑝 ↝ Cell) denotes the ownership of the cell 𝑝 , yet without the

permission to read its contents before it is initialized.

(B3) We specify a write operation on 𝑝 as consuming Uninit(𝑝 ↝ Cell) and producing 𝑝 ↝ Cell.

(B4) We allow a permission 𝑝 ↝ Cell to be downgraded into Uninit(𝑝 ↝ Cell) at any time.

The combination of (B3) and (B4) means that a write operation can also be typechecked as an

operation that consumes and returns the permission 𝑝 ↝ Cell. More generally, as detailed further

on (in Section 4.5), when our typechecker encounters a term that requires Uninit(𝐻) in a context

where the plain resource 𝐻 is available, it weakens 𝐻 into Uninit(𝐻) on-the-fly.
We generalize the predicate to the form Uninit(𝐻) to describe uninitialized arrays and matrices.

Concretely, for amatrix,Uninit(𝑝 ↝Matrix2(𝑚, 𝑛)) corresponds to⋆𝑖∈0..𝑛⋆𝑗∈0..𝑚 Uninit(𝑝(︀𝑖⌋︀(︀ 𝑗⌋︀ ↝
Cell). We do not attempt to provide a definition of Uninit(𝐻) for arbitrary 𝐻 : like for read-only

resources, we use uninitialized resources only for cells and groups of cells.

Permission to free. A permission of the form Freeable(𝑝, 𝐻) is obtained when 𝑝 is the address

returned by an allocation operation, these cells being described by the heap predicate 𝐻 . The

predicate 𝐻 must be given back in order to invoke the free function on 𝑝 .

4.2 Construction and Operations on Typing Contexts
Construction of Contexts. A context Γ takes the form ∐︀𝐸 ⋃︀ 𝐹 ̃︀, where 𝐸 consists of a list of pure

resources and 𝐹 consists of a set of linear resources. In its expanded form, a context is written ∐︀𝑥0 ∶ 𝜏0,
..., 𝑥𝑛 ∶ 𝜏𝑛 ⋃︀ 𝑦0 ∶ 𝐻0, ..., 𝑦𝑛 ∶ 𝐻𝑛̃︀, where 𝑥𝑖 denotes a pure resource of type 𝜏𝑖 , and 𝑦𝑖 denotes a linear
resource with heap predicate 𝐻𝑖 . The names 𝑥𝑖 and 𝑦𝑖 must all be distinct. The pure part 𝐸 is a

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

telescope: the variable 𝑥𝑖 may occur in any 𝜏 𝑗 where 𝑖 < 𝑗 . Moreover, all the pure variables 𝑥𝑖 scope

over the linear formulas 𝐻 𝑗 . The order of the linear resources is irrelevant.

The pure part 𝐸 of a context Γ may contain bindings of a special form, called alias bindings.
Such a binding takes the form “𝑥𝑖 ∶ 𝜏𝑖 ∶= 𝑣𝑖”. The intention is that, in presence of such an alias, our

typechecker eagerly replaces 𝑥𝑖 with 𝑣𝑖 during internal unification operations. An alias binding

corresponds exactly to a local definition in Coq. An alias binding “𝑥𝑖 ∶ 𝜏𝑖 ∶= 𝑣𝑖” may also be interpreted

as a conventional binding that associates 𝑥𝑖 to a singleton type whose sole inhabitant is 𝑣𝑖 .

Following standard practice in proof assistants, variable names that are nowhere mentioned may

be hidden. For example the context ∐︀𝑝 ∶ ptr
int
, 𝑛 ∶ int, 𝑛 > 0 ⋃︀ 𝑝 ↝ Cellint̃︀ contains two anonymous

resources: 𝑛 > 0 and 𝑝 ↝ Cellint. Internally, though, all context items are identified by a variable

name.

Bindings of the Special Result Variable. In contexts, we use a special variable res as a canonical
name to denote the result value of an expression. Therefore, if 𝑡 has a non-void type 𝜏 then, in

the triple {{Γ}} 𝑡 {{Γ′}}, this variable res may be bound in Γ′ as an alias. The variable res also
appears in function contracts, to specify properties about the return value of the function. The

use of a dedicated name such as res is common practice in program verification tools, such as

ESC/Java [Flanagan et al. 2002] or Why3 [Filliâtre 2003].

Projection of Context Components. We define two projection functions. For a context Γ = ∐︀𝐸 ⋃︀ 𝐹 ̃︀,
the projection “Γ.pure” returns 𝐸, and the projection “Γ.linear” returns 𝐹 .

Syntax for Contexts with One Component. As syntactic sugar, we define (︀𝑥0 ∶ 𝜏0, ..., 𝑥𝑛 ∶ 𝜏𝑛⌋︀ as
∐︀𝑥0 ∶ 𝜏0, ..., 𝑥𝑛 ∶ 𝜏𝑛 ⋃︀ ∅̃︀, for contexts that are entirely pure. Furthermore, we allow ourselves to write

𝐹 to mean ∐︀∅ ⋃︀ 𝐹 ̃︀, where 𝐹 denotes a set of linear resources.

Separated Conjunction of Two Contexts. We write 𝐹1 ⋆ 𝐹2 the disjoint union of two sets of linear

resources. Furthermore, for two contexts Γ1 and Γ2, we define Γ1⍟Γ2 as ∐︀Γ1 .pure, Γ2 .pure ⋃︀ Γ1 .linear⋆
Γ2.linear̃︀, assuming the variables in this result are well-scoped (that is, Γ1 and Γ2 have disjoint
domains and the formulas in Γ2 are well-scoped in Γ1.pure). Observe that (︀𝐸⌋︀ ⍟ 𝐹 = ∐︀𝐸 ⋃︀ 𝐹 ̃︀.

Pointwise Operators Over Linear Contexts. Consider a linear context 𝐹 of the form (𝑦0 ∶ 𝐻0,

..., 𝑦𝑛 ∶ 𝐻𝑛). We define ⋆𝑖∈𝑟 𝐹 as (𝑦0 ∶ ⋆𝑖∈𝑟 𝐻0, ..., 𝑦𝑛 ∶ ⋆𝑖∈𝑟 𝐻𝑛), that is, the iterated separating

conjunction distributes pointwise over the set of linear resources. Similarly, we define 𝛼𝐹 as

(𝑦0 ∶ 𝛼𝐻0, ..., 𝑦𝑛 ∶ 𝛼𝐻𝑛).

Filtering on Contexts. We define a filtering operation, written 𝐺�𝑋 , where 𝐺 is a set of resources

(linear or pure) and 𝑋 is a set of variable names. This operation computes a set of resources where

only the entries from𝐺 whose name belongs to the set 𝑋 are kept. Filtering also applies to contexts:

∐︀𝐸 ⋃︀ 𝐹 ̃︀�𝑋 is defined as ∐︀𝐸�𝑋 ⋃︀ 𝐹�𝑋 ̃︀.

Specialization of Contexts. The specialization operation is used for example to specialize the

contract of a function for a specific call to that functions. The contract is then specialized on

the arguments, as well as on the ghost arguments, on which the function is applied. In case of a

polymorphic function, type arguments are specialized as well. The specialization operation takes

the form SpecializeΓ0
{𝜎}(Γ). The definition of this operation is fairly technical, yet it is a direct

generalization of the process of typechecking function applications in higher-order logics. Rather

than presenting technical definitions, let us illustrate the specialization operation on an example.

Consider a function 𝑓 whose input is described by a context Γ ≡ ∐︀𝐴 ∶ Type, 𝐶 ∶ Type, 𝑛 ∶ int,
𝑝 ∶ ptr𝐴, 𝑏 ∶ 𝐴, 𝑐 ∶ 𝐶 ⋃︀ 𝑝 ↝ Matrix1𝐴(𝑛)̃︀, where 𝐴 and 𝐶 are type arguments, where 𝑝 and 𝑛

denote physical arguments, and where 𝑏 and 𝑐 are ghost arguments. Consider a function call of

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:29

{} (heapAlloc𝐶𝜏
()) {(︀res ∶ ptr𝜏 ⌋︀ ⍟Uninit(res↝ 𝐶𝜏) ⍟ Freeable(res, res↝ 𝐶𝜏) }

{(︀𝜏 ∶ Type, 𝑎 ∶ ptr𝜏 , 𝛼 ∶ frac⌋︀ ⍟ 𝛼(𝑎 ↝ Cell𝜏)} (get(𝑎)) {(︀res ∶ 𝜏⌋︀ ⍟ 𝛼(𝑎 ↝ Cell𝜏)}
{(︀𝜏 ∶ Type, 𝑎 ∶ ptr𝜏 , 𝑏 ∶ 𝜏⌋︀ ⍟Uninit(𝑎 ↝ Cell𝜏)} (set(𝑎, 𝑏)) {𝑎 ↝ Cell𝜏}
{(︀𝜏 ∶ Type, 𝑎 ∶ ptr𝜏 , 𝐻 ∶ Hprop⌋︀ ⍟ Freeable(𝑎, 𝐻) ⍟Uninit(𝐻) } (free(𝑎)) {}

Fig. 16. Contracts assigned to key primitive functions; 𝜏 denotes a C type; 𝑎 and 𝑏 denote program variables.

𝐶𝜏 is either Cell𝜏 , Matrix1𝜏(𝑛) or Matrix2𝜏(𝑚, 𝑛), for size expressions𝑚 and 𝑛.

the form 𝑓 (7, 𝑞), where 𝑞 is a program variable of type ptr
int

in scope at the call site. This call

specializes 𝑛 to 7 and 𝑝 to 𝑞, hence it is described by a substitution 𝜎 ≡ (𝑛 ∶= 7, 𝑝 ∶= 𝑞). Let Γ0 be the
context describing the pure variables bound at the call site. In particular, we have (𝑞 ∶ ptr

int
) ∈ Γ0.

For the example considered, the specialization operation yields the context: ∐︀𝐶 ∶ Type, 𝑏 ∶ int,
𝑐 ∶ 𝐶 ⋃︀ 𝑞 ↝ Matrix1𝐴(7)̃︀. Observe how the types and arguments being specialized (namely 𝐴, 𝑛

and 𝑝) are eliminated from the pure part of the context, and the corresponding values (namely int,

7 and 𝑞) are substituted in the entities that remain.

Renaming on Contexts. A renaming operation is involved when the programmer explicitly spec-

ifies the names to assign to the ghost variables obtained as part of the result of a function call.

The operation Rename{𝜌}(Γ) renames certain keys from Γ. Here, 𝜌 denotes a map that associates

resource names to other resource names. The keys from 𝜌 may or may not be bound in Γ. The
values from 𝜌 must be fresh from Γ. For example, Rename{𝑥 ∶= 𝑥 ′, 𝑦 ∶= 𝑦′}(∐︀𝐸1, 𝑥 ∶ 𝜏, 𝐸2 ⋃︀ 𝐹 ̃︀),
where 𝑦 has no occurrence in 𝐸1, 𝐸2 or 𝐹 , evaluates to ∐︀𝐸1, 𝑥 ′ ∶ 𝜏, 𝑥 ∶= 𝑥 ′(𝐸2) ⋃︀ 𝑥 ∶= 𝑥 ′(𝐹)̃︀. As
another example, Rename{𝑦 ∶= 𝑦′}(∐︀𝐸 ⋃︀ 𝐹1, 𝑦 ∶ 𝐻, 𝐹2̃︀) evaluates to ∐︀𝐸 ⋃︀ 𝐹1, 𝑦′ ∶ 𝐻, 𝐹2̃︀.

4.3 Grammar of Contracts
Every function and every loop carries a contract to guide the typechecker. We next detail the

grammar of contracts.

Function Contracts. A function definition annotated with a function contract 𝛾 takes the form

fun(𝑎1, ..., 𝑎𝑛)𝛾 ↦ 𝑡 . The contract 𝛾 consists of two contexts, one for the precondition, written 𝛾 .pre,
and one for the postcondition, written 𝛾 .post. Intuitively, a function 𝑓 with arguments named 𝑎𝑖 and

with contract 𝛾 satisfies the Separation Logic triple {𝛾 .pre} 𝑓 (𝑎1, ..., 𝑎𝑛) {𝛾 .post}. This property is

formally captured by the proposition Spec(𝑓 , (︀𝑎1, ..., 𝑎𝑛⌋︀, 𝛾), which may appear in contexts.

Technically, a function contract 𝛾 takes the form {pre = Γ𝑝𝑟𝑒 ; post = Γ𝑝𝑜𝑠𝑡}. The precondition
Γ𝑝𝑟𝑒 must contain all the formal parameters 𝑎𝑖 , and may refer to any of the free variables in scope.

The postcondition Γ𝑝𝑜𝑠𝑡 may also refer to all these variables, as well as to the pure variables bound

in the precondition Γ𝑝𝑟𝑒 .

Contracts for Primitive Functions. Fig. 16 gives the contracts that we axiomatize for the opera-

tions on heap cells—technically, we present not their contracts but the triples derived from their

contracts, to improve readability. These contracts illustrate key mechanisms of the formalism. A

heap allocation produces an uninitialized permission and a permission to free the allocated cells. A

write requires an uninitialized permission and returns a full permission. A read requires a read-only

permission and returns it. A free operation requires a permission to free, the associated uninitialized

permission and returns nothing. Recall that a full permission can be split into read-only resources,

and that it may be downgraded at any time into an uninitialized permission. Additionally, we can

see that bindings on res appear in output contexts.

Contracts for arithmetic operations are described later on, in Section 4.6.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

Contracts for Ghost Functions. In addition to contracts for primitive heap-manipulating func-

tions, OptiTrust provides contracts for primitive ghost functions. For example, the ghost function

swap_groups allows swapping two iterators (iterated separating conjunctions). It is involved for

example in the loop-swap operation, which is used in our case studies (Section 2), and which is

presented further on in Section 6.5. The transformation is specified as shown below, where 𝐻 is a

heap predicate that depends on the two indices 𝑖 and 𝑗 . The type range corresponds to a triple of

integers.

{(︀𝑅𝑖 ∶ range, 𝑅 𝑗 ∶ range, 𝐻 ∶ (int, int)
logicÐ→ Hprop⌋︀⍟(⋆

𝑖∈𝑅𝑖
⋆
𝑗∈𝑅𝑗

𝐻(𝑖, 𝑗))}swap_groups{⋆
𝑗∈𝑅𝑗
⋆
𝑖∈𝑅𝑖

𝐻(𝑖, 𝑗)}

The OptiTrust user can define custom ghost functions to factorize repetitive resource-manipulation

patterns. Ghost functions are written and typechecked like regular C functions whose body com-

poses other ghost functions, typically through sequences and for-loops. Importantly, the body of a

ghost function does not need to be executed, and simply serves as a proof witness.

Loop Contracts. A for-loop annotated with a loop contract 𝜒 takes the form for (𝑖 ∈ 𝑅)𝜒{𝑡}. The
loop contract 𝜒 consists of a record structured as follows.

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

vars = 𝐸 Pure variables, scoping over the other contract components

excl =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

pre = 𝐹𝑝𝑟𝑒 Resources consumed exclusively by one iteration

post = 𝐹𝑝𝑜𝑠𝑡 Resources produced exclusively by one iteration

shrd =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

reads = 𝐹𝑟𝑒𝑎𝑑𝑠 Read only resources shared between iterations

inv = 𝐹𝑖𝑛𝑣 Sequential invariant, threaded through iterations

We call 𝐸 the loop ghost variables. The variables from 𝐸 scope over 𝐹𝑝𝑟𝑒 , 𝐹𝑝𝑜𝑠𝑡 , 𝐹𝑟𝑒𝑎𝑑𝑠 and 𝐹𝑖𝑛𝑣 .

We call 𝐹𝑝𝑟𝑒 the consumed per-iteration resources and 𝐹𝑝𝑜𝑠𝑡 the produced per-iteration resources.
Resources in 𝐹𝑝𝑟𝑒 and in 𝐹𝑝𝑜𝑠𝑡 may (and typically do) refer to the loop index. We call 𝐹𝑟𝑒𝑎𝑑𝑠 the

shared reads, because in practice this context consists of read-only resources. Resources in 𝐹𝑟𝑒𝑎𝑑𝑠
cannot refer to the loop index. We call 𝐹𝑖𝑛𝑣 the sequential invariant. It corresponds to a standard

loop invariant in sequential Separation Logic. In this paper, we consider for simplicity that 𝐹𝑖𝑛𝑣
does not depend on the loop index.

Parallel Loop Contracts. A loop is parallelizable if it can be typechecked with an empty sequential

invariant 𝐹𝑖𝑛𝑣 . Hence, we say that a loop contract 𝜒 is parallelizable, and write parallelizable(𝜒),
when 𝜒.shrd.inv = ∅.

4.4 Entailment
We next introduce the entailment judgment, written Γ⇒ Γ′. The entailment judgment can be used

to assert that a context Γ obtained at a given program point corresponds to a context Γ′ expected
at that same point. For example, the context at the end of a function body must entail the context

described by the postcondition of this function. The entailement judgment Γ⇒ Γ′ is a declarative
judgment, for which we will present our algorithmic implementation in the next section.

The literature on Separation Logic includes two types of entailment: linear and affine entailment

relations. OptiTrust is based on a linear entailment relation, disallowing resources to be silently

“dropped”. The benefits of using linear entailment is that it allows checking the absence of memory

leaks—every piece of heap allocated data must eventually be freed.

The OptiTrust entailment between two contexts:

∐︀𝑥0 ∶ 𝜏0, ..., 𝑥𝑛 ∶ 𝜏𝑛 ⋃︀ 𝑦0 ∶ 𝐻0, ..., 𝑦𝑚 ∶ 𝐻𝑚̃︀ ⇒ ∐︀𝑥 ′
0
∶ 𝜏 ′

0
, ..., 𝑥𝑚′ ∶ 𝜏𝑚′ ⋃︀ 𝑦′0 ∶ 𝐻 ′0, ..., 𝑦′𝑚′ ∶ 𝐻 ′𝑚′̃︀

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:31

is defined as

∀𝑥0 ∶ 𝜏0, ..., ∀𝑥𝑛 ∶ 𝜏𝑛, SL(𝐻0 ⋆ ... ⋆𝐻𝑚)
𝑆𝐿⇒ (∃𝑥 ′

0
∶ 𝜏 ′

0
, ..., ∃𝑥 ′𝑚 ∶ 𝜏 ′𝑚, SL(𝐻 ′0 ⋆ ... ⋆𝐻 ′𝑚′))

where

𝑆𝐿⇒ denotes the standard Separation Logic entailment, and where the SL function converts

resources into standard Separation Logic heap predicates.

For example, the following entailments hold:

● ∐︀𝑥 ∶ loc ⋃︀ 𝑥 ↝ Cell̃︀ ⇒ ∐︀𝛼 ∶ frac ⋃︀ 𝛼(𝑥 ↝ Cell), (1 − 𝛼)(𝑥 ↝ Cell)̃︀
● ∐︀𝑦 ∶ loc ⋃︀ 𝑦 ↝ Cell̃︀ ⇒ ∐︀ ⋃︀ Uninit(𝑦 ↝ Cell)̃︀
● ∐︀𝐴 ∶ loc, 𝑛 ∶ int, 𝑚 ∶ int ⋃︀ ⋆𝑖∈0..𝑛⋆𝑗∈0..𝑚𝐴(︀𝑖⌋︀(︀ 𝑗⌋︀ ↝ Cell̃︀ ⇒ ∐︀ ⋃︀ ⋆𝑗∈0..𝑚⋆𝑖∈0..𝑛𝐴(︀𝑖⌋︀(︀ 𝑗⌋︀ ↝ Cell̃︀
● ∐︀𝑛 ∶ int, 𝑛 even ⋃︀ ̃︀ ⇒ ∐︀𝑚 ∶ int, 𝑛 = 2𝑚 ⋃︀ ̃︀.

However, the entailment ∐︀𝑥 ∶ loc ⋃︀ 𝑥 ↝ Cell̃︀ ⇒ ∐︀ ⋃︀ ̃︀ does not hold because linear resources

cannot be dropped, and the entailment ∐︀𝑥 ∶ loc ⋃︀ 𝑥 ↝ Cell̃︀ ⇒ ∐︀𝑥 ∶ loc ⋃︀ 𝑥 ↝ Cell, 𝑥 ↝ Cell̃︀ does
not hold because linear resources cannot be duplicated.

As a shorthand, we write Γ⇔ Γ′ to assert that entailment holds both ways, that is, to assert that

the conjunction (Γ⇒ Γ′) ∧ (Γ′ ⇒ Γ) holds.

4.5 Subtraction
The subtraction operation provides a sound (yet incomplete) algorithmic implementation of the

entailment judgment. The subtraction operation not only allows checking the validity of an entail-

ment, it also enables a certain amount of inference. At a high level, given Γ and Γ′, the subtraction
operation computes the frame, written 𝐹 , which denotes the set of linear resources such that

Γ ⇒ Γ′ ⋆ ∐︀∅ ⋃︀ 𝐹 ̃︀. The subtraction operation also infers the instantiation map 𝜎 providing the wit-

nesses for the instantiations of the variables that are bound (and therefore existentially quantified)

in Γ′. Such a subtraction operator is found in most—if not all—practical verification frameworks

based on Separation Logic.

The typing rules of OptiTrust actually make use of two variants of the subtraction operation.

The core subtraction operation, written Γ ⊟ Γ′, is able to convert uninitialized resources into full

resources on-the-fly, however it does not support splitting read-only resources on-the-fly. The

carving subtraction operation, written Γ ⊖ Γ′, extends the former with the feature of carving out

a fraction of a read-only permission from Γ every time a corresponding read-only permission is

requested in Γ′. (Carving was described in Section 4.1.)

The core subtraction operation Γ ⊟ Γ′ is formally specified as a partial operation. It may fail

(that is, return �) if a resource in Γ′ cannot be matched against a corresponding resource in Γ.
Otherwise, the operation returns a result of the form (𝜎, 𝐹). When Γ ⊟ Γ′ = (𝜎, 𝐹), then the

entailment Γ⇒ SpecializeΓ{𝜎}(Γ′) ⋆ ∐︀∅ ⋃︀ 𝐹 ̃︀ holds. In particular, the subtraction operation can be

used to prove an entailment Γ⇒ Γ′, by checking that Γ ⊟ Γ′ evaluates to (𝜎, ∅) for some 𝜎 .

The subtraction operation is implemented following a standard scheme.

(1) The substitution map 𝜎 is initialized with bindings that associates each of the pure variables

of Γ′ to a fresh unification variable.

(2) Each of the linear resources from Γ′ are syntactically matched against a corresponding

resource from Γ. This process may trigger unifications, resulting in partial or total resolution

of certain unification variables.

(3) If Γ′ requests a linear resource of the form Uninit(𝐻), and if Γ contains the resource 𝐻 ,

then our algorithm applies an on-the-fly weakening from 𝐻 to Uninit(𝐻).
(4) The items from Γ that remains at the end are assigned to the frame 𝐹 .

The carving subtraction operation Γ ⊖ Γ′ behaves almost like Γ ⊟ Γ′ but outputs a triple (𝐸𝑓 𝑟𝑎𝑐 ,

𝜎, 𝐹) where 𝜎 and 𝐹 are the same as in core subtraction and 𝐸𝑓 𝑟𝑎𝑐 is a pure context for generated

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

Var

(𝑥 ∶ 𝜏) ∈ 𝐸
𝐸 ⊢ 𝑥 ∶ 𝜏

Int

𝐸 ⊢ 𝑛 ∶ int

Bool

𝐸 ⊢ 𝑏 ∶ bool

IntType

𝐸 ⊢ int ∶ Type

BoolType

𝐸 ⊢ bool ∶ Type

Prop

𝑃 is a logical proposition

with free variables in 𝐸

𝐸 ⊢ 𝑃 ∶ Prop

Hprop

𝐻 is a heap predicate

with free variables in 𝐸

𝐸 ⊢ 𝐻 ∶ Hprop

PtrType

𝐸 ⊢ 𝐴 ∶ Type
𝐸 ⊢ ptr𝐴 ∶ Type

LogicFun

(𝐸, 𝑥1 ∶ 𝜏1, ..., 𝑥𝑛 ∶ 𝜏𝑛) ⊢ 𝑡 ∶ 𝜏
𝐸 ⊢ fun(𝑥1 ∶ 𝜏1, ..., 𝑥𝑛 ∶ 𝜏𝑛) ↦ 𝑡 ∶ (𝜏1, ..., 𝜏𝑛)

logicÐ→ 𝜏

LogicApp

𝐸 ⊢ 𝑡0 ∶ (𝜏1, ..., 𝜏𝑛)
logicÐ→ 𝜏

∀𝑖 ∈ (︀1..𝑛⌋︀, 𝐸 ⊢ 𝑡𝑖 ∶ 𝜏𝑖
𝐸 ⊢ 𝑡0(𝑡1, ..., 𝑡𝑛) ∶ 𝜏

Fig. 17. Selected rules defining the typing judgment for logical expressions, written 𝐸 ⊢ 𝑡 ∶ 𝜏 . Arithmetic

operations such as 𝑡1 + 𝑡2 are viewed as functions calls and are therefore handled by the rule PureApp.

fractions containing only bindings of the form 𝛼 ∶ frac. At step (1), 𝐸𝑓 𝑟𝑎𝑐 is initialized as an empty

environment. Compared to the core subtraction, the carving subtraction refines step (2) as follows.

If Γ′ requests a fractional resource 𝛼𝐻 , if 𝛼 is an unconstrained unification variable that denotes a

fraction, and if Γ contains a fractional resource 𝛽𝐻 ′ for some fraction 𝛽 and where 𝐻 unifies with

𝐻 ′, then our algorithm applies an on-the-fly splitting operation to convert 𝛽𝐻 ′ into the conjunction
of 𝛼 ′𝐻 ′ and (𝛽 − 𝛼 ′)𝐻 ′ for a fresh 𝛼 ′ added to 𝐸𝑓 𝑟𝑎𝑐 . Our algorithm then adds the binding 𝛼 ∶= 𝛼 ′
into 𝜎 . The interest of extracting a carved fraction from 𝛽𝐻 rather than consuming the whole

read-only permission 𝛽𝐻 is that the left-over fraction remains available in Γ, allowing to match

other resources of the form 𝛼 ′′𝐻 that might appear in the other elements from Γ′.

4.6 Typechecking of Logical Expressions
A logical expression is an expression that may appear in specifications and invariants; technically,

a logical expression is an expression whose evaluation terminates and does not depend on the

memory state. Logical expressions include program variables (which are always immutable in

the Opti𝜆), constant literals, logical propositions, heap predicates, C types, logical types, pure

functions definitions, and pure function calls. Figure 17 shows the main typing rules for logical

expressions (we omitted technical details for the treatment of dependent types). The judgment is

written 𝐸 ⊢ 𝑡 ∶ 𝜏 , where 𝐸 is a pure context.

An arithmetic expression 𝑡1 + 𝑡2 can be considered as a logical expression if its two arguments are

pure. The contract for addition is: {(︀𝑎 ∶ int, 𝑏 ∶ int⌋︀} (𝑎 + 𝑏) {(︀res ∶= 𝑎 +̂𝑏 ∶ int⌋︀}, where + denotes
the addition operator from the programming language, and where +̂ denotes the corresponding
addition operator from the logic. Partial functions may also be treated as logical expressions, simply

with an additional precondition. The contract for division is: {(︀𝑎 ∶ int, 𝑏 ∶ int, 𝑏 ≠ 0⌋︀} (𝑎⇑𝑏) {(︀res ∶=
𝑎 ˆ⇑𝑏 ∶ int⌋︀} where ˆ⇑ denotes the logical integer division operator. Following standard practice in

proof assistants, the operator
ˆ⇑ is defined in the logic as a total function that returns unspecified

results when the divisor is equal to zero.

4.7 Typechecking of Terms
Our typing judgment takes the form {{Γ}} 𝑡Δ {{Γ′}}, capturing the fact that, in context Γ, the term 𝑡

is well typed and produces a context Γ′ with a usage map Δ. We are interested in describing the

algorithmic typing rules exploited by OptiTrust. Our typing algorithm takes Γ and 𝑡 as input, and

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:33

produces Γ′ and Δ as output. The refinement with usage maps will be discussed further in Section 5.3.

For now, we focus on describing typing rules for the judgment {{Γ}} 𝑡 {{Γ′}}.
In general, in a valid triple {{Γ}} 𝑡 {{Γ′}}, variables from the postcondition Γ′ may refer to variables

from the precondition Γ. For the purpose of the algorithmic typechecking, however, we design the

typing rules in such a way that Γ′ is always closed, meaning that variable occurrences in Γ′ refer to
variables that are all previously bound in Γ′. The purpose of this design decision is to maximize the

amount of information that is propagated forward during the typechecking.

In particular, in the algorithmic typechecking, all the logical bindings (ghost variables and pure

facts) from Γ are reproduced in Γ′. The pure bindings that appear in Γ′ but not in Γ correspond

either (1) to the binding for res, which denotes the result value produced by 𝑡 , as explained in

Section 4.3; or (2) to logical bindings (ghost variables and pure facts) that correspond to existentially

quantified variables and pure postconditions.

The linear bindings of Γ′, compared with those in Γ, reflect the side effects performed by 𝑡 . Linear

resources that are bound with the same name in Γ′ as in Γ necessarily correspond to resources that

have not been modified by 𝑡 .

Figure 18 presents our typing rules. The typing rule for applications handles the particular case

where the subterms are program variables (i.e., functions calls in A-normal form)—the processing of

effectful subterms depends on resource usage, and is explained further in Section 5.5. The soundness

of these rules stems from the fact that they correspond to an algorithmic reformulation of the

standard reasoning rules from Separation Logic. We next describe the rules individually.

Literals and Variables. Consider a term 𝑡 that corresponds either to a program variable or to a

literal. In its triple, of the form {{Γ}} 𝑡 {{Γ′}}, the output context Γ′ is obtained by extending Γ with

an alias binding from res to 𝑡 itself. Alias bindings were defined in Section 4.2. This is possible since

for literals and variables, 𝑡 is a logical expression and therefore can directly appear in contexts.

The type of 𝑡 is computed by means of the typing judgment for logical expressions, defined in

Section 4.6.

Let-Bindings. Consider an instruction of the form let 𝑥 = 𝑡 . Recall from Section 3.1 that such

instructions only appear in sequences. The subexpression 𝑡 produces a value, hence the output

context Γ1 associated with 𝑡 binds the special variable res. The expression let 𝑥 = 𝑡 itself does not
produce a value, hence its output context Γ2 does not bind res. However, the output context Γ2 is
extended with a binding on 𝑥 . Concretely, Γ2 is obtained by replacing in Γ1 the bound name res
with the bound name 𝑥 .

Sequence of Instructions. We decompose the treatment of sequences in two rules: a first rule

named Seq for handling the sequence of instructions per se, and a second rule named Block for

handling the disposal of stack-allocated variables. The rest of this paragraph describes the Seq rule.

Consider a sequence (𝑡1; ...; 𝑡𝑛 ; 𝑟). Starting from an input context Γ0, each subterm 𝑡𝑖 makes the

context evolves from Γ𝑖−1 to Γ𝑖 . Recall from Section 3.1 that each subterm 𝑡𝑖 must have unit type

(a.k.a. void type), else it would have been wrapped into a call to the “ignore” function. The sequence

itself may return a value identified by the optional result variable 𝑟 . If such a result variable is set,

the final context is patched to include a res binding instead of the original 𝑟 binding.

Scope Blocks. The typing rule Block is responsible for collecting the resources that corresponds

to stack-allocated variables, when reaching the end of a sequence, that is, the end of their scope.

Recall from Section 3.1 that stack allocation takes the form let 𝑥 = stackRef(𝑇) or let 𝑥 =
stackAlloc𝐶(), with such instructions occurring directly within a sequence. The auxiliary function

StackAllocCells(𝑡1, ..., 𝑡𝑛) synthesizes, based on the syntax of the terms 𝑡𝑖 that appear in the se-

quence at hand, a conjunction of resources, each of the form Uninit(𝑝 ↝ Cell𝜏). These resources

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1:34 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

Γ.pure ⊢ 𝑡 ∶ 𝜏 𝑡 is a literal or a variable

{{Γ}} 𝑡 {{Γ ⍟ (︀res ∶ 𝜏 ∶= 𝑡⌋︀}} LitOrVar

{{Γ0}} 𝑡 {{Γ1}} Γ2 = Rename{res ∶= 𝑥}(Γ1)
{{Γ0}} let 𝑥 = 𝑡 {{Γ2}}

Let

∀𝑖 ∈ (︀1, 𝑛⌋︀. 𝑥𝑖 fresh ∧ {{Γ𝑖−1}} 𝑡𝑖 {{Γ𝑖}} Γ𝑟 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

Rename{𝑟 ∶= res}(Γ𝑛) if 𝑟 ≠ ∅
Γ𝑛 if 𝑟 = ∅

{{Γ0}} (𝑡1; ...; 𝑡𝑛 ; 𝑟) {{Γ𝑟}}
Seq

{{Γ0}} (𝑡1; ...; 𝑡𝑛 ; 𝑟) {{Γ𝑟}} (∅, 𝐹) = Γ𝑟 ⊟ StackAllocCells(𝑡1, ..., 𝑡𝑛)
{{Γ0}} {𝑡1; ...; 𝑡𝑛 ; 𝑟} {{∐︀Γ𝑟 .pure ⋃︀ 𝐹 ̃︀}}

Block

{{(︀Γ0 .pure⌋︀ ⍟𝛾 .pre}} 𝑡 {{Γ1}} (_, ∅) = Γ1 ⊟ 𝛾 .post
(res ∶ 𝜏𝑟) ∈ 𝛾 .post 𝜏𝑓 = (𝜏1, ..., 𝜏𝑛) → 𝜏𝑟

{{Γ0}} (fun(𝑎1 ∶ 𝜏1, ..., 𝑎𝑛 ∶ 𝜏𝑛)𝛾 ↦ 𝑡) {{Γ0 ⍟ (︀res ∶ 𝜏𝑓 , Spec(res, (︀𝑎1, ..., 𝑎𝑛⌋︀, 𝛾)⌋︀}}
Fun

Spec(𝑥0, (︀𝑎1, ..., 𝑎𝑛⌋︀, 𝛾) ∈ Γ0
(𝐸𝑓 𝑟𝑎𝑐 , 𝜎

′, 𝐹) = Γ0 ⊖ SpecializeΓ0
{𝑎𝑖 ∶= 𝑥𝑖 𝑖∈(︀1,𝑛⌋︀, 𝜎}(𝛾 .pre)

dom(𝜌) = dom(𝛾 .post) im(𝜌) ∩ dom(Γ0) = ∅
Γ𝑞 = Rename{𝜌}(𝑎𝑖 ∶= 𝑥𝑖 𝑖∈(︀1,𝑛⌋︀, 𝜎, 𝜎 ′(𝛾 .post))
Γ𝑟 = CloseFracs((︀Γ0.pure, 𝐸𝑓 𝑟𝑎𝑐⌋︀ ⍟ 𝐹 ⍟ Γ𝑞)

{{Γ0}} 𝑥0(𝑥1, ..., 𝑥𝑛)𝜎,𝜌 {{Γ𝑟}}
App

Γ𝑝 = (︀𝜒.vars⌋︀ ⍟ (⋆𝑖∈𝑅 𝜒.excl.pre) ⍟ 𝜒.shrd.reads⍟ 𝜒.shrd.inv

(𝐸𝑓 𝑟𝑎𝑐 , 𝜎
′, 𝐹) = Γ0 ⊖ Γ𝑝

Γ′𝑝 = (︀𝑖 ∶ int, 𝑖 ∈ 𝑅⌋︀ ⍟ (︀𝜒.vars⌋︀ ⍟ 𝜒.excl.pre⍟ 1

𝑅.len
𝜒.shrd.reads⍟ 𝜒.shrd.inv

{{(︀Γ0 .pure⌋︀ ⍟ Γ′𝑝}} 𝑡 {{Γ′𝑞}}
(_, ∅) = Γ′𝑞 ⊟ 𝜒.excl.post⍟ 1

𝑅.len
𝜒.shrd.reads⍟ 𝜒.shrd.inv

Γ𝑞 = 𝜎 ′((⋆𝑖∈𝑅 𝜒.excl.post) ⍟ 𝜒.shrd.reads⍟ 𝜒.shrd.inv)
Γ𝑟 = CloseFracs((︀Γ0.pure, 𝐸𝑓 𝑟𝑎𝑐⌋︀ ⍟ 𝐹 ⍟ Γ𝑞)

{{Γ0}} for (𝑖 ∈ 𝑅)𝜒 𝑡 {{Γ𝑟}}
For

parallelizable(𝜒) {{Γ0}} for (𝑖 ∈ 𝑅)𝜒 𝑡 {{Γ𝑟}}
{{Γ0}} forpar(𝑖 ∈ 𝑅)𝜒 𝑡 {{Γ𝑟}}

ForPar

{{Γ0}} 𝑡1 {{Γ1}} {{Learn{res = true}(Γ1)}} 𝑡2 {{Γ2}} {{Learn{res = false}(Γ1)}} 𝑡3 {{Γ3}}
(_, ∅) = Γ2 ⊟ Γ𝑟 (_, ∅) = Γ3 ⊟ Γ𝑟
{{Γ0}} ifΓ𝑟 𝑡1 then 𝑡2 else 𝑡3 {{Γ𝑟}}

If

Fig. 18. Algorithmic typing rules for establishing triples of the form {{Γ}} 𝑡 {{Γ′}}. These rules are generalized
in Section 5.3 to derive triples the form {{Γ}} 𝑡Δ {{Γ′}}, where Δ describes the resource usage.

are subtracted from the context available at the end of the sequence. Crucially, the subtraction

operation checks that the resources indeed appear in the current resource set. Doing so ensures, in

particular, that the address of a stack-allocated piece of data was not subject to a prior call to free.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:35

Function Definition. Consider a function definition fun(𝑎1 ∶ 𝜏1, ..., 𝑎𝑛 ∶ 𝜏𝑛)𝛾 ↦ 𝑡 , with arguments

𝑎𝑖 of type 𝜏𝑖 , with body 𝑡 , and with contract 𝛾 . Recall from Section 4.3 that the function contract

consists of a precondition 𝛾 .pre and a postcondition 𝛾 .post, both described as contexts. The function

is a closure that may capture free variables from the current context. In the rule, the pure variables

from the current context are described as Γ0.pure. Note, however, that the function is not allowed

to capture linear resources. Hence, the body of the function is typechecked in an environment that

consists of the conjunction of Γ0.pure and 𝛾 .pre. Ultimately, the body of the function must produce

a context Γ𝑟 that entails the postcondition 𝛾 .post. The postcondition of the function definition itself

binds res with the correct function type (res ∶ 𝜏𝑓) and gives its specification hypothesis (Spec(res,
(︀𝑎1, ..., 𝑎𝑛⌋︀, 𝛾)). As explained earlier in Section 4.3, this hypothesis captures {𝛾 .pre} res(𝑎1, ...,
𝑎𝑛) {𝛾 .post}, which is indeed the triple intended for the function named res.

Function Applications. Consider a function application of the form 𝑥0(𝑥1, ..., 𝑥𝑛), where the 𝑥𝑖 are
program variables. (The general form will be discussed in section 5.5.) To typecheck it, the input

context Γ0 must contain an entry of the form Spec(𝑥0, (︀𝑎1, ..., 𝑎𝑛⌋︀, 𝛾) for the function 𝑥0. This same

context Γ0 must entail the precondition 𝛾 .pre, specialized for the arguments 𝑥𝑖 by means of the

Specialize operations defined in Section 4.2. This entailment is checked by means of the carving

subtraction operation defined in Section 4.5. The subtraction produces a frame 𝐹 that contains the

resources from Γ0 that are not used by the function call, and produces a substitution named 𝜎 ′
that describes the instantiation of the ghost arguments and resources. The final postcondition Γ𝑞 is

obtained by considering the postcondition 𝛾 .post, adding the frame 𝐹 and Γ0 .pure, then invoking

the CloseFracs operation described in Section 4.1 for eagerly recombining carved-out fractions.

Two additional technicalities are involved in the statement of the App rule. They correspond to the

handling of optional user-provided annotations, named 𝜎 and 𝜌 , that may guide the typechecking

of an application. Such annotations are commonly found both in proof assistants and in program

verification frameworks. The map 𝜎 allows instantiating a subset of the ghost arguments. Indeed,

there could be situations where the subtraction operation would fail to infer a unique possible

instantiation, by the only means of the unification process. Hence, user annotations are required to

resolve the instantiation. In all our case studies, 𝜎 is only used on ghost calls. The map 𝜌 corresponds

to a renaming map. Its purpose is to rename all the resources that are produced by the postcondition

to avoid name conflicts. Typically, the map 𝜌 is initialized with fresh variable names during the first

typechecking of each function application. In the future, we might let the user explicitly provide

some entries of 𝜌 to manipulate the produced resources by name.

Simple for-loops. Consider a possibly parallel, simple for-loop of the form for𝜋(𝑖 ∈ 𝑅)𝜒 𝑡 The
typechecking of such a loop is driven by the loop contract annotation 𝜒 . The loop body 𝑡 is

typechecked in a context that binds an index 𝑖 of type int, a hypothesis of type 𝑖 ∈ 𝑅, the variables
from 𝐸, the resources 𝐹𝑝𝑟𝑒 , (subfractions of) the resources in 𝐹𝑟𝑒𝑎𝑑𝑠 , and the resources in 𝐹𝑖𝑛𝑣 .

The loop body needs to produce the resources 𝐹𝑝𝑜𝑠𝑡 , and it needs to give back the resources that

it had received from 𝐹𝑟𝑒𝑎𝑑𝑠 and from 𝐹𝑖𝑛𝑣 . There are three complications. First, the shared-read

resources, described by 𝜒.shrd.reads, are split into
1

𝑅.len
subfractions, where 𝑅.len denotes the

number of iterations associated with the range 𝑅. Note that, when typecking the body of the loop

for a particular iteration 𝑖 ∈ 𝑅, the denominator 𝑅.len can be assumed to be nonzero—indeed, 𝑖 ∈ 𝑅
is equivalent to 0 ≤ 𝑖 < 𝑅.len. Second, like for function calls, the instantiation of the contract using

the resources from the input environment Γ0 is computed using a subtraction, involving a frame 𝐹

as well as an instantiation map 𝜎 ′. Also, like for function calls, the output context is obtained by

invoking the CloseFracs operation. Third, loops, like functions calls, feature optional annotations

𝜎 and 𝜌 , which we have omitted from the statement of the rule, for simplicity. The map 𝜎 guides

how the contract is instantiated in the input environment Γ0. The map 𝜌 can be used to explicit the

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1:36 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

names associated with the resources produced by the loop. The two maps are handled in a similar

way as in the App rule.

Conditionals. Consider a conditional of the form if 𝑡1 then 𝑡2 else 𝑡3. The condition 𝑡1 is evaluated
in the input context Γ0 and produces a context Γ1. Then, both branches 𝑡2 and 𝑡3 need to typecheck

in the context Γ1. This context needs to be patched to reflect the knowledge that 𝑡1 evaluated to

either true or false, depending on the branch. The patch is implemented by means of the operation

Learn{res = 𝑏}(Γ). This operation applies the following three steps.

(1) If an aliasing binding of the form res ∶= 𝑣 ∶ bool appears in Γ, then the operation replaces this
binding with a conventional binding res ∶ bool, and extends Γ with an equality (︀res = 𝑣⌋︀.

(2) It specializes the variable res with 𝑏, that is, it removes the binding res ∶ bool, and replaces

all occurrences of res with the boolean value 𝑏.

(3) It applies basic simplifications on the expressions in which res has been substituted with 𝑏.

For example, assume 𝑡1 is a test of the form x == y, and consider the evaluation of Learn{res =
true}(Γ1). The output context of 𝑡1 contains the alias binding res ∶= (x==y) ∶ bool. At step (1), this

binding is replaced with an equality res = (x==y). At step (2), res is replaced with true, hence the

equality becomes true = (x==y). At step (3), this hypothesis is rewritten as the logical equality x = y.

The then-branch 𝑡2 produces an output context Γ2, and likewise the else-branch 𝑡3 produce an

output context Γ3. What should be the output context of the entire conditional if 𝑡1 then 𝑡2 else 𝑡3?
It must be a context, call it Γ𝑟 , that both Γ2 and Γ3 entail. This context Γ𝑟 is usually called the join
context in program logics. In general, there is no way to automatically infer join contexts—it is

almost as hard as inferring contracts for loops. Therefore, typechecking and verification tools must

resort to a combination of user-provided annotations and heuristics. For now, we assume join

contexts to be provided by the user. In our box-blur case study (Section 2.1), the conditionals appear

in terminal position in the body of a function, hence our typechecker can simply instantiate the

join context using the (user-provided) postcondition of that function. We leave it to future work to

devise heuristics well-suited for our typesystem, in order to reduce the number of situations where

OptiTrust users need to provide annotations.

4.8 Type Soundness
The purpose of this section is to present formal statements that reflect the design principles of our

type system. This section may be safely skipped for a first read. A number of auxiliary definitions,

such as the evaluation rules or the satisfaction of a linear resource by a heap fragment, may be

found in the appendix.

We follow the standard approach of justifying soundness of a separation logic by providing a

semantic interpretation of triples. The general pattern asserts that: “a triple holds if and only if,

in any input state satisfying the precondition (i.e., the input context), the evaluation of the term

terminates and produces an output state satisfying the postcondition (i.e., the output context)”. This

statement relies on two central ingredients. First, a definition of the semantics of a term. Second, a

definition of what it means for a program state to satisfy a context.

We formalize the semantics using an omni-big-step evaluation judgment [Charguéraud et al.

2023]. This judgment has been shown to simplify proofs of the frame rule of separation logic, and

proofs of compiler correctness results. Concretely, the judgment 𝑡⇑(𝑠, 𝑚) ⇓ 𝑄 asserts that the term

𝑡 , in an input program state (𝑠, 𝑚), evaluates to output program states that belong to the set 𝑄 .

A program state, written (𝑠,𝑚), consists of an immutable stack 𝑠 and a store𝑚. If 𝑡 produces an

output value, then this value is bound in the output program state to the dedicated name res. For

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:37

simplicity, we focus on total correctness: 𝑡⇑(𝑠, 𝑚) ⇓ 𝑄 asserts that all possible evaluations of the

term 𝑡 do terminate, without error.
12
The evaluation rules may be found in Section A.

Let us now focus on context satisfaction. As usual in separation logic that involves fractional

permissions (or more general forms of ghost state), one asserts that a program state satisfies a

context if and only if there exists a logic state, which consists of this program state augmented with

additional (“ghost”) information, such that this logical state satisfies the context. A logical state is
one that may satisfy a context Γ. We define further on an elision function that extracts a program

state from a logical state. We first describe the representation of a logical state.

A logical state consists of a logical stack, written 𝜎 , and a logical store, written 𝜇. A logical stack

is similar to a program stack except that it includes additional bindings for ghost variables. A logical

store is similar to a program store except that every memory location is tagged with a fraction,

written 𝛼 , in the range (0, 1⌋︀. As standard in realizations of separation logic, a fraction less than

one corresponds to a read-only permission.

As said, a context Γ corresponds to a specification of a logical state. We say that a logical state

(𝜎, 𝜇) satisfies a context Γ of the form ∐︀𝐸 ⋃︀ 𝐹 ̃︀, and write (𝜎, 𝜇) ∈ Γ, if the bindings in 𝜎 have types

that correspond to the bindings in 𝐸, and if the memory cells described by 𝜇 correspond to the

linear resources described in 𝐹 . The technical details of the definition of (𝜎, 𝜇) ∈ Γ are given in

Section B.

To state the semantic interpretation of triples, we need a projection function for extracting a

program state out of a logical state. We write 𝜎⋃︀ prog the operation that converts a logical stack 𝜎

into a program stack 𝑠 by restricting the entries to program variables, or, equivalently said, by

removing entries associated with ghost variables. We write 𝜇⋃︀ prog the operation that turns a logical

store 𝜇 into a program store𝑚 by removing all fractions. By leveraging the two operations, we

define (𝜎, 𝜇)⋃︀ prog as (𝜎⋃︀ prog, 𝜇⋃︀ prog), to convert a logical state into a program state.

Before defining triples, we introduce AcceptableStates(𝜎, 𝜇, Γ′) to denote the set of program

output states satisfying the postcondition Γ′ and satisfying certain constraints with respect to the

input state (𝜎, 𝜇). The set AcceptableStates(𝜎, 𝜇, Γ′) corresponds to the set of states that are the
projection of a logical state (𝜎 ′, 𝜇′) such that: (1) the logical state (𝜎 ′, 𝜇′) satisfies the specification
Γ′, and (2) the read-only restriction of 𝜇′ is identical to the read-only restriction of 𝜇, and (3) the

stacks in 𝜎 ′ and 𝜎 agree on the intersection of their domain. To formalize the second constraint,

we let OnlyRO(𝜇) denote the restriction of the logical store 𝜇 to the cells that are tagged with a

fraction strictly less than 1, that is, as {𝑙 ↦ (𝛼, 𝑣) ⋂︀ (𝑙 ↦ (𝛼, 𝑣)) ∈ 𝜇 ∧ 𝛼 < 1}. We then define:

AcceptableStates(𝜎, 𝜇, Γ′) ∶=
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀
(𝜎 ′, 𝜇′)⋃︀ prog

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀

(𝜎 ′, 𝜇′) ∈ Γ′
∧ OnlyRO(𝜇) = OnlyRO(𝜇′)
∧ ∀𝑥 ∈ dom(𝜎) ∩ dom(𝜎 ′), 𝜎(𝑥) = 𝜎 ′(𝑥)

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀
.

We are now ready to define logical triples, written {Γ} 𝑡 {Γ′}. Such a triple asserts that for any

logical state satisfying Γ, starting in the program state that corresponds to this logical state, all

executions of 𝑡 terminate and produce output states that belong to the set AcceptableStates(𝜎, 𝜇,
Γ′). The latter means that an output state must satisfy Γ′, must preserve read-only entries, and

must feature an output stack that agrees with the input stack.

12
As explained in the omnisemantics paper [Charguéraud et al. 2023], the omni-big-step evaluation judgment is related to

the standard big-step judgment via the following equivalence.

𝑡⇑(𝑠, 𝑚) ⇓ 𝑄 ⇐⇒ all possible executions of 𝑡 terminate without error

∧ (∀(𝑠′, 𝑚′), 𝑡⇑(𝑠, 𝑚) ⇓ (𝑠′, 𝑚′) Ô⇒ (𝑠′, 𝑚′) ∈ 𝑄)

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1:38 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

Definition 4.1 (Logical triples).

{Γ} 𝑡 {Γ′} ∶= ∀(𝜎, 𝜇) ∈ Γ, 𝑡⇑(𝜎, 𝜇)⋃︀ prog ⇓ AcceptableStates(𝜎, 𝜇, Γ
′)

The fundamental property of separation logic is the frame rule, which we prove correct for our

logical triples in Appendix C. The contexts involved here are dependently-typed, hence we need

additional assumptions to ensure that the composed contexts are well-typed, in the sense that every

variable that appears in a type or a resource is properly bound earlier in the context, and that all

the types that appear in the context are themselves well-typed. (Well-typed contexts are formalized

by Definition C.3 in Section C.) The statement of the frame rule is thus as follows.

Theorem 4.2 (Frame rule for logical triples).

{Γ} 𝑡 {Γ′} ∧ Γ ⋆ Γ′′ is well-typed ∧ Γ′ ⋆ Γ′′ is well-typed Ô⇒ {Γ ⋆ Γ′′} 𝑡 {Γ′ ⋆ Γ′′}

Our typing rules presented earlier on in this section are designed as algorithmic variants of the

standard typing rules of separation logic. The soundness of our algorithmic typing rules stems

from the soundness of the standard typing rules of separation logic. Soundness is formally stated

as follows.

Proposition 4.3 (Soundness of the algorithmic typing rules). {{Γ}} 𝑡 {{Γ′}} Ô⇒ {Γ} 𝑡 {Γ′}

We leave to future work the completion of a mechanized proof of this statement.

5 COMPUTING PROGRAM RESOURCES: USAGE MAPS
The first goal of this section is to formalize the usage maps, written Δ, and to generalize triples

from the form {{Γ}} 𝑡 {{Γ′}} to the form {{Γ}} 𝑡Δ {{Γ′}}. Section 5.1 presents the grammar of usage

maps. Section 5.2 presents operations on usage maps. Section 5.3 explains how usage maps are

computed by our typing algorithm.

The second goal of this section is to formalize the triple minimization operations, which plays

a central role in the typechecking of function calls involving effectful subexpressions. Triple

minimizationwill also be useful later on tominimize the loop contracts produced by transformations.

Section 5.4 presents the triple minimization procedure. Section 5.5 presents the typing rule for

subexpressions—this typing rule applies as a preprocessing before the App rule presented earlier.

Section 5.6 presents formal statements about the contents of usage maps.

5.1 Grammar of Usage Maps
A usage map, written Δ, is an association map that binds resource names to usage kinds. For a
pure resource name, there are 2 possible usage kinds: required and ensured. For a linear resource
name, there are 5 possible usage kinds: full, uninit, splittedFrac, joinedFrac and produced. In a

triple {{Γ}} 𝑡Δ {{Γ′}}, the usage map Δ binds names of resources that can be bound in Γ or Γ′, or
possibly in both. The usage map Δ only binds names of resources that are effectively manipulated

by 𝑡 . (In other words, the framed resources are omitted from usage maps.) Let us now explain the

meaning of each possible binding in a usage map Δ associated with the triple {{Γ}} 𝑡Δ {{Γ′}}.
● “𝑥 ∶ required” means that 𝑥 is a pure resource in Γ that was used during the typing of 𝑡 .

● “𝑥 ∶ ensured” means that 𝑥 is a pure resource added to the context Γ′ during the typing of 𝑡 .

In such a situation, 𝑥 is not bound in Γ.
● “𝑦 ∶ full” can arise when Γ contains a linear resource “𝑦 ∶ 𝐻”, for some predicate 𝐻 . The

usage “𝑦 ∶ full” means that this resource is consumed during the typing of 𝑡 . As a result 𝑦 is

not bound in Γ′. Even if 𝑡 produces a linear resource with the same predicate 𝐻 , this new

occurrence of 𝐻 is assigned a fresh name, distinct from 𝑦.

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:39

● “𝑦 ∶ uninit” is similar to “𝑦 ∶ full” but moreover captures the information that 𝑡 needs not

read the original contents of the memory cells associated with the resource named 𝑦. In

particular, if 𝑡 performs a write operation in a cell 𝑦 before any read operation on 𝑦, then

the usage of 𝑦 is uninit.

● “𝑦 ∶ splittedFrac” can arise when Γ contains a splittable linear resource “𝑦 ∶ 𝐻”, for some

predicate 𝐻 . The usage “𝑦 ∶ splittedFrac” means that 𝑡 uses an unspecified subfraction of

this resource. In such a situation, the name 𝑦 is bound both in Γ and in Γ′. It may be the

case, however, that the resource named 𝑦 carries different fractions in Γ and Γ′.
● “𝑦 ∶ joinedFrac” can arise when Γ contains a linear resource of the form “𝑦 ∶ (𝛼−𝛽1−...−𝛽𝑛)𝐻”.

The usage “𝑦 ∶ joinedFrac” means that: (1) the linear resource named 𝑦 is not used by 𝑡 , and

(2) 𝑡 produced a resource of the form (𝛽𝑖 −𝛾1 − ... −𝛾𝑚)𝐻 , and (3) these two resources are

merged and the result appears in Γ′ under the name 𝑦. If a single merge operation is applied,

then the resulting resource is 𝑦 ∶ (𝛼 − 𝛽1 − ... − 𝛽𝑖−1 −𝛾1 − ... −𝛾𝑚 − 𝛽𝑖+1 − ... − 𝛽𝑛)𝐻 . (Recall

Section 4.1.)

● “𝑦 ∶ produced” means that the linear resource 𝑦 has been produced by 𝑡 . In this case, 𝑦 is

the name of a linear resource in Γ′, and does not occur in Γ.
● If a resource name is bound in Γ but not in Δ, then its absence indicates that the corre-

sponding resource is not touched by 𝑡 . Such a resource is bound under the same name in Γ
and Γ′.

5.2 Operations on Usage Maps
Projections of Usage Maps. We define Δ.full as the set of names 𝑦 such that “𝑦 ∶ full” appears in Δ.

Likewise, we define Δ.required, Δ.ensured, Δ.uninit, Δ.splittedFrac, Δ.joinedFrac and Δ.produced.
In addition, we define the following operations.

Δ.consumed = Δ.full ∪ Δ.uninit
Δ.read = Δ.splittedFrac ∪ Δ.joinedFrac
Δ.alter = Δ.consumed ∪ Δ.produced ∪ Δ.ensured

Intersection and Filtering. We define:

Δ1 ⩀ Δ2 = dom(Δ1) ∩ dom(Δ2)
Γ�Δ = Γ�dom(Δ)

Sequential Composition of Usage Maps. This section defines the usage composition operator, written
Δ1;Δ2. This operator plays a central role in computing the usage of a sequence of terms. Let us

begin with an example.

Consider the sequence “(let 𝑟 = heapAlloc𝐶())Δ1
; (let 𝑘 = get(𝑟))Δ2

; free(𝑟)Δ3
”. In Δ1, we have

a binding “𝑦 ∶ produced” because the first instruction produces the resource “𝑦 ∶ 𝑟 ↝ Cell”. In Δ2,

we have a binding “𝑦 ∶ splittedFrac” because the instruction only reads with 𝑦 (thus it accepts

any subfraction). In Δ3, we have a binding “𝑦 ∶ uninit” because the third instruction destroys the

resource 𝑦 without caring about the value of the Cell.

Let us give three examples of compositions. First, the usage map Δ1;Δ2 contains a binding

“𝑦 ∶ produced” because, taken together, the sequential composition of the those two instructions

still creates the resource 𝑦. Second, the usage map Δ2;Δ3 contains a binding 𝑦 ∶ full because, taken
together, the second and the third instruction consume the Cell, and they read the value that was

contained inside. Third, the usage map Δ1;Δ2;Δ3 contains no binding for 𝑦 because the Cell cannot

be seen from outside the sequence of instruction.

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1:40 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

Δ1;Δ2 ∅ required ensured

∅ ∅ required ensured

required required required �
ensured ensured ensured �

Δ1;Δ2 ∅ full uninit splittedFrac joinedFrac produced

∅ ∅ full uninit splittedFrac joinedFrac produced

full full � � � � �
uninit uninit � � � � �

splittedFrac splittedFrac full full splittedFrac splittedFrac �
joinedFrac joinedFrac full uninit splittedFrac joinedFrac �
produced produced ∅ ∅ produced produced �

Fig. 19. Tables for sequential composition of two usage maps, for pure and for linear resources. For example, in

the second table, the cell on the row “splittedFrac” and on the column “full” expresses that if “𝑥 ∶ splittedFrac”
is a binding from Δ1 and “𝑥 ∶ full” is a binding from Δ2, then “𝑥 ∶ full” is a binding in Δ1;Δ2. The input or

output ∅ corresponds to cases where the usage map contains no binding for the resource name considered.

The output � corresponds to cases that cannot arise according to our typechecking rules.

Formally, the usage composition operation Δ1;Δ2 is defined by merging the two usage maps

pointwise by resource name, using the table shown in Fig. 19 to compute the “combined usage” in

case a same resource name is bound both in Δ1 and Δ2.

The input or output ∅ corresponds to cases where there is no binding for a resource name in

the usage map. Note that a resource produced in Δ1 and then fully used in Δ2 will be absent from

Δ1;Δ2. As illustrated in the earlier example, a usage map abstracts away intermediate resources

not present in the final triple.

The output � corresponds to cases that cannot arise. For example, it is not possible to have a

linear resource used as full and used again afterwards, since usage full corresponds to a removal

from the context. Similarly, the same resource name cannot be produced or ensured twice.

Finally, let us comment on the naming policy. If a linear resource is entirely consumed, its

name disappears. If a resource 𝑦 ∶ 𝛽𝐻 is split as 𝛼𝐻 and (𝛽 − 𝛼)𝐻 , the (𝛽 − 𝛼)𝐻 part keeps the

initial resource name 𝑦 (and 𝛼𝐻 takes a fresh resource name). If CloseFracs merges the fractions

𝑦 ∶ (𝛽 − 𝛼)𝐻 and 𝑦′ ∶ 𝛼𝐻 , it produces a resource 𝛽𝐻 with the name 𝑦 (and the name 𝑦′ disappears).
Let us illustrate how these rules play out on a concrete example. Assume a term 𝑡1 uses a full

resource named 𝑦 to only perform a read operation, and subsequently a term 𝑡2 uses the same

resource to perform a write operation. Then, thanks to the fact that the name 𝑦 was preserved

during the carve-out and subsequent CloseFracs operation, the usage map of the sequence 𝑡1; 𝑡2
contains, as one would naturally expect, the binding 𝑦 ∶ full.

5.3 Computing Usage Maps
Usage of a context subtraction. Each time a typing rule performs a subtraction, we add entries to

the usage map of the term invoking this rule. This paragraph explains the usage map associated

with a subtraction. The usage map of a subtraction (𝜎, 𝐹) = Γ1 ⊟ Γ2 contains:

● One entry required for each pure variable of Γ1 mentioned in 𝜎 .

● One entry uninit or full for each linear resource of Γ1 that was unified with a resource of Γ2.
The entry is uninit if the resource in Γ2 is of the form Uninit(𝐻). Otherwise, it is a full.

For a subtraction performing read-only carving Γ1 ⊖ Γ2, the usage map is defined in the same

way as Γ1 ⊟ Γ2 except that if a linear resource from Γ2 is found by carving a resource of Γ1, the entry

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:41

for that resource from Γ1 has kind splittedFrac, and we also add an ensured entry for each newly

generated fraction.

Usage of a CloseFracs. When closing fractions, we need to add entries to the usage map to account

for the modifications on the context. We try to do so in a way that preserves as much information

as possible. When CloseFracs finds a possible reduction on two resources 𝑦1 ∶ (𝛼 − 𝛽1 − ... − 𝛽𝑛)𝐻
and 𝑦2 ∶ (𝛽𝑖 − 𝛾1 − ... − 𝛾𝑚)𝐻 it keeps the name 𝑦1 from the carved part for the generated closed

resource (𝛼 − 𝛽1 − ... − 𝛽𝑖−1 − 𝛾1 − ... − 𝛾𝑚 − 𝛽𝑖+1 − ... − 𝛽𝑛)𝐻 . On the one hand, the resource 𝑦2
disappears from the context. Therefore, we have to put the usage 𝑦2 ∶ full in the usage map. On the

other hand, the resource 𝑦1 remains in the context. Since the absence of 𝑦1 would not have blocked

the typechecking, it gets the usage 𝑡1 ∶ joinedFrac. Note this is currently the only way joinedFrac

usage are generated. Note also that the order of reduction does not matter for the final usage map

(all the fractions that disappear will have a usage full, and all the fractions that got bigger will have

a usage joinedFrac).

Computing Usage During Term Typing. In order to produce triples of the form {{Γ}} 𝑡 {{Γ′}}, we
need to patch our typing rules to record the usage information.

Here is the full version of the rules LitOrVar and Let described earlier:

Γ.pure ⊢ 𝑡 ∶ 𝜏 𝑡 is a literal or a variable Δ = {res ∶ ensured}
{{Γ}} 𝑡Δ {{Γ ⍟ (︀res ∶ 𝜏 ∶= 𝑡⌋︀}} LitOrVar

{{Γ0}} 𝑡Δ {{Γ1}} Γ2 = Rename{res ∶= 𝑥}(Γ1) Δ′ = Rename{res ∶= 𝑥}(Δ)
{{Γ0}} (let 𝑥 = 𝑡)Δ

′ {{Γ2}}
Let

For the rule Val, the usage map contains a single binding res ∶ ensured to account for the alias

added in the context. For the rule Let, the typechecker uses the operator Rename{𝑥 ∶= 𝑥 ′}(Δ), that
renames the key 𝑥 into 𝑥 ′ inside the map Δ. This renaming is applied on the usage map of the body

to follow the renaming in the context.

For the interested reader, we now explain how usage maps are computed in practice. Instead of

rewriting each typing rules with explicit usage maps, which would be quite verbose, we simply

explain how the rules are extended. We reuse the variables names of the rules described in figure 18.

● For the rule Seq, if each instruction 𝑡𝑖 has a usage map Δ𝑖 , the usage map of the sequence Δ
is given by:

Δ =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

Rename{𝑟 ∶= res}(Δ1; ...;Δ𝑛) if 𝑟 ≠ ∅
(Δ1; ...;Δ𝑛) if 𝑟 = ∅

● For the rule Block, if we name Δ𝑟 the usage map of the sequence, and Δ𝑐 the usage map of

the subtraction of StackAllocCells, the usage map of the whole block is (Δ𝑟 ;Δ𝑐).
● For the rule Fun, if we name Δ1 the usage map of the function body, Δ2 the usage map of

the subtraction, and 𝑆 the generated specification hypothesis, then the usage map of the

function definition is ((Δ1;Δ2)�Γ0) ∪ {res ∶ ensured, 𝑆 ∶ ensured}. Indeed, viewed from

outside the only dependencies of the function definition are the pure resources captured

from the surrounding context.

● For the rule App, if Δ𝜎 is a usage map containing an entry required for each 𝑥𝑖 and each

pure resource from Γ0 mentioned in 𝜎 , Δ𝑝 is the usage map of the subtraction on Γ0, Δ𝑞 is a

usage map containing one produced (resp. ensured) for each linear (resp. pure) resource in

Γ𝑞 , and Δ𝑓 the usage map of the CloseFracs operation, the usage map of the application is

(Δ𝜎 ;Δ𝑝 ;Δ𝑞 ;Δ𝑓).

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

1:42 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

● For the rule For, only the outer contract instantiation and the required pure variables needed

to typecheck the loop body are considered for computing the usage map. If Δ𝑝 is the usage

map of the subtraction Γ0 ⊖ Γ𝑝 , Δ𝑏 is the usage of the body of the loop, Δ′𝑞 is the usage

of the subtraction on Γ′𝑞 , Γ𝑞 is a usage map containing one produced (resp. ensured) for

each linear (resp. pure) resource in Γ𝑞 , and Γ𝑟 is the usage of the CloseFracs operation, then
(Δ𝑝 ; ((Δ𝑏 ;Δ

′
𝑞)�Γ0);Δ𝑞 ;Δ𝑟) is the usage map of the for-loop. Note that the ((Δ𝑏 ;Δ

′
𝑞)�Γ0)

part of this usage map correspond to the usage of pure resources from outside the loop in

the body of the loop (they all have a required usage kind).

● For the rule If, applied to a conditional ifΓ𝑟 𝑡1 then 𝑡2 else 𝑡3, it is always sound (though

possibly imprecise) to combine the usage map Δ0 of the condition expression 𝑡1 to another

usage map Δ1 that gives a full usage to each linear resource in Γ1 (the output context of
𝑡1) and a usage map Δ𝑟 that contains a produced usage for each linear resource of Γ𝑟 . For
the usage of pure resources, we name Δ2 (resp. Δ3) the required usage from 𝑡2 (resp. 𝑡3).

Then, we take all the pure facts from Γ𝑟 that are not in Γ1 as ensured in a usage map Δ′𝑟 . In
summary, we compute the usage map of the whole conditional as (Δ0;Δ1;Δ2;Δ3;Δ𝑟 ;Δ

′
𝑟).

5.4 Minimization of Triples
The triple minimization operation is used for typing function calls with effectful arguments and

for minimizing loop contracts produced by transformations. The operationMinimize(Γ, Γ′, Δ) is
defined when its input corresponds to a valid triple {{Γ}} 𝑡Δ {{Γ′}}. The output of the operation is a

quadruplet (𝐸fracs, 𝐹 , ˆ𝐹 ′, 𝐹 framed).
● 𝐹 is the minimized linear precondition: a linear context containing resources from Γ.linear
that are needed to typecheck 𝑡 .

● ˆ𝐹 ′ is the minimized linear postcondition: a linear context produced after typechecking 𝑡 if

we give only 𝐹 as the linear precondition.

● 𝐹 framed
is the maximal frame: a linear context of resources from Γ.linear that were super-

fluous in the typechecking of 𝑡 . It means resources in 𝐹 framed
can be framed during the

typechecking of 𝑡 . Since these resources are not touched by 𝑡 , they must also occur in

Γ′.linear.
● 𝐸fracs is the generated fraction set: a set of pure fractions that are created by theMinimize

algorithm to give only an arbitrary subfraction of the resource in Γ.linear in 𝐹 when such a

fractional resource suffices to typecheck 𝑡 .

Concretely, the result ofMinimize is guided by the entries in the usage map Δ, which is computed

when typechecking 𝑡 .

● If 𝑡 can typecheck without a linear resource 𝐻 , then 𝐻 should be put in the frame 𝐹 framed
.

● If 𝑡 can typecheck with only the uninitialized version of 𝐻 (because, for instance, it starts

by overwriting the data accessible through 𝐻), then Uninit(𝐻) should be placed in 𝐹 .

● If 𝑡 can typecheck with only an arbitrary subfraction of 𝐻 (because, for instance, 𝑡 only

reads using 𝐻), then a fresh fraction 𝛼 should be created and placed in 𝐸fracs, the resource

𝛼𝐻 should be placed in 𝐹 , and (1 − 𝛼)𝐻 should remain in 𝐹 framed
.

Detailed examples and an algorithmic description of Minimize can be found in Appendix D.

From the perspective of establishing soundness results, the following three properties about the

quadruplet (𝐸fracs, 𝐹 , ˆ𝐹 ′, 𝐹 framed) are useful.
● {{∐︀Γ.pure, 𝐸fracs ⋃︀ 𝐹 ̃︀}} 𝑡 {{∐︀Γ′.pure, 𝐸fracs ⋃︀ ˆ𝐹 ′̃︀}}, which corresponds to the minimized triple.

● Γ⇒ ∐︀Γ.pure, 𝐸fracs ⋃︀ 𝐹 ⋆ 𝐹 framed̃︀, which describes the decomposition of Γ.
● ∐︀Γ′.pure, 𝐸fracs ⋃︀ ˆ𝐹 ′ ⋆ 𝐹 framed̃︀ ⇒ Γ′, which describes the decomposition Γ′.

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:43

5.5 Typechecking of Order-Irrelevant Subexpressions
We next explain how to leverage the minimization procedure for typechecking functions calls

that are not in A-normal form, but possibly include effectful subexpressions. In C, and in our

subset OptiC, the arguments of a function call may be evaluated in an arbitrary order. The fact

that the order is not fixed is interesting because it leaves additional flexibility for optimizations.

Our typesystem checks that, for well-typed OptiTrust programs, the order of evaluation is indeed

irrelevant. To that end, we consider a sufficient condition: that the arguments can be evaluated in

parallel, in the sense that the side-effects performed by the arguments either should be disjoint.

Remark: there exists valid C programs that fail to typecheck in OptiTrust because our condition

is slightly more restrictive. However, such programs may be easily rewritten by binding variables

to arguments before the function call.

The rule Subexpr reduces the typechecking of a term with possibly effectful subexpressions to

the typechecking of a term whose subexpressions are program variables. In particular, the rule may

be used to compute the output context associated with a call of the form 𝑓 (𝑡1, ..., 𝑡𝑛) in an input

context Γ0, by reducing the problem to the typechecking of a call of the form 𝑓 (𝑥1, ..., 𝑥𝑛), in an

input context Γ𝑝 that binds the fresh variables 𝑥𝑖 .

The rule Subexpr, shown below, applies to a term of the form
ˆℰ(︀𝑡0, ..., 𝑡𝑛⌋︀, where ˆℰ denotes a

multi-evaluation-context and where the 𝑡𝑖 variables denote the subterms in evaluation position.

A multi-evaluation-context is a term with ordered holes that are all in evaluation position. We

write
ˆℰ(︀𝑡0, ..., 𝑡𝑛⌋︀ the operation that fills the holes with terms 𝑡0 to 𝑡𝑛 . For example, if

ˆℰ denotes the

multi-evaluation-context ◻(◻, ..., ◻), then the application
ˆℰ(︀𝑓 , 𝑡1, ..., 𝑡𝑛⌋︀ produces the function call

𝑓 (𝑡1, ..., 𝑡𝑛).
The goal of the rule Subexpr is to distribute the linear resources from the input context Γ0 between

the subterms 𝑡𝑖 . If several subterms read the same resource, then this resource needs to be split. If

one subterm reads a resource and another subterm modifies that same resource, the rule must fail

to apply. The key idea is to typecheck the subterms one after the other, taking advantage of the

Minimize operation to remove the minimal amount of resources from the input context, thereby

leaving as many resources as possible for the remaining subterms.

Subexpr

∀𝑖 ∈ (︀1, 𝑛⌋︀. {{Γ𝑖−1}} 𝑡Δ𝑖

𝑖 {{Γ′𝑖 }} ∧ (𝐸fracs𝑖 , 𝐹𝑖 ,
ˆ𝐹 ′𝑖 , 𝐹

framed

𝑖) =Minimize(Γ𝑖−1, Γ′𝑖 , Δ𝑖) ∧ 𝑥𝑖 fresh

∀𝑖 ∈ (︀1, 𝑛⌋︀. Γ𝑖 = ∐︀ Γ𝑖 .pure, 𝐸fracs𝑖 ⋃︀ 𝐹 framed

𝑖 ̃︀ ∧ ˆΓ′𝑖 = ∐︀ Γ′𝑖 .pure�Δ𝑖 .ensured ⋃︀ ˆ𝐹 ′𝑖 ̃︀
Γ𝑝 = CloseFracsΔ𝑝 (Γ𝑛 ⍟⋆𝑖∈(︀0,𝑛⌋︀ Rename{res ∶= 𝑥𝑖}(ˆΓ′𝑖))

{{Γ𝑝}} ˆℰ(︀𝑥1, ..., 𝑥𝑛⌋︀Δ𝑞 {{Γ𝑞}}
Δ = Rename{res ∶= 𝑥1}(Δ1); ...; Rename{res ∶= 𝑥𝑛}(Δ𝑛);Δ𝑝 ;Δ𝑞

{{Γ0}} ˆℰ(︀𝑡1, ..., 𝑡𝑛⌋︀Δ {{Γ𝑞}}

Appendix E presents an example application of this rule.

5.6 Formal Properties of Usage Maps
To conclude this section, we present three propositions that specify the contents of usage maps

computed by our typing algorithm. These propositions have guided all our definitions. We claim

that these propositions hold by design; we leave to future work a thorough mechanized proof of

the claims.

Consider an algorithmic triple {{Γ}} 𝑡Δ {{Γ′}}, where Γ decomposes as ∐︀𝐸 ⋃︀ 𝐹 ̃︀ and Γ′ decomposes

as ∐︀𝐸′ ⋃︀ 𝐹 ′̃︀. The first proposition explains how 𝐹 and 𝐹 ′ are partitionned by the usage map.

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

1:44 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

Proposition 5.1 (Decomposition by usage).

𝐹 = 𝐹�Δ.full ⋆ 𝐹�Δ.uninit ⋆ 𝐹�Δ.splittedFrac ⋆ 𝐹�Δ.joinedFrac ⋆ 𝐹 ∖ Δ
𝐹 ′ = 𝐹 ′�Δ.produced ⋆ 𝐹 ′�Δ.splittedFrac ⋆ 𝐹 ′�Δ.joinedFrac ⋆ 𝐹 ′ ∖ Δ

The second proposition explains how 𝐸′ extends 𝐸, and how the frame resources from 𝐹 are

preserved in 𝐹 ′. Besides, the proposition captures the fact that a resource with usage splittedFrac

or joinedFrac in 𝐹 must also appear in 𝐹 ′, albeit with a possibly different fraction.

Proposition 5.2 (Preserved parts of typing contexts).

{{∐︀𝐸 ⋃︀ 𝐹 ̃︀}} 𝑡Δ {{∐︀𝐸′ ⋃︀ 𝐹 ′̃︀}}
Ô⇒ 𝐸′ = 𝐸, (𝐸′�Δ.ensured)
∧ 𝐹 ′ ∖ Δ = 𝐹 ∖ Δ
∧ (∀𝑦, ∀𝐻, (∃𝛼, (𝑦 ∶ 𝛼𝐻) ∈ 𝐹�Δ.splittedFrac) ⇐⇒ (∃𝛽, (𝑦 ∶ 𝛽𝐻) ∈ 𝐹 ′�Δ.splittedFrac))
∧ (∀𝑦, ∀𝐻, (∃𝛼, (𝑦 ∶ 𝛼𝐻) ∈ 𝐹�Δ.joinedFrac) ⇐⇒ (∃𝛽, (𝑦 ∶ 𝛽𝐻) ∈ 𝐹 ′�Δ.joinedFrac))

The third proposition explains that the entries of the usage map Δ imply that the term 𝑡 may

be typed in a context with smaller footprint. If a resource 𝐻 appears in 𝐹 but not used, then it is

omitted. If a resource𝐻 appears in 𝐹 but used only as uninit (i.e., the corresponding cells are written

before being read), then the resource is replaced with Uninit(𝐻). If a resource𝐻 is only read, then it

is replaced with a fractional resource 𝛼𝐻 , where 𝛼 is a constant that can be chosen arbitrarily small.

These operations are formally captured in the following statement, which also covers additional

complications related to the case where a set of input resources are splitted or merged together for

producing certain output resources. Below, {Γ̂} 𝑡 { ˆΓ′} corresponds to a semantic triple, a notion

introduced in Section 4.8; and the 𝐹 variables are explained afterwards.

Proposition 5.3 (Minimization with usage maps).

{{∐︀𝐸 ⋃︀ 𝐹 ̃︀}} 𝑡Δ {{∐︀𝐸′ ⋃︀ 𝐹 ′̃︀}}
Ô⇒ ∀𝛼, ∃𝐹 SP, ∃𝐹 ST, ∃𝐹 JS, ∃𝐹 JF,

let Γ̂ ∶= ∐︀𝐸�Δ.required ⋃︀ 𝐹�Δ.full ⋆ IntoUninit(𝐹�Δ.uninit) ⋆ 𝛼(𝐹�Δ.splittedFrac)̃︀ in
let ˆΓ′ ∶= ∐︀𝐸�Δ.required, 𝐸′�Δ.ensured ⋃︀ 𝐹 ′�Δ.produced ⋆ 𝐹 SP ⋆ 𝐹 JS ⋆ 𝐹 JF̃︀ in

{Γ̂} 𝑡 { ˆΓ′}
∧ 𝛼(𝐹�Δ.splittedFrac) ⇔ 𝐹 SP ⋆ 𝐹 ST
∧ 𝐹 ′�Δ.splittedFrac⇔ (1 − 𝛼)(𝐹�Δ.splittedFrac) ⋆ 𝐹 SP ⋆ 𝐹 JS
∧ 𝐹 ′�Δ.joinedFrac⇔ (𝐹�Δ.joinedFrac) ⋆ 𝐹 JF

We explain the role of the 𝐹 variables at a high level, by means of example.

● Assume a resource 𝑦 ∶ (𝛽 −𝛾)𝐻 from 𝐹 with usage joinedFrac in Δ meaning that 𝑡 does not

read this resource. It must be the case that 𝑡 produces (directly or indirectly) a resource

𝛾𝐻 that is immediately merged into 𝑦. This produced resource appears in 𝐹 JF, short for

joined-framed.
● Assume a resource 𝑦 ∶ (𝛽 −𝛾)𝐻 from 𝐹 with usage splittedFrac in Δ meaning that 𝑡 reads

this resource. Assume moreover 𝑡 produces a resource 𝛾𝐻 that is immediately merged into

𝑦. This produced resource appears in 𝐹 JS, short for joined-split.
● Assume a resource 𝑦 ∶ 𝛽𝐻 from 𝐹 with usage splittedFrac in Δ. In the minimized triple

for 𝑡 , which takes an arbitrarily-small fraction 𝛼 of the splittedFrac resources, (up to) two

subfractions of 𝛼𝛽𝐻 may be involved. A first subfraction corresponds to a subresource of

𝑦 that 𝑡 does not alter; this subfraction appears in 𝐹 SP, short for split-preserved. A second

subfraction corresonds to a subresource of 𝑦 that 𝑡 alters; this subfraction appears in 𝐹 ST,

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:45

short for split-transformed. The line 𝛼(𝐹�Δ.splittedFrac) ⇔ 𝐹 SP ⋆ 𝐹 ST captures that the

splittedFrac resources from 𝐹 divide between 𝐹 SP and 𝐹 ST.

Again, we leave it to future work to carry out a mechanized proof of these propositions.

6 JUSTIFYING TRANSFORMATION CORRECTNESS
In this section, we explain how OptiTrust leverages resource typing information to check the

correctness of the transformations requested by the programmer. The aim of this section is not

to cover all the transformations implemented in OptiTrust, but to present a representative subset

thereof. We focus in particular on transformations that leverage the resource information in an

interesting way. All the transformations presented in this section are invoked multiple times in our

case studies from Section 2.

Recall that we only need to check the correctness of basic transformations, because combined
transformations are defined as composition of basic transformations. For each basic transformation

considered, we present a generally applicable sufficient condition for the transformation to be correct.

For certain transformations, this sufficient condition includes the property that the produced

program successfully typechecks. For other transformations, typechecking is not required to ensure

correctness. Nevertheless, OptiTrust re-typechecks the program after every transformation, for the

purpose of allowing the application of subsequent transformations.

A number of basic transformation might seem “simple” to the reader. This simplicity is precisely

a strength of OptiTrust. As explained in the introduction, we aim to minimize the trusted code

base, by considering the simplest possible basic transformations and by implementing as many

transformations as possible as composition of basic transformations. Other transformations aremore

involved. In fact, for certain loop transformations, we have considered only simplified sufficient

conditions, which we could further generalize in future work.

Before presenting the key aspects of specific transformations, we introduce notation for describing

transformations. Transformations apply to instructions or group of instructions; they depend on

typing context and usage information; and they produce code with possibly updated loop contracts,

and possibly including ghost instructions. Hence, we need a convenient way to visualize all these

entities.

Notation for Well-Typed Programs. Transformations leverage typing information, not only for

checking correctness, but also for guiding the generation of the output code. Recall from the

previous section that our typechecking algorithm computes, for every subterm 𝑡 , its input context

Γ1, its output context Γ2, and its usage map Δ, establishing triples of the form {{Γ1}} 𝑡Δ {{Γ2}}. In this

section, we use an alternative syntax, better-suited for describing the input of transformations. If 𝑡

denotes an instruction, we write Γ1 𝑡 ;Δ Γ2 as straight-line syntax for {{Γ1}} 𝑡Δ {{Γ2}}.

Groups of Instructions. Some transformations operate on groups of consecutive instructions. We

let the meta-variable 𝑇 range over a (possibly empty) group of instructions. We generalize our

alternative syntax by writing Γ1 𝑇 ;Δ Γ2 , where Γ1 and Γ2 denotes the initial and final contexts, and

Δ denotes the composition of the usages from the group of instructions, as defined in Section 5.3:

Γ0 𝑇 ;Δ Γ𝑛 ≡ Γ0 𝑡1;Δ1Γ1 𝑡2;Δ2Γ2 ...𝑡𝑛 ;Δ𝑛 Γ𝑛
where 𝑇 ≡ 𝑡1; 𝑡2; ...; 𝑡𝑛
and Δ ≡ Δ1;Δ2; ...;Δ𝑛

Program Contexts. Transformations generally apply to a program subterm, that is, apply under a

program context. Unlike evaluation contexts, program contexts can reach subterms that are not

in evaluation position. We let the meta-variable ℰ range over program contexts. For example,

evaluating a subexpression 1 + 1 that appears in a program context ℰ is described as the transition

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

1:46 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

from ℰ(︀1+ 1⌋︀ to ℰ(︀2⌋︀. We also allow program contexts to denote a hole in the middle of a sequence.

For example, swapping two instructions that appear inside a sequence is described as the transition

from ℰ(︀𝑡1; 𝑡2⌋︀ to ℰ(︀𝑡2; 𝑡1⌋︀, to be interpreted as a transition from ℰ ′(︀{𝑇0; 𝑡1; 𝑡2;𝑇3}⌋︀ to ℰ ′(︀{𝑇0; 𝑡2; 𝑡1;𝑇3}⌋︀,
where ℰ ′ denotes the program context associated with the outer sequence that contains 𝑡1; 𝑡2. We

will only explicitly mention the surrounding program context ℰ for the first few transformations.

Evaluation Contexts. Some transformations operate on subexpressions that appear inside an

instruction. For those, we may need to restrict the form of the program contexts in which the

subexpression may appear, to avoid nontrivial control-flow arising from, e.g., a conditional. Recall

from Section 5.5 that an evaluation context, written ˆℰ , denotes a program context whose holes

(possibly just one) are in evaluation position. For example, 𝑓 (𝑔(◻, 2), 𝑔(3, 𝑎 + 4)) is an evaluation

context with a single hole written ◻. One key property is that the rewrite ˆℰ(︀𝑡⌋︀ z→ let 𝑥 = 𝑡 ; ˆℰ(︀𝑥⌋︀
is correct for any evaluation context

ˆℰ . The reciprocal rewrite holds for programs well-typed in

our type system.

The validity of this rewrite rule, and more generally the interest of evaluation contexts for

transformations, crucially relies on the hypothesis that the input code typechecks against our typing

rules. Indeed, the Subexpr rule ensures that, if a function has multiple arguments, then the available

resources are distributed across the arguments—only read-only resources can be distributed onto

several arguments. For example, 𝑓 (𝑔1(), 𝑔2(), 𝑔3()) is equivalent to let 𝑥 = 𝑔2(); 𝑓 (𝑔1(), 𝑥,𝑔3())
because, if the former term is well-typed, then the effects of 𝑔2() do commute with the effects of

𝑔1() and 𝑔3().

Notation for Introducing Ghost Calls. Recall that a call to a ghost function is an instruction that

semantically behaves as a no-op, yet updates the context available. In the output of transformations,

we write ghost(Γ Ð→ Γ′) to mean the insertion of an appropriate ghost call 𝑔(), such that 𝑔

admits Γ as precondition and Γ′ as postcondition. Concretely, the effect of ghost(Γ Ð→ Γ′) is to
consume the resources Γ then to produce the resources Γ′.

We are now ready to present transformations. We begin with transformations on instructions

and variable bindings, then move on to transformations on storage, and transformations on loops.

6.1 Transformations on Sequences of Instructions
Moving Instructions. The basic transformation Instr.move allows to move a group of instructions

to a given destination within the same sequence. Doing so amounts to swapping a group of

instructions𝑇1 with an adjacent group of instructions𝑇2. Themove transformation turns a program

of the form ℰ(︀𝑇1;𝑇2⌋︀ into ℰ(︀𝑇2;𝑇1⌋︀, where ℰ denotes a program context. The transformation is

formalized as shown below. The variables Δ1 and Δ2 denote the usage associated with 𝑇1 and 𝑇2.

The correctness criterion, stated on the right-hand-side, is explained next.

ℰ (︀𝑇1;Δ1; 𝑇2;Δ2⌋︀ z→ ℰ (︀𝑇2; 𝑇1⌋︀ correct if:

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

Δ1 .alter ⩀ Δ2 = ∅
Δ2 .alter ⩀ Δ1 = ∅

The expression Δ1.alter denotes the resources that 𝑇1 adds or removes (consumes, produces, or

ensures). It excludes resources that remained unaltered (carving or merging a fraction does not

count). The property Δ1.alter ⩀ Δ2 = ∅ captures the idea that if a resource is altered by 𝑇1, then

𝑇2 must not use it (this includes “Write After Read” dependencies), otherwise swapping 𝑇1 and 𝑇2
might not be correct. (The resource intersection operator ⩀ was defined in Section 5.2.) The second

property, namely Δ2.alter ⩀ Δ1 = ∅, captures the symmetrical property: if a resource is altered by

𝑇2, then 𝑇1 must not use it (this includes “Read After Write” dependencies). When both conditions

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:47

are met, the only resources that both 𝑇1 and 𝑇2 depend on are accessed in read-only mode, and 𝑇1
and 𝑇2 may be safely swapped without impacting their evaluation result.

Deleting Instructions. The basic transformation Instr.delete allows deleting a group of instruc-

tions 𝑇 from a sequence. It therefore maps a program ℰ ′(︀{𝑇0;𝑇 ;𝑇2}⌋︀ to a program ℰ ′(︀{𝑇0;𝑇2}⌋︀, for
a program context ℰ ′. Following our convention that program contexts may describe subsequences,

we may also describe the transformation as mapping ℰ(︀𝑇 ⌋︀ to ℰ(︀∅⌋︀, for a program context ℰ .
Intuitively, the deletion operation preserves program semantics if the resources altered by 𝑇 are

not observed by the rest of the program. More precisely, if 𝑇 has been typechecked as “Γ 𝑇 ;Δ”,
then we start with the resources Γ corresponding to not executing 𝑇 , then forget the contents of

the resources that might be different when not executing 𝑇 . The resources to “uninitialize” Γ𝑚 are

computed by the filtering operation Γ�Δ.alter. (Filtering was defined in Section 5.2.) Finally, we

typecheck the auxiliary program ℰ(︀𝐺⌋︀, in which the𝑇 is replaced with a ghost instruction𝐺 casting

the Γ𝑚 resources into their corresponding “uninitialized form”, as performed by the IntoUninit

operator. If a resource 𝐻 is consumed by 𝑇 , then 𝐺 consumes 𝐻 and produces Uninit(𝐻).
The transformation can therefore be formalized as follows.

ℰ (︀Γ 𝑇 ;Δ⌋︀ z→ ℰ (︀∅⌋︀ correct if ℰ (︀ghost(Γ𝑚 Ð→ IntoUninit(Γ𝑚))⌋︀ typechecks,
where Γ𝑚 ≡ Γ�Δ.alter.

If the auxiliary program ℰ(︀𝐺⌋︀ typechecks, then we can discard this program, and safely replace

the original program ℰ(︀𝑇 ⌋︀ with ℰ(︀∅⌋︀. Note that this pattern of introducing an auxiliary program

for the purpose of evaluating a correctness criterion will appear again for other transformations.

Inserting Instructions. The transformation Instr.insert refines a program from ℰ(︀∅⌋︀ to ℰ(︀𝑇 ⌋︀,
where 𝑇 denotes the group of inserted instructions. The correctness criterion, described below, is

essentially the same as that for instruction deletion. Indeed, for ℰ(︀𝑇 ⌋︀ to admit the same semantics

as ℰ(︀∅⌋︀, it suffices that ℰ(︀∅⌋︀ admits the same semantics as ℰ(︀𝑇 ⌋︀.

ℰ (︀∅⌋︀ z→ ℰ (︀𝑇 ⌋︀
correct if:

(1) the program ℰ(︀𝑇 ⌋︀ typechecks as ℰ(︀Γ 𝑇 ;Δ⌋︀ for some Γ and Δ;
(2) the program ℰ (︀ghost(Γ𝑚 Ð→ IntoUninit(Γ𝑚))⌋︀ type-

checks, where Γ𝑚 ≡ Γ�Δ.alter, for the above values of Γ and Δ.

Idempotent Terms. A number of transformations depend on the notion of idempotence. In the C23

standard, an expression is said to be “idempotent” if, intuitively, evaluating this expression multiple

times in immediate sequence produces the same results. In OptiTrust, we leverage our resource

analysis to capture a practical over-approximation of idempotence.
13
A term can be considered

idempotent if the resources that this term produces correspond: (1) either to uninitialized resources

that were consumed by this term; or (2) to read-only resources that the term consumes and returns

with the exact same fraction. These criteria may be formalized as follows.

A term 𝑇 that appears in a program

ℰ (︀Γ1 𝑇 ; Δ Γ2⌋︀ is idempotent iff:

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

Δ.full = ∅
(Γ2�Δ.produced) ⊟ (Γ1�Δ.uninit) = (𝜎, ∅)

for some 𝜎

Γ1�Δ.reads = Γ2�Δ.reads

13
The C23 standard defines a number of related notions. In particular, an expression is said to be “effectless” iff “if any

store operation that is sequenced during the execution is the modification of an object that synchronizes with the call”. An

expression is said to be “reproducible” iff it is both effectless and idempotent. Reproducibility is essentially equivalent to the

notion of pure expression in GCC’s terminology [ale 2022]. Due to our resource typing discipline, all OptiTrust terms can

be considered “effectless”. Hence, in the context of OptiTrust, “idempotent” and “reproducible” are equivalent.

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

1:48 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

In particular, these criteria rule out terms that consume full resources, or produce resources they

did not consume. For example, x = y+1, which reads y and assigns x is idempotent; however x++, which

modifies x, is not idempotent. One key property that holds for an idempotent term 𝑡 is that the follow-

ing program equivalence holds: let 𝑥 = 𝑡 ; let 𝑦 = 𝑡 ;ℰ(︀𝑥, . . . , 𝑦, . . . ⌋︀ ↔ let 𝑥 = 𝑡 ;ℰ(︀𝑥, . . . , 𝑥, . . . ⌋︀ .

Duplicating and Deduplicating Instructions. If an instruction𝑇 (or possibly a group of instructions)

is idempotent, then after a first instruction 𝑇 , a second instruction 𝑇 may be inserted or removed

without affecting the semantics. The transformation Instr.dup and its reciprocal Instr.dedup are

formalized, for the general case of groups of instructions, as follows.

ℰ(︀𝑇 ⌋︀ ↔ ℰ(︀𝑇 ;𝑇 ⌋︀ where 𝑇 is idempotent.

Similarly, if a term 𝑡 is idempotent, then after the instruction let 𝑥 = 𝑡 , an instruction let 𝑦 = 𝑡
may be inserted or removed, for a fresh variable 𝑦. The corresponding transformations are named

Instr.dup_let and Instr.dedup_let. Thereafter, for brevity, we omit the program context surround-

ing the code snippet, previously written ℰ .

let 𝑥 = 𝑡 ;
↔

let 𝑥 = 𝑡 ;
let 𝑦 = 𝑡 ;

where 𝑡 is idempotent and 𝑦 fresh.

Deduplicating expressions is a building block for common subexpression elimination, which is

detailed further on. Duplicating expressions can also improve performance in certain situations:

recomputing a simple expression may be cheaper than storing its value in memory and subsequently

retrieving this value, especially if the redundant computations are scattered in distinct loops.

6.2 Exploiting Equalities
Read after Write. The transformation Eq.read_after_write captures the fact that reading imme-

diately after a write yields the value that was written. On its own, this transformation may seem of

little interest; however, it is useful when combined with moves of the read or the write instruction.

set(𝑝, 𝑣);
ˆℰ(︀get(𝑝)⌋︀;

z→
set(𝑝, 𝑣);
ˆℰ(︀𝑣⌋︀;

correct if
ˆℰ is an evaluation context

and 𝑣 is a logical expression.

Results of Idempotent Expressions. The transformation Eq.idempotent captures the fact that eval-

uating an idempotent expression twice yields equal results.

let 𝑥 = 𝑡 ;
let 𝑦 = 𝑡 ;
ℰ(︀𝑥⌋︀

z→
let 𝑥 = 𝑡 ;
let 𝑦 = 𝑡 ;
ℰ(︀𝑦⌋︀

correct if ℰ is a program context and 𝑡

is idempotent.

6.3 Transformations on Bindings
Inlining/Binding for Logical Expressions. The basic transformation Variable.inline_pure elimi-

nates a binding of the form let 𝑥 = 𝑣 , where 𝑣 is a logical expression, by replacing all occurrences of 𝑥
with 𝑣 . This transformation is always correct and requires no check. The reciprocal transformation,

Variable.bind_pure, introduces a binding for one or several occurrences of a logical expression 𝑣 .

Likewise, it is always correct.

Inlining a Binding with a Single Occurrence, in the Next Instruction. The basic transformation

Variable.inline_one eliminates a binding let 𝑥 = 𝑡 in programs where 𝑥 has exactly one occurrence,

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:49

and this occurrence is contained in the immediately succeeding instruction, under an evaluation

context
ˆℰ . As mentioned earlier, the correctness of this inlining transformation critically relies on

the fact that our typing rules ensure that the order of evaluation of subexpressions is irrelevant.

let 𝑥 = 𝑡 ;
ˆℰ(︀𝑥⌋︀;

z→ ˆℰ(︀𝑡⌋︀;
correct if

ˆℰ contains no other occurrence of 𝑥

than the one in its hole, and the output program

typechecks.

Inlining a Binding with Multiple Occurrences, in the Next Instruction. The transformation Variable

.inline_dup expands a binding at one of its occurrences, without removing the binding. Here

again, we consider an occurrence appearing in an immediately succeeding evaluation context. This

transformation is implemented as a combined transformation, decomposed as shown below. Recall

that we do not need to devise correctness criteria for combined transformations.

let 𝑥 = 𝑡 ;
ˆℰ(︀𝑥⌋︀;

z→
Instr.dup_let

let 𝑥 = 𝑡 ;
let 𝑦 = 𝑡 ;
ˆℰ(︀𝑥⌋︀;

z→
Eq.idempotent

let 𝑥 = 𝑡 ;
let 𝑦 = 𝑡 ;
ˆℰ(︀𝑦⌋︀;

z→
Variable.inline_one

let 𝑥 = 𝑡 ;
ˆℰ(︀𝑡⌋︀;

Inlining a Binding in the Scope of a Sequence. The combined transformation Variable.inline elim-

inates a binding let 𝑥 = 𝑡 in the general case. If 𝑡 is a logical expression, then Variable.inline_pure

is invoked. Otherwise, we implement the inlining as a combination of several of the aforementioned

transformations. Indirectly, our combined transformation enforces the minimal checks required for

eliminating a binding let 𝑥 = 𝑡 without affecting the semantics.

● If 𝑥 has no occurrences, the effects of 𝑡 need to be irrelevant to the rest of the program.

● If 𝑥 has exactly one occurrence, then the effects of 𝑡 needs to commute with all the instruc-

tions located between the binding on 𝑥 and the occurrence of 𝑥 .

● If 𝑥 has several occurrences, then, in addition to the requirement from the previous case, 𝑡

moreover needs to be idempotent.

Concretely, our transformation proceeds as follows. If there are no occurrences of 𝑥 , it invokes

the transformation Instr.delete. If there is exactly one occurrence of 𝑥 , it attempts to move, using

Instr.swap, the binding on 𝑥 just in front of this binding, then invoke Variable.inline_one. If there

are several occurrences of 𝑥 in the sequence, then it moves the binding to the front of the first

instruction that contains occurrences of 𝑥 ; then it applies the transformation Variable.inline_dup;

then it repeats the process until reaching the last occurrence of 𝑥 . We show below an example

decomposition of Variable.inline, where 𝑡 is assumed to be idempotent.

let 𝑥 = 𝑡 ; 𝑔(); set(𝑎, 𝑥); set(𝑏, 𝑥);
z→ 𝑔(); let 𝑥 = 𝑡 ; set(𝑎, 𝑥); set(𝑏, 𝑥); (Instr.swap)

z→ 𝑔(); let 𝑥 = 𝑡 ; set(𝑎, 𝑡); set(𝑏, 𝑥); (Variable.inline_dup)

z→ 𝑔(); set(𝑎, 𝑡); let 𝑥 = 𝑡 ; set(𝑏, 𝑥); (Instr.swap)

z→ 𝑔(); set(𝑎, 𝑡); set(𝑏, 𝑡); (Variable.inline_one)

We leave to future work the support, in a combined transformation, of more complex patterns

where occurrences of a non-pure binding appear in depth under control flow constructs.

Binding Introduction. The basic transformation Variable.bind_one is essentially the reciprocal

of Variable.inline_one.

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

1:50 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

ˆℰ(︀𝑡⌋︀; z→
let 𝑥 = 𝑡 ;
ˆℰ(︀𝑥⌋︀;

Folding for Additional Occurrences. The combined transformation Variable.bind_dup is essen-

tially the reciprocal of Variable.inline_dup. (We implement it as a combination of Variable.bind_one,

Instr.swap, Eq.idempotent, and Instr.delete.)

let 𝑥 = 𝑡 ;
𝑇 ;

ˆℰ(︀𝑡⌋︀;
z→

let 𝑥 = 𝑡 ;
𝑇 ;

ˆℰ(︀𝑥⌋︀;

Common Subexpression Elimination. The combined transformation Variable.bind is essentially

the reciprocal of Variable.inline. Internally, it exploits the transformations Variable.bind_one and

Variable.bind_dup to introduce a binding that factorizes the evaluation of common subexpressions.

For example, if 𝑒 is idempotent and commutes with 𝑔(), the program “𝑔(); set(𝑎, 𝑡); set(𝑏, 𝑦)” can
be transformed into “let 𝑥 = 𝑡 ; 𝑔(); set(𝑎, 𝑥); set(𝑏, 𝑥)”.

6.4 Transformations on Storage
The purpose of this section is to present transformations for introducing, eliminating, and converting

between various forms of storage. We present transformations operating on single cells, and omit

from the discussion the generalizations to arrays and 𝑁 -dimensional matrices.

Recall from Section 3 that a pure program variable const int x = 3 is represented in the OptiTrust

AST as let 𝑥 = 3, that a non-pure stack-allocated variable int x = 3 is represented as let 𝑥 =
stackRef(3), and that an uninitialized variable int x is represented as let 𝑥 = stackAllocCell(). For
stack-allocated data, the resources produced by stackAlloc are automatically reclaimed at the end

of the scope. For heap-allocated data, the resources produced by heapAlloc are consumed by the

matching call to free.

Separating Declaration from Initialization. For a stack-allocated variable, the basic transforma-

tion Variable.init_detach separates its declaration from its initialization. This transformation

is useful as a preliminary step for the combined transformation that hoists a variable declara-

tion appearing inside a loop into an array allocated outside that loop. The basic transformation

Variable.init_attach applies the reciprocal operation.

let 𝑥 = stackRef(𝑡); ↔ let 𝑥 = stackAllocCell(); set(𝑥, 𝑡);

Converting between Stack and Heap Allocation. The basic transformation Variable.to_heap trans-

forms an uninitialized stack-allocated storage into a corresponding heap-allocated storage. The

transformation takes as optional argument the target at which the free instruction should be

inserted; by default, it is placed at the end of the scope. The reciprocal transformation is named

Variable.to_stack.

{𝑇1; let 𝑥 = stackAlloc𝐶(); 𝑇2;} ↔ {𝑇1; let 𝑥 = heapAlloc𝐶(); 𝑇2; free(𝑥);}

Removal of Unused Storage. If a stack-allocated storage is never used, it may be removed by

means of the operation Instr.delete. Concretely, the instruction let 𝑥 = stackAllocCell() may be

deleted if 𝑥 has no occurrences, and the instruction let 𝑥 = stackRef(𝑒) may be deleted if moreover

the effects performed by 𝑒 are not observed by the rest of the program.

If a heap-allocated space is never used, then it may also be removed. To that end, one needs to

delete both the heapAlloc and the corresponding free instructions. Neither of them can be removed

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:51

independently, because both depend on each other. However, if we move using Instr.move the

heapAlloc instruction next to the free instruction, or vice-versa, then the group made of the two

instructions may be removed at once by means of Instr.delete. The combined transformation

Variable.delete, described below, performs this task.

let 𝑥 = heapAlloc𝐶();
𝑇 ;

free(𝑥);

z→
Instr.move

let 𝑥 = heapAlloc𝐶();
free(𝑥);
𝑇 ;

z→
Instr.delete

𝑇

Temporary Alternative Storage. The transformation Variable.local_name is themost complex that

we have implemented in terms of operations on plain sequences of instructions. The transformation

Variable.local_name operates over a specified group of instructions, say 𝑇 , for a specified storage,

say 𝑥 . Over this scope, a fresh storage, call it 𝑦, is allocated. Just before executing 𝑇 , the contents

of 𝑥 are copied into 𝑦. All instructions from 𝑇 are updated to use 𝑦 instead of 𝑥 . Just after these

instructions, the possibly-updated contents of 𝑦 is copied into 𝑥 . Depending on the situation, the

initial copy from 𝑥 to 𝑦, or the final copy from 𝑦 into 𝑥 might be unnecessary—and even ill-typed.

Such unnecessary copy operations are omitted.

The variable 𝑥 may be allocated either on the stack or on the heap. The user may choose to

allocate 𝑦 on the stack or on the heap. Moreover, our implementation supports the general case

where 𝑥 is not just a variable but an 𝑁 -dimensional matrix. In case where 𝑥 is a matrix, 𝑦 may

correspond to only a subset (i.e., a tile) of the matrix. The interest of the local_name transformation

is to enable the program to operate on a local piece of data. Crucially, the memory layout of this

data may be refined by subsequent transformations, for example to store the transposed of a matrix

in a cache friendly way (as in Section 2.3), or to enable vectorization.

The transformation is described in Figure 20. There, the group of instructions𝑇 is represented as

ℰ(︀𝑥, .., 𝑥⌋︀, i.e., as a program context with multiple occurrences of 𝑥 . The typing context Γ1 describes
the resources available before 𝑇 , and Γ2 the resources available after 𝑇 . This typing information

is used not only for checking the correctness criterion, but also for guiding the generation of the

output code.

The correctness criterion appears at the bottom of Figure 20. An essential aspect of this criterion

is to check that, during the execution of𝑇 , the resource 𝐻𝑥 corresponding to the full permission on

𝑥 is “frozen” (i.e., made unavailable) in order to ensure that no operation may be performed on 𝑥

via potential aliases of this pointer. The first ghost call uses a standard technique for enforcing such

a “freeze” in Separation Logic: introducing a magic wand operator (−⋆), guarded by a token named

𝐻 in the postcondition of the ghost operation, and bound as 𝐻 ′ in the rest of the sequence. The

heap predicate 𝐻 ′ admits the type Hprop, which is the type of all heap predicates in Separation

Logic. This heap predicate 𝐻 ′ serves the role of a key for unfreezing 𝐻𝑥 at the desired point—here,

the end of the scope on which 𝑦 is used in place of 𝑥 , where the second ghost call is placed. As far

as the present paper is concerned, the magic wand operator can be viewed as a binary operator on

heap predicates whose definition needs not be revealed to the user.

6.5 Transformations on Loops
Loop transformations depend on the contracts associated with the loops from the input code. For

every loop being modified or introduced, the transformations also need to produce appropriate

contracts. In what follows, we present details for loop tiling, loop interchange, loop fission, and

loop hoisting. We then list other loop transformations that we have implemented.

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

1:52 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

Γ1

ℰ(︀𝑥, ..., 𝑥⌋︀;
Γ2

z→

let 𝑦 = stackAllocCell();
𝑇1;

ℰ(︀𝑦, ..., 𝑦⌋︀;
𝑇2;

where 𝐸 is a multi-hole program context with one hole per occurrence of 𝑥 , and where:

)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑇1 ≡ set(𝑦, get(𝑥)); if 𝑥 ↝ Cell or 𝛼(𝑥 ↝ Cell) appears in Γ1

𝑇1 ≡ ∅ if Uninit(𝑥 ↝ Cell) appears in Γ1
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑇2 ≡ set(𝑥, get(𝑦)); if 𝑥 ↝ Cell appears in Γ2

𝑇2 ≡ ∅ if Uninit(𝑥 ↝ Cell) or 𝛼(𝑥 ↝ Cell) appears in Γ2

correct if the program to

the right typechecks suc-

cessfully, where 𝐻𝑥 is:

– (𝑥 ↝ Cell)
– 𝛼(𝑥 ↝ Cell)
– or Uninit(𝑥 ↝ Cell)
depending on what appears

in Γ1.

let 𝑦 = stackAllocCell();
𝑇1;

ghost(∐︀∅ ⋃︀ 𝐻𝑥 ̃︀ Ð→ ∐︀𝐻 ∶ Hprop ⋃︀ 𝐻, (𝐻 −⋆ 𝐻𝑥)̃︀); binding 𝐻 as 𝐻 ′

ℰ(︀𝑦, ..., 𝑦⌋︀;
ghost(∐︀∅ ⋃︀ 𝐻 ′, (𝐻 ′ −⋆ 𝐻𝑥)̃︀ Ð→ ∐︀∅ ⋃︀ 𝐻𝑥 ̃︀);
𝑇2;

Fig. 20. Description of the basic transformation Variable.local_name.

Loop Tiling. The basic transformation Loop.tile allows tiling (a.k.a. strip-mining) a loop. Con-

cretely, it transforms a loop, say with index 𝑖 , into two nested loops, with indices 𝑗 and 𝑘 . Intuitively,

the outer loop on 𝑗 iterates over the blocks, whereas the inner loop on 𝑘 iterates inside every block.

Depending on the form of the input range, and on whether the block size divides the width of the

loop range, the transformation is able to generate different ranges for the output loops. For each

kind of output, the expression RecoverIndex(𝑗, 𝑘) indicates how to compute the original index 𝑖 in

terms of the two new indices 𝑗 and 𝑘 .

The 4 variants supported by Loop.tile are described in Figure 21. The ranges of the three loops

are written 𝑅𝑖 , 𝑅 𝑗 and 𝑅𝑘 , respectively. A range is of the form range(𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑜𝑝, 𝑠𝑡𝑒𝑝). The notation
𝑠𝑡𝑎𝑟𝑡 ..𝑠𝑡𝑜𝑝 is a shorthand for range(𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑜𝑝, 1). In particular, 0..𝑛 describes the range of values

from 0 inclusive to 𝑛 exclusive. The contracts for the three loops involved are written 𝜒𝑖 , 𝜒 𝑗 and 𝜒𝑘 ,

respectively. To typecheck the output code, ghost tiling operations need to be inserted, materialized

before and after the produced loops in the figure. Indeed, the loop on 𝑖 consumes, in particular, the

resource:⋆𝑖∈Ri 𝜒𝑖 .excl.pre whereas the loop on 𝑗 consumes instead:⋆𝑗∈Rj ⋆𝑘∈Rk 𝜒𝑘 .excl.pre.
Loop Interchange. The basic transformation Loop.swap allows interchanging (i.e. swapping) two

loops. It is described at the top of Figure 22. There exists a general criterion capturing when two

loops may be swapped, however this criterion requires reasoning about the resources required by

specific iterations, e.g. when executing 𝑇 for iterations 𝑖, 𝑗 and 𝑖′, 𝑗 ′ with 𝑖′ > 𝑖 and 𝑗 > 𝑗 ′. Instead,
we focus on two conditions that are simpler yet sufficient for many practical situations: if at least

one of the outer loop or the inner loop is parallelizable, then swapping the two loops is correct.

Figure 22 describes the case where the outer loop is parallelizable. The case where the inner loop is

parallelizable, not shown, is treated with just a few changes.

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:53

for 𝜒𝑖 𝑖 ∈ Ri {
𝑇 ;

}
z→

ghost(⋆
𝑖∈Ri

𝜒𝑖 .excl.pre Ð→ ⋆
𝑗∈Rj
⋆
𝑘∈Rk

𝜒𝑘 .excl.pre);

for 𝜒 𝑗 𝑗 ∈ Rj {
for 𝜒𝑘 𝑘 ∈ Rk {
𝑇 ′;

}
}
ghost(⋆

𝑗∈Rj
⋆
𝑘∈Rk

𝜒𝑘 .excl.post Ð→ ⋆
𝑖∈Ri

𝜒𝑖 .excl.post);

where:

𝑇 ′ ≡ (︀𝑖 ↦ RecoverIndex(𝑗, 𝑘)⌋︀(𝑇)
𝜒𝑘 ≡ (︀𝑖 ↦ RecoverIndex(𝑗, 𝑘)⌋︀(𝜒𝑖)

𝜒 𝑗 ≡
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

vars ≡ 𝜒𝑖 .vars
shrd ≡ 𝜒𝑖 .shrd
excl ≡ {pre ≡ ⋆𝑘∈Rk 𝜒𝑘 .excl.pre; post ≡ ⋆𝑘∈Rk 𝜒𝑘 .excl.post}

with the following possible instantiations for the ranges:

Variant Range Ri Range Rj Range Rk Formula for recovering 𝑖:

RecoverIndex(𝑗, 𝑘)
A 0..(𝑚 × 𝑏) 0..𝑚 0..𝑏 𝑗 ∗ 𝑏 + 𝑘
B 0..𝑛 where 𝑏 divides 𝑛 0..(𝑛⇑𝑏) 0..𝑏 𝑗 ∗𝑚 + 𝑘
C 0..𝑛 where 𝑏 divides 𝑛 range(0, 𝑛, 𝑏) 𝑗 .. 𝑗 + 𝑏 𝑘

D 0..𝑛 range(0, 𝑛, 𝑏) 𝑗 ..min(𝑗 + 𝑏, 𝑛) 𝑘

Fig. 21. Description of the 4 variants of the basic transformation Loop.tile.

The first step is to partition the resources from the inner loop contract depending on where they

come from relative to the resources from the outer loop. We name partitions by using the first letter

to denote its inner loop origin, and the second letter to denote its outer loop origin. We use 𝐼 for

invariant, 𝑅 for shared reads, 𝑃 for exclusive precondition and 𝑄 for exclusive postcondition. For

example, the inner shared reads are partitioned into 𝑅𝑃𝑖 that comes from the outer precondition,

and 𝑅𝑅 that comes from the outer shared reads.

Then, we appropriately place the resources obtained from the partitioning in the contracts 𝜒 ′𝑖
and 𝜒 ′𝑗 associated with the swapped loops. Compared with 𝜒 𝑗 , the new contract 𝜒 ′𝑗 essentially adds

a⋆𝑖 operator to certain components. Compared with 𝜒𝑖 , the new contract 𝜒 ′𝑖 removes occurrences

of the⋆𝑗 operators. Note that the loop on 𝑖 remains parallelizable. Around the new loop nest, a

pair of ghost operations is inserted for swapping groups of resources—a necessary step to match

the resources required by the new loop nest.

Loop Fission. The transformation Loop.fission, in its basic version, breaks a loop with body𝑇1;𝑇2
into two loops over the same range, a first loop with body 𝑇1, and a second loop with body 𝑇2. The

transformation is described in Figure 23. As for loop swapping, there exists a general correctness

criterion expressed using inequalities on indices, but for now we focus on a simpler yet practical

criterion.

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

1:54 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

for 𝜒𝑖 𝑖 ∈ 𝑅𝑖 {
for 𝜒 𝑗 𝑗 ∈ 𝑅 𝑗 {
𝑇 ;

}
}

z→

ghost(⋆𝑖⋆𝑗 𝑃𝑃𝑖, 𝑗 Ð→ ⋆𝑗 ⋆𝑖 𝑃𝑃𝑖, 𝑗);
for 𝜒 ′

𝑗
𝑗 ∈ 𝑅 𝑗 {

for 𝜒 ′
𝑖
𝑖 ∈ 𝑅𝑖 {

𝑇 ;

}
}
ghost(⋆𝑗 ⋆𝑖 𝑄𝑄𝑖, 𝑗 Ð→ ⋆𝑖⋆𝑗 𝑄𝑄𝑖, 𝑗);

correct if: parallelizable(𝜒𝑖),
that is, 𝜒.shrd.inv = ∅.

The contracts from the input code are decomposed as follows:

𝜒𝑖 .shrd = {inv = ∅, reads = (⋆𝑗 𝑃𝑅 𝑗 ⋆ 𝐼𝑅 ⋆ 𝑅𝑅)}
𝜒𝑖 .excl = {pre = (⋆𝑗 𝑃𝑃𝑖, 𝑗 ⋆ 𝐼𝑃𝑖 ⋆ 𝑅𝑃𝑖), post = (⋆𝑗 𝑄𝑄𝑖, 𝑗 ⋆ 𝐼𝑃𝑖 ⋆ 𝑅𝑃𝑖)}
𝜒 𝑗 .shrd = {inv = (𝐼𝑃𝑖 ⋆ 𝐼𝑅), reads = (𝑅𝑃𝑖 ⋆ 𝑅𝑅)}
𝜒 𝑗 .excl = {pre = (𝑃𝑃𝑖, 𝑗 ⋆ 𝑃𝑅 𝑗), post = (𝑄𝑄𝑖, 𝑗 ⋆ 𝑃𝑅 𝑗)}

The contracts for the output code are built as follows:

𝜒 ′𝑗 ≡
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

vars ≡ 𝜒 𝑗 .vars
shrd ≡ {inv ≡ (⋆𝑖 𝐼𝑃𝑖 ⋆ 𝐼𝑅), reads ≡ (⋆𝑖 𝑅𝑃𝑖 ⋆ 𝑅𝑅)}
excl ≡ {pre ≡ (⋆𝑖 𝑃𝑃𝑖, 𝑗 ⋆ 𝑃𝑅 𝑗), post ≡ (⋆𝑖 𝑄𝑄𝑖, 𝑗 ⋆ 𝑃𝑅 𝑗)}

𝜒 ′𝑖 ≡
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

vars ≡ 𝜒 𝑗 .vars
shrd ≡ {inv ≡ ∅, reads ≡ (𝑃𝑅 𝑗 ⋆ 𝐼𝑅 ⋆ 𝑅𝑅)}
excl ≡ {pre ≡ (𝑃𝑃𝑖, 𝑗 ⋆ 𝐼𝑃𝑖 ⋆ 𝑅𝑃𝑖), post ≡ (𝑄𝑄𝑖, 𝑗 ⋆ 𝐼𝑃𝑖 ⋆ 𝑅𝑃𝑖)}

Fig. 22. The basic transformation Loop.swap, in the particular case where the outer loop is parallelizable.

for 𝜒 𝑖 ∈ 𝑅𝑖 {
𝑇1;Δ1

Γ

𝑇2;Δ2

}

z→

for 𝜒1 𝑖 ∈ 𝑅𝑖 {
𝑇1;

}
for 𝜒2 𝑖 ∈ 𝑅𝑖 {
𝑇2;

}

correct if:

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝜒.shrd�(Δ1.alter ⩀ Δ2) = ∅
𝜒.shrd�(Δ2.alter ⩀ Δ1) = ∅
the output program typechecks

with:

_, 𝐹 ≡ Γ ⊟ 𝜒.shrd.inv _, 𝐹𝑐𝑢𝑡 ≡ 𝐹 ⊟ StackAllocCells(𝑇1)

𝜒1 ≡
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

vars ≡ 𝜒.vars
shrd ≡ 𝜒.shrd�Δ1

excl ≡ {pre ≡ 𝜒.excl.pre, post ≡ 𝐹𝑐𝑢𝑡}
𝜒2 ≡

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

vars ≡ 𝜒.vars
shrd ≡ 𝜒.shrd�Δ2

excl ≡ {pre ≡ 𝐹𝑐𝑢𝑡 , post ≡ 𝜒.excl.post}
where 𝜒.shrd�𝑋 is a shorthand for {inv = (𝜒.shrd.inv�𝑋), reads = (𝜒.shrd.reads�𝑋)}.

Fig. 23. The basic transformation Loop.fission.

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:55

for 𝜒 𝑖 ∈ 𝑅𝑖 {
Γ1 𝑇1;Δ1

Γ2 𝑇2;Δ2

}

z→

𝑇1;

for 𝜒 ′ 𝑖 ∈ 𝑅𝑖 {
𝑇2;

}

correct if:

)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

𝑖 not free in 𝑇1

𝑇1 idempotent

Δ1 ⩀ Δ2.alter = ∅

with:

_, 𝐼 ′ ≡ Γ2 ⊟ 𝜒.excl.pre

_, 𝐼 ≡ 𝐼 ′ ⊟ 𝜒.shrd.reads 𝜒 ′ ≡
)︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀]︀

vars ≡ 𝜒.vars
shrd ≡ {inv ≡ 𝐼 , reads ≡ 𝜒.shrd.reads}
excl ≡ 𝜒.excl

correct if 𝑅𝑖 is nonempty, or the pro-

gram on the right typechecks success-

fully with 𝑅 ≡ Γ2�Δ1.produced

𝑇1;

for 𝜒 ′ 𝑖 ∈ 𝑅𝑖 {
𝑇2;

}
ghost(𝑅 Ð→ IntoUninit(𝑅));

Fig. 24. The basic transformation Loop.move_out.

Our criterion asserts that loop fission is correct if the resources altered by 𝑇1 at any iteration 𝑖

do not interfere with the resources altered by 𝑇2 at any other iteration 𝑖′ ≠ 𝑖 . To implement this

check, we inspect the usage maps Δ1 and Δ2 associated with 𝑇1 and 𝑇2, respectively. If 𝑇1 alters

one resource from 𝜒.shrd, then 𝑇2 must not use this same resources; symmetrically, if 𝑇2 alters a

resource, then 𝑇1 must not use it. Note, however, that 𝑇1 and 𝑇2 are allowed to both read the same

resource; moreover, the resources exclusively consumed or produced by 𝑇1 at the 𝑖-th iteration of

the first loop may be consumed by 𝑇2 at the 𝑖-th iteration of the second loop.

There remains to explain how to synthesize the contracts 𝜒1 and 𝜒2, associated with the two

generated loops, from the original contract 𝜒 . For shrd resources, we project the subsets of 𝜒.shrd

resources used by 𝑇1 and 𝑇2. For excl resources, we need to synthesize the resources at the cut

point, written 𝐹𝑐𝑢𝑡 . The first loop takes the exclusive resources from 𝜒.excl.pre to 𝐹𝑐𝑢𝑡 , whereas the

second loop takes the exclusive resources from 𝐹𝑐𝑢𝑡 to 𝜒.excl.post. At a high level, 𝐹𝑐𝑢𝑡 is computed

by subtracting the shared resources as well as the local allocations from 𝑇1, described by 𝜒.shrd

and StackAllocCells(𝑇1), from the typing context Γ computed by our typechecker at the location

just between 𝑇1 and 𝑇2.

Observe that the loop contracts 𝜒1 and 𝜒2 generated by the loop fission transformation may

contain a larger typing context than strictly necessary. We describe further on, in Section 6.6, a

procedure for minimizing loop contracts.

Loop Invariant Code Motion. The basic transformation Loop.move_out applies to a loop with body

𝑇1;𝑇2, where 𝑇1 performs instructions that are redundant at every iteration. It produces as output a

code that first executes 𝑇1, exactly once, then executes a loop with body 𝑇2. The transformation is

formalized in Figure 24. We assume for simplicity the loop range to be provably nonempty, or 𝑇1 to

be provably deletable. Alternatively, 𝑇1 could be wrapped into a conditional.

The key properties to check are that 𝑇1 is the same for all iterations (it does not depend on 𝑖),

can be safely deduplicated (it is idempotent as required by Instr.dedup), and does not interfer with

the remaining instructions of the loop, described by 𝑇2 (that is, the condition Δ1 ⩀ Δ2.alter = ∅).
Note that, contrarily to the Instr.move criterion, it is safe for 𝑇2 to read resources modified by 𝑇1.

Other Loop Transformations. There are other important loop transformations that we support.

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

1:56 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

● Loop.fusion (reciprocal of Loop.fission): fuse two consecutive loops into a single one.

● Loop.collapse (reciprocal of Loop.tile): collapse two nested loops into a single one.

● Loop.hoist_alloc: hoist a variable allocated inside a loop into an array allocated outside

the loop; more generally, it hoists a matrix of dimension 𝑁 allocated inside a loop into a

matrix of dimension 𝑁 + 1 allocated outside the loop.

● Loop.shift_range: reindex a loop by applying a positive or negative offset to its values.

● Loop.scale_range: reindex a loop using an index that takes either smaller or larger steps.

● Loop.extend_range: extend the range of a loop by wrapping its body in a conditional.

● Loop.unroll: unroll a loop whose range is statically known.

● Loop.parallel: set (or unset) a parallel flag on a loop using our parallelizable criterion.

6.6 Transformations on Annotations
Modification to Contracts and Ghost Code. The semantics of a program is fully determined by

its proper OptiC code: it does not depend in any way on the ghost code nor on the function and

loop contracts. Therefore, contracts may be freely modified, and ghost instructions may be freely

inserted, deleted, or modified. The requirement is to reach, after one or several updates, a set of

annotations for which the typechecking of the same code succeeds. These modifications can be

applied either directly by the programmer, or during the evaluation of transformations.

Minimization of Loop Contracts. The aforementioned loop transformations produce correct

resource annotations, yet these annotations might be suboptimal for later transformations. Typically,

the generated loop contracts would include clauses covering a set of resources possibly larger than

strictly necessary. For example, after the basic loop fission transformation, the contract of the first

loop would typically mention resources that are in fact only used by the instructions from the second

loop. Mentioning unnecessary resources in a contract may impede the applicability of further

transformations. OptiTrust therefore includes a procedure, implemented as a basic transformation,

to minimize loop contracts. OptiTrust’s combined transformations for loops systematically include

a call to this procedure.

The loop contract minimization procedure takes as input a loop with contract 𝜒 , and updates this

contract to 𝜒 ′, without modifying the code. The procedure depends on the usage map Δ computed

for the instructions 𝑇 that constitute the loop body.

for 𝜋
𝜒 𝑖 ∈ 𝑅𝑖 {𝑇 ;Δ} z→ for 𝜋

𝜒 ′ 𝑖 ∈ 𝑅𝑖 {𝑇}

Intuitively, the contract 𝜒 ′ is obtained by filtering out and by weakening resources from 𝜒 ,

depending on their usage in Δ. First, if a resource is unused by 𝑇 and thus is absent from Δ or has

usage joinedFrac, then it is excluded from 𝜒 ′. As a result, certain variables that were quantified

in 𝜒 might no longer have occurrence in 𝜒 ′, hence they can be removed as well. Second, if a

resource appears with fraction 1 in 𝜒 , yet this resource is marked as splittedFrac is Δ, then this

resource is replaced with a read-only version of it. Technically, an additional fraction variable

must be quantified in 𝜒 ′, and this fraction variable is used for describing the resource as read-only.

Internally, the implementation of contract minimization reuses ourminimization of triple procedure
(Section 5.4 and appendix D). Details may be found in appendix F.

Moving and Cancelling Ghost Instructions. OptiTrust includes a transformation that attempts to

remove pairs of ghost transformations that cancel each other. Indeed, the sequence ghost(𝐻 Ð→
𝐻 ′); ghost(𝐻 ′ Ð→ 𝐻) is equivalent to a no-op. More generally, the user as well as combined

transformations may request a ghost instruction to be moved so as to be (logically) executed as

early as possible in the program; or, symmetrically, to be executed as late as possible. Moving ghost

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:57

instructions in such a way may lead to the apparition of cancellable pairs of ghost instructions;

and, even when ghost instructions do not disappear, moving them away from, e.g., a loop kernel,

may unlock certain transformations.

7 RELATEDWORK
Themost closely related frameworks were discussed in the introduction. In this section, we comment

on the remaining related work, focusing in turn on each of the ingredients that constitute OptiTrust.

General-Purpose Compilers. General purpose compilers such as GCC or ICC are able to apply a

large class of program optimizations, from the classic ones such as inlining, dead code elimination,

move of instructions to more advanced ones such as loop fission, loop fusion, or loop reordering.

The same transformations are available in OptiTrust, yet with three major differences. First, general-

purpose compilers apply these transformations on intermediate representations that are not suitable

for producing feedback to the user. In contrast, OptiTrust operates on an intermediate representation

that has been designed not only to simplify transformations, but also to support its translation

back into a conventional program syntax. Second, general-purpose compilers relies on fully-

automated procedures, often guided by heuristics, to determine what transformations to apply. In

contrast, OptiTrust transformations are fully controlled by the programmer, either directly via basic

transformations, or indirectly via combined transformations. Third, general-purpose compilers

rely on static analysis applied to plain C code to determine whether certain transformations

are applicable, and as a result may lack information to trigger a transformation. In contrast,

OptiTrust leverages expressive resource typing information deduced from annotations to justify

the correctness of transformations, significantly enlarging the set of applicable transformations.

Guidance in General-Purpose Compilers. To introduce human guidance in general-purpose com-

pilers, a common approach is to insert pragmas into the code. For example, Scout [Krzikalla et al.

2011] is a pragma-based tool for guiding source-to-source transformations that introduce vector

instructions. As another example, Radtke and Weinzierl [2024] makes use of C++ attributes for

switching between array-of-structures and structures-of-arrays over the scope of specific computa-

tion kernels; the compiler automatically inserts instructions for copying the data before and after

the loop. A similar approach could be expressed as an OptiTrust transformation, by composing the

local_name transformation for arrays (discussed in Section 6.4) with the aos_to_soa transformation

(not discussed in this paper). The main limitation of pragma-based approaches is that they are

ill-suited for describing sequences of optimizations. Indeed, there is no easy way to attach a pragma

to a line of code that is generated by a first optimization. Kruse and Finkel [2018] suggest the

possibility to stack up pragmas, by providing labels as additional pragma arguments: a second

pragma may refer to the labels introduced by the transformation described in a first pragma. Yet,

this approach does not scale up well beyond a handful of successive transformations. OptiTrust, in

contrast, supports chains of dozens of transformations.

Domain-Specific Compilers. Another possible approach to overcome the limitations of general-

purpose compilers is to leverage domain specific languages (DSL), such as Halide [Ragan-Kelley et al.

2013], TVM [Chen et al. 2018], Fireiron [Hagedorn et al. 2020a] (used at Nvidia), PartIR [Alabed

et al. 2024] (used at DeepMind). Specialized compilers can benefit from carefully tuned heuristics.

Yet, even for programs expressed in a specific DSL, the optimization search space remains vast,

hence programmer guidance is key to achieve good performance. Halide and its descendants makes

use of a script, called a schedule, for guiding the compilation strategy.

For DSLs, the language restriction is also their Achilles’ heel: as soon as the user’s application

requires a single feature that falls outside of what the DSL can express, the programmer loses

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

1:58 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

most if not all of the benefits of the DSL. In practice, DSLs typically support the possibility to

include foreign functions (or, inlined general-purpose code), however these foreign functions must

be treated as black box by the DSL compiler, preventing the applications of any domain-specific

optimization across this black box.

In contrast to DSLs, OptiTrust sticks to a standard, general-purpose language. At the same time,

OptiTrust retains the ability to manipulate domain-specific operations and to exploit transforma-

tions that are specific to these operations, as illustrated with the reduce function in our OpenCV

case study. At any point in the transformation script, an occurrence of a domain-specific operation

may be lowered into standard C code, thereby enabling further lower-level optimizations.

Code Transformations via Rewrite Rules. A rewrite rule maps a code pattern to another code

pattern. A number of tools exploit rewrite rules to perform source-to-source transformations. For

example, TXL [Cordy 2006] is a multi-language rewrite system, whose patterns are expressed at

the level of syntax, using grammars. Coccinelle [Lawall and Muller 2018] allows the programmer

to describe semantic patches in C code. CodeBoost [Bagge et al. 2003] applies the Stratego program

transformation language [Bravenboer et al. 2008] to C++ code. CodeBoost can be used to turn

high-level operations on matrices and vectors into typical high-performance source code.

OptiTrust relies on OCaml to provide a very expressive language for describing transformations,

going beyond rewrite rules. Although many transformations can be encoded as rewrite rules,

the encoding involved can be cumbersome or inefficient. For example, reconstructing a for-loop

for a series of similar blocks of instructions can be encoded via rewrite rules, yet the blocks

must be merged into the for-loop one by one. Other transformations, especially those involving

contracts, would be challenging to express as rewrite rules. For example, loop contract minimization
(Section 6.6) would require the rewrite rule to depend on side-conditions and meta-operations that

involve resources and usage maps.

Intermediate Languages. The use of an intermediate language with simpler semantics is com-

monplace, both in the domain of compilation and in the domain of program verification. Let us cite

a few examples. The Common Intermediate Language (CIL) serves as intermediate compilation

language for the whole .NET ecosystem [Gough and Gough 2001]. Why3 [Filliâtre and Paskevich

2013] serves as intermediate verification language for C, Java, and Ada programs. Viper [Müller

et al. 2017] serves as intermediate verification language for Java, Rust, Go, OpenCL, etc. Although

intermediate languages are commonplace, we are not aware of any framework that leverages a

translation into an intermediate language and provides a reciprocal translation back to the source

language, with a round-trip property such as that provided by OptiTrust.

Source Code Manipulation Frameworks. Frameworks that offer more expressiveness than rewrite

rules generally give access to the abstract syntax tree (AST) of the source code. Traditional compilers

employ an AST, but they are not designed for synthesizing pieces of AST at the source level.

Moreover, traditional compilers operate on intermediate representations, and lose the structure

of the original code. These two limitations of general-purpose compilers have motivated the

development of frameworks that are specifically designed to support code transformations (and

code analyses) at the level of C code. ROSE [Quinlan 2000; Quinlan and Liao 2011] and Cetus [Bae

et al. 2013; Dave et al. 2009] are two such frameworks that provide facilities for manipulating C ASTs.

Source-to-source transformation frameworks have also been employed to produce code targeting

GPUs [Amini 2012; Konstantinidis 2013; Lebras 2019]. These frameworks implement generic

optimization strategies, in a similar fashion as general-purpose compilers. In contrast, OptiTrust

leverages transformation scripts to guide the optimization of a specific program. Moreover, the

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:59

OptiTrust infrastructure supports resource typing, which provides much more precise information

than the classic static code analyses implemented in the frameworks such as ROSE and Cetus.

Transformation Scripts. Expressing a series of source-level transformations for a specific program

can be done by means of a transformation script. Such scripts have appeared in particular in the

context of polyhedral transformations [Bagnères et al. 2016b; Bondhugula et al. 2008], for example

in Loopy [Namjoshi and Singhania 2016] and in work by Zinenko et al. [2018a]. CHiLL [Chen et al.

2008; Rudy et al. 2011] includes transformations that go beyond the polyhedral model. It has been

applied to generate finely tuned CUDA code from high-level linear algebra kernels. POET [Yi and

Qasem 2008; Yi et al. 2014] is a scripting language for performing program transformations, for

C/C++ as well as other languages. POET has been employed to generate optimized code for linear

algebra kernels, including semi-automated exploration of a search space of possible optimizations.

Several pieces of work already discussed in the introduction exploit transformation scripts.

Halide [Ragan-Kelley et al. 2013], TVM [Chen et al. 2018] feature schedules that can be viewed as

transformation scripts. Elevate [Hagedorn et al. 2020b] expresses the transformation script in the

form of a composition of functions. ATL [Liu et al. 2022] leverages “tactic”-based proof scripts as

support for expressing transformations scripts. LARA consists of a transformation script featuring

declarative queries as well as arbitrary JavaScript instructions.

MLIR (Multi-Level Intermediate Representation) [Lattner et al. 2021] is a framework for building

reusable and extensible compiler infrastructure. MLIR aims in particular at improving compilation

for heterogeneous hardware, and at improving support for DSL constructs. To that end, MLIR

provides dialects, which enables expressing extended language constructs. For exampe, the tensor
dialect helps representing multidimensional arrays and operations on them. Recently, a transform
dialect [Lücke et al. 2024] was added to MLIR to express transformation scripts. This extension

confirms the interest for finer-grained control, going beyond the simple ordering of global opti-

mizations passes. A major limitation of MLIR is that its dialects and passes do not share a common

specification language that could be used to exploit loop invariants and summaries of function

effects across different analyses. We believe that Separation Logic, as implemented in OptiTrust,

could offer such a common language for expressing invariants. We leave it to future work to explore

how the OptiTrust AST and transformations could be extended to support user-defined language

constructs.

All this related work demonstrates a strong interest in leveraging transformation scripts for

putting control of optimizations in the hand of the programmer. Systems differ in what language

they target, and what transformations they support. None of the aforementioned systems support

in their transformation scripts a system for targeting program points with the expressiveness and

conciseness offered by OptiTrust targets. Moreover, as far as we know, LARA [Silvano et al. 2019]

and OptiTrust are the only two frameworks making use of transformation scripts for applying

general-purpose transformations at the level of C syntax. OptiTrust is the first to demonstrate the use

of transformation scripts to produce high-performance code for state-of-the-art benchmarks. Most

importantly, unlike LARA, OptiTrust checks that the transformations requested by the programmer

preserve the semantics of the code.

Proof-Transforming Compilation. The notion of Proof Carrying Code [Necula 1998] refers to the

idea that compilers could be instrumented to carry invariants from high-level source code down to

low-level code. The original line of work on Proof Carrying Code did not aim at full functional

correctness properties, but rather focused on simpler invariants capturing safety properties, such

as the absence of out-of-bound accesses.

Subsequent work introduced the notion of Proof-Transforming Compilation to refer to a compiler

that takes as input a formally-verified program and produces as output compiled code accompanied

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

1:60 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

by a formal proof (i.e., a proof tree in a program logic) that the compiled code satisfies the same

functional correctness specification as the input program. In particular, the PhD work of César

Kunz [Barthe et al. 2009; Kunz 2009] shows how to realize proof-transforming compilation for

standard compiler optimizations, applied at the level of the RTL intermediate language. More

recently, the work on Alpinist [Sakar et al. 2022] demonstrates the feasibility, for a small number

of GPU-oriented optimizations, of transforming GPU code while preserving logical invariants.

Our results obtained so far with OptiTrust demonstrates the feasibility, for a fair number of

general-purpose code optimizations, of transforming C code while preserving resource-based

invariants. In future work, we look forward to extending OptiTrust in order to handle richer logical

invariants and to produce optimized programs accompanied by formal proofs of correctness.

Separation Logic. OptiTrust leverages a standard Separation Logic. The most closely related

program logics are VST [Cao et al. 2018], a program verification tool for C, and RefinedC [Sammler

et al. 2021], a very expressive type system for C. Both these systems are grounded on the Iris

framework [Jung et al. 2018a,b], at this day the most advanced formalization of Concurrent Sep-

aration Logic. Other tools, such as Alpinist [Sakar et al. 2022] leverage Viper’s dynamic frames
technique [Müller et al. 2017], a cousin of Separation Logic. Fractional resources [Boyland 2003]

are a standard ingredient of Separation Logic [Jung et al. 2018a]. Following common practice,

OptiTrust leverages fractional resources to describe read-only resources. The technique of making

fractions essentially transparent to the end-user is directly inspired by the work by Heule et al.

[2013] implemented in the Chalice verification tool.

OptiTrust is, as far as we know, the first transformation framework based on separation logic

to compute and leverage usage information. This information describes how the Separation Logic

resources available for typechecking of a subterm are actually exploited for typechecking this

subterm.

Contract Inference. OptiTrust currently requires the programmer to annotate the input program

with ghost operations as well as function and loop contracts. One may wonder the extent to which

such contracts could be automatically inferred, at least for reasonably simple programs.

The experience from other practical Separation Logic frameworks (e.g., [Müller et al. 2017]) is

that heuristics can be devised to significantly reduce the number of ghost operations that need to

be explicitly provided by the programmer. For example, if we have at hand no other permissions

on an array than a permission covering a range of its cells, then when facing a read operations on

a particular cell from this array, isolating this cell from the range at hand is the only way in which

typechecking could succeed.

Inference is not limited to ghost operations: certain contracts may also be automatically inferred.

For example, Journault and Miné [2018] show that, by leveraging abstract interpretation, for func-

tions such as matrix-multiplication or similar linear algebra operations, full functional correctness

specifications can be automatically computed. Besides, bi-abduction [Calcagno et al. 2019; Spies

et al. 2024] is a technique for inferring function contracts, at the heart of the infer automated

program analysis tool [Calcagno et al. 2019].

We leave it to future work to integrate techniques for inferring ghost operations and contracts,

for decreasing the amount of user annotations required.

8 CONCLUSION
In this paper, we have presented OptiTrust, the first modular tool for programmer-guided opti-

mization that demonstrates both a high degree of control and a high degree of generality. We have

demonstrated the benefits of OptiTrust on 3 realistic case studies, comparing against manually

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:61

optimized code from image processing and from scientific computing applications, and comparing

against the state-of-the-art specialized compiler TVM.

OptiTrust leverages in a crucial way Separation Logic. As we have shown, for numerous opti-

mizations, shape-based assertions are sufficient. To support more ambitious transformations, we

plan to extend OptiTrust’s specification language to a full-blown Separation Logic. We would also

like to develop mechanized proofs of the metatheory of OptiTrust, by first formalizing the type

system, then formalizing the correctness criteria of the basic transformations.

Besides mechanized proofs, there are numerous directions for future work on OptiTrust. Let us

mention a few. First, we will work on improving the user experience, in particular by making the

typechecker incremental for improved performance, and by augmenting the amount of inference

for contracts and ghost operations. Second, we plan to make the language extensible with DSL

constructs (like MLIR), to complete our library of transformations, and to provide support for

reasoning about numerical accuracy. Third, we would like OptiTrust to support a diversity of

hardware targets, including exotic accelerators. Finally, we would like to integrate in OptiTrust

tools for reporting performance feedback from benchmarks, tools for autotuning parameters, and

tools for providing suggestions for the possible next step in a transformation script.

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

1:62 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

A SEMANTICS
As said in Section 4.8, we formalize the semantics of Opti𝜆 using an omni-big-step evaluation

judgment in call by value style. The judgment 𝑡⇑(𝑠, 𝑚) ⇓ 𝑄 asserts that the term 𝑡 , in a program

stack 𝑠 and in a program store𝑚, evaluates to result states that belong to the set 𝑄 . The result

states in 𝑄 are of the form (𝑠′, 𝑚′) where 𝑠′ is a program stack and𝑚′ a program store. Program

stacks maps program variables to values, and program stores maps locations to values. The values,

denoted 𝑣 , can be logical expressions, locations, function closures of the form fun𝑠(𝑥1, ..., 𝑥𝑛) ↦ 𝑡 ,

and the special uninitialized value ⊥.
Fig. 25 gives the semantic rules of Opti𝜆. The evaluation contexts consist of function arguments

and ranges of for-loops.

This semantics rules are standard except maybe for the rule Seq to handle sequences with optional

result value. The rule Seq encode the fact that a sequence creates a lexical scope by restoring the

program stack after its execution. The result value (if there is one) is bound in the output stacks.

By design, like all omni-big-step judgments, the judgment 𝑡⇑(𝑠, 𝑚) ⇓ 𝑄 is preserved when

enlarging 𝑄 . This property named consequence will be used in the proof of the frame rule.

Theorem A.1 (Conseqence property for omnisemantics).

𝑡⇑(𝑠, 𝑚) ⇓ 𝑄 ∧ 𝑄 ⊆ 𝑄 ′ Ô⇒ 𝑡⇑(𝑠, 𝑚) ⇓ 𝑄 ′

We refer to the omnisemantics paper [Charguéraud et al. 2022] for the inductive proof pattern.

B ASSERTION AND CONTEXT SATISFACTION
In Section 4.8, we introduced the judgment (𝜎, 𝜇) ∈ Γ to assert that a logical state (𝜎, 𝜇) satisfies a
context Γ of the form ∐︀𝐸 ⋃︀ 𝐹 ̃︀. This section formally defines this judgment. Doing so involves two

auxiliary judgments 𝜎 ∶ 𝐸 and 𝐹 ⊧ 𝜇 that we define below.

First, 𝜎 ∶ 𝐸 is a characterization of the fact that bindings in 𝜎 have types that correspond to the

bindings in 𝐸. Recall that the operator Specialize described in Section 4.2 checks that each binding

𝑥 ∶ 𝑣 in 𝜎 corresponds to a binding 𝑥 ∶ 𝑇 in 𝐸 such that 𝑣 is of type𝑇 . The operator Specialize returns

the subset of 𝐸 that is not instantiated by 𝜎 . Here we enforce that this subset is empty.

Definition B.1.
𝜎 ∶ 𝐸 ∶= Specialize∅{𝜎}((︀𝐸⌋︀) = ∅

𝐹 ⊧ 𝜇 is a characterization of the fact that memory cells described by 𝜇 correspond to the linear

resources described in 𝐹 . Before giving its formal definitions, we need to introduce additional

operators on logical stores. These definitions are essentially standard in Separation Logic.

We denote by 𝜇1 ⊎ 𝜇2 the compatible union between two logical store. We denote by 𝜇1 # 𝜇2 the

fact that two logical stores are compatible. Two logical stores are compatible if and only if, on their

intersection, all the bindings have the same value, and the sum of the fractions does not exceed one.

Definition B.2.

𝜇1 # 𝜇2 ∶= ∀𝑙 ∈ dom(𝜇1) ∩ dom(𝜇2), ∃𝛼1, ∃𝛼2, ∃𝑣,
𝜇1(𝑙) = (𝛼1, 𝑣) ∧ 𝜇2(𝑙) = (𝛼2, 𝑣) ∧ 𝛼1 + 𝛼2 ≤ 1

When two logical stores are compatible, their compatible union is defined as follows:

Definition B.3. Assume 𝜇1 # 𝜇2. Then:

𝜇1 ⊎ 𝜇2 ∶=
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀
𝑙 ↦ (𝛼, 𝑣)

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀

𝜇1(𝑙) = (𝛼, 𝑣) ∧ 𝑙 ∉ dom(𝜇2)
∨ 𝜇2(𝑙) = (𝛼, 𝑣) ∧ 𝑙 ∉ dom(𝜇1)
∨ 𝜇1(𝑙) = (𝛼1, 𝑣) ∈ 𝜇1 ∧ 𝜇2(𝑙) = (𝛼2, 𝑣) ∧ 𝛼 = 𝛼1 + 𝛼2

[︀⌉︀⌉︀⌉︀⌈︀⌉︀⌉︀⌉︀⌊︀

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:63

𝑣⇑(𝑠, 𝑚) ⇓ {(𝑠(︀res↦ 𝑣⌋︀, 𝑚)} Val

𝑥⇑(𝑠, 𝑚) ⇓ {(𝑠(︀res↦ 𝑠(𝑥)⌋︀, 𝑚)} Var

(fun(𝑎1, ..., 𝑎𝑛) ↦ 𝑡𝑓)⇑(𝑠, 𝑚) ⇓ (𝑠(︀res↦ (fun𝑠(𝑎1, ..., 𝑎𝑛) ↦ 𝑡𝑓)⌋︀, 𝑚)
Fun

(let 𝑥 = stackAlloc())⇑(𝑠, 𝑚) ⇓ {(𝑠(︀𝑥 ↦ 𝑙⌋︀, 𝑚(︀𝑙 ↦⊥⌋︀) ⋃︀ 𝑙 ∉ dom(𝑚)} StackAlloc

𝑡⇑(𝑠, 𝑚) ⇓ 𝑄
(let 𝑥 = 𝑡)⇑(𝑠, 𝑚) ⇓ {(𝑠(︀𝑥 ↦ 𝑠′(res)⌋︀, 𝑚′) ⋃︀ (𝑠′, 𝑚′) ∈ 𝑄} Let

𝑡⇑(𝑠, 𝑚) ⇓ 𝑄 ′ ∀(𝑠′, 𝑚′) ∈ 𝑄 ′, ℰ(︀𝑠′(res)⌋︀⇑(𝑠, 𝑚′) ⇓ 𝑄 ℰ is an evaluation context

ℰ(︀𝑡⌋︀⇑(𝑠, 𝑚) ⇓ 𝑄 Bind

𝑠𝑐 = 𝑠𝑓 (︀𝑎𝑖 ↦ 𝑣𝑖⌋︀ 𝑡𝑓 ⇑(𝑠𝑐 , 𝑚) ⇓ 𝑄
(fun𝑠𝑓 (𝑎1, ..., 𝑎𝑛) ↦ 𝑡𝑓)(𝑣1, ..., 𝑣𝑛)⇑(𝑠, 𝑚) ⇓ 𝑄

Call

𝑡𝑐⇑(𝑠, 𝑚) ⇓ 𝑄𝑐

∀(𝑠𝑐 , 𝑚𝑐) ∈ 𝑄𝑐 , (𝑠𝑐(res) = true Ô⇒ 𝑡𝑡⇑(𝑠, 𝑚𝑐) ⇓ 𝑄)∧ (𝑠𝑐(res) = false Ô⇒ 𝑡𝑓 ⇑(𝑠, 𝑚𝑐) ⇓ 𝑄)
(if 𝑡𝑐 then 𝑡𝑡 else 𝑡𝑓)⇑(𝑠, 𝑚) ⇓ 𝑄

If

𝑄0 = {(𝑠0, 𝑚0)} ∀𝑖 ∈ (︀1, 𝑛⌋︀, ∀(𝑠, 𝑚) ∈ 𝑄𝑖−1, 𝑡𝑖⇑(𝑠, 𝑚) ⇓ 𝑄𝑖

𝑄𝐴 = {(𝑠, 𝑚 ∖𝐴(𝑠)) ⋃︀ (𝑠, 𝑚) ∈ 𝑄𝑛} where 𝐴(𝑠) = {𝑠(𝑥𝑖) ⋃︀ 𝑡𝑖 is of the form “let 𝑥𝑖 = stackAlloc()”}

𝑄 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

{(𝑠0, 𝑚) ⋃︀ (𝑠, 𝑚) ∈ 𝑄𝐴} if 𝑟 = ∅
{(𝑠0(︀res↦ 𝑠(𝑥)⌋︀, 𝑚) ⋃︀ (𝑠, 𝑚) ∈ 𝑄𝐴} if 𝑟 = 𝑥

{𝑡1; ...; 𝑡𝑛 ; 𝑟}⇑(𝑠0, 𝑚0) ⇓ 𝑄
Seq

𝑚(𝑙) ≠⊥
get(𝑙)⇑(𝑠, 𝑚) ⇓ {𝑠(︀res↦𝑚(𝑙)⌋︀, 𝑚} Get

𝑙 ∈ dom(𝑚)
set(𝑙, 𝑣)⇑(𝑠, 𝑚) ⇓ {(𝑠, 𝑚(︀𝑙 ↦ 𝑣⌋︀)} Set

ignore(𝑣)⇑(𝑠, 𝑚) ⇓ {(𝑠 ∖ res, 𝑚)} Ignore

add(𝑣1, 𝑣2)⇑(𝑠, 𝑚) ⇓ {(𝑠(︀res↦ 𝑣1 + 𝑣2⌋︀, 𝑚)}
Add

𝑚(𝑙1) ≠⊥
inplaceAdd(𝑙1, 𝑣2)⇑(𝑠, 𝑚) ⇓ {(𝑠,𝑚(︀𝑙1 ↦𝑚(𝑙1) + 𝑣2⌋︀)}

InplaceAdd

heapAlloc()⇑(𝑠, 𝑚) ⇓ {(𝑠(︀res↦ 𝑙⌋︀, 𝑚(︀𝑙 ↦⊥⌋︀) ⋃︀ 𝑙 ∉ dom(𝑚)} HeapAlloc

𝑙 ∈ dom(𝑚)
free(𝑙)⇑(𝑠, 𝑚) ⇓ {(𝑠, 𝑚 ∖ 𝑙)} Free

𝑛start ≤ 𝑛stop 𝑡⇑(𝑠(︀𝑖 ↦ 𝑛start⌋︀, 𝑚) ⇓ 𝑄1

∀(𝑠1, 𝑚1) ∈ 𝑄1, (for (𝑖 ∈ range(𝑛start + 𝑛step, 𝑛stop, 𝑛step)) 𝑡)⇑(𝑠1, 𝑚1) ⇓ 𝑄
(for (𝑖 ∈ range(𝑛start, 𝑛stop, 𝑛step)) 𝑡)⇑(𝑠, 𝑚) ⇓ 𝑄

ForIter

𝑛start > 𝑛stop
(for (𝑖 ∈ range(𝑛start, 𝑛stop, 𝑛step)) 𝑡)⇑(𝑠, 𝑚) ⇓ {(𝑠,𝑚)}

ForEnd

Fig. 25. Semantics of the Opti𝜆 internal language in omni-big-step style as explained in Section 4.8. Other

arithmetic built-in functions follow the pattern of Add or InplaceAdd.

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

1:64 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

In program and logical stores, we allow a special value ⊥ for variables that are not initialized.
We define the fact that a linear resource 𝐻 models a logical store 𝜇 recursively as follows:

Definition B.4. We define 𝐻 ⊧ 𝜇 with the following rules:

𝑙 ↝ 𝑣 ⊧ {𝑙 ↦ (1, 𝑣)}
𝑙 ↝ Cell ⊧ {𝑙 ↦ (1, 𝑣)} when 𝑣 ≠⊥
⋆𝑖∈𝑟 𝐻𝑖 ⊧ ⊎𝑖∈𝑟 𝜇𝑖 when ∀𝑖 ∈ 𝑟 , 𝐻𝑖 ⊧ 𝜇𝑖

𝛼𝐻 ⊧ ⊎𝑙↦(𝛽, 𝑣)∈𝜇{𝑙 ↦ (𝛼 ⋅ 𝛽, 𝑣)} when 𝐻 ⊧ 𝜇
Uninit(𝐻) ⊧ ⊎𝑙↦(𝛼, 𝑣)∈𝜇{𝑙 ↦ (𝛼, 𝑣 ′)} when 𝐻 ⊧ 𝜇

𝐻1 −⋆ 𝐻2 ⊧ 𝜇 when ∀𝜇1, 𝜇1 # 𝜇 ∧𝐻1 ⊧ 𝜇1
Ô⇒ 𝐻2 ⊧ 𝜇1 ⊎ 𝜇

Above, all the occurrences of the operator ⊎ must be well-defined.

We say that a linear context 𝐹 models a logical store 𝜇 and write 𝐹 ⊧ 𝜇 if and only if the disjoint

union of all resources in 𝐹 models 𝜇. Formally:

Definition B.5. Consider 𝐹 of the form 𝐻1, ..., 𝐻𝑛 . The predicate 𝐹 ⊧ 𝜇 holds if and only if

(⋆𝑖∈(︀1,𝑛⌋︀𝐻𝑖) ⊧ 𝜇.

With the two relations 𝜎 ∶ 𝐸 and 𝐹 ⊧ 𝜇 defined above, we define (𝜎, 𝜇) ∈ Γ in the following way:

Definition B.6 (Context satisfaction).

(𝜎, 𝜇) ∈ ∐︀𝐸 ⋃︀ 𝐹 ̃︀ ∶= 𝜎 ∶ 𝐸 ∧ 𝜎(𝐹) ⊧ 𝜇

C PROOF OF THE FRAME RULE
This section gives a proof of the frame rule for logical triples. This proof is divided in two steps.

First, we need to prove correct the frame property with respect to the semantics of our language

for omni-big-step evaluation judgments. Then, we can use this property along with the other

omnisemantics properties described in the previous section to show that the frame rule for logical

triples holds.

Before formally stating the frame property for omni-big-step evaluation judgment, we need one

technical definition to take the compatible union of two sets of program states. Two program stacks

(respectively program stores) are compatible, and we write 𝑠 # 𝑠′ (resp.𝑚 #𝑚′), if their domain is

disjoint. In that case, we write 𝑠 ⊎𝑠′ (resp.𝑚⊎𝑚′) their disjoint union. We can define the compatible

union of two set of program states as follows:

Definition C.1.

𝑄 ⋆𝑄 ′ ∶= {(𝑠 ⊎ 𝑠′, 𝑚 ⊎𝑚′) ⋃︀ (𝑠, 𝑚) ∈ 𝑄 ∧ (𝑠′, 𝑚′) ∈ 𝑄 ′ ∧ 𝑠 # 𝑠′ ∧𝑚 #𝑚′}

Then, the frame property for omni-big-step evaluation judgments reads as follows:

Theorem C.2 (Frame property for omnisemantics).

𝑡⇑(𝑠, 𝑚) ⇓ 𝑄 Ô⇒ ∀𝑠′ # 𝑠, ∀𝑚′ #𝑚, 𝑡⇑(𝑠 ⊎ 𝑠′, 𝑚 ⊎𝑚′) ⇓ (𝑄 ⋆ {(𝑠′, 𝑚′)})

The proof sketch of this property is given in the omnisemantics paper [Charguéraud et al. 2023,

§5.4].

Before expressing the frame property for logical triples, we need one last technical definition to

characterize typing contexts that are well-typed. Recall that since 𝐸 is a telescope, bindings defined

in 𝐸 can be used in the following bindings of the typing context.

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:65

Definition C.3 (Well-typed contexts). A typing context Γ = ∐︀𝐸 ⋃︀ 𝐹 ̃︀ is well-typed iff there is no

name conflict in 𝐸 or in 𝐹 and for any 𝑥 ∶ 𝜏 in 𝐸, 𝜏 is of type Type and for any 𝑦 ∶ 𝐻 in 𝐹 , 𝐹 is of

type Hprop.

We can now state and prove the frame property for logical triples:

Theorem C.4 (Frame property for logical triples).

{Γ} 𝑡 {Γ′} ∧ Γ ⋆ Γ′′ is well-typed ∧ Γ′ ⋆ Γ′′ is well-typed Ô⇒ {Γ ⋆ Γ′′} 𝑡 {Γ′ ⋆ Γ′′}
Proof.

● Suppose we have {Γ} 𝑡 {Γ′}. Let (𝜎0, 𝜇0) ∈ Γ ⋆ Γ′′. By definition of triples, we have to prove

𝑡⇑(𝜎0, 𝜇0)⋃︀ prog ⇓ AcceptableStates(𝜎0, 𝜇0, Γ′ ⋆ Γ′′).
● There is a decomposition 𝜎0 = 𝜎 ⊎ 𝜎 ′′ and 𝜇0 = 𝜇 ⊎ 𝜇′′ such that (𝜎, 𝜇) ∈ Γ and (𝜎 ′′,
𝜇′′) ∈ 𝜎(Γ′′).
● By definition of {Γ} 𝑡 {Γ′} applied to (𝜎, 𝜇) ∈ Γ, we have 𝑡⇑(𝜎, 𝜇)⋃︀ prog ⇓ AcceptableStates(𝜎,
𝜇, Γ′).
● We have (𝜎 ⊎ 𝜎 ′′)⋃︀ prog = 𝜎⋃︀ prog ∪ 𝜎 ′′⋃︀ prog and 𝜎 ′′⋃︀ prog ⊥ 𝜎⋃︀ prog.
● We pose𝑚 = 𝜇⋃︀ prog, and𝑚′′ = 𝜇′′⋃︀ prog ∖ dom(𝑚). Therefore𝑚′′ ⊥𝑚. By well-definedness of

𝜇 ⊎ 𝜇′′, we also have 𝜇0⋃︀ prog = (𝜇 ⊎ 𝜇′′)⋃︀ prog =𝑚 ∪𝑚′′.
● By the frame property for Omni-big-step applied on 𝑡⇑(𝜎, 𝜇)⋃︀ prog ⇓ AcceptableStates(𝜎, 𝜇,
Γ′),𝜎 ′′⋃︀ prog ⊥ 𝜎⋃︀ prog and𝑚′′ ⊥𝑚, we obtain 𝑡⇑(𝜎⋃︀ prog ∪ 𝜎 ′′⋃︀ prog, 𝑚 ∪𝑚′′) ⇓ (AcceptableStates(𝜎,
𝜇, Γ′) ⋆ {(𝜎 ′′⋃︀ prog, 𝑚′′)}).
● Since (𝜎⋃︀ prog ∪ 𝜎 ′′⋃︀ prog, 𝑚 ∪𝑚′′) = (𝜎0, 𝜇0)⋃︀ prog, by the consequence property of Omni-big-

step, it suffices to showAcceptableStates(𝜎, 𝜇, Γ′)⋆{(𝜎 ′′⋃︀ prog, 𝑚′′)} ⊆ AcceptableStates(𝜎0,
𝜇0, Γ

′ ⋆ Γ′′).
● Take (𝑠𝑟 , 𝑚𝑟) ∈ AcceptableStates(𝜎, 𝜇, Γ′) ⋆ {(𝜎 ′′⋃︀ prog, 𝑚′′)}. We need to show that (𝑠𝑟 ,
𝑚𝑟) ∈ AcceptableStates(𝜎0, 𝜇0, Γ′ ⋆ Γ′′).
● There is a decomposition 𝑠𝑟 = 𝑠′𝑟⊎𝑠′′𝑟 and𝑚𝑟 =𝑚′𝑟⊎𝑚′′𝑟 such that (𝑠′𝑟 , 𝑚′𝑟) ∈ AcceptableStates(𝜎,
𝜇, Γ′) and (𝑠′′𝑟 , 𝑚′′𝑟) ∈ {(𝜎 ′′⋃︀ prog, 𝑚′′)}. Since {(𝜎 ′′⋃︀ prog, 𝑚′′)} is a singleton, we have

𝑠′′𝑟 = 𝜎 ′′⋃︀ prog and𝑚′′𝑟 =𝑚′′.
● By definition of AcceptableStates, there is (𝜎 ′, 𝜇′) ∈ Γ′ such that (𝑠′𝑟 , 𝑚′𝑟) = (𝜎 ′, 𝜇′)⋃︀ prog
and ∀𝑥 ∈ dom(𝜎) ∩ dom(𝜎 ′), 𝜎(𝑥) = 𝜎 ′(𝑥) and OnlyRO(𝜇) = OnlyRO(𝜇′).
● (𝑠′𝑟 ⊎ 𝜎 ′′⋃︀ prog) = (𝜎 ′⋃︀ prog ⊎ 𝜎 ′′⋃︀ prog) = (𝜎 ′ ⊎ 𝜎 ′′)⋃︀ prog
● We know that Γ′ ⋆ Γ′′ is well-scoped and that 𝜎 ′ ∶ Γ′ .pure. Therefore, for any 𝑥 free in Γ′′,
𝑥 ∈ dom(Γ′) = dom(𝜎 ′). Similarly, we know that for any 𝑥 free in Γ′′, 𝑥 ∈ dom(Γ) = dom(𝜎).
Therefore, since ∀𝑥 ∈ dom(𝜎) ∩ dom(𝜎 ′), 𝜎(𝑥) = 𝜎 ′(𝑥), for any 𝑥 free in Γ′′, 𝜎(𝑥) = 𝜎 ′(𝑥).
This implies 𝜎(Γ′′) = 𝜎 ′(Γ′′).
● We have (𝜎 ′′, 𝜇′′) ∈ 𝜎(Γ′′) and 𝜎(Γ′′) = 𝜎 ′(Γ′′). Therefore, (𝜎 ′′, 𝜇′′) ∈ 𝜎 ′(Γ′′) and thus

(𝜎 ′ ⊎ 𝜎 ′′, 𝜇′ ⊎ 𝜇′′) ∈ Γ′ ⋆ Γ′′.
● ∀𝑥 ∈ dom(𝜎 ⊎ 𝜎 ′′) ∩ dom(𝜎 ′ ⊎ 𝜎 ′′), (𝜎 ⊎ 𝜎 ′′)(𝑥) = (𝜎 ′ ⊎ 𝜎 ′′)(𝑥) directly follows from

∀𝑥 ∈ dom(𝜎) ∩ dom(𝜎 ′), 𝜎(𝑥) = 𝜎 ′(𝑥).
● Let us show that 𝜇′ ⊎ 𝜇′′ is well-defined. Take 𝑙 ∈ dom(𝜇′) ∩ dom(𝜇′′). We need to find 𝛼 ,

𝛼 ′′, 𝑣 such that 𝜇′(𝑙) = (𝛼, 𝑣) and 𝜇′′(𝑙) = (𝛼 ′′, 𝑣) and 𝛼 +𝛼 ′′ ≤ 1. Let us consider two cases:
either 𝑙 ∈ dom(𝜇) or 𝑙 ∉ dom(𝜇).
– If 𝑙 ∉ dom(𝜇), 𝑙 ∈ dom(𝑚′′). Since 𝑚′𝑟 ⊎𝑚′′ is well-defined, 𝑙 ∉ dom(𝑚′𝑟). Since

dom(𝜇′) = dom(𝜇′⋃︀ prog) = dom(𝑚′𝑟), we conclude 𝑙 ∉ dom(𝜇′). This is absurd therefore
this case is not possible.

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

1:66 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

– If 𝑙 ∈ dom(𝜇), we have 𝑙 ∈ dom(𝜇) ∩ dom(𝜇′′), by well-definedness of 𝜇 ⊎ 𝜇′′ we have
𝑣 , 𝛼 and 𝛼 ′′ such that 𝜇(𝑙) = (𝛼, 𝑣) and 𝜇′′(𝑙) = (𝛼 ′′, 𝑣) and 𝛼 + 𝛼 ′′ ≤ 1. In particular,

we have 𝛼 < 1 and therefore 𝑙 ∈ dom(OnlyRO(𝜇)). Since OnlyRO(𝜇) = OnlyRO(𝜇′),
𝜇′(𝑙) = (𝛼, 𝑣). This is the last fact needed to conclude.

● Now we want to show that (𝜇′ ⊎ 𝜇′′)⋃︀ prog ⊆ (𝑚′𝑟 ⊎𝑚′′). Take 𝑙 ∈ dom((𝜇′ ⊎ 𝜇′′)⋃︀ prog) =
dom(𝜇′ ⊎ 𝜇′′). We need to show that ((𝜇′ ⊎ 𝜇′′)⋃︀ prog)(𝑙) = (𝑚′𝑟 ⊎𝑚′′)(𝑙). Consider two
cases: either 𝑙 ∈ dom(𝜇′) or 𝑙 ∉ dom(𝜇′).
– If 𝑙 ∈ dom(𝜇′), then there is 𝛼 ′ and 𝑣 such that 𝜇′(𝑙) = (𝛼 ′, 𝑣). Therefore, 𝜇′⋃︀ prog(𝑙) = 𝑣

and thus since𝑚′𝑟 = 𝜇′⋃︀ prog,𝑚
′
𝑟 (𝑙) = 𝑣 . By definition of 𝜇′ ⊎ 𝜇′′, there is 𝛼 such that

(𝜇′ ⊎ 𝜇′′)(𝑙) = (𝛼, 𝑣). Therefore, ((𝜇′ ⊎ 𝜇′′)⋃︀ prog)(𝑙) = 𝑣 . By definition of 𝑚′𝑟 ⊎𝑚′′,
(𝑚′𝑟 ⊎𝑚′′)(𝑙) = 𝑣 .

– If 𝑙 ∉ dom(𝜇′), then since 𝑙 ∈ dom(𝜇′ ⊎ 𝜇′′) we have 𝑙 ∈ dom(𝜇′′). Consider two cases:

either 𝑙 ∈ dom(𝜇) or 𝑙 ∉ dom(𝜇).
∗ If 𝑙 ∈ dom(𝜇), we have 𝑙 ∈ dom(𝜇) ∩ dom(𝜇′′), by well-definedness of 𝜇 ⊎ 𝜇′′ we

have 𝑣 , 𝛼 and 𝛼 ′′ such that 𝜇(𝑙) = (𝛼, 𝑣) and 𝜇′′(𝑙) = (𝛼 ′′, 𝑣) and 𝛼 + 𝛼 ′′ ≤ 1.
In particular, we have 𝛼 < 1 and therefore 𝑙 ∈ dom(OnlyRO(𝜇)). Thus, since
OnlyRO(𝜇) = OnlyRO(𝜇′), we get 𝑙 ∈ dom(𝜇′) which is a contradiction.

∗ If 𝑙 ∉ dom(𝜇), then 𝑙 ∈ dom(𝑚′′). There is 𝛼 ′′ and 𝑣 such that 𝜇′′(𝑙) = (𝛼 ′′,
𝑣). Since𝑚′′ = 𝜇′′⋃︀ prog ∖ dom(𝑚), we have𝑚′′(𝑙) = 𝑣 . By definition of 𝜇′ ⊎ 𝜇′′,
there is 𝛼 such that (𝜇′ ⊎ 𝜇′′)(𝑙) = (𝛼, 𝑣). Therefore, ((𝜇′ ⊎ 𝜇′′)⋃︀ prog)(𝑙) = 𝑣 . By
definition of𝑚′𝑟 ⊎𝑚′′, (𝑚′𝑟 ⊎𝑚′′)(𝑙) = 𝑣 .

● We want to show that (𝜇′ ⊎ 𝜇′′)⋃︀ prog ⊇ (𝑚′𝑟 ⊎𝑚′′). Take 𝑙 ∈ dom(𝑚′𝑟 ⊎𝑚′′). Since we

already have the equality of values from the previous point, we only need to show that

𝑙 ∈ dom((𝜇′ ⊎ 𝜇′′)⋃︀ prog) = dom(𝜇′ ⊎ 𝜇′′). There are two cases: either 𝑙 ∈ dom(𝑚′𝑟) or

𝑙 ∈ dom(𝑚′′).
– If 𝑙 ∈ dom(𝑚′𝑟), then since𝑚′𝑟 = 𝜇′⋃︀ prog, we have 𝑙 ∈ dom(𝜇′⋃︀ prog) = dom(𝜇′). Therefore,𝑙 ∈

dom(𝜇′ ⊎ 𝜇′′).
– If 𝑙 ∈ dom(𝑚′′), then since 𝑚′′ = 𝜇′′⋃︀ prog ∖ dom(𝑚), we have 𝑙 ∈ dom(𝜇′′⋃︀ prog) =

dom(𝜇′′). Therefore, 𝑙 ∈ dom(𝜇′ ⊎ 𝜇′′).
● Wehave (𝜇′ ⊎ 𝜇′′)⋃︀ prog ⊆ (𝑚′𝑟∪𝑚′′) and (𝜇′ ⊎ 𝜇′′)⋃︀ prog ⊇ (𝑚′𝑟∪𝑚′′)Therefore, (𝜇′ ⊎ 𝜇′′)⋃︀ prog =
(𝑚′𝑟 ∪𝑚′′).
● OnlyRO(𝜇 ⊎ 𝜇′′) = OnlyRO(𝜇′ ⊎ 𝜇′′) directly follows from OnlyRO(𝜇′) = OnlyRO(𝜇).
● We conclude by choosing𝜎 ′⊎𝜎 ′′ and 𝜇′⊎𝜇′′ and instantiate the definition ofAcceptableStates
with (𝑠′𝑟 ∪ 𝜎 ′′⋃︀ prog) = (𝜎 ′ ⊎ 𝜎 ′′)⋃︀ prog and (𝑚′𝑟 ∪𝑚′′) = (𝜇′ ⊎ 𝜇′′)⋃︀ prog and (𝜎 ′ ⊎ 𝜎 ′′, 𝜇′ ⊎
𝜇′′) ∈ Γ′ ⋆ Γ′′ and ∀𝑥 ∈ dom(𝜎 ⊎ 𝜎 ′′) ∩ dom(𝜎 ′ ⊎ 𝜎 ′′), (𝜎 ⊎ 𝜎 ′′)(𝑥) = (𝜎 ′ ⊎ 𝜎 ′′)(𝑥) and
OnlyRO(𝜇 ⊎ 𝜇′′) = OnlyRO(𝜇′ ⊎ 𝜇′′)

□

D DETAILS OF TRIPLE MINIMIZATION
In the description of the triple minimization operator in Section 5.4, we did not explain how it is

computed. This section gives the missing implementation details.

Minimize is computed by looking at the usage of each resource:

● For a resource 𝐻 that appear as uninit in the usage map, if 𝐻 is not already of the form

Uninit(𝐻 ′), we can wrap it as Uninit(𝐻) in 𝐹 .

● For resources that appear as splittedFrac in the usage map, we can give an arbitrarily small

fraction to 𝑡 , and keep the rest in the frame.

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:67

● For resources that appear as joinedFrac in the usage map, we can completely place them in

the frame.

These two last points, some care is needed for the minimized postcondition
ˆ𝐹 ′, because new

subfractions might have been created by 𝑡 and were immediately merged into a resource that is

now not given anymore. You can find below some examples of minimization made by our version

ofMinimize:

Γ(𝑦) Γ′(𝑦) Δ(𝑦) 𝐸
fracs

𝐹 ˆ𝐹 ′ 𝐹
framed

𝐻 𝐻 𝑦∉Δ ∅ ∅ ∅ 𝑦∶𝐻
𝐻 ∅ full ∅ 𝑦∶𝐻 ∅ ∅

Uninit(𝐻) ∅ uninit ∅ 𝑦∶Uninit(𝐻) ∅ ∅
𝐻 ∅ uninit ∅ 𝑦∶Uninit(𝐻) ∅ ∅
𝐻 𝐻 splittedFrac 𝛼 ∶frac 𝑦

′∶𝛼𝐻 𝑦
′∶𝛼𝐻 𝑦∶(1−𝛼)𝐻

𝛼𝐻 𝛼𝐻 splittedFrac 𝛽 ∶frac 𝑦
′∶𝛽𝐻 𝑦

′∶𝛽𝐻 𝑦∶(𝛼−𝛽)𝐻
(𝛼−𝛽)𝐻 𝛼𝐻 splittedFrac 𝛾 ∶frac 𝑦

′∶𝛾𝐻 𝑦
′∶𝛾𝐻,𝑦𝛽 ∶𝛽𝐻 𝑦∶(𝛼−𝛽−𝛾)𝐻

𝛼𝐻 (𝛼−𝛽)𝐻 splittedFrac 𝛾 ∶frac 𝑦
′∶𝛾𝐻 𝑦

′∶(𝛾−𝛽)𝐻 𝑦∶(𝛼−𝛾)𝐻
(𝛼−𝛽1−𝛽2)𝐻 (𝛼−𝛽1−𝛽3)𝐻 splittedFrac 𝛾 ∶frac 𝑦

′∶𝛾𝐻 𝑦
′∶(𝛾−𝛽3)𝐻,𝑦2∶𝛽2𝐻 𝑦∶(𝛼−𝛾)𝐻

(𝛼−𝛽)𝐻 𝛼𝐻 joinedFrac ∅ ∅ 𝑦
′∶𝛽𝐻 𝑦∶(𝛼−𝛽)𝐻

(𝛼−𝛽1−𝛽2−𝛽3)𝐻 (𝛼−𝛽2)𝐻 joinedFrac ∅ ∅ 𝑦1∶𝛽1𝐻,𝑦3∶𝛽3𝐻 𝑦∶(𝛼−𝛽1−𝛽2−𝛽3)𝐻

Algorithmically,Minimize can be defined by iterating over its first argument.

Start with 𝐸fracs = ∅, 𝐹 = ∅, ˆ𝐹 ′ = Γ′.linear and 𝐹 framed = ∅.
For each binding 𝑦 ∶ 𝐻 in Γ, lookup 𝑦 in Δ:

● If 𝑦 is not in Δ, add 𝑦 ∶ 𝐻 in 𝐹 framed
and remove it from

ˆ𝐹 ′ (it must exist there by the

invariants of triples).

● If 𝑦 ∶ full is in Δ, add 𝑦 ∶ 𝐻 in 𝐹 .

● If 𝑦 ∶ uninit is in Δ, add 𝑦 ∶ Uninit(𝐻) in 𝐹 or 𝑦 ∶ 𝐻 if 𝐻 already is of the form Uninit(𝐻 ′).
● If𝑦 ∶ splittedFrac is in Δ, decompose𝐻 as (𝛼−𝛽1− ...−𝛽𝑛)𝐻 ′. It is always possible since 𝛼 = 1
is allowed and the list of 𝛽𝑖 can be empty. Create a fresh fraction 𝛾 ≤ 𝛼−𝛽1− ...−𝛽𝑛 and place
it in 𝐸fracs. Add 𝑦′ ∶ 𝛾𝐻 ′ in 𝐹 and 𝑦 ∶ (𝛼 − 𝛽1 − ... − 𝛽𝑛 −𝛾)𝐻 ′ in 𝐹 framed

. Replace the binding

𝑦 ∶ (𝛼 − 𝛿1 − ... − 𝛿𝑚)𝐻 ′ in ˆ𝐹 ′ by the following: try to pair 𝛿𝑖 with a matching 𝛽 𝑗 . For each

unmatched 𝛽𝑖 , add a binding 𝑦
′′
𝑖 ∶ 𝛽𝑖𝐻 ′ to ˆ𝐹 ′. These correspond to the subfractions that were

created by 𝑡 and merged into 𝑦. Let the unmatched 𝛿𝑖 form the list of
˜𝛿𝑖 . These correspond to

the subfractions consumed by 𝑡 and not given back. Add the binding 𝑦′ ∶ (𝛾 − ˜𝛿1 − ...− ˜𝛿𝑚̃)𝐻
to

ˆ𝐹 ′.
● If 𝑦 ∶ joinedFrac is in Δ, decompose 𝐻 as (𝛼 − 𝛽1 − ... − 𝛽𝑛)𝐻 ′. Add 𝑦 ∶ 𝐻 in 𝐹 framed

. Remove

the binding 𝑦 ∶ (𝛼 − 𝛿1 − ... − 𝛿𝑚)𝐻 ′ in ˆ𝐹 ′. Given that joinedFrac usage are only created by

CloseFracs and given how the CloseFracs algorithm works, each 𝛿𝑖 will necessarily match

one of the 𝛽 𝑗 , however there will be some 𝛽𝑖 that are not matched. For each unmatched 𝛽𝑖 ,

add the binding 𝑦′𝑖 ∶ 𝛽𝑖𝐻 ′ in ˆ𝐹 ′.

The next two sections give details for two applications of this Minimize operator: typechecking

subexpressions and loop contract minimization.

E EXAMPLE TYPECHECKING OF SUBEXPRESSIONS
This section presents an example application of the Subexpr from Section 5.5 and repeated below.

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

1:68 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

𝑖 0 1 2 3

Γ𝑖 .pure 𝑝,𝑞, 𝑐 ∶ ptr
int

𝑝,𝑞, 𝑐 ∶ ptr
int

𝑝,𝑞, 𝑐 ∶ ptr
int

𝑝,𝑞, 𝑐 ∶ ptr
int

𝛼 ∶ frac

Γ𝑖 .linear

𝐻𝑝 ∶ 𝑝 ↝ Cell

𝐻𝑞 ∶ 𝑞 ↝ Cell

𝐻𝑐 ∶ 𝑐 ↝ Cell

𝐻𝑝 ∶ 𝑝 ↝ Cell

𝐻𝑞 ∶ 𝑞 ↝ Cell

𝐻𝑐 ∶ 𝑐 ↝ Cell

𝐻𝑝 ∶ 𝑝 ↝ Cell

𝐻𝑞 ∶ 𝑞 ↝ Cell

𝐻𝑝 ∶ (1 − 𝛼)(𝑝 ↝ Cell)
𝐻𝑞 ∶ 𝑞 ↝ Cell

𝑡𝑖 𝑞 get_incr(𝑐) get(𝑝) get(𝑝)

Δ𝑖
𝑞 ∶ required
res ∶ ensured

𝑐 ∶ required
𝐻𝑐 ∶ full

𝐻𝑐
′ ∶ produced

res ∶ ensured

𝑝 ∶ required
𝐻𝑝 ∶ splittedFrac
res ∶ ensured

𝑝 ∶ required
𝐻𝑝
′ ∶ splittedFrac
res ∶ ensured

𝐸
fracs

𝑖 ∅ ∅ 𝛼 ∶ frac 𝛽 ∶ frac
𝐹𝑖 ∅ 𝐻𝑐 ∶ 𝑐 ↝ Cell 𝛼(𝑝 ↝ Cell) 𝛽(𝑝 ↝ Cell)
ˆ𝐹 ′𝑖 ∅ 𝐻𝑐

′ ∶ 𝑐 ↝ Cell 𝛼(𝑝 ↝ Cell) 𝛽(𝑝 ↝ Cell)

𝐹
framed

𝑖

𝐻𝑝 ∶ 𝑝 ↝ Cell

𝐻𝑞 ∶ 𝑞 ↝ Cell

𝐻𝑐 ∶ 𝑐 ↝ Cell

𝐻𝑝 ∶ 𝑝 ↝ Cell

𝐻𝑞 ∶ 𝑞 ↝ Cell

𝐻𝑝 ∶ (1 − 𝛼)(𝑝 ↝ Cell)
𝐻𝑞 ∶ 𝑞 ↝ Cell

𝐻𝑝 ∶
(1 − 𝛼 − 𝛽)(𝑝 ↝ Cell)

𝐻𝑞 ∶ 𝑞 ↝ Cell

ˆΓ′𝑖 .pure res ∶= 𝑞 ∶ ptr
int

res ∶ int res ∶ int res ∶ int
Γ𝑝 .pure 𝑝,𝑞, 𝑐 ∶ ptr

int
, 𝑥0 ∶= 𝑞 ∶ ptrint, 𝑥1, 𝑥2, 𝑥3 ∶ int

Γ𝑝 .linear 𝐻𝑝 ∶ 𝑝 ↝ Cell, 𝐻𝑞 ∶ 𝑞 ↝ Cell, 𝐻𝑐
′ ∶ 𝑐 ↝ Cell

Fig. 26. Example of an application of the Subexpr rule on an expression
ˆℰ(︀𝑞, get_incr(c), get(𝑝), get(𝑝)⌋︀, in a

context ∐︀𝑝,𝑞, 𝑐 ∶ ptr
int
⋃︀ 𝐻𝑝 ∶ 𝑝 ↝ Cell, 𝐻𝑞 ∶ 𝑞 ↝ Cell, 𝐻𝑐 ∶ 𝑐 ↝ Cell̃︀.

Subexpr

∀𝑖 ∈ (︀1, 𝑛⌋︀. {Γ𝑖−1} 𝑡Δ𝑖

𝑖 {Γ′𝑖 } ∧ (𝐸fracs𝑖 , 𝐹𝑖 ,
ˆ𝐹 ′𝑖 , 𝐹

framed

𝑖) =Minimize(Γ𝑖−1, Γ′𝑖 , Δ𝑖) ∧ 𝑥𝑖 fresh

∀𝑖 ∈ (︀1, 𝑛⌋︀. Γ𝑖 = ∐︀ Γ𝑖 .pure, 𝐸fracs𝑖 ⋃︀ 𝐹 framed

𝑖 ̃︀ ∧ ˆΓ′𝑖 = ∐︀ Γ′𝑖 .pure�Δ𝑖 .ensured ⋃︀ ˆ𝐹 ′𝑖 ̃︀
Γ𝑝 = CloseFracsΔ𝑝 (Γ𝑛 ⍟⋆𝑖∈(︀0,𝑛⌋︀ Rename{res ∶= 𝑥𝑖}(ˆΓ′𝑖))

{Γ𝑝} ˆℰ(︀𝑥1, ..., 𝑥𝑛⌋︀Δ𝑞 {Γ𝑞}
Δ = Rename{res ∶= 𝑥1}(Δ1); ...; Rename{res ∶= 𝑥𝑛}(Δ𝑛);Δ𝑝 ;Δ𝑞

{Γ0} ˆℰ(︀𝑡1, ..., 𝑡𝑛⌋︀Δ {Γ𝑞}

The example consists of a multi-evaluation-context
ˆℰ , which could be a function call, featuring 4

subexpression holes:
ˆℰ(︀𝑞, get_incr(c), get(𝑝), get(𝑝)⌋︀. This expression is typechecked in a typing

context: ∐︀𝑝,𝑞, 𝑐 ∶ ptr
int

⋃︀ 𝐻𝑝 ∶ 𝑝 ↝ Cell, 𝐻𝑞 ∶ 𝑞 ↝ Cell, 𝐻𝑐 ∶ 𝑐 ↝ Cell̃︀.
Figure 26 shows the typechecking steps. The figure includes 4 columns, describing the steps

associated with each of the 4 subterms. The rows explain how the metavariables from the rule

Subexpr are instantiated. In particular, observe how the two subexpressions get(𝑝) both have read-

only access to the same resource 𝐻 . As the details in the Figure show, the first get(𝑝), according
to its minimized precondition, only needs a fraction of 𝐻 . This fraction is carved out, obtaining a

subfraction 𝛼𝐻 and leaving (1 − 𝛼)𝐻 for the second get(𝑝).

F DETAILS OF LOOP MINIMIZATION
Figure 27 describes the loop minimization transformation. Essentially, it uses theMinimize operator

to minimize the exclusive part of the loop contract, and it tries to reduce the footprint of the shared

part of the loop contract by taking arbitrary subfractions and using shared reads whenever possible.

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:69

for 𝜋
𝜒 𝑖 ∈ 𝑟𝑖 {

𝑇 ;Δ

}
z→

for 𝜋
𝜒 ′ 𝑖 ∈ 𝑟𝑖 {

𝑇 ;

}
with:

(𝐸fracs, 𝐹 , ˆ𝐹 ′, _) =Minimize(𝜒.excl.pre, Σ−1(𝜒.excl.post), Δ)
∐︀𝐸𝑅𝑂 ⋃︀ 𝐹𝑅𝑂̃︀ = IntoRO((𝜒.shrd.inv�Δ.read) ⋆ (𝜒.shrd.reads�Δ.read))

𝜒 ′ ≡

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

shrd.reads ≡ 𝐹𝑅𝑂 ⋆ (𝜒.shrd.reads�Δ.alter)
shrd.inv ≡ 𝜒.shrd.inv�Δ.alter
excl.pre ≡ ∐︀(𝜒.excl.pre.pure�Δ.required) ⋃︀ 𝐹 ̃︀
excl.post ≡ Σ(∐︀𝜒.excl.post.pure ⋃︀ ˆ𝐹 ′̃︀)
vars ≡ (𝜒.vars�(usedVars(𝜒 ′ .shrd) ∪ usedVars(𝜒 ′.excl) ∪ Δ.required)), 𝐸𝑅𝑂 , 𝐸fracs

Fig. 27. The basic transformation Loop.minimize. The Minimize operation is that defined for triples in

Section 5.4. usedVars(𝑋) is the set of all variables used in 𝑋 at least once.

For that we use a new operator IntoRO that operates on linear contexts and is defined recursively

as follows:

IntoRO(𝐹) ∶=
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

∐︀ ⋃︀ ̃︀ if 𝐹 = ∅
∐︀𝛼 ∶ frac ⋃︀ 𝑦 ∶ 𝛼𝐻̃︀ ⍟ IntoRO(𝐹 ′) if 𝐹 = (𝑦 ∶ 𝐻) ∶∶ 𝐹 ′

For pure variables, it simply removes those that are not used and adds the new arbitrary fractions

generated during the previous steps.

One technical difficulty: postcondition of a loop contract uses names for linear resources, and

these names must be matched to corresponding resources at the end of the body of the loop. In

fact our typechecker had to prove an entailment there. We can remember the map Σ from linear

resource names at the end of the loop body to linear resources names in the postcondition, and use

it in the loop minimization transformation.

G PARTIAL SUBTRACTION AND PARTITIONING OF RESOURCES
A concrete way to compute the partitions involved in loop swap is by using the PartialSub(Γ1, Γ2)
operator similar to the context subtraction operator from Section 4.5. Instead of failing like Γ1 ⊟ Γ2
when a resource in Γ2 cannot be found in Γ1, PartialSub(Γ1, Γ2) returns both the resources that were

found, and the ones that could not be found, including pure resources. Intuitively, 𝐹 represents

resources that are common between Γ1 and Γ2, Γ
′
1
represents resources that remain from Γ1, and

Γ′
2
represents resources that remain from Γ2. More formally, if 𝐹, Γ′

1
, Γ′

2
= PartialSub(Γ1, Γ2), then:

∃𝜎. Γ1 ⇒ Γ′
1
⍟ 𝐹 ∧ SpecializeΓ1{𝜎}(Γ2) ⇒ Γ′

2
⍟ 𝐹 , with Γ′

2
containing as few resources as possible.

Using this operator, our example partition can be computed as follows:

𝑅𝑅, 𝑅𝑃𝑖 , _ ≡ PartialSub(𝜒 𝑗 .shrd.reads, 𝜒𝑖 .shrd.reads)
In practice, we can sometimes avoid this computation altogether in our implementation by

instead leveraging information left by our type checker regarding realized contract instantations.

REFERENCES
2022. Unsequenced functions. https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2956.htm ISO/IEC JCT1/SC22/WG14

document N2956.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2956.htm

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

1:70 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

Sami Alabed, Daniel Belov, Bart Chrzaszcz, Juliana Franco, Dominik Grewe, Dougal Maclaurin, James Molloy, Tom Natan,

Tamara Norman, Xiaoyue Pan, Adam Paszke, Norman A. Rink, Michael Schaarschmidt, Timur Sitdikov, Agnieszka

Swietlik, Dimitrios Vytiniotis, and Joel Wee. 2024. PartIR: Composing SPMD Partitioning Strategies for Machine Learning.

arXiv:2401.11202 [cs.LG] https://arxiv.org/abs/2401.11202

Vasco Amaral, Beatriz Norberto, Miguel Goulão, Marco Aldinucci, Siegfried Benkner, Andrea Bracciali, Paulo Carreira, Edgars

Celms, Luís Correia, Clemens Grelck, Helen Karatza, Christoph Kessler, Peter Kilpatrick, Hugo Martiniano, Ilias Mavridis,

Sabri Pllana, Ana Respício, José Simão, Luís Veiga, and Ari Visa. 2020. Programming languages for data-Intensive HPC

applications: A systematic mapping study. Parallel Comput. 91 (2020), 102584. https://doi.org/10.1016/j.parco.2019.102584

Mehdi Amini. 2012. Source-to-source automatic program transformations for GPU-like hardware accelerators. Ph. D. Disserta-
tion. Ecole Nationale Supérieure des Mines de Paris.

Hansang Bae, Dheya Mustafa, Jae-Woo Lee, Aurangzeb, Hao Lin, Chirag Dave, Rudolf Eigenmann, and Samuel P. Midkiff.

2013. The Cetus Source-to-Source Compiler Infrastructure: Overview and Evaluation. Int. J. Parallel Program. 41, 6
(2013), 753–767. https://doi.org/10.1007/S10766-012-0211-Z

O.S. Bagge, K.T. Kalleberg, M. Haveraaen, and E. Visser. 2003. Design of the CodeBoost transformation system for domain-

specific optimisation of C++ programs. In Proceedings Third IEEE International Workshop on Source Code Analysis and
Manipulation. 65–74. https://doi.org/10.1109/SCAM.2003.1238032

Lénaïc Bagnères, Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. 2016a. Opening Polyhedral Compiler’s Black Box.

In IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
Lénaïc Bagnères, Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. 2016b. Opening Polyhedral Compiler’s Black Box.

In IEEE/ACM International Symp. on Code Generation and Optimization.
Paul Barham and Michael Isard. 2019. Machine Learning Systems are Stuck in a Rut. In Proceedings of the Workshop on Hot

Topics in Operating Systems (Bertinoro, Italy) (HotOS ’19). Association for Computing Machinery, New York, NY, USA,

177–183. https://doi.org/10.1145/3317550.3321441

Y. Barsamian, A. Charguéraud, S. A. Hirstoaga, andM.Mehrenberger. 2018. Efficient Strict-Binning Particle-in-Cell Algorithm

for Multi-Core SIMD Processors. In 24th International Conference on Parallel and Distributed Computing (Euro-Par) (Lecture
Notes in Computer Science, Vol. 11014). Springer, Cham, 749–763. https://doi.org/10.1007/978-3-319-96983-1_53

Gilles Barthe, Benjamin Grégoire, César Kunz, and Tamara Rezk. 2009. Certificate Translation for Optimizing Compilers.

ACM Trans. Program. Lang. Syst. 31, 5, Article 18 (jul 2009), 45 pages. https://doi.org/10.1145/1538917.1538919

Guillaume Bertholon and Arthur Charguéraud. 2025. Bidirectional Translation between a C-like Language and an Imperative

Lambda-calculus. In 36es Journées Francophones des Langages Applicatifs (JFLA 2025). Roiffé, France. https://inria.hal.

science/hal-04859522

João Bispo and João MP Cardoso. 2020. Clava: C/C++ source-to-source compilation using LARA. SoftwareX 12 (2020),

100565. https://www.sciencedirect.com/science/article/pii/S2352711019302122/pdf

Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. 2017. The VerCors Tool Set: Verification of Parallel and

Concurrent Software. In Integrated Formal Methods, Nadia Polikarpova and Steve Schneider (Eds.). Springer International
Publishing, Cham, 102–110.

Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A practical automatic polyhedral parallelizer

and locality optimizer. In PLDI’08 ACM Conf. on Programming language design and implementation.
John Boyland. 2003. Checking Interference with Fractional Permissions. In Static Analysis, 10th International Symposium,

SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings (Lecture Notes in Computer Science, Vol. 2694), Radhia Cousot
(Ed.). Springer, 55–72. https://doi.org/10.1007/3-540-44898-5_4

Gary Bradski, Adrian Kaehler, et al. 2000. OpenCV. Dr. Dobb’s journal of software tools 3, 2 (2000). https://opencv.org/.
Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. 2008. Stratego/XT 0.17. A Language and Toolset

for Program Transformation. Sci. Comput. Program. 72, 1–2 (jun 2008), 52–70. https://doi.org/10.1016/j.scico.2007.11.003

Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok. Yang. 2019. Go Huge or Go Home: POPL’19 Most

Influential Paper Retrospective. https://blog.sigplan.org/2020/03/03/go-huge-or-go-home-popl19-most-influentialpaper-

retrospective/

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel. 2018. VST-Floyd: A Separation

Logic Tool to Verify Correctness of C Programs. J. Autom. Reason. 61, 1-4 (2018), 367–422. https://doi.org/10.1007/S10817-
018-9457-5

Arthur Charguéraud. 2020a. Separation logic for sequential programs (functional pearl). Proc. ACM Program. Lang. 4, ICFP,
Article 116 (aug 2020), 34 pages. https://doi.org/10.1145/3408998

Arthur Charguéraud. 2020b. Separation Logic for Sequential Programs (Functional Pearl). Proc. ACM Program. Lang. 4,
ICFP, Article 116 (aug 2020), 34 pages. https://doi.org/10.1145/3408998

Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Gruetter. 2022. Omnisemantics: Smooth Handling of

Nondeterminism. (Sept. 2022). https://hal.inria.fr/hal-03255472 To appear in ACM Transactions on Programming

Languages and Systems (TOPLAS).

https://arxiv.org/abs/2401.11202
https://arxiv.org/abs/2401.11202
https://doi.org/10.1016/j.parco.2019.102584
https://doi.org/10.1007/S10766-012-0211-Z
https://doi.org/10.1109/SCAM.2003.1238032
https://doi.org/10.1145/3317550.3321441
https://doi.org/10.1007/978-3-319-96983-1_53
https://doi.org/10.1145/1538917.1538919
https://inria.hal.science/hal-04859522
https://inria.hal.science/hal-04859522
https://www.sciencedirect.com/science/article/pii/S2352711019302122/pdf
https://doi.org/10.1007/3-540-44898-5_4
https://opencv.org/
https://doi.org/10.1016/j.scico.2007.11.003
https://blog.sigplan.org/2020/03/03/go-huge-or-go-home-popl19-most-influentialpaper-retrospective/
https://blog.sigplan.org/2020/03/03/go-huge-or-go-home-popl19-most-influentialpaper-retrospective/
https://doi.org/10.1007/S10817-018-9457-5
https://doi.org/10.1007/S10817-018-9457-5
https://doi.org/10.1145/3408998
https://doi.org/10.1145/3408998
https://hal.inria.fr/hal-03255472

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:71

Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Gruetter. 2023. Omnisemantics: Smooth Handling of

Nondeterminism. ACM Trans. Program. Lang. Syst. 45, 1, Article 5 (March 2023), 43 pages. https://doi.org/10.1145/3579834

Gaurav Chaurasia, Jonathan Ragan-Kelley, Sylvain Paris, George Drettakis, and Frédo Durand. 2015. Compiling high

performance recursive filters. In Proceedings of the 7th Conference on High-Performance Graphics, HPG 2015, Los Angeles,
California, USA, August 7-9, 2015, Michael C. Doggett, Steven E. Molnar, Kayvon Fatahalian, Jacob Munkberg, Elmar

Eisemann, Petrik Clarberg, and Stephen N. Spencer (Eds.). ACM, 85–94. https://doi.org/10.1145/2790060.2790063

Lorenzo Chelini, Martin Kong, Tobias Grosser, and Henk Corporaal. 2021. LoopOpt: Declarative Transformations Made Easy.

In Proceedings of the 24th InternationalWorkshop on Software and Compilers for Embedded Systems (Eindhoven, Netherlands)
(SCOPES ’21). Association for Computing Machinery, New York, NY, USA, 11–16. https://doi.org/10.1145/3493229.3493301

Chun Chen, Jacqueline Chame, and MaryW. Hall. 2008. CHiLL: A Framework for Composing High-Level Loop Transformations.
Technical Report 08-897. University of Southern California.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,

Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing

Compiler for Deep Learning. In OSDI. USENIX Association. https://www.usenix.org/system/files/osdi18-chen.pdf

James R Cordy. 2006. The TXL source transformation language. Science of Computer Programming 61, 3 (2006), 190–210.

Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, Rudolf Eigenmann, and Samuel Midkiff. 2009. Cetus: A Source-to-

Source Compiler Infrastructure for Multicores. Computer 42, 12 (2009), 36–42. https://doi.org/10.1109/MC.2009.385

Thomas M Evans, Andrew Siegel, Erik W Draeger, Jack Deslippe, Marianne M Francois, Timothy C Germann, William E

Hart, and Daniel F Martin. 2022. A survey of software implementations used by application codes in the Exascale

Computing Project. The International Journal of High Performance Computing Applications 36, 1 (2022), 5–12. https:

//doi.org/10.1177/10943420211028940

Paul Feautrier. 1992. Some efficient solutions to the affine scheduling problem: one dimensional time. Intl. Journal of Parallel
Programming 21, 5 (october 1992), 313–348.

Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3—Where Programs Meet Provers. In European Symposium on
Programming (ESOP) (Lecture Notes in Computer Science, Vol. 7792). Springer, 125–128. http://hal.inria.fr/hal-00789533

Jean-Christophe Filliâtre. 2003. Why: a multi-language multi-prover verification tool. Research Report 1366. LRI, Université

Paris Sud. http://www.lri.fr/~filliatr/ftp/publis/why-tool.ps.gz

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata. 2002. Extended

Static Checking for Java. In Programming Language Design and Implementation (PLDI). 234–245. http://www.soe.ucsc.

edu/~cormac/papers/pldi02.ps

John John Gough and K John Gough. 2001. Compiling for the. Net Common Language Runtime. Prentice Hall PTR.
Bastian Hagedorn, Archibald Samuel Elliott, Henrik Barthels, Rastislav Bodik, and Vinod Grover. 2020a. Fireiron: a data-

movement-aware scheduling language for GPUs. In Proceedings of the ACM International Conf. on Parallel Architectures
and Compilation Techniques. 71–82.

Bastian Hagedorn, Johannes Lenfers, Thomas Kundefinedhler, Xueying Qin, Sergei Gorlatch, and Michel Steuwer. 2020b.

Achieving high-performance the functional way: a functional pearl on expressing high-performance optimizations as

rewrite strategies. Proc. ACM Program. Lang. 4, ICFP, Article 92 (aug 2020), 29 pages. https://doi.org/10.1145/3408974

Stefan Heule, K. Rustan M. Leino, Peter Müller, and Alexander J. Summers. 2013. Abstract Read Permissions: Fractional

Permissions without the Fractions. In Verification, Model Checking, and Abstract Interpretation, Roberto Giacobazzi, Josh

Berdine, and Isabella Mastroeni (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 315–334.

Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan Ragan-Kelley. 2022. Exocompilation for

productive programming of hardware accelerators. In Proceedings of the 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing

Machinery, New York, NY, USA, 703–718. https://doi.org/10.1145/3519939.3523446

Yuka Ikarashi, Jonathan Ragan-Kelley, Tsukasa Fukusato, Jun Kato, and Takeo Igarashi. 2021. Guided Optimization for

Image Processing Pipelines. In 2021 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 1–5.
https://doi.org/10.1109/VL/HCC51201.2021.9576341

Matthieu Journault and Antoine Miné. 2018. Inferring functional properties of matrix manipulating programs by abstract

interpretation. Form. Methods Syst. Des. 53, 2 (oct 2018), 221–258. https://doi.org/10.1007/s10703-017-0311-x

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018a. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.

https://doi.org/10.1017/S0956796818000151

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018b. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28

(2018), e20. https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf

Yamato Kanetaka, Hiroyasu Takagi, Yoshihiro Maeda, and Norishige Fukushima. 2024. SlidingConv: Domain-Specific

Description of Sliding Discrete Cosine Transform Convolution for Halide. IEEE Access 12 (2024), 7563–7583. https:

https://doi.org/10.1145/3579834
https://doi.org/10.1145/2790060.2790063
https://doi.org/10.1145/3493229.3493301
https://www.usenix.org/system/files/osdi18-chen.pdf
https://doi.org/10.1109/MC.2009.385
https://doi.org/10.1177/10943420211028940
https://doi.org/10.1177/10943420211028940
http://hal.inria.fr/hal-00789533
http://www.lri.fr/~filliatr/ftp/publis/why-tool.ps.gz
http://www.soe.ucsc.edu/~cormac/papers/pldi02.ps
http://www.soe.ucsc.edu/~cormac/papers/pldi02.ps
https://doi.org/10.1145/3408974
https://doi.org/10.1145/3519939.3523446
https://doi.org/10.1109/VL/HCC51201.2021.9576341
https://doi.org/10.1007/s10703-017-0311-x
https://doi.org/10.1017/S0956796818000151
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://doi.org/10.1109/ACCESS.2023.3345660
https://doi.org/10.1109/ACCESS.2023.3345660

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

1:72 Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim Bytyqi, and Damien Rouhling

//doi.org/10.1109/ACCESS.2023.3345660

Vasilios Kelefouras and Georgios Keramidas. 2022. Design and Implementation of 2D Convolution on x86/x64 Processors.

IEEE Transactions on Parallel and Distributed Systems 33, 12 (2022), 3800–3815. https://doi.org/10.1109/TPDS.2022.3171471
Athanasios Konstantinidis. 2013. Source-to-source compilation of loop programs for manycore processors. Ph. D. Dissertation.

Imperial College London.

Michael Kruse and Hal Finkel. 2018. A Proposal for Loop-Transformation Pragmas. CoRR abs/1805.03374 (2018).

arXiv:1805.03374 http://arxiv.org/abs/1805.03374

Olaf Krzikalla, Kim Feldhoff, Ralph Müller-Pfefferkorn, and Wolfgang E. Nagel. 2011. Scout: A Source-to-Source Transfor-

mator for SIMD-Optimizations. In Euro-Par Workshops (2) (LNCS, Vol. 7156). Springer.
César Kunz. 2009. Proof preservation and program compilation. Ph. D. Dissertation. École Nationale Supérieure des Mines de

Paris. https://pastel.archives-ouvertes.fr/pastel-00004940/file/thesis-ckunz.pdf

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman,

Nicolas Vasilache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain Specific Computation.

In 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). 2–14. https://doi.org/10.1109/

CGO51591.2021.9370308

Julia Lawall and Gilles Muller. 2018. Coccinelle: 10 Years of Automated Evolution in the Linux Kernel. In USENIX Conference
on Usenix Annual Technical Conference (USENIX ATC ’18). USENIX Association, 13 pages.

Youenn Lebras. 2019. Code optimization based on source to source transformations using profile guided metrics. Ph. D.

Dissertation. Université Paris-Saclay (ComUE). https://www.theses.fr/2019SACLV037.pdf

Amanda Liu, Gilbert Louis Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley. 2022. Verified Tensor-Program Optimiza-

tion via High-Level Scheduling Rewrites. 6, POPL, Article 55 (jan 2022), 28 pages. https://doi.org/10.1145/3498717

Martin Paul Lücke, Oleksandr Zinenko, William S. Moses, Michel Steuwer, and Albert Cohen. 2024. The MLIR Transform

Dialect. Your compiler is more powerful than you think. CoRR abs/2409.03864 (2024). https://doi.org/10.48550/ARXIV.

2409.03864 arXiv:2409.03864

Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2017. Viper: A Verification Infrastructure for Permission-Based

Reasoning. In Dependable Software Systems Engineering. IOS Press, 104–125. https://doi.org/10.3233/978-1-61499-810-5-

104

Kedar S. Namjoshi and Nimit Singhania. 2016. Loopy: Programmable and Formally Verified Loop Transformations. In Static
Analysis - 23rd International Symposium, SAS (LNCS, Vol. 9837). Springer.

George Ciprian Necula. 1998. Compiling with proofs. Ph. D. Dissertation. Carnegie Mellon University.

Peter W. O’Hearn. 2019. Separation logic. Commun. ACM 62, 2 (2019), 86–95. https://doi.org/10.1145/3211968

Pedro Pinto, Joao Bispo, Joao Cardoso, Jorge Gomes Barbosa, Davide Gadioli, Gianluca Palermo, Jan Martinovic, Martin

Golasowski, Katerina Slaninova, Radim Cmar, et al. 2020. Pegasus: Performance Engineering for Software Applications

Targeting HPC Systems. IEEE Transactions on Software Engineering (2020). https://repositorio-aberto.up.pt/bitstream/

10216/127756/2/405707.pdf

Dan Quinlan. 2000. ROSE: Compiler support for object-oriented frameworks. Parallel processing letters 10, 02n03 (2000),
215–226. https://digital.library.unt.edu/ark:/67531/metadc741175/m2/1/high_res_d/793936.pdf

Dan Quinlan and Chunhua Liao. 2011. The ROSE source-to-source compiler infrastructure. In Cetus users and compiler
infrastructure workshop, in conjunction with PACT, Vol. 2011. 1.

Pawel K. Radtke and Tobias Weinzierl. 2024. Compiler support for semi-manual AoS-to-SoA conversions with data views.

arXiv:2405.12507 [cs.PL] https://arxiv.org/abs/2405.12507

Jonathan Ragan-Kelley. 2023. Technical Perspective: Reconsidering the Design of User-Schedulable Languages. Commun.
ACM 66, 3 (feb 2023), 88. https://doi.org/10.1145/3580370

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe. 2013.

Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing Pipelines.

In Conference on Programming Language Design and Implementation. 12 pages. https://doi.org/10.1145/2491956.2462176

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In 17th IEEE Symposium on Logic
in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings. IEEE Computer Society, 55–74.

https://doi.org/10.1109/LICS.2002.1029817

Gabe Rudy, Malik Murtaza Khan, Mary Hall, Chun Chen, and Jacqueline Chame. 2011. A Programming Language Interface

to Describe Transformations and Code Generation. In Languages and Compilers for Parallel Computing. Springer Berlin
Heidelberg.

Ömer Sakar, Mohsen Safari, Marieke Huisman, and Anton Wijs. 2022. Alpinist: An Annotation-Aware GPU Program

Optimizer. In Tools and Algorithms for the Construction and Analysis of Systems - 28th International Conference, TACAS
2022, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 13244), Dana Fisman and Grigore Rosu (Eds.).

Springer, 332–352. https://doi.org/10.1007/978-3-030-99527-0_18

https://doi.org/10.1109/ACCESS.2023.3345660
https://doi.org/10.1109/ACCESS.2023.3345660
https://doi.org/10.1109/ACCESS.2023.3345660
https://doi.org/10.1109/TPDS.2022.3171471
https://arxiv.org/abs/1805.03374
http://arxiv.org/abs/1805.03374
https://pastel.archives-ouvertes.fr/pastel-00004940/file/thesis-ckunz.pdf
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://www.theses.fr/2019SACLV037.pdf
https://doi.org/10.1145/3498717
https://doi.org/10.48550/ARXIV.2409.03864
https://doi.org/10.48550/ARXIV.2409.03864
https://arxiv.org/abs/2409.03864
https://doi.org/10.3233/978-1-61499-810-5-104
https://doi.org/10.3233/978-1-61499-810-5-104
https://doi.org/10.1145/3211968
https://repositorio-aberto.up.pt/bitstream/10216/127756/2/405707.pdf
https://repositorio-aberto.up.pt/bitstream/10216/127756/2/405707.pdf
https://digital.library.unt.edu/ark:/67531/metadc741175/m2/1/high_res_d/793936.pdf
https://arxiv.org/abs/2405.12507
https://arxiv.org/abs/2405.12507
https://doi.org/10.1145/3580370
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-030-99527-0_18

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

OptiTrust: Producing Trustworthy High-Performance Code via Source-to-Source Transformations 1:73

Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC:

automating the foundational verification of C code with refined ownership types. In PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021,
Stephen N. Freund and Eran Yahav (Eds.). ACM, 158–174. https://doi.org/10.1145/3453483.3454036

Cristina Silvano, Giovanni Agosta, Andrea Bartolini, Andrea R. Beccari, Luca Benini, Loïc Besnard, João Bispo, Radim

Cmar, João M.P. Cardoso, Carlo Cavazzoni, Daniele Cesarini, Stefano Cherubin, Federico Ficarelli, Davide Gadioli,

Martin Golasowski, Antonio Libri, Jan Martinovič, Gianluca Palermo, Pedro Pinto, Erven Rohou, Kateřina Slaninová, and

Emanuele Vitali. 2019. The ANTAREX domain specific language for high performance computing. Microprocessors and
Microsystems 68 (2019), 58–73. https://doi.org/10.1016/j.micpro.2019.05.005

Simon Spies, Lennard Gäher, Michael Sammler, and Derek Dreyer. 2024. Quiver: Guided Abductive Inference of Separation

Logic Specifications in Coq. Proc. ACM Program. Lang. 8, PLDI, Article 183 (jun 2024), 25 pages. https://doi.org/10.1145/

3656413

Manish Vachharajani, Neil Vachharajani, David I. August, and Spyridon Triantafyllis. 2003. Compiler Optimization-Space

Exploration. In Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
IEEE Computer Society, Los Alamitos, CA, USA, 204. https://doi.org/10.1109/CGO.2003.1191546

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Understanding Bugs in C Compilers. In Conference
on Programming Language Design and Implementation (San Jose, California, USA). Association for Computing Machinery,

12 pages. https://doi.org/10.1145/1993498.1993532

Qing Yi and Apan Qasem. 2008. Exploring the Optimization Space of Dense Linear Algebra Kernels. In LCPC.
Qing Yi, Qian Wang, and Huimin Cui. 2014. Specializing Compiler Optimizations through Programmable Composition for

Dense Matrix Computations. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture
(Cambridge, United Kingdom) (MICRO-47). IEEE Computer Society, USA, 596–608. https://doi.org/10.1109/MICRO.2014.

14

Oleksandr Zinenko, Lorenzo Chelini, and Tobias Grosser. 2018a. Declarative Transformations in the Polyhedral Model.
Research Report RR-9243. https://hal.inria.fr/hal-01965599

Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. 2018b. Visual Program Manipulation in the Polyhedral Model.

ACM Trans. Archit. Code Optim. 15, 1, Article 16 (mar 2018), 25 pages. https://doi.org/10.1145/3177961

https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1016/j.micpro.2019.05.005
https://doi.org/10.1145/3656413
https://doi.org/10.1145/3656413
https://doi.org/10.1109/CGO.2003.1191546
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1109/MICRO.2014.14
https://doi.org/10.1109/MICRO.2014.14
https://hal.inria.fr/hal-01965599
https://doi.org/10.1145/3177961

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Closely Related Work
	1.3 Contribution
	1.4 Contents of the Paper

	2 OptiTrust in Practice
	2.1 The OpenCV Row-Based Blur Case Study
	2.2 The Particle Simulation Case Study
	2.3 The Matrix-Multiply Case Study
	2.4 Evaluation of OptiTrust

	3 OptiTrust's Internal AST
	3.1 OptiTrust's Internal AST
	3.2 Bidirectional Translation between OptiC and Opti

	4 Computing Program Resources: Contexts
	4.1 Grammar of Resources
	4.2 Construction and Operations on Typing Contexts
	4.3 Grammar of Contracts
	4.4 Entailment
	4.5 Subtraction
	4.6 Typechecking of Logical Expressions
	4.7 Typechecking of Terms
	4.8 Type Soundness

	5 Computing Program Resources: Usage Maps
	5.1 Grammar of Usage Maps
	5.2 Operations on Usage Maps
	5.3 Computing Usage Maps
	5.4 Minimization of Triples
	5.5 Typechecking of Order-Irrelevant Subexpressions
	5.6 Formal Properties of Usage Maps

	6 Justifying Transformation Correctness
	6.1 Transformations on Sequences of Instructions
	6.2 Exploiting Equalities
	6.3 Transformations on Bindings
	6.4 Transformations on Storage
	6.5 Transformations on Loops
	6.6 Transformations on Annotations

	7 Related Work
	8 Conclusion
	A Semantics
	B Assertion and Context Satisfaction
	C Proof of the frame rule
	D Details of Triple Minimization
	E Example Typechecking of Subexpressions
	F Details of Loop Minimization
	G Partial Subtraction and Partitioning of Resources
	References

