
OptiTrust: an Interactive Optimization Framework
Thomas Kœhler

Arthur Charguéraud
Begatim Bytyqi
Damien Rouhling

Inria
France

Yann Barsamian
École Européenne de Bruxelles

Belgium

Abstract
We present OptiTrust, an interactive framework for optimiz-
ing general-purpose C code via series of programmer-guided,
source-to-source transformations. Optimization steps are
described in transformation scripts, expressed as OCaml pro-
grams. At every step, the programmer may interactively
visualize the effect of the transformation as the difference be-
tween two pieces of human-readable C code. OptiTrust has
been previously employed to optimize numerical simulation
code. In this work, we showcase how to use OptiTrust to opti-
mize matrix multiplication. We compare against TVM, which
also relies on programmer guidance, but which restricts the
input language and lacks easily readable feedback.

1 Motivation
Achieving high-performance on modern, parallel and het-
erogeneous hardware is a challenging task that is critical in
many domains, e.g., numerical simulation, image processing
and machine learning. It remains common industrial prac-
tice to optimize code by hand in languages such as C/C++
[24, 31] or Fortran [32].

Manual code rewriting is highly time consuming, andmust
be repeated numerous times to reach high performance. Sev-
eral optimization paths must be empirically explored because
code performance is hard to assess without benchmarking.
After this process, hand optimized code is generally hard
to read, maintain, adapt to other hardware, and—worst of
all—may contain bugs introduced in the process.
In order to reuse optimization efforts, optimized libraries

such as BLAS or MKL for linear algebra were created. How-
ever, their use remains suboptimal as state-of-the-art general-
purpose compilers (e.g. Clang, GCC, ICX) fail to apply rele-
vant optimizations across library calls. This limitation has
motivated the development of specialized optimizing com-
pilers, able to apply global optimizations on high-level algo-
rithms written in Domain-Specific Languages (DSLs).
Examples of specialized compilers include Halide [26]

and TVM [14], which have proved successful in industry
for image processing and machine learning, respectively.
With slightly larger application domain are compilers for
array programming languages [9, 17, 20, 29], exploiting the
fact that multi-dimensional arrays are a key abstraction for
many performance-demanding applications. Although the
success of specialized optimizing compilers is undeniable,

they cannot optimize programs that fall outside of their do-
main. Morevover, extending these specialized compilers has
proved to be challenging [5].

OptiTrust is an optimization framework that aims to sup-
port general-purpose code, avoiding domain restriction. Op-
tiTrust operates at the level of C code, by supporting source-
to-source transformations. The programmer interactively
develops a transformation script. At every transformation
step, the programmer may visualize the corresponding diff
between pieces of human-readable C code.

Prior work [12] has demonstrated the ability of OptiTrust
to reproduce a state-of-the-art optimized implementation
of a numerical Particle-In-Cell simulation. In the present
work, we demonstrate the ability of OptiTrust to reproduce a
reference implementation of matrix multiplication generated
by the specialized compiler TVM.

2 The 5 Key Components of OptiTrust
1. An internal, simplified abstract syntax tree (AST) from

which readable C code can be recovered throughout
transformations. A similar idea of a simplified AST has
been employed in the Cetus project [16].

2. A system for targeting program points, somewhat similar
to XPath [15] for XML, but specialized for an AST. This
system allows describing, in a concise and robust manner,
one or several program points to transform.

3. A library of general-purpose transformations, including:
core data layout transformations [30], instruction-level
transformations [1], control flow transformations [33].

4. A scripting language, embedded in OCaml, for describ-
ing transformations. Transformation scripts are a classic
technique for programmer-guided optimization frame-
works [4, 6, 7, 13, 25, 27, 34–36]. Transformation scripts
provide fine-grained control, and they allow chaining
large numbers of transformation steps. Other approaches
include use of pragmas [10, 22, 23], schedules [3, 14, 18,
26], or rewriting strategies [2, 8, 19, 21].

5. An interactive interface allowing to visualize code diffs
associated with the transformation at a given line of the
script, via a key shortcut in the code editor.

3 Optimizing Matrix-Multiply in OptiTrust
We investigate how OptiTrust compares with the specialized
compiler TVM for producing an optimized implementation
of matrix multiplication—a standard benchmark.

https://orcid.org/0000-0001-8461-8075


Thomas Kœhler, Arthur Charguéraud, Begatim Bytyqi, Damien Rouhling, and Yann Barsamian

void mm(float* C, float* A, float* B, int m, int n, int p) {

for (int i = 0; i < m; i++) {

for (int j = 0; j < n; j++) {

float sum = 0.0f;

for (int k = 0; k < p; k++) sum += A[i][k] * B[k][j];

C[i][j] = sum; }}}

void mm1024(float* C, float* A, float* B) {

mm(C, A, B, 1024, 1024, 1024); }

Listing 1. Unoptimized matrix multiplication. The function
mm multiplies the matrices A and B and stores the result in C.
The function mm1024 specializes input sizes to 1024.

We start from the C code presented in Listing 1: a naive,
unoptimized implementation of matrix multiplication. The
aim is to produce similar code as the reference TVM schedule
that was handwritten by an expert targeting Intel CPUs.1

We write an OptiTrust script in OCaml, as shown in List-
ing 2. It consists of 9 transformation steps, each one calling
a function from the OptiTrust library, always providing a
target describing where to apply the transformation as last
argument. OptiTrust scripts are developed interactively: with
the cursor on a given line of the script, we can press (e.g.)
“F6” in the VSCode editor to visualize the diff associated with
the transformation on that line. All intermediate versions of
the code consist of human-readable, executable C code.
The final code is shown in Listing 3. It mirrors the struc-

tural optimizations described in the TVM reference schedule,
including: improved data locality, parallelism, and specializa-
tion to 1024 sizes. A major difference is that we produce C
code with OpenMP pragmas, whereas TVM targets directly
LLVM IR. To check that the code produced using OptiTrust
performs similarly to that produced by TVM, we bench-
marked both codes on a 4-core Intel i7-8665U CPU with
AVX2 support. Both codes have 90th percentile runtime of
9.4ms over 200 benchmark runs, corresponding to a speedup
of 150× compared to the 90th percentile of the naive code.2
In summary, our case study shows that the OptiTrust

general-purpose optimization framework can be used to
interactively develop a code competitive with that produced
by a state-of-the-art specialized compiler. Unlike specialized
compilers, OptiTrust takes as input C code, and produces
human-readable C code at every step.

4 Contents of the Talk
During the ARRAY workshop, we will present the OptiTrust
matrix multiplication case study, and compare the script
to the reference TVM schedule. We will give an overview
of the transformations currently supported by OptiTrust,
and describe ongoing work on leveraging Separation Logic
annotations [11, 28] to validate transformation correctness

1https://tvm.apache.org/docs/how_to/optimize_operators/opt_gemm.html
2For the TVM code, the median is 2% faster than the 90th percentile; for the
OptiTrust code, it is 8%. The manually optimized library Intel MKL delivers
a 204× speedup compared to the 90th percentile of the naive code.

˜̃ List.iter [("i", 32); ("j", 32); ("k", 4)] (fun (id, tile_size) ->

Loop.tile (trm_int tile_size) ˜index:("b" ^ id)

˜bound:TileDivides [cFor id);

Loop.reorder_at ˜order:["bi"; "bj"; "bk"; "i"; "k"; "j"]

[cPlusEqVar "sum"];

Loop.hoist_expr ˜dest:[tBefore; cFor "bi"] "pB"

˜indep:["bi"; "i"] [cArrayRead "B"];

Function.inline ˜delete:true [cFun "mm"];

Matrix.stack_copy ˜var:"sum" ˜copy_var:"s" ˜copy_dims:1

[cFor ˜body:[cPlusEqVar "sum"] "k"];

Matrix.elim_mops [];

Loop.unroll [cFor ˜body:[cPlusEqVar "s"] "k"];

Omp.simd [nbMulti; cFor ˜body:[cPlusEqVar "s"] "j"];

Omp.parallel_for [nbMulti; cFunDef"mm1024"; dBody; cStrict; cFor""];

Listing 2. OptiTrust script for optimizing mm1024.

Figure 1. Interactive diff for the Matrix.stack_copy step.

float* pB = (float*)malloc(sizeof(float[32][256][4][32]));
#pragma omp parallel for
for (int bj = 0; bj < 32; bj++) {

for (int bk = 0; bk < 256; bk++) {

for (int k = 0; k < 4; k++) {

for (int j = 0; j < 32; j++) {

pB[32768 * bj + 128 * bk + 32 * k + j] =

B[1024 * (4 * bk + k) + 32 * bj + j]; }}}}

#pragma omp parallel for
for (int bi = 0; bi < 32; bi++) {

for (int bj = 0; bj < 32; bj++) {

float* sum = (float*)malloc(sizeof(float[32][32]));
for (int i = 0; i < 32; i++) {

for (int j = 0; j < 32; j++) {

sum[32 * i + j] = 0.; }}

for (int bk = 0; bk < 256; bk++) {

for (int i = 0; i < 32; i++) {

float s[32];

memcpy(s, &sum[32 * i], sizeof(float[32]));
#pragma omp simd

for (int j = 0; j < 32; j++) {

s[j] += A[1024 * (32 * bi + i) + 4 * bk + 0] *

pB[32768 * bj + 128 * bk + 32 * 0 + j]; }

// [...] 4 other similar loops

memcpy(&sum[32 * i], s, sizeof(float[32])); }}

for (int i = 0; i < 32; i++) {

for (int j = 0; j < 32; j++) {

C[1024 * (32*bi + i) + 32*bj + j] = sum[32*i + j]; }}

// [...] free instructions

Listing 3. Optimized C code produced by the OptiTrust
script for mm1024. This code has similar structure and achieves
similar performance as the reference output of TVM.

beyond the limit of static analyses commonly used in general-
purpose compilers.
We hope to engage with the ARRAY community by pre-

senting an approach that tackles the limitations of special-
ized langages and compilers. Suggestions of challenging op-
timizations, representative benchmarks, and compilation
techniques to investigate will be especially welcomed.

https://tvm.apache.org/docs/how_to/optimize_operators/opt_gemm.html


OptiTrust: an Interactive Optimization Framework

References
[1] J. Allen and K. Kennedy. 2002. Optimizing Compilers for Modern

Architectures.
[2] O.S. Bagge, K.T. Kalleberg, M. Haveraaen, and E. Visser. 2003. Design

of the CodeBoost transformation system for domain-specific opti-
misation of C++ programs. In Proceedings Third IEEE International
Workshop on Source Code Analysis and Manipulation. 65–74.

[3] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele
Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,
Shoaib Kamil, and Saman Amarasinghe. 2019. Tiramisu: A polyhedral
compiler for expressing fast and portable code. In IEEE/ACM Interna-
tional Symp. on Code Generation and Optimization (CGO). 193–205.

[4] Lénaïc Bagnères, Oleksandr Zinenko, Stéphane Huot, and Cédric Bas-
toul. 2016. Opening Polyhedral Compiler’s Black Box. In IEEE/ACM
International Symp. on Code Generation and Optimization.

[5] Paul Barham and Michael Isard. 2019. Machine learning systems are
stuck in a rut. In Proceedings of theWorkshop on Hot Topics in Operating
Systems. 177–183.

[6] João Bispo and João MP Cardoso. 2020. Clava: C/C++ source-to-source
compilation using LARA. SoftwareX 12 (2020), 100565.

[7] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan.
2008. A practical automatic polyhedral parallelizer and locality op-
timizer. In PLDI’08 ACM Conf. on Programming language design and
implementation.

[8] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco
Visser. 2008. Stratego/XT 0.17. A Language and Toolset for Program
Transformation. Sci. Comput. Program. 72, 1–2 (jun 2008), 52–70.

[9] Manuel MTChakravarty, Gabriele Keller, Sean Lee, Trevor LMcDonell,
and Vinod Grover. 2011. Accelerating Haskell array codes with multi-
core GPUs. In Proceedings of the sixth workshop on Declarative aspects
of multicore programming. 3–14.

[10] Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror May-
dan, and Jeff McDonald. 2001. Parallel programming in OpenMP.

[11] Arthur Charguéraud. 2020. Separation Logic for Sequential Programs
(Functional Pearl). Proc. ACM Program. Lang. 4, ICFP, Article 116 (aug
2020), 34 pages.

[12] Arthur Charguéraud, Begatim Bytyqi, Damien Rouhling, and Yann A
Barsamian. 2022. OptiTrust: an Interactive Framework for Source-to-
Source Transformations. (Sept. 2022). https://hal.inria.fr/hal-03773485
working paper.

[13] Chun Chen, Jacqueline Chame, and Mary W. Hall. 2008. CHiLL: A
Framework for Composing High-Level Loop Transformations. Technical
Report 08-897. University of Southern California.

[14] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An
Automated End-to-End Optimizing Compiler for Deep Learning. In
OSDI.

[15] James Clark, Steve DeRose, et al. 1999. XML path language (XPath).
https://www.w3.org/TR/1999/REC-xpath-19991116/

[16] Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, Rudolf Eigen-
mann, and Samuel Midkiff. 2009. Cetus: A Source-to-Source Compiler
Infrastructure for Multicores. Computer 42, 12 (2009), 36–42.

[17] Clemens Grelck and Sven-Bodo Scholz. 2006. SAC—a functional array
language for efficient multi-threaded execution. International Journal
of Parallel Programming 34 (2006), 383–427.

[18] Bastian Hagedorn, Archibald Samuel Elliott, Henrik Barthels, Rastislav
Bodik, and Vinod Grover. 2020. Fireiron: a data-movement-aware
scheduling language for GPUs. In Proceedings of the ACM International
Conf. on Parallel Architectures and Compilation Techniques. 71–82.

[19] Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying
Qin, Sergei Gorlatch, and Michel Steuwer. 2020. Achieving high-
performance the functional way: a functional pearl on expressing
high-performance optimizations as rewrite strategies. Proceedings of

the ACM on Programming Languages 4, ICFP (2020), 1–29.
[20] Troels Henriksen, Niels GW Serup, Martin Elsman, Fritz Henglein, and

Cosmin EOancea. 2017. Futhark: purely functional GPU-programming
with nested parallelism and in-place array updates. In Proceedings of
the 38th ACM SIGPLAN Conf. on Programming Language Design and
Implementation. 556–571.

[21] Hélène Kirchner. 2015. Rewriting strategies and strategic rewrite
programs. In Logic, Rewriting, and Concurrency: Essays Dedicated to
José Meseguer on the Occasion of His 65th Birthday. 380–403.

[22] Michael Kruse and Hal Finkel. 2018. A Proposal for Loop-
Transformation Pragmas. (2018). arXiv:1805.03374

[23] Olaf Krzikalla, Kim Feldhoff, Ralph Müller-Pfefferkorn, and Wolf-
gang E. Nagel. 2011. Scout: A Source-to-Source Transformator for
SIMD-Optimizations. In Euro-Par Workshops (2) (LNCS, Vol. 7156).

[24] Suejb Memeti, Lu Li, Sabri Pllana, Joanna Kołodziej, and Christoph
Kessler. 2017. Benchmarking OpenCL, OpenACC, OpenMP, and
CUDA: programming productivity, performance, and energy con-
sumption. In Proceedings of the 2017 Workshop on Adaptive Resource
Management and Scheduling for Cloud Computing. 1–6.

[25] Kedar S. Namjoshi and Nimit Singhania. 2016. Loopy: Programmable
and Formally Verified Loop Transformations. In Static Analysis - 23rd
International Symposium, SAS (LNCS, Vol. 9837).

[26] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-
guage and Compiler for Optimizing Parallelism, Locality, and Re-
computation in Image Processing Pipelines. In Conf. on Programming
Language Design and Implementation. 12 pages.

[27] Gabe Rudy, Malik Murtaza Khan, Mary Hall, Chun Chen, and Jacque-
line Chame. 2011. A Programming Language Interface to Describe
Transformations and Code Generation. In Languages and Compilers
for Parallel Computing.

[28] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan
Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC: Automat-
ing the foundational verification of C code with refined ownership
types. In Proceedings of the 42nd ACM SIGPLAN International Conf. on
Programming Language Design and Implementation. 158–174.

[29] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe
Dubach. 2015. Generating performance portable code using rewrite
rules: from high-level functional expressions to high-performance
OpenCL code. ACM SIGPLAN Notices 50, 9 (2015), 205–217.

[30] I-Jui Sung, John A. Stratton, and Wen-Mei W. Hwu. 2010. Data Layout
Transformation Exploiting Memory-level Parallelism in Structured
Grid Many-core Applications (PACT ’10). 513–522.

[31] Ashkan Tousimojarad and Wim Vanderbauwhede. 2014. Comparison
of three popular parallel programming models on the Intel Xeon
Phi. In Euro-Par 2014: Parallel Processing Workshops: Euro-Par 2014
International Workshops, Porto, Portugal, August 25-26, 2014, Revised
Selected Papers, Part II 20. Springer, 314–325.

[32] Wim Vanderbauwhede and Gavin Davidson. 2018. Domain-specific
acceleration and auto-parallelization of legacy scientific code in FOR-
TRAN 77 using source-to-source compilation. Computers & Fluids 173
(2018), 1–5.

[33] M. Wolfe. 1995. High performance compilers for parallel computing.
[34] Qing Yi and Apan Qasem. 2008. Exploring the Optimization Space of

Dense Linear Algebra Kernels. In LCPC.
[35] Qing Yi, Qian Wang, and Huimin Cui. 2014. Specializing Compiler

Optimizations through Programmable Composition for Dense Matrix
Computations. In Proceedings of the 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (Cambridge, United Kingdom)
(MICRO-47). USA, 596–608.

[36] Oleksandr Zinenko, Lorenzo Chelini, and Tobias Grosser. 2018. Declar-
ative Transformations in the Polyhedral Model. Research Report RR-
9243.

https://hal.inria.fr/hal-03773485
https://www.w3.org/TR/1999/REC-xpath-19991116/
https://arxiv.org/abs/1805.03374

	Abstract
	1 Motivation
	2 The 5 Key Components of OptiTrust
	3 Optimizing Matrix-Multiply in OptiTrust
	4 Contents of the Talk
	References

