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Abstract
We present OptiTrust, an interactive framework for optimiz-
ing general-purpose C code via series of programmer-guided,
source-to-source transformations. Optimization steps are
described in transformation scripts, expressed as OCaml pro-
grams. At every step, the programmer may interactively
visualize the effect of the transformation as the difference be-
tween two pieces of human-readable C code. OptiTrust has
been previously employed to optimize numerical simulation
code. In this work, we showcase how to use OptiTrust to opti-
mize matrix multiplication. We compare against TVM, which
also relies on programmer guidance, but which restricts the
input language and lacks easily readable feedback.

1 Motivation
Achieving high-performance on modern, parallel and het-
erogeneous hardware is a challenging task that is critical in
many domains, e.g., numerical simulation, image processing
and machine learning. It remains common industrial prac-
tice to optimize code by hand in languages such as C/C++
[24, 31] or Fortran [32].

Manual code rewriting is highly time consuming, andmust
be repeated numerous times to reach high performance. Sev-
eral optimization paths must be empirically explored because
code performance is hard to assess without benchmarking.
After this process, hand optimized code is generally hard
to read, maintain, adapt to other hardware, and—worst of
all—may contain bugs introduced in the process.
In order to reuse optimization efforts, optimized libraries

such as BLAS or MKL for linear algebra were created. How-
ever, their use remains suboptimal as state-of-the-art general-
purpose compilers (e.g. Clang, GCC, ICX) fail to apply rele-
vant optimizations across library calls. This limitation has
motivated the development of specialized optimizing com-
pilers, able to apply global optimizations on high-level algo-
rithms written in Domain-Specific Languages (DSLs).
Examples of specialized compilers include Halide [26]

and TVM [14], which have proved successful in industry
for image processing and machine learning, respectively.
With slightly larger application domain are compilers for
array programming languages [9, 17, 20, 29], exploiting the
fact that multi-dimensional arrays are a key abstraction for
many performance-demanding applications. Although the
success of specialized optimizing compilers is undeniable,

they cannot optimize programs that fall outside of their do-
main. Morevover, extending these specialized compilers has
proved to be challenging [5].

OptiTrust is an optimization framework that aims to sup-
port general-purpose code, avoiding domain restriction. Op-
tiTrust operates at the level of C code, by supporting source-
to-source transformations. The programmer interactively
develops a transformation script. At every transformation
step, the programmer may visualize the corresponding diff
between pieces of human-readable C code.

Prior work [12] has demonstrated the ability of OptiTrust
to reproduce a state-of-the-art optimized implementation
of a numerical Particle-In-Cell simulation. In the present
work, we demonstrate the ability of OptiTrust to reproduce a
reference implementation of matrix multiplication generated
by the specialized compiler TVM.

2 The 5 Key Components of OptiTrust
1. An internal, simplified abstract syntax tree (AST) from

which readable C code can be recovered throughout
transformations. A similar idea of a simplified AST has
been employed in the Cetus project [16].

2. A system for targeting program points, somewhat similar
to XPath [15] for XML, but specialized for an AST. This
system allows describing, in a concise and robust manner,
one or several program points to transform.

3. A library of general-purpose transformations, including:
core data layout transformations [30], instruction-level
transformations [1], control flow transformations [33].

4. A scripting language, embedded in OCaml, for describ-
ing transformations. Transformation scripts are a classic
technique for programmer-guided optimization frame-
works [4, 6, 7, 13, 25, 27, 34–36]. Transformation scripts
provide fine-grained control, and they allow chaining
large numbers of transformation steps. Other approaches
include use of pragmas [10, 22, 23], schedules [3, 14, 18,
26], or rewriting strategies [2, 8, 19, 21].

5. An interactive interface allowing to visualize code diffs
associated with the transformation at a given line of the
script, via a key shortcut in the code editor.

3 Optimizing Matrix-Multiply in OptiTrust
We investigate how OptiTrust compares with the specialized
compiler TVM for producing an optimized implementation
of matrix multiplication—a standard benchmark.
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void mm(float* C, float* A, float* B, int m, int n, int p) {

for (int i = 0; i < m; i++) {

for (int j = 0; j < n; j++) {

float sum = 0.0f;

for (int k = 0; k < p; k++) sum += A[i][k] * B[k][j];

C[i][j] = sum; }}}

void mm1024(float* C, float* A, float* B) {

mm(C, A, B, 1024, 1024, 1024); }

Listing 1. Unoptimized matrix multiplication. The function
mm multiplies the matrices A and B and stores the result in C.
The function mm1024 specializes input sizes to 1024.

We start from the C code presented in Listing 1: a naive,
unoptimized implementation of matrix multiplication. The
aim is to produce similar code as the reference TVM schedule
that was handwritten by an expert targeting Intel CPUs.1

We write an OptiTrust script in OCaml, as shown in List-
ing 2. It consists of 9 transformation steps, each one calling
a function from the OptiTrust library, always providing a
target describing where to apply the transformation as last
argument. OptiTrust scripts are developed interactively: with
the cursor on a given line of the script, we can press (e.g.)
“F6” in the VSCode editor to visualize the diff associated with
the transformation on that line. All intermediate versions of
the code consist of human-readable, executable C code.
The final code is shown in Listing 3. It mirrors the struc-

tural optimizations described in the TVM reference schedule,
including: improved data locality, parallelism, and specializa-
tion to 1024 sizes. A major difference is that we produce C
code with OpenMP pragmas, whereas TVM targets directly
LLVM IR. To check that the code produced using OptiTrust
performs similarly to that produced by TVM, we bench-
marked both codes on a 4-core Intel i7-8665U CPU with
AVX2 support. Both codes have 90th percentile runtime of
9.4ms over 200 benchmark runs, corresponding to a speedup
of 150× compared to the 90th percentile of the naive code.2
In summary, our case study shows that the OptiTrust

general-purpose optimization framework can be used to
interactively develop a code competitive with that produced
by a state-of-the-art specialized compiler. Unlike specialized
compilers, OptiTrust takes as input C code, and produces
human-readable C code at every step.

4 Contents of the Talk
During the ARRAY workshop, we will present the OptiTrust
matrix multiplication case study, and compare the script
to the reference TVM schedule. We will give an overview
of the transformations currently supported by OptiTrust,
and describe ongoing work on leveraging Separation Logic
annotations [11, 28] to validate transformation correctness

1https://tvm.apache.org/docs/how_to/optimize_operators/opt_gemm.html
2For the TVM code, the median is 2% faster than the 90th percentile; for the
OptiTrust code, it is 8%. The manually optimized library Intel MKL delivers
a 204× speedup compared to the 90th percentile of the naive code.

˜̃ List.iter [("i", 32); ("j", 32); ("k", 4)] (fun (id, tile_size) ->

Loop.tile (trm_int tile_size) ˜index:("b" ^ id)

˜bound:TileDivides [cFor id);

Loop.reorder_at ˜order:["bi"; "bj"; "bk"; "i"; "k"; "j"]

[cPlusEqVar "sum"];

Loop.hoist_expr ˜dest:[tBefore; cFor "bi"] "pB"

˜indep:["bi"; "i"] [cArrayRead "B"];

Function.inline ˜delete:true [cFun "mm"];

Matrix.stack_copy ˜var:"sum" ˜copy_var:"s" ˜copy_dims:1

[cFor ˜body:[cPlusEqVar "sum"] "k"];

Matrix.elim_mops [];

Loop.unroll [cFor ˜body:[cPlusEqVar "s"] "k"];

Omp.simd [nbMulti; cFor ˜body:[cPlusEqVar "s"] "j"];

Omp.parallel_for [nbMulti; cFunDef"mm1024"; dBody; cStrict; cFor""];

Listing 2. OptiTrust script for optimizing mm1024.

Figure 1. Interactive diff for the Matrix.stack_copy step.

float* pB = (float*)malloc(sizeof(float[32][256][4][32]));
#pragma omp parallel for
for (int bj = 0; bj < 32; bj++) {

for (int bk = 0; bk < 256; bk++) {

for (int k = 0; k < 4; k++) {

for (int j = 0; j < 32; j++) {

pB[32768 * bj + 128 * bk + 32 * k + j] =

B[1024 * (4 * bk + k) + 32 * bj + j]; }}}}

#pragma omp parallel for
for (int bi = 0; bi < 32; bi++) {

for (int bj = 0; bj < 32; bj++) {

float* sum = (float*)malloc(sizeof(float[32][32]));
for (int i = 0; i < 32; i++) {

for (int j = 0; j < 32; j++) {

sum[32 * i + j] = 0.; }}

for (int bk = 0; bk < 256; bk++) {

for (int i = 0; i < 32; i++) {

float s[32];

memcpy(s, &sum[32 * i], sizeof(float[32]));
#pragma omp simd

for (int j = 0; j < 32; j++) {

s[j] += A[1024 * (32 * bi + i) + 4 * bk + 0] *

pB[32768 * bj + 128 * bk + 32 * 0 + j]; }

// [...] 4 other similar loops

memcpy(&sum[32 * i], s, sizeof(float[32])); }}

for (int i = 0; i < 32; i++) {

for (int j = 0; j < 32; j++) {

C[1024 * (32*bi + i) + 32*bj + j] = sum[32*i + j]; }}

// [...] free instructions

Listing 3. Optimized C code produced by the OptiTrust
script for mm1024. This code has similar structure and achieves
similar performance as the reference output of TVM.

beyond the limit of static analyses commonly used in general-
purpose compilers.
We hope to engage with the ARRAY community by pre-

senting an approach that tackles the limitations of special-
ized langages and compilers. Suggestions of challenging op-
timizations, representative benchmarks, and compilation
techniques to investigate will be especially welcomed.
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