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We present a Separation Logic with space credits for reasoning about heap space in a sequential call-by-

value _-calculus equipped with garbage collection and mutable state. A key challenge is to design sound,

modular, lightweight mechanisms for establishing the unreachability of a block. Prior work in this area uses

pointed-by assertions to keep track of the predecessors of every block, but is carried out in the setting of

an assembly-like programming language. We take up the challenge in the setting of a high-level language,

where a key problem is to identify and reason about the memory locations that the garbage collector considers

as roots. For this purpose, we propose novel “stackable” assertions, which keep track of the existence of

stack-to-heap pointers without explicitly recording their origin. Furthermore, we explain how to reason about

closures—concrete heap-allocated data structures that implement the abstract concept of a first-class function.

We demonstrate the expressiveness and tractability of our program logic via a range of examples, including

recursive functions on linked lists, objects implemented using closures and mutable internal state, recursive

functions in continuation-passing style, and three stack implementations that exhibit different space bounds.

These last three examples illustrate reasoning about the reachability of the items stored in a container as well

as amortized reasoning about space. All of our results are proved in Coq on top of Iris.
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1 INTRODUCTION
The most common aim of program verification is to establish the safety and functional correctness
of a program, that is, to prove that this program does not crash and computes a correct result.

In the area of deductive program verification [Filliâtre 2011], a program is usually verified with

the help of a program logic, that is, a set of deduction rules whose logical soundness has been

demonstrated once and for all. Separation Logic [Reynolds 2002] and Concurrent Separation

Logic [Brookes and O’Hearn 2016; Jung et al. 2018; O’Hearn 2019] are examples of program logics

that allow compositional reasoning (that is, reasoning about a program component in isolation)

in the presence of challenging features such as dynamic memory allocation, mutable state, and

shared-memory concurrency.
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Beyond safety and functional correctness, it may be desirable to establish bounds on resource
consumption, that is, proving that the resource requirements of a program do not exceed a certain

predictable bound. Indeed, a program that requires an unexpectedly large amount of time may be

unresponsive. A program that requires an unexpectedly large amount of stack space may crash

with a stack overflow. A program that requires an unexpectedly large amount of heap space may

exhaust the available memory and make the system unstable.

This paper is concerned with bounding heap space usage in a garbage-collected language. A fair

amount of prior work has focused on establishing bounds on resource consumption. Let us start

by reviewing this prior work and explain what makes garbage-collected heap space an especially

challenging resource to reason about.

Reasoning about the use of a resource requires a “model” that tells when this resource is consumed

or produced, and how much of it is consumed or produced. Such a model is usually an abstraction

of some physical reality. For example, to obtain an asymptotic time bound, one can posit that

every elementary instruction consumes one unit of time.
1
To obtain an asymptotic bound on stack

space, one can posit that every (non-tail) function call consumes one unit of stack space, which

is recovered when the function returns.
2
To derive a bound on heap space, when the language

has an explicit deallocation instruction, one can posit that an allocation instruction consumes

the requested amount of space and that a deallocation instruction recovers the space occupied

by the heap block that is about to be deallocated. In all three cases, it is evident in the program

where the resource of interest is consumed or produced. In such settings, reasoning about resource

consumption can be reduced to reasoning about safety. Indeed, one can construct a variant of the

program that is instrumented with a resource meter, that is, a global variable whose value indicates
what amount of the resource of interest remains available. In this instrumented program, one places

assertions that cause a runtime failure if the value of the meter becomes negative. If one can verify

that the instrumented program is safe, then one has effectively established a bound on the resource

consumption of the original program.

The principle of a resource meter has been exploited in many papers, using various frameworks

for establishing safety. For instance, Crary and Weirich [2000] exploit a dependent type system;

Aspinall et al. [2007] exploit a VDM-style program logic; Carbonneaux et al. [2015] exploit a Hoare

logic; He et al. [2009] exploit Separation Logic. The manner in which one reasons about the value

of the meter depends on the chosen framework. In the most straightforward approach, the value of

the meter is explicitly described in the pre- and postcondition of every function. This is the case, for

instance, in He et al.’s work [2009], where two distinct meters are used to measure stack space and

heap space. In a more elaborate approach, which is made possible by Separation Logic, the meter

is not regarded as an integer value, but as a bag of credits that can be individually owned. This
removes the need to refer to the absolute value of the meter: instead, the specification of a function

may indicate that this function requires a certain number of credits and produces a certain number

of credits. Separation Logic, extended with time credits, has been used to reason about asymptotic

amortized time complexity [Atkey 2011; Charguéraud and Pottier 2017; Haslbeck and Lammich

2021; Haslbeck and Nipkow 2018; Mével et al. 2019].

In order to reason about heap space in the presence of explicit allocation and deallocation

instructions, traditional Separation Logic [2002] can be extended with space credits. To the best

of our knowledge, such a variant of Separation Logic does not exist in the literature. However,

Hofmann’s work on the typed programming language LFPL [2000] can be viewed as a precursor of

1
Predicting physical execution time requires access to a compiled version of the program and an accurate model of the

processor: see, e.g., Amadio et al. [2014].

2
Computing a concrete bound, expressed in memory words, requires knowing the size of each stack frame [Amadio et al.

2014; Carbonneaux et al. 2014; Gómez-Londoño et al. 2020].
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this idea: LFPL has explicit allocation and deallocation, which consume and produce values of a

linear type, written ⋄, whose inhabitants behave very much like space credits.

How can one reason about heap space in the presence of garbage collection? In such a setting,

there is no explicit deallocation instruction. Thus, it is not evident at which program points space

can be reclaimed. A tracing garbage collector (GC) can be invoked at arbitrary points in time, and

may deallocate any subset of the unreachable blocks. An unreachable block is a block that is not

reachable from any root via a path in the heap. Thus, reasoning about heap space in the presence of

garbage collection requires somehow reasoning about roots and about unreachability.

Madiot and Pottier [2022] make a first step towards addressing this problem. They propose

a Separation Logic extended with several concepts. To keep track of free space, they use space

credits. To enable modular reasoning about unreachability, they use pointed-by assertions [Kassios

and Kritikos 2013], which record the predecessors of a memory block. In the absence of a memory

deallocation instruction, they view deallocation as a logical operation. It is up to the person who

verifies the program to decide at which program points this operation must be used and which

memory blocks must thus be logically deallocated. Of course, the GC may physically deallocate a

block before or after the point where the user chooses to logically deallocate this block. To account

for this fact, Madiot and Pottier introduce a distinction between the physical heap, which the GC

manages, and the logical heap, which the programmer (or the user of the program logic) keeps in

mind and manages. The physical and logical heaps remain closely related: they must agree on their

reachable parts. To ensure that this is the case, a memory block can be logically deallocated only if it

is unreachable. However, unreachability is not a local concept. To allow modular reasoning, Madiot

and Pottier rephrase this proof obligation in terms of local concepts: an object can be logically

deallocated if it has no predecessors and is not a root.

The previous paragraph raises a key question: what is a root? How can this concept be modeled in

an operational semantics? How can it be reflected in a program logic? To answer these questions in

a simple way, Madiot and Pottier [2022] adopt a nonstandard low-level calculus, SpaceLang, whose

design is intended to make the identification of roots trivial. In SpaceLang, a variable denotes the

address of a stack cell. Stack cells must be explicitly allocated and deallocated in a well-bracketed

manner. At all times, the roots are exactly the stack cells. This approach is conceptually simple,

but imposes a low-level programming style on the end user. Because of the pervasive use of stack

cells, the language resembles assembly language, and its reasoning rules include many premises

that describe stack cells. Furthermore, a stack cell is regarded as a root as long as it exists; if one

would like its content to be eligible for collection, one must artificially overwrite it with a unit

value. Finally, SpaceLang does not have closures, and, due to the complications created by stack

cells, it is not clear how closures can be encoded on top of SpaceLang.

In this paper, we propose to reason directly about a standard, high-level _-calculus equipped with

mutable heap-allocated records, heap-allocated closures, and garbage collection. The notion of root
is defined in this language by the standard “free variable rule” [Felleisen and Hieb 1992; Morrisett

et al. 1995], which we explain in the next section (§2). For this calculus, we develop a program logic

that allows modular reasoning about heap space. Our contributions are the following:

• We present the first Separation Logic for reasoning about heap space in a high-level sequential

language equipped with a garbage collector that obeys the free variable rule (§2, §3). Our

language and reasoning rules are higher-level and more lightweight than those found in

previous work [Madiot and Pottier 2022].

• We introduce a novel assertion, Stackable, which allows keeping track of roots in a modular

way (§4). A fractional Stackable assertion is a permission to make a memory location a root.

A full Stackable assertion can be exploited to prove that a memory location is not a root.
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• We introduce two mechanisms (§5) that help reduce the number of Stackable assertions that
must be manipulated during a proof.

• We generalize Madiot and Pottier’s pointed-by assertions [2022] to enable more flexible and

lightweight reasoning about the deletion of an edge in the heap. To do so, we introduce

possibly-null fractions and signed multisets of predecessors (§4).
• We propose an assertion that describes a closure, as well as reasoning rules for closure

construction and closure invocation (§7). The description of a closure captures three aspects

of it: its functional behavior, its size, and the pointers to other objects that this closure holds.

• We present a formalization and soundness proof for our logic (§6). It is built inside Coq on

top of Iris [Jung et al. 2018]; see [Moine et al. 2022].

• We illustrate our logic via a collection of examples (§8), including operations on linked lists,

a “counter” object with mutable internal state, a recursive function in continuation-passing

style, and three stack implementations that exhibit different space bounds.

2 DEALINGWITH ROOTS
In this section, we propose a more detailed discussion of our treatment of roots. This concept plays

a central role at two distinct levels. First, at the level of the operational semantics, the definition

of roots determines which objects are unreachable, that is, which objects can be reclaimed by the

garbage collector. Therefore, it determines the space usage of a program: in other words, it defines

the cost model that serves as our ground truth. Second, at the level of the program logic, we need

mechanisms to keep track of which memory locations may be roots or definitely are not roots.

2.1 The Free Variable Rule
How can the concept of a root be reflected in a small-step, substitution-based operational semantics?

A commonly agreed-upon answer is given by the free variable rule (FVR) [Felleisen and Hieb 1992;

Morrisett et al. 1995]. Technically, this rule states that a root is a memory location ℓ such that ℓ occurs
in the term that is undergoing reduction. In slightly more informal words, ℓ is a root if and only if

it appears possible that ℓ might be used in the future, based on the existence of a path from the

current program point to a program point where ℓ is used. The FVR represents a conservative

approximation of the locations that will be accessed in the future: indeed, depending on which

branches are taken, it may turn out that ℓ is in fact never accessed.

Our starting point is an operational semantics where the FVR is built in. We propose a program

logic that is sound with respect to this semantics, and we use this logic to establish worst-case space

complexity bounds. To obtain a binary program that respects the complexity bounds established

using our logic, one needs a compiler (and runtime system) that respect the FVR. As far as we know,

many real-world implementations of garbage-collected languages, such as OCaml, SML, Scala, Java,

and many more, are meant to respect the FVR. Unfortunately, this intention is often undocumented.

A prominent example of a compiler that does respect the FVR is the CakeML verified compiler.

Gómez-Londoño et al. [2020] prove that CakeML respects a cost model that is defined at the level

of the intermediate language DataLang. Our work and theirs are complementary: whereas they

prove that the CakeML compiler respects the DataLang cost model, we show how to establish space

complexity bounds about source programs, based on a similar cost model. If our program logic

was adapted to DataLang, one could establish a space complexity bound about a source CakeML

program and automatically obtain a guarantee about the compiled program.

2.2 Visible and Invisible Roots
One may wonder why the FVR is so named, since its statement does not contain the word “variable”.

The answer lies in the gap between the programmer’s point of view and the semantic point of
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1 let rec rev_append ( xs , ys ) =

2 if is_nil ( xs ) then ys else

3 let x = head ( xs ) in

4 let xs ' = tail ( xs ) in

5 let ys ' = cons (x , ys ) in

6 rev_append ( xs ' , ys ' )

Fig. 1. An implementation of linked list reversal

view. A programmer may like to think that the roots are variables. When the programmer focuses

on a certain program point, corresponding to a subterm 𝑡 , a variable 𝑥 that occurs free in 𝑡 can

be regarded by the programmer as a root at this program point—whence the name of the “free

variable rule”. In contrast, in the operational semantics, there are no variables: they are substituted

away and replaced with closed values. Thus, in the operational semantics and in our reasoning

rules (§4), the roots are memory locations. When we write that “the address 𝑥 is a root” at a certain

program point, we mean that, once this program point is reached, the memory location with which

the variable 𝑥 has been replaced is a root.

Let us illustrate reasoning about roots via the example of the function rev_append (Figure 1).
This function expects two linked lists and returns a linked list. A call to rev_append ( xs , ys )

returns a list whose elements are the elements of xs in reverse order followed with the elements

of ys. This code is expressed in an untyped language using ML syntax. For simplicity, we do not

use pattern matching; instead, we use the auxiliary functions is_nil, head, tail, and cons, whose

definitions are omitted. A linked list is represented as a heap block whose first field holds the

integer tag 0 or 1. If the tag is 0, then there are no more fields; if the tag is 1, then there are two

more fields, holding the head and tail of the list.

We now wish to explain which locations are roots, at each program point in rev_append,
according to the FVR. Before doing so, however, we must point out that, when one reasons about

rev_append in isolation, its calling context is unknown. By inspecting the code of this function,

one can tell that certain memory locations are roots at certain points; we refer to these as the visible
roots. However, in addition, every caller along the unknown call chain may have retained certain

memory locations. One can think of them as locations that appear “in the stack”. From a semantic

point of view, these locations occur in the evaluation context, so, according to the FVR, they are

also roots. We refer to them as the invisible roots. The set of all roots is the union of the sets of

visible roots and invisible roots. These sets may overlap.

At the entry point of rev_append (at the beginning of line 2), the locations xs and ys are visible

roots, because the variables xs and ys occur free in the code that remains to be executed (that is,

the whole function body). Upon entering the else branch, on line 3, xs and ys are still roots. At

the beginning of line 5, after reading the “head” and “tail” fields of the first list cell, two more

variables (namely, x and xs ' ) are visible roots, but xs is no longer one, as it does not occur on

lines 5–6. A somewhat subtle phenomenon takes place at this point: the location xs may or may

not be an invisible root. If it is not an invisible root, which means that no caller has retained the

address of the list xs, then this address is not a root at all, which means that the first list cell can

be reclaimed at this program point by the GC. Otherwise, this cell cannot be reclaimed. On line 5,

a fresh cell, named ys ' , is allocated. At the beginning of line 6, ys is no longer a visible root, but

ys ' is one. The location ys remains reachable via ys ' , thus the list ys cannot be deallocated. Finally,

on line 6, a tail-recursive call is made. The locations xs ' and ys ' cease to be roots for this instance

of rev_append, but immediately become roots for the new instance of rev_append.
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What is the (heap) space complexity of rev_append? Two distinct answers can be given. On

the one hand, without any assumption about the calling context, one can state that the space

complexity is linear in the length of the list xs. This is due to the allocation of a new cell at line 5.

On the other hand, under the assumption that the address xs is not retained by the calling context

(that is, xs is not an invisible root), rev_append runs in constant heap space. Indeed, in that case,

the cost of allocating a new cell at line 5 can be compensated by deallocating the cell xs, which is

no longer a root, also at line 5. There is no guarantee that the GC will deallocate the cell xs at this
point, but it can do so. Because rev_append is tail-recursive, it runs in constant stack space, too,

but that is another story. In this paper, we are not concerned with stack space usage.

Our claims about the space complexity of rev_append in the two scenarios described above are

expressed by two specifications that we present later on (§8.1).

2.3 Logical Deallocation and its Requirements
In this paper, we propose a Separation Logic with space credits for our language SpaceLambda,

an untyped _-calculus described in §3. Before delving into a detailed presentation of this program

logic, let us explain some of its key assertions and mechanisms, via the example of rev_append.
Suppose one wishes to verify the claim made earlier (§2.2) that rev_append runs in constant space,

under the assumption that xs is not an invisible root. A key step in this proof takes place at the

beginning of line 5. There, one must apply a logical deallocation rule to the list cell xs, so as to

recover a number of space credits, which can then be used to pay for the allocation of a new cell

on the same line. Our logical deallocation rule requires proving that xs has no predecessors (in the

heap) and is not a (visible or invisible) root. More specifically, its requirements are as follows:

• As in traditional Separation Logic [Reynolds 2002], a full points-to assertion for the memory

block at address xs is required. This assertion is obtained by unfolding the predicate List
(§8.1), which one uses to express assumptions about the lists xs and ys.

• As in Madiot and Pottier’s system [2022], a full pointed-by assertion for xs, carrying an empty

multiset of predecessors, is required. This assertion too is obtained by unfolding List.
• A proof that xs is not a visible root is required. To establish this fact, one first computes

the visible roots at the beginning of line 5: they are the addresses x, xs ' , and ys. Then,

one must prove that the address xs is not a member of this set. This check is not syntactic:

proving that the address xs is distinct from the addresses x, xs ' , and ys requires Separation

Logic reasoning. For instance, proving that xs and ys are distinct addresses follows from the

presence of separate List assertions about xs and ys.

• A proof that xs is not an invisible root is required. In other words, a proof that no direct

or indirect caller has retained the address xs is required. Here, the only way of proving

this property is to make it an assumption, that is, to let it appear in the precondition of the

function rev_append. This assumption is expressed using a Stackable assertion (§4).

Another key step in the proof takes place at the recursive call rev_append ( xs ' , ys ' ) on line 6. To

prove that this call is permitted, one must prove that the precondition of rev_append, instantiated
with the actual parameters xs ' and ys ' , is satisfied. Thus, according to the last bullet point above,

one must prove that xs ' is not an invisible root. In other words, one must prove that the cell that

follows the cell xs in the linked list is not an invisible root. Where might this evidence come from?

The most natural answer, we argue, is to bake it in the definition of List: the definition of a valid

linked list must state that a cell that is the destination of a link is never an invisible root.

In summary, we have outlined the requirements of our logical deallocation rule and explained

the need for a new Separation Logic assertion, which guarantees that a memory location ℓ is not

an invisible root. This assertion, written Stackable ℓ 1, is described next.
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2.4 Reasoning about Invisible Roots
To understand how one might keep track in Separation Logic of which memory locations are or

are not invisible roots, one must first have a clear picture of what this means and at what points in

a proof a location becomes or ceases to be an invisible root.

A proof in Separation Logic is carried out under an unknown context. That is, one reasons about

a term 𝑡 without knowing in what evaluation context 𝐾 this term is placed. There are specific

points in the proof where this unknown context grows and shrinks. As an archetypical example,

consider the sequencing construct let𝑥 = 𝑡1 in 𝑡2. To reason about this construct, one first focuses

on the term 𝑡1, thereby temporarily forgetting the frame let𝑥 = [] in 𝑡2, which is pushed onto the

unknown context. After the verification of 𝑡1 is completed, this focusing step is reversed: the frame

let𝑥 = [] in 𝑡2 is popped and one continues with the verification of 𝑡2. These focusing and defocusing
steps are described by the “bind” rule of Separation Logic [Jung et al. 2018, §6.2].

An invisible root is a memory location that occurs in the unknown context 𝐾 . When this context

grows and shrinks, the set of invisible roots grows and shrinks as well. More specifically, when the

user of the program logic focuses on 𝑡1, a location ℓ that occurs in the frame let𝑥 = [] in 𝑡2 (that is,
a location that occurs in 𝑡2) becomes an invisible root: it is “pushed onto the stack”, so to speak.

(This location may have been an invisible root already, prior to this focusing step.) This is undone

when this focusing step is reversed: this location is “popped off the stack”.

To keep track in Separation Logic, on a per-location basis, of whether a location may be or

definitely is not an invisible root, we propose the following discipline.

• We introduce an assertion Stackable ℓ 𝑝 , where 𝑝 is a rational number such that 0 < 𝑝 ≤ 1.

The presence of a fraction allows Stackable assertions to be split and joined.

• The assertion Stackable ℓ 1 appears when a fresh memory block is allocated at address ℓ , and

is eventually consumed when this block is logically deallocated.

• When ℓ is “pushed onto the stack” in an instance of the “bind” rule, an assertion Stackable ℓ 𝑝
is consumed, where the choice of 𝑝 is up to the user; when ℓ is later “popped off the stack”,

as part of the same instance of the “bind” rule, this assertion reappears.

One can see that “pushing a location ℓ onto the stack” requires a fractional assertion Stackable ℓ 𝑝 .
Thus, this fractional assertion can be intuitively regarded as a permission to push ℓ onto the stack,

whence the name Stackable. Because this assertion is splittable, it allows pushing ℓ onto the stack

as many times as one wishes. One can also see intuitively that if the full assertion Stackable ℓ 1 is
at hand, then no fraction of it has been consumed, so ℓ currently is not “on the stack”, that is, not

an invisible root. Thus, Stackable ℓ 1 serves as a witness that ℓ currently is not an invisible root. It

is one of the key novel requirements of our logical deallocation rule.

Madiot and Pottier’s calculus [2022] has explicit stack cells, so their pointed-by assertions record

all predecessors, including heap blocks and stack cells. In other words, they record both heap-to-

heap and stack-to-heap pointers. In our work, pointed-by assertions concern heap-to-heap pointers,

while Stackable assertions concern stack-to-heap pointers. Our pointed-by assertions record all

heap-to-heap pointers, therefore can be used to prove their absence. Our Stackable assertions do
not individually keep track of every stack-to-heap pointer (we have removed the need to do so),

yet they can be used to prove the absence of stack-to-heap pointers.

3 SYNTAX & SEMANTICS OF SPACELAMBDA
Our language, SpaceLambda, is an imperative _-calculus, equipped with a call-by-value substitution-

based small-step semantics. Garbage collection is modeled as a reduction step, which can be

interleaved in a non-deterministic manner with computational reduction steps.
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Values 𝑣,𝑤 ::= () | 𝑛 ∈ N | ℓ ∈ L | `ptr 𝑓 . _®𝑥 . 𝑡 where fv(𝑡) ⊆ {𝑓 } ∪ ®𝑥
Blocks 𝑏 ::= ®𝑤 | �
Arithmetic ⊙ ::= + | − | ×
Terms 𝑡,𝑢 ::= 𝑣 value

𝑥 variable
let𝑥 = 𝑡 in 𝑡 sequencing
if 𝑡 then 𝑡 else 𝑡 conditional
(𝑡 ®𝑢)ptr code pointer invocation

𝑡 ⊙ 𝑡 arithmetic
alloc 𝑡 heap allocation
𝑡 [𝑡] heap load
𝑡 [𝑡]←𝑡 heap store

Contexts 𝐾 ::= let𝑥 = □ in 𝑡 | if □ then 𝑡 else 𝑡 | alloc □ | □[𝑡] | 𝑣 [□]
□[𝑡]←𝑡 | 𝑣 [□]←𝑡 | 𝑣 [𝑣]←□ | □ ⊙ 𝑡 | 𝑣 ⊙ □
(□ ®𝑢)ptr | (𝑣 ( ®𝑤 ++ □ ++ ®𝑢))ptr

Fig. 2. Syntax of SpaceLambda

3.1 Closures
Our presentation of closures [Appel 1992; Landin 1964] deserves a careful explanation. To model the

space complexity of programs that involve closures, we must somehow reflect the fact that a closure

is a heap-allocated object, which has an address, a size, and may hold pointers to other objects.

Thus, we cannot just use the standard substitution-based small-step semantics of the _-calculus,

where a _-abstraction is a value. Instead, two approaches come to mind. One approach is to view

a _-abstraction as a primitive expression (not a value) whose evaluation causes the allocation

of a closure. Another approach is to adopt a restricted calculus that offers only closed functions

(as opposed to general _-abstractions with free variables) and to define closure construction and

closure invocation asmacros, or canned sequences of instructions, on top of this calculus. As shown

by Paraskevopoulou and Appel [2019], these approaches yield the same cost model. Furthermore,

provided suitable syntax is chosen, the end user does not see the difference: it is just a matter of

presentation in the metatheory. We choose the second approach because we find it simpler. In so

doing, we follow Gómez-Londoño et al. [2020], who define the CakeML cost model at the level of

DataLang, the language that serves as the target of closure conversion.

We equip SpaceLambda with closed functions, which we also refer to as code pointers. We write

`ptr 𝑓 . _®𝑥 . 𝑡 for a (recursive) closed function, andwrite (𝑣 ®𝑢)ptr for the invocation of the code pointer 𝑣
with arguments ®𝑢. Thus, SpaceLambda does not have primitive closures. This allows us to present a

program logic for SpaceLambda and to establish the soundness of this logic without worrying about

closures (§4–§6). Then, we define closure construction `clo 𝑓 . _®𝑥 . 𝑡 and closure invocation (ℓ ®𝑢)clo as
macros, and we extend our program logic with high-level reasoning rules for closures (§7). This

allows reasoning about these macros without expanding them and without even knowing how

they are defined. In summary, SpaceLambda can macro-express closures, and our program logic

allows reasoning about closures in the same way as if they were primitive constructs.

3.2 Syntax
The syntax of SpaceLambda appears in Figure 2. L is an infinite set of memory locations. A value 𝑣
is a piece of data that fits in one word of memory. A value is the unit value (), a natural number 𝑛, a

location ℓ , or a code pointer `ptr 𝑓 . _®𝑥 . 𝑡 , that is, a closed recursive function, where the only variables
available in the function body 𝑡 are the function’s name 𝑓 and the formal parameters ®𝑥 .
A block 𝑏 is either a heap-allocated mutable tuple of values, written ®𝑤 , or a special deallocated

block, written �. Our operational semantics does not recycle memory locations: when a heap block

at address ℓ is deallocated, the store is updated with a mapping from ℓ to �. A heap or store 𝜎 is a

finite map of locations to memory blocks. We write ∅ for the empty store.
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HeadBinOp

𝑛 ⊙ 𝑚 /𝜎 −→ 𝑛 ⊙N 𝑚 /𝜎

HeadLet

let𝑥 = 𝑣 in 𝑡 /𝜎 −→ [𝑣/𝑥]𝑡 /𝜎

HeadCall

𝑣 = `ptr 𝑓 . _®𝑥 . 𝑡 | ®𝑥 | = | ®𝑤 |
(𝑣 ®𝑤)ptr /𝜎 −→ [𝑣/𝑓 ] [ ®𝑤/®𝑥]𝑡 /𝜎

HeadIfTrue

𝑛 ≠ 0

if 𝑛 then 𝑡1 else 𝑡2 /𝜎 −→ 𝑡1 /𝜎

HeadIfFalse

𝑛 = 0

if 𝑛 then 𝑡1 else 𝑡2 /𝜎 −→ 𝑡2 /𝜎

HeadAlloc

ℓ ∉ dom(𝜎)
𝜎′ = [ℓ := ()𝑛]𝜎 size(𝜎′) ≤ 𝑆

alloc 𝑛 /𝜎 −→ ℓ /𝜎′

HeadLoad

𝜎 (ℓ) = ®𝑤 0 ≤ i < | ®𝑤 | ®𝑤 (i) = 𝑣
ℓ [i] /𝜎 −→ 𝑣 /𝜎

HeadStore

𝜎′ = [ℓ := [i := 𝑣] ®𝑤]𝜎 𝜎 (ℓ) = ®𝑤 0 ≤ i < | ®𝑤 |
ℓ [i]←𝑣 /𝜎 −→ () /𝜎′

Fig. 3. Head reduction

StepHead

𝑡 /𝜎 −→ 𝑡 ′ /𝜎′

𝑡 /𝜎
step−−−→ 𝑡 ′ /𝜎′

StepCtx

𝑡 /𝜎
step−−−→ 𝑡 ′ /𝜎′

𝐾 [𝑡] /𝜎 step−−−→ 𝐾 [𝑡 ′] /𝜎′

Edge

𝜎 (ℓ) = ®𝑤 ®𝑤 (𝑖) = ℓ′

ℓ ⇝𝜎 ℓ
′

GC

dom(𝜎′) = dom(𝜎)

∀ℓ ∈ dom(𝜎′)
{

𝜎′ (ℓ) = 𝜎 (ℓ)
∨ 𝜎′ (ℓ) = � ∧ ¬ (∃𝑟 ∈ 𝑅, 𝑟 ⇝∗𝜎 ℓ)

𝑅 ⊢ 𝜎 gc−−→ 𝜎′

RedGC

locs(𝑡) ⊢ 𝜎 gc−−→ 𝜎′

𝑡 /𝜎
step∪ gc−−−−−−−→ 𝑡 /𝜎′

RedStep

𝑡 /𝜎
step−−−→ 𝑡 ′ /𝜎′

𝑡 /𝜎
step∪ gc−−−−−−−→ 𝑡 ′ /𝜎′

Fig. 4. Reduction under a context, garbage collection, and their combination

Our semantics is parameterized by a function, written words(𝑛), which returns the size in words

of an 𝑛-field memory block. We define the size of a block, written size(𝑏), by size( ®𝑤) = words( | ®𝑤 |)
and size(�) = 0. The first equation indicates that the size of a block depends only on the number of

its fields; the second equation indicates that a deallocated block occupies no space. Later in the

paper (§7, §8), we use words(𝑛) = 𝑛. For example, our representation of linked list cells (§8.1) uses

three fields (the tag, head and tail), so a list cell has size 3, a realistic figure. Besides, we define the

size of a store as the sum of the sizes of its blocks.

3.3 Head Reduction
Figure 3 defines the head reduction relation, written 𝑡 /𝜎 −→ 𝑡 ′ /𝜎 ′. Load and store operations

require a valid location and a valid offset. In HeadLoad and HeadStore, we write ®𝑤 (𝑖) to refer
to the 𝑖-th field of a block, and write [i := 𝑣] ®𝑤 for a block update. We write 𝜎 (ℓ) to refer to the

contents of a store location, and write [ℓ := ®𝑤]𝜎 for a store update. In HeadAlloc, we write ()𝑛
for a block of 𝑛 fields, initialized with unit values.

Following Madiot and Pottier [2022], we parameterize the operational semantics with a limit 𝑆

on the size of the heap. An allocation instruction that attempts to exceed this limit cannot take a

step: this is expressed by the premise size(𝜎 ′) ≤ 𝑆 in HeadAlloc. Thus, either a garbage collection

step can free up a sufficient amount of memory, or the program is stuck.

3.4 Reduction under a Context & Garbage Collection
Reduction under a Context. The reduction relation 𝑡 /𝜎

step−−−→ 𝑡 ′ /𝜎 ′ allows one head reduction step

under an evaluation context 𝐾 . It is defined by the rules StepHead and StepCtx in Figure 4. The

syntax of contexts (Figure 2) dictates a standard left-to-right call-by-value evaluation strategy.
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Garbage Collection. The relation 𝑅 ⊢ 𝜎 gc−→ 𝜎 ′, defined by the rule GC in Figure 4, lets a store 𝜎

evolve to a store 𝜎 ′ through a GC step that respects a set of roots 𝑅. During such a GC step, any

location ℓ that is unreachable from every root 𝑟 ∈ 𝑅 may be deallocated. This is reflected by

setting 𝜎 ′ (ℓ) to �. The existence of a path in the store from 𝑟 to ℓ is written 𝑟 ⇝∗𝜎 ℓ . This is the
reflexive and transitive closure of the edge relation defined by the rule Edge in Figure 4.

Main Reduction Relation. The main reduction relation 𝑡 /𝜎
step ∪ gc−−−−−−→ 𝑡 ′ /𝜎 ′, defined by the rules

RedGC and RedStep, is the union of reduction under a context and garbage collection. In RedGC, the

parameter 𝑅, which represents the set of roots that the GC must respect, is instantiated with locs(𝑡),
the set of all locations that occur in the term 𝑡 . This expresses the free variable rule (§2.1).

4 A PROGRAM LOGIC FOR SPACELAMBDA
In this section, we present the core of our program logic for SpaceLambda. We postpone the

treatment of closures to §7. We start by introducing assertions and triples (§4.1). Next, we present

the logical deallocation rule, which plays a central role in our work (§4.2). Then, we provide

more detail on the ingredients that appear in this rule, including pointed-by assertions (§4.3),

a condition of non-membership in the set of visible roots (§4.4), space credits (§4.5), and deallocation

witnesses (§4.6). Last, we review the remaining reasoning rules (§4.7).

4.1 Assertions and Triples
We build our Separation Logic on top of Iris [Jung et al. 2018], and reuse its syntax. In particular,

we write Φ for assertions, ⌜𝑃⌝ for a pure assertion, Φ ∗ Φ′ for a separating conjunction and Φ −∗ Φ′
for a separating implication. We express the logical equivalence of two formulas as Φ ≡ Φ′.
Triples take the form {Φ} 𝑡 {Ψ}. A postcondition Ψ is of the form _𝑣 .Φ′, where the metavari-

able 𝑣 , which denotes the value of the term 𝑡 , is bound in Φ′. We write {Φ} 𝑡 {_ℓ.Φ′}, where the
metavariable ℓ denotes a location, as syntactic sugar for {Φ} 𝑡 {_𝑣. ∃ℓ . ⌜𝑣 = ℓ⌝ ∗ Φ′}. We take the

convention that multi-lines assertions are implicitly joined by a separating conjunction.

Iris features ghost state and ghost updates [Jung et al. 2018, §5.4]. In our work, the ghost update

modality Φ ⇛𝑉 Φ′ is parameterized with a set 𝑉 of visible roots. This parameter is instantiated

with locs(𝑡) in the consequence rule, as shown below. The frame rule retains its standard form.

Φ ⇛locs (𝑡 ) Φ
′ {Φ′} 𝑡 {Ψ}

{Φ} 𝑡 {Ψ}
Conseq

{Φ} 𝑡 {Ψ}
{Φ ∗ Φ′} 𝑡 {_𝑣 . Ψ 𝑣 ∗ Φ′}

Frame

4.2 Logical Deallocation
A central aspect of our contribution is a novel logical deallocation rule, LogicalFree. It allows

logically deallocating a heap block 𝑏 at location ℓ and reclaiming the space occupied by this block.

It is a ghost update, parameterized by a set of visible roots 𝑉 (recall Conseq, §4.1).

LogicalFree

ℓ ↦→1 𝑏 ∗ ℓ ← [1 ∅ ∗ ⌜ℓ ∉ 𝑉 ⌝ ∗ Stackable ℓ 1 ⇛𝑉 ⋄size(𝑏) ∗ † ℓ
Four assertions are consumed by this ghost update. These four requirements have been informally

presented already (§2.3); we give more details about some of them in the following. They are a

points-to assertion; a pointed-by assertion (§4.3); the proposition ℓ ∉ 𝑉 , which ensures that ℓ is not

a visible root (§4.4); and a Stackable assertion, which ensures that ℓ is not an invisible root (§2.4).

Two assertions are produced by this ghost update, namely the space credits ⋄size(𝑏) associated
with the deallocated block 𝑏, and a deallocation witness † ℓ (§4.6). The above rule deallocates a
single block. Following Madiot and Pottier [2022], we provide a more general rule that frees several

blocks at once and allows deallocating cyclic structures (§A.3).
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4.3 Pointed-By Assertions
A location ℓ is a predecessor of ℓ ′ if the block at location ℓ contains the value ℓ ′. We use pointed-by
assertions to keep track of the predecessors of every location. A pointed-by assertion takes the

form ℓ ′ ← [𝑞 𝐿, where 𝐿 is a multiset of locations and 𝑞 is a fraction. Pointed-by assertions can be

split and joined using the following two rules:

𝑣 ← [𝑞1+𝑞2 (𝐿1 ⊎ 𝐿2) −∗ (𝑣 ← [𝑞1 𝐿1 ∗ 𝑣 ← [𝑞2 𝐿2) if 𝑞1 > 0 ∧ 𝑞2 > 0 SplitPointedBy

(𝑣 ← [𝑞1 𝐿1 ∗ 𝑣 ← [𝑞2 𝐿2) −∗ 𝑣 ← [𝑞1+𝑞2 (𝐿1 ⊎ 𝐿2) JoinPointedBy

Our program logic provides a full knowledge property: a full pointed-by assertion ℓ ′ ←[1 𝐿 (with

fraction 1) guarantees that the multiset 𝐿 contains all of the predecessors of ℓ ′. Of particular interest
is the assertion ℓ ′ ← [1 ∅, which guarantees that ℓ ′ has no predecessors.

A pointed-by assertion for a location ℓ initially appears when this location is allocated, and

disappears forever when this location is deallocated. Pointed-by assertions evolve during “store”

operations. For example, consider a store operation that updates the field ℓ [i] and overwrites the

value ℓ ′
1
with the value ℓ ′

2
. The reasoning rule for this operation (§4.7) removes ℓ from a pointed-by

assertion for ℓ ′
1
and adds ℓ to a pointed-by assertion for ℓ ′

2
.

We generalize Madiot and Pottier’s pointed-by assertions [2022] by allowing possibly-null frac-
tions and predecessors with negative multiplicity. Our pointed-by assertions take the form ℓ ′ ← [𝑞 𝐿
where 𝐿 is a signed multiset and 𝑞 is a rational number in the closed interval [0, 1]. We impose the

following restriction on the pair (𝑞, 𝐿): if the fraction 𝑞 is 0, then no location can have positive multi-
plicity in 𝐿. This generalization allows us to express the assertion ℓ ′ ←[0 {−ℓ}, which represents

a permission to remove ℓ (once) from the predecessors of ℓ ′. This assertion enables us to propose a

more elementary formulation of the reasoning rule for stores (§4.7).

Signed multisets [Hailperin 1986], also known as generalized sets [Whitney 1933] or hybrid
sets [Loeb 1992], are a generalization of multisets: they allow an element to have negativemultiplicity.

Blizard [1990] offers a survey. A signed multiset is a partial function from elements to Z. The disjoint
union operation ⊎ is the pointwise addition of multiplicities. We write +𝑥 for a positive occurrence

of 𝑥 and −𝑥 for a negative occurrence of 𝑥 . For example, {+𝑥 ;+𝑥} ⊎ {−𝑥} is {+𝑥}.
Possibly-null fractions are new. In traditional Separation Logics with fractional permissions

[Bornat et al. 2005; Boyland 2003], a fraction is a rational number in the semi-open interval (0, 1]. If
there exists a share that carries the fraction 1, then no other shares can separately exist. Therefore,

the “full knowledge” property holds. Here, in contrast, the fraction 0 is allowed, so a full pointed-by

assertion ℓ ′ ← [1 𝐿 does not exclude the existence of a separate pointed-by assertion with fraction

zero, say ℓ ′ ← [0 𝐿′. Still, thanks to our requirement that no location can have positive multiplicity

in 𝐿′, the “full knowledge” property holds: the multiset 𝐿 that appears in ℓ ′ ← [1 𝐿 remains a

sound over-approximation of the true multiset of predecessors of ℓ ′. In particular, as desired, the

assertion ℓ ′ ← [1 ∅ does guarantee that ℓ ′ has no predecessors.

We extend pointed-by assertions to arbitrary values and introduce an assertion of the form 𝑣 ← [𝑞 𝐿.
If 𝑣 is a location ℓ ′, then this assertion is defined as ℓ ′ ← [𝑞 𝐿. Otherwise, it is defined as ⌜True⌝.
Likewise, we extend the Stackable assertion to arbitrary values and define Stackable 𝑣 𝑝 . Finally,
we write ℓ ′ ←[>0𝑞 𝐿 as a short-hand for the assertion ⌜𝑞 > 0⌝ ∗ ℓ ′ ← [𝑞 𝐿. This notation is used for

instance in the reasoning rule Store (§4.7).

4.4 Reasoning about Visible Roots
The rule LogicalFree requires ℓ ∉ 𝑉 . As explained earlier (§4.1), the set 𝑉 is instantiated by the

consequence rule with locs(𝑡). Thus, a user of our logic is expected to fulfill a proof obligation of

the form ℓ ∉ locs(𝑡). The term 𝑡 is known: it is the subterm on which the user is focusing. The set
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locs(𝑡) can therefore be computed by Coq. Thus, the proof obligation ℓ ∉ 𝑉 can be reformulated as

follows: for each location ℓ ′ that appears in the set locs(𝑡), the user must prove ℓ ≠ ℓ ′.
As pointed out earlier (§2.3), this proof obligation is not a syntactic check: the user must prove

that the metavariables ℓ and ℓ ′ denote distinct heap addresses. Fortunately, in practice, proving

that two locations are distinct is usually straightforward. It is typically done by exploiting the

exclusivity of points-to or pointed-by assertions: ℓ ↦→1 𝑏 ∗ ℓ ′ ↦→𝑝 𝑏
′
entails ℓ ≠ ℓ ′, and, likewise,

ℓ ← [1 𝐿 ∗ ℓ ′ ←[>0𝑞 𝐿′ entails ℓ ≠ ℓ ′. When the user applies LogicalFree, the assertions ℓ ↦→1 𝑏 and

ℓ ← [1 ∅ are at hand already. Thus, to prove ℓ ≠ ℓ ′, it suffices to exhibit either ℓ ′ ↦→𝑝 𝑏
′
, or ℓ ′ ← [>0𝑞 𝐿′.

In practice, such assertions are usually available in the precondition at hand, because they are likely

to be required to reason about the term 𝑡 .

4.5 Space Credits
Following Madiot and Pottier [2022, §3.2], we use space credits to reason about space consumption.

The assertion ⋄𝑛 asserts that there exist 𝑛 memory words that are free or can be freed by the GC.

Furthermore, it asserts the unique ownership of this available space. Space credits can be split and

joined, via the rule: ⋄(𝑛1 + 𝑛2) ≡ ⋄𝑛1 ∗ ⋄𝑛2. One can forge zero credits, via the rule: ⌜True⌝ ⇛𝑉 ⋄0.
In the present paper, we extend space credits from natural numbers to rational numbers: we let

𝑛 range over the non-negative rational numbers. Of course, a physical word of memory cannot be

split, so the total number of space credits in existence remains an integral number, and so do the

numbers of credits involved in allocations and deallocations. Still, rational numbers appear essential

in certain amortized complexity analyses, as illustrated by the example of chunked stacks (§8.4).

4.6 Deallocation Witnesses
The assertion † ℓ [Madiot and Pottier 2022] indicates that the location ℓ has been deallocated. It is

persistent: once it holds, it holds forever. It serves as a permission to remove an occurrence of ℓ from

a predecessor multiset—deallocated predecessors need not be recorded. The Cleanup rule, shown
below, expresses this possibility. This rule was introduced by Madiot and Pottier [2022].

† ℓ ∗ ℓ ′ ← [𝑞 (𝐿 ⊎ {+ℓ}) ⇛𝑉 ℓ ′ ← [𝑞 𝐿 Cleanup

4.7 Reasoning Rules for Terms
Figure 5 gives the syntax-directed reasoning rules of our logic. The rules BinOp, IfTrue, IfFalse,

LetVal, and CallPtr are standard. The “later” modality ⊲ [Jung et al. 2018, §5.5] in the premises

indicates that the term in the premise is obtained from the term in the conclusion by performing a

reduction step. A reader who is unfamiliar with Iris may safely ignore this aspect.

Alloc generalizes the allocation rule of Separation Logic in two ways. First, its precondition

requires enough space credits to pay for the space occupied by the new block; they are consumed.

Second, in addition to a points-to assertion for the new block, its postcondition contains a pointed-

by assertion and a Stackable assertion. These assertions indicate that there are no pointers from

the heap or the stack to the new block.

Load is the standard rule of Separation Logic. Compared with Madiot and Pottier’s rule, which

exhibits five preconditions and five postconditions, our rule is significantly simpler. Getting rid of

mutable stack cells is what enables this simplification.

Our Store rule is slightly more complex than the standard rule of Separation Logic. Like the

standard rule, it requires a full points-to assertion ℓ ↦→1 ®𝑤 and produces an updated assertion ℓ ↦→1

[i := 𝑣 ′] ®𝑤 . In addition, it performs bookkeeping of predecessor multisets, so as to reflect the fact that

the value 𝑣 that was previously stored in the field ℓ [𝑖] is replaced with 𝑣 ′. First, to reflect the creation
of an edge from ℓ to the value 𝑣 ′, an assertion of the form 𝑣 ′ ← [>0𝑞 𝐿 is changed to 𝑣 ′ ← [>0𝑞 𝐿 ⊎ {+ℓ}.
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BinOp{
⌜True⌝

}
𝑚 ⊙ 𝑛

{
_𝑣. ⌜𝑣 =𝑚 ⊙N 𝑛⌝

} IfTrue

𝑛 ≠ 0 ⊲ {Φ} 𝑡1 {Ψ}
{Φ} if 𝑛 then 𝑡1 else 𝑡2 {Ψ}

IfFalse

𝑛 = 0 ⊲ {Φ} 𝑡2 {Ψ}
{Φ} if 𝑛 then 𝑡1 else 𝑡2 {Ψ}

Bind

dom(𝑀) = locs(𝐾) {Φ} 𝑡 {Ψ′}
∀𝑣 . {Ψ′ 𝑣 ∗ Stackables 𝑀} 𝐾 [𝑣] {Ψ}
{Φ ∗ Stackables 𝑀} 𝐾 [𝑡] {Ψ}

LetVal

{Φ} [𝑣/𝑥]𝑡 {Ψ}
{Φ} let𝑥 = 𝑣 in 𝑡 {Ψ}

CallPtr

𝑣 = `ptr 𝑓 . _®𝑥 . 𝑡 | ®𝑥 | = | ®𝑤 |
⊲ {Φ} [𝑣/𝑓 ] [ ®𝑤/®𝑥]𝑡 {Ψ}
{Φ} (𝑣 ®𝑤)ptr {Ψ}

Alloc{
⋄size(()𝑛)

}
alloc 𝑛

_ℓ.
ℓ ↦→1 ()𝑛
ℓ ← [1 ∅

Stackable ℓ 1


Load{
ℓ ↦→𝑝 ®𝑤

}
ℓ [i]

{
_𝑣 .
⌜𝑣 = ®𝑤 (i)⌝
ℓ ↦→𝑝 ®𝑤

}
Store

®𝑤 (i) = 𝑣
ℓ ↦→1 ®𝑤
𝑣 ′ ← [>0𝑞 𝐿

 ℓ [i]←𝑣 ′
_ .

ℓ ↦→1 [i := 𝑣 ′] ®𝑤
𝑣 ′ ← [>0𝑞 𝐿 ⊎ {+ℓ}
𝑣 ← [0 {−ℓ}


Fig. 5. Reasoning rules for terms

Here, 𝑞 must be a positive fraction. The multiset 𝐿 could be constrained in this rule to be the empty

multiset, without loss of expressiveness. Second, to reflect the deletion of an edge from ℓ to the

value 𝑣 , the assertion 𝑣 ← [0 {−ℓ} appears in the postcondition. As explained earlier (§4.3), this

assertion is a permission to remove ℓ once from a multiset of predecessors of 𝑣 . Thanks to it, the

treatment of edge deletion in our system is more lightweight than Madiot and Pottier’s: their Store

rule requires the assertion 𝑣 ← [𝑝 𝐿 and changes it to 𝑣 ← [𝑝 𝐿 \ {ℓ}. It is also more permissive: a

pointed-by assertion for 𝑣 is not required in order to destroy a pointer to 𝑣 .

To explain our Bind rule, let us begin with a special case. Suppose we wish to reason about

the term let𝑥 = 𝑡1 in 𝑡2 and suppose locs(𝑡2) is a singleton set {ℓ}. We would like to first establish

a triple about 𝑡1, then establish another triple about 𝑡2, where the variable 𝑥 has been replaced

with a value 𝑣 that stands for the result of 𝑡1. A key novel aspect of our rule, which was informally

explained earlier (§2.4), is that the assertion Stackable ℓ 𝑝 is required in the beginning, taken away

from the user while reasoning about 𝑡1, and given back to the user once she is ready to reason

about 𝑡2. In other words, it is forcibly framed out while reasoning about 𝑡1. This is expressed by the

two occurrences of Stackable ℓ 𝑝 in the following rule:

Particular Case of Bind

locs(𝑡2) = {ℓ} {Φ} 𝑡1 {Ψ′} ∀𝑣 . {Ψ′ 𝑣 ∗ Stackable ℓ 𝑝} [𝑣/𝑥]𝑡2 {Ψ}
{Φ ∗ Stackable ℓ 𝑝} let𝑥 = 𝑡1 in 𝑡2 {Ψ}

The choice of the fraction 𝑝 is up to the user. Our Bind rule (Figure 5) generalizes this idea to an

arbitrary evaluation context 𝐾 , in which an arbitrary number of locations may occur. The idea is to

forcibly frame out, for each location in locs(𝐾), a Stackable assertion. This is expressed as follows:

for some map𝑀 of the locations in locs(𝐾) to fractions, the rule forcibly frames out the assertion

Stackables 𝑀 , which is defined as an iterated separating conjunction of Stackable assertions:

Stackables 𝑀 = ∗
(ℓ, 𝑝 ) ∈𝑀

Stackable ℓ 𝑝.
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BindWithSouvenir

dom(𝑀) = locs(𝐾) \ 𝑅 ⟨𝑅 ∪ locs(𝐾)⟩ {Φ} 𝑡 {Ψ′} ∀𝑣 . ⟨𝑅⟩ {Ψ′ 𝑣 ∗ Stackables 𝑀}𝐾 [𝑣] {Ψ}
⟨𝑅⟩ {Φ ∗ Stackables 𝑀}𝐾 [𝑡] {Ψ}

AddSouvenir

⟨𝑅 ∪ {ℓ}⟩ {Φ} 𝑡 {Ψ}
⟨𝑅⟩ {Φ ∗ Stackable ℓ 𝑝} 𝑡 {_𝑣 .Ψ 𝑣 ∗ Stackable ℓ 𝑝}

ForgetSouvenir

𝑅′ ⊆ 𝑅 ⟨𝑅′⟩ {Φ} 𝑡 {Ψ}
⟨𝑅⟩ {Φ} 𝑡 {Ψ}

Fig. 6. Key reasoning rules for triples with souvenir

BindNoFree

⟨NoFree⟩ {Φ} 𝑡 {Ψ′} ∀𝑣 . ⟨𝑅?⟩ {Ψ′ 𝑣}𝐾 [𝑣] {Ψ}
⟨𝑅?⟩ {Φ}𝐾 [𝑡] {Ψ}

ConseqMode

𝑚 = if (𝑅? = NoFree) then⊥ else⊤
Φ ⇛𝑚

locs (𝑡 ) Φ
′ ⟨𝑅?⟩ {Φ′} 𝑡 {Ψ}

⟨𝑅?⟩ {Φ} 𝑡 {Ψ}

Fig. 7. Key reasoning rules for the NoFree mode

5 WORKINGWITH STACKABLE ASSERTIONS
Each application of the Bind rule requires a number of Stackable assertions to be extracted from

the current precondition and framed out. In what follows, we present two simple extensions of our

program logic that help tame the number of Stackable assertions that must be forcibly framed out

in this way. The first mechanism, triples with souvenir (§5.1), explicitly keeps track of a set 𝑅 of

roots. While establishing a triple with souvenir, logical deallocation cannot be applied to a location

in 𝑅. In exchange for this restriction, a relaxed “bind” rule can be used, which does not forcibly

frame Stackable assertions for the locations in 𝑅. Furthermore, we use the set 𝑅 to reduce the proof

obligations generated by the LogicalFree rule (§5.2). The second mechanism, the NoFree mode

(§5.3), relies on a roughly similar restriction, applied to all locations. It is a degraded mode where

logical deallocation is forbidden and no Stackable assertions at all are forcibly framed.

5.1 Triples with Souvenir
A triple with souvenir takes the form ⟨𝑅⟩ {Φ} 𝑡 {Ψ}. The new parameter 𝑅 denotes a set of locations

for which a Stackable assertion has been forcibly framed out already, higher up in the Separation

Logic proof tree, in an enclosing application of the “bind” rule. This set can be interpreted as

a souvenir (a remembrance) of framed Stackable assertions. The following equivalence explains

triples with souvenir in terms of ordinary triples.𝑀 is a map of locations to fractions; the condition

𝑅 ⊆ dom(𝑀) requires𝑀 to cover every location in 𝑅.

⟨𝑅⟩ {Φ} 𝑡 {Ψ} ≡
(
∀𝑀. 𝑅 ⊆ dom(𝑀) =⇒ {Φ ∗ Stackables 𝑀} 𝑡 {_𝑣. Ψ 𝑣 ∗ Stackables 𝑀}

)
Conversely, a plain triple {Φ} 𝑡 {Ψ} is equivalent to a triple with an empty souvenir ⟨∅⟩ {Φ} 𝑡 {Ψ}.

For every reasoning rule in Figure 5, we provide a new rule (not shown) that operates on triples

with souvenir and that is polymorphic in 𝑅. This is done simply by inserting 𝑅 in every triple in the

premises and conclusion. In addition, we establish three new reasoning rules, presented in Figure 6.

The rule BindWithSouvenir is similar to Bind, but does not require Stackable assertions for the
locations that are already part of the souvenir 𝑅. Furthermore, it augments the current souvenir by

changing 𝑅 to 𝑅 ∪ locs(𝐾) in its second premise. Thus, nested applications of BindWithSouvenir

do not require repeated (redundant) force-framing of Stackable assertions. The rule AddSouvenir
extends the current souvenir with a location ℓ . This requires framing a Stackable assertion for ℓ .

The rule ForgetSouvenir shrinks the current souvenir.
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We exploit triples with souvenir to improve the readability of specifications and of proof obliga-

tions and to increase proof automation. Our tactic for reasoning about a function call automatically

applies AddSouvenir and ForgetSouvenir so as to make the current souvenir match the souvenir

that appears in the specification of the function. The implementation of our tactics leverages the

Diaframe library [Mulder et al. 2022] for all of our rules except BindWithSouvenir. For the

latter, we define a custom tactic that computes the set of locations locs(𝐾) \ 𝑅, then attempts to

automatically gather, in the precondition, the required Stackable assertions.

5.2 Reasoning about Visible Roots via Stackable Assertions
Earlier (§2.3, §4.4), we have explained that the logical deallocation rule LogicalFree carries the

premise ℓ ∉ 𝑉 , which requires the user to show that the location ℓ is not a visible root. When

this rule is applied, 𝑉 is instantiated with locs(𝑡), where 𝑡 is the subterm under focus; and ℓ is the

location that the user wishes to deallocate, so the user must exhibit the assertion Stackable ℓ 1.
Therefore, for every location ℓ ′, if an assertion Stackable ℓ ′ 𝑝 is also at hand, then ℓ ≠ ℓ ′ follows.
Thus, by exploiting the Stackable assertions at hand, and by exploiting the souvenir 𝑅 (which

implicitly stands for a conjunction of Stackable assertions), the proof obligation ℓ ∉ 𝑉 can often be

automatically met, or at least reduced to a weaker obligation ℓ ∉ 𝑉 ′, where𝑉 ′ is a subset of𝑉 . This
idea is expressed by the following two rules:

ConseqWithSouvenir

Φ ⇛locs (𝑡 )\𝑅 Φ′ ⟨𝑅⟩ {Φ′} 𝑡 {Ψ}
⟨𝑅⟩ {Φ} 𝑡 {Ψ}

UpdateWithSouvenir

Φ ⇛𝑉 \{ℓ ′ } Φ
′

Φ ∗ Stackable ℓ ′ 𝑝 ⇛𝑉 Φ′ ∗ Stackable ℓ ′ 𝑝
ConseqWithSouvenir is a variant of Conseq. When the user would like to deallocate a location ℓ ,

this rule automatically proves ℓ ∉ 𝑅, so the proof obligation ℓ ∉ locs(𝑡) is replaced with ℓ ∉ locs(𝑡)\𝑅.
This proof obligation can be further weakened using the UpdateWithSouvenir rule. This rule

exploits the presence of the assertion Stackable ℓ ′ 𝑝 to automatically remove ℓ ′ from the set 𝑉 of

roots. Thus, the proof obligation ℓ ∉ 𝑉 in an application of the logical deallocation rule LogicalFree

is reduced to ℓ ∉ 𝑉 \ {ℓ ′}.

5.3 Triples in NoFree mode
Inside the proof of a triple with souvenir ⟨𝑅⟩ {Φ} 𝑡 {Ψ}, none of the locations in 𝑅 can be logically

deallocated, since a Stackable assertion for each of these locations is implicitly present in the

postcondition. Thus, a triple with souvenir can be viewed as a triple that is established in a

restricted mode where the locations in 𝑅 cannot be deallocated. We now propose a more radical

variant of this idea and introduce an even more restricted (yet still useful) mode where the user

cannot deallocate any location. In exchange, she is rewarded with a simplified “bind” rule that does

not require framing out any Stackable assertion. We refer to this mode as the NoFree mode.

To this end, we introduce a generalized triple ⟨𝑅?⟩ {Φ} 𝑡 {Ψ} where 𝑅? is either a set 𝑅 of locations

or the special token NoFree. Its definition is found in the Appendix (§B.1). Again, for each of the

reasoning rules in Figure 5, one can establish a generalized rule, which is polymorphic in 𝑅?. The

rules in Figure 6 remain valid. They can be applied when 𝑅? is a set of locations 𝑅, but not when 𝑅?

is NoFree. In addition, we establish two new reasoning rules, presented in Figure 7.

The rule BindNoFree is an alternative to BindWithSouvenir. It enters NoFree mode while

reasoning about the subterm 𝑡 . By instantiating 𝑅? with NoFree, it can also be used when one is

already in NoFree mode. This rule is just as easy to use as the traditional “bind” rule: it does not

require any Stackable assertions.
The rule ConseqMode is a generalized formulation of the consequence rule Conseq (§4.1). In

short, this rule simply forbids logical deallocation inNoFreemode. In greater detail, we parameterize
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the ghost update modality ⇛𝑚
𝑉

with a mode 𝑚 that is either ⊥ (deallocation forbidden) or ⊤
(deallocation permitted). The modality⇛𝑉 that appears in the rule LogicalFree coincides with⇛⊤

𝑉
,

so deallocation requires the mode ⊤. The first premise of ConseqMode in Figure 7 selects a suitable

mode, depending on 𝑅?, so as to forbid deallocation in NoFree mode.

Although “triples with souvenir” and “NoFree mode” may appear to be based on roughly similar

ideas, they are quite different. Triples with souvenir are defined in terms of ordinary triples and

Stackable assertions; thus, during a proof, one can switch back and forth between ordinary triples

and triples with souvenir (AddSouvenir, ForgetSouvenir). In contrast, NoFree mode is more

restricted: once one switches to NoFree mode via BindNoFree, there is no way of escaping it. For

this reason, we tend to use NoFree mode near the leaves of proof trees.

6 SOUNDNESS
A configuration 𝑡1 /𝜎1 is final if the term 𝑡1 is a value. A configuration 𝑡1 /𝜎1 is reducible if after one
step of garbage collection it can take a proper reduction step: that is, if there exist two stores 𝜎 ′

1

and 𝜎2 and a term 𝑡2 such that locs(𝑡1) ⊢ 𝜎1
gc−→ 𝜎 ′

1
and 𝑡1 /𝜎

′
1

step−−−→ 𝑡2 /𝜎2 hold. A configuration is

stuck if it is neither final nor reducible. A program 𝑡 is safe if 𝑡 / ∅ step ∪ gc−−−−−−→∗ 𝑡1 /𝜎1 implies that the

configuration 𝑡1 /𝜎1 is either final or reducible—therefore not stuck.

In our setting, the notion of a stuck configuration is more subtle than usual. Our operational

semantics includes garbage collection steps, which may reduce the size of the heap. Furthermore, it

is parameterized with 𝑆 , a limit on the size of the heap (§3). An allocation step that exceeds this

limit is not permitted. Thus, a program is stuck if, no matter how much memory the GC is able to

reclaim, it cannot avoid growing the heap beyond 𝑆 . In other words, a program is stuck if its live
heap size is about to exceed 𝑆 . In the contrapositive form, if a program is safe, then its live heap

size never exceeds 𝑆 .

Our soundness theorem states that if a program can be verified, using our program logic, under

an allowance of 𝑆 space credits, then this program is safe.

Theorem 6.1 (Soundness). If {⋄𝑆} 𝑡 {__. ⌜True⌝} holds, then 𝑡 is safe.

Therefore, if a program can be verified under 𝑆 space credits, then its live heap size never

exceeds 𝑆 . This result holds for every 𝑆 . Thus, the space bounds that are established via our program

logic are indeed correct.

The proof of Theorem 6.1 is found in our Coq development [Moine et al. 2022], and a high-level

presentation of the key definitions and lemmas is given in the Appendix (§B). Here, we summarize

the key novel ingredients of our proof, compared to the soundness proof of a standard Iris-based

program logic.

In Iris-based program logics, the triple is usually defined in terms of a “weakest precondition”

modality: the assertion wp 𝑡 Ψ means that it is safe to execute 𝑡 and that, if this execution produces

a value 𝑣 , then Ψ 𝑣 holds. The definition ofwp refers to the small-step semantics of the language and

to a central invariant (also known as the state interpretation invariant) which relates the physical

state and the ghost state. Our definition of wp, which appears in Figure 8, follows this pattern. One

important aspect of this definition is that it does not refer to the standard semantics of SpaceLambda,

which was defined in Figures 3 and 4. Indeed, the structure of the definitions in Figures 3 and 4

does not allow a GC step to take place under an evaluation context. This is inconvenient, as we

want wp to allow reasoning independently of the evaluation context, that is, to admit a “bind” rule.

Therefore, our definition of wp refers to an alternative small-step semantics, whose judgment takes

the form 𝑅 ⊢ 𝑡 /𝜎 ctx ∪ (gc ; head)−−−−−−−−−−→ 𝑡 ′ /𝜎 ′. This judgment is parameterized with a set of invisible roots 𝑅,

and allows a GC step to take place under an evaluation context. We prove that the two semantics

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 25. Publication date: January 2023.



A High-Level Separation Logic for Heap Space under Garbage Collection 25:17

reducible 𝑅 𝑡1 𝜎1 ≜ ∃𝑡2, 𝜎 ′1, 𝜎2. (𝑅 ∪ locs(𝑡1) ⊢ 𝜎1
gc−→ 𝜎 ′

1
) ∧ (𝑡1 /𝜎 ′1

step−−−→ 𝑡2 /𝜎2)
wp𝑚 𝑡1 Ψ ≜ ∀𝜎1, ^. interp 𝑚 𝜎1 ^ locs(𝑡1) ⇛

match 𝑡1 with

| Val 𝑣 ⇒ interp 𝑚 𝜎1 ^ locs(𝑡1) ∗ Ψ 𝑣

| _⇒ ⌜reducible dom(^) 𝑡1 𝜎1⌝ ∗
⊲ (∀𝑡2, 𝜎2. ⌜dom(^) ⊢ 𝑡1 /𝜎1

ctx ∪ (gc ; head)−−−−−−−−−−→ 𝑡2 /𝜎2⌝ ⇛ (interp 𝑚 𝜎2 ^ locs(𝑡2) ∗ wp𝑚 𝑡2 Ψ))

Fig. 8. Definition of the weakest precondition modality wp

are equivalent—a necessary step, since our soundness theorem is stated with respect to the standard

semantics.

In the definition of wp, the set of invisible roots takes the form dom(^), where ^ is a finite map

of memory locations to nonzero fractions. The metavariable ^ is universally quantified at the root

of the definition, in the same way as the initial store 𝜎1. This reflects the intuitive idea that the

assertion wp𝑚 𝑡1 Ψ expresses a property of the term 𝑡1 that holds whatever the initial store may

be and whatever the invisible roots may be. It is nevertheless possible to constrain the store 𝜎1
via a points-to assertion [Jung et al. 2018, §6.3.2] and, in a similar way, to constrain the map ^

via a Stackable assertion. We note that our wp is parameterized with a Boolean mode𝑚 ∈ {⊥;⊤},
where ⊤ describes the normal mode, and ⊥ denotes the NoFree mode (§5.3), a restricted mode

where logical deallocation is not permitted. Our central invariant interp is parameterized not only

with a store, as usual, but also by a mode𝑚, a map ^ (the invisible roots), and a set of visible roots.

More details appear in the Appendix (§B).

7 CLOSURES
As explained earlier (§3.1), SpaceLambda does not have primitive closures. Instead, we define closure
construction `clo 𝑓 . _®𝑥 . 𝑡 and closure invocation (ℓ ®𝑢)clo as macros, which expand to sequences of

primitive SpaceLambda instructions. We omit the definitions of these macros, which are standard

[Appel 1992, Chapter 10]; they can be found in the Appendix (§A.1). Suffice it to say that we use flat
closures, represented as records containing a code pointer and the values captured by the closures,

called its environment. Our point is precisely that the end user need not know how these macros

are defined: indeed, we propose high-level rules that allow reasoning about closures as if they were

primitive objects, and publish a high-level cost-model.

Our construction of these reasoning rules is in two layers. First, we introduce a low-level

assertion Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ , which asserts that, at location ℓ in the heap, one finds a closure that

behaves like the function `𝑓 ._®𝑥 . 𝑡 under the environment 𝐸. Crucially, in this assertion, the term

`𝑓 ._®𝑥 . 𝑡 can have free variables, whose values are given by 𝐸. This assertion does not reveal how a

closure is represented in memory, but does reveal its code. We give an overview of this low-level

API (§7.1, §7.2) and reveal some details of its implementation (§7.3). Second, we define a high-level

assertion Spec 𝑛 𝐸 P ℓ , which describes the behavior of a closure in a more abstract way. It asserts

that, at location ℓ , one finds a closure that corresponds to a 𝑛-ary function, whose behavior is

described by the predicate P , and whose environment is 𝐸. The type and meaning of P are explained

later on. Although the environment 𝐸 does not participate in the description of the behavior of the

closure, it remains needed in order to reason about its size and about the pointers that it contains.

We give an overview of this high-level API (§7.4), then describe its implementation (§7.5). In practice,

only the high-level layer is exposed to the end user; the low-level layer remains internal.
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MkClo

®𝑦 = fvclo(𝑓 , ®𝑥, 𝑡) 𝐸 = zip ®𝑤 ®𝑞 | ®𝑤 | = | ®𝑦 | 𝑓 ∉ ®𝑥{ ⋄(1 + |𝐸 |)
∗

(𝑤,𝑞) ∈𝐸
𝑤 ← [>0𝑞 ∅

}
[ ®𝑤/®𝑦] (`clo 𝑓 . _®𝑥 . 𝑡)

{
_ℓ.

Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ
Stackable ℓ 1 ∗ ℓ ← [1 ∅

}
CallClo

®𝑦 = fvclo(𝑓 , ®𝑥, 𝑡) 𝐸 = zip ®𝑤 ®𝑞 | ®𝑥 | = |®𝑣 |
⊲ {Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ ∗ Φ} [ℓ/𝑓 ] [ ®𝑤/®𝑦] [®𝑣/®𝑥]𝑡 {Ψ}

{Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ ∗ Φ} (ℓ ®𝑣)clo {Ψ}

FreeClo©«
⌜ℓ ∉ 𝑉 ⌝

Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ
Stackable ℓ 1
ℓ ← [1 ∅

ª®®®¬ ⇛
⊤
𝑉

( ⋄(1 + |𝐸 |)
∗

(𝑤,𝑞) ∈𝐸
𝑤 ← [>0𝑞 ∅

)
Fig. 9. Low-level interface for closures

7.1 Environments
We write fvclo(𝑓 , ®𝑥, 𝑡) for a list of the free variables of the function `𝑓 ._®𝑥 . 𝑡 , that is, for a list of the
variables in the set fv(𝑡) \ {𝑓 , ®𝑥}. The order in which the variables occur in this list is irrelevant but

is chosen in a deterministic manner. An environment 𝐸 is a list of pairs of a value and a nonzero

fraction (for use in a pointed-by assertion). The length and order of the list 𝐸 are intended to match

the length and order of the list fvclo(𝑓 , ®𝑥, 𝑡). We stress that an environment 𝐸 is not a runtime

object: it is a mathematical object that we use as a parameter of the predicates Closure and Spec.

7.2 Low-Level Closure API
Our low-level reasoning rules for closures, shown in Figure 9, involve the predicate Closure, which
describes the layout of a closure in memory. A user views Closure as an abstract predicate; its

definition is given in the next section (§7.3).

The rule MkClo specifies a closure construction operation. The term, written [ ®𝑤/®𝑦] `clo 𝑓 . _®𝑥 . 𝑡 ,
is the application of a multi-substitution of some values ®𝑤 for the free variables ®𝑦 of the function

`𝑓 ._®𝑥 . 𝑡 to the closure construction macro `clo 𝑓 . _®𝑥 . 𝑡 . The reason why we must be prepared to

reason about a term of this form is that the premise of LetVal gives rise to substitutions which (after

being propagated down) become blocked in front of the opaque macro `clo 𝑓 . _®𝑥 . 𝑡 . The values ®𝑤
that appear in this multi-substitution are the values “captured” by the closure, that is, the values

that are stored in the closure when it is constructed.

In the second premise of MkClo, an environment 𝐸 is built by pairing up the values ®𝑤 with

nonzero fractions ®𝑞. These fractions, whose choice is up to the user, determine what fractional

pointed-by assertion is consumed by the closure for each of these values. Indeed, according to

the precondition in MkClo, for each value 𝑤 in the list ®𝑤 , the closure construction operation

consumes𝑤 ← [>0𝑞 ∅. (This notation, introduced at the end of §4.3, requires 𝑞 > 0.) In addition, this

operation consumes 1 + |𝐸 | space credits, reflecting the space needed to store a code pointer and

the values ®𝑤 in a flat closure. According to the postcondition inMkClo, this operation produces

the assertion Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ , which guarantees that there is a well-formed closure at address ℓ ,

as well as a Stackable assertion and a pointed-by assertion for ℓ , which guarantee that we have a

unique pointer to this closure.

The rule CallClo closely resembles the rule CallPtr for primitive function calls (Figure 5).

One difference is that CallClo requires the assertion Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ , which describes the closure.

Another difference is that, whereas a primitive function `ptr 𝑓 . _®𝑥 . 𝑡 must be closed, a general

function can have a nonempty list of free variables ®𝑦, an alias for fvclo(𝑓 , ®𝑥, 𝑡). In the last premise
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of CallClo, which requires reasoning about the function’s body, the variables ®𝑦 are replaced with

the values ®𝑤 captured at closure construction time, which are recorded in the environment 𝐸.

The rule FreeClo allows the logical deallocation of a closure. It closely resembles LogicalFree.

The main difference is that, instead of consuming a points-to assertion, it consumes the abstract

assertion Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ . Furthermore, it releases the pointed-by assertions that were captured at

closure construction time.

The postcondition of FreeClo matches the premise of MkClo, and the precondition of FreeClo

matches the postcondition ofMkClo (up to the assumption that the closure is not a visible root).

Thus, a (physical) closure allocation followed with a (logical) closure deallocation does not alter

the set of assertions at hand.

The rulesMkClo andCallClo express the correctness of our closure construction and invocation

macros. They guarantee that a closure at address ℓ constructed by [ ®𝑤/®𝑦] `clo 𝑓 . _®𝑥 . 𝑡 , when invoked

with actual arguments ®𝑣 , behaves like the term [ℓ/𝑓 ] [ ®𝑤/®𝑦] [®𝑣/®𝑥]𝑡 . This is the operational behavior
that is expected of a closure.

7.3 Low-Level Closure API: Implementation Details
The Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ assertion is defined as follows.

Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ ≜ ⌜𝑓 ∉ ®𝑥 ∧ |𝐸 | = |fvclo(𝑓 , ®𝑥, 𝑡) |⌝ ∗
ℓ ↦→1 (codeclo(𝑓 , ®𝑥, 𝑡) :: map fst 𝐸) ∗ ∗

(𝑣, 𝑞) ∈𝐸
(𝑣 ← [𝑞 {+ℓ})

This assertion records two pure facts: the name 𝑓 is disjoint from the parameters ®𝑥 and the length of

the environment 𝐸 matches the number of free variables of the closure. Then, a points-to assertion

states that the location ℓ points to a block of size 1 + |𝐸 |. Its first field contains the code of the

closure, codeclo(𝑓 , ®𝑥, 𝑡), whose definition appears in the Appendix (§A.1). The other fields contain

the values recorded in the environment 𝐸. Finally, for every pair (𝑣, 𝑞) in 𝐸, a pointed-by assertion

appears, reflecting the fact that 𝑣 is pointed to by the closure.

7.4 High-Level Closure API
The user of a program logic is ultimately interested in the specification of a function, not in the

details of its implementation. Yet, the predicate Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ reveals the code of the closure.
As a result, a user of the Closure API naturally wishes to hide this information via an existential

quantification over this code. This is common enough and difficult enough that we offer a higher-

level API where this existential quantification is built in. We introduce the assertion Spec 𝑛 𝐸 P ℓ
(defined in §7.5), where 𝑛 is the arity of the function; 𝐸 is the environment of the closure; P describes

the behavior of the closure; and ℓ is the location of the closure in memory.

The design of this high-level API is made particularly challenging by two aspects. First, a closure

may invoke itself recursively. Thus, we want to assume an instance of Spec while establishing an
instance of Spec. Second, a closure may self-destruct, that is, logically deallocate itself after it has

been invoked. Thus, we want to be able to consume this Spec assumption, if desired. For presentation

purposes, we first present a simplified assertion, Spec′ 𝑛 𝐸 P ℓ , which handles closures that are not

recursive and do not self-destruct (Figure 10). Then, we show the general case (Figure 11).

A Simplified Interface. The Spec′ API is presented in Figure 10. Let us first examine the rule Call-

Spec’. A call of the form (ℓ ®𝑣)clo admits a precondition Φ and a postcondition Ψ if the entailment

∀𝑢. P ®𝑣 𝑢 −∗ {Φ} 𝑢 {Ψ} holds. Intuitively, 𝑢 denotes the instantiated function body that was visible

in the low-level rule CallClo; however, this function body is now abstracted away by the universal

quantification over 𝑢. The predicate P represents the specification of the function. For example, in
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MkSpec’

®𝑦 = fvclo(𝑓 , ®𝑥, 𝑡) 𝐸 = zip ®𝑤 ®𝑞 | ®𝑤 | = | ®𝑦 | 𝑓 ∉ ®𝑥 𝑓 ∉ fv(𝑡)
𝑛 = | ®𝑥 | ∀®𝑣 . ⌜ |®𝑣 | = 𝑛⌝ −∗ let 𝑢 = [ ®𝑤/®𝑦] [®𝑣/®𝑥]𝑡 in □(P ®𝑣 𝑢){ ⋄(1 + |𝐸 |)
∗

(𝑤,𝑞) ∈𝐸
𝑤 ← [>0𝑞 ∅

}
[ ®𝑤/®𝑦] (`clo 𝑓 . _®𝑥 . 𝑡)

{
_ℓ.

Spec′ 𝑛 𝐸 P ℓ
Stackable ℓ 1 ∗ ℓ ← [1 ∅

}

CallSpec’

|®𝑣 | = 𝑛 ⊲(∀𝑢. P ®𝑣 𝑢 −∗ {Φ} 𝑢 {Ψ})
{Spec′ 𝑛 𝐸 P ℓ ∗ Φ} (ℓ ®𝑣)clo {_𝑣. Spec′ 𝑛 𝐸 P ℓ ∗ Ψ 𝑣}

FreeSpec’©«
⌜ℓ ∉ 𝑉 ⌝

Spec′ 𝑛 𝐸 P ℓ
Stackable ℓ 1
ℓ ←[1 ∅

ª®®®¬ ⇛
⊤
𝑉

( ⋄(1 + |𝐸 |)
∗

(𝑤,𝑞) ∈𝐸
𝑤 ← [>0𝑞 ∅

)
Fig. 10. Simplified high-level interface for closures: non-recursive, non-self-destructing functions

MkSpec

®𝑦 = fvclo(𝑓 , ®𝑥, 𝑡) 𝐸 = zip ®𝑤 ®𝑞 | ®𝑤 | = | ®𝑦 | 𝑓 ∉ ®𝑥 𝑛 = | ®𝑥 | NonExpansive P
∀ℓ, ®𝑣 . ⌜ |®𝑣 | = 𝑛⌝ −∗ let 𝑢 = [ℓ/𝑓 ] [ ®𝑤/®𝑦] [®𝑣/®𝑥]𝑡 in □

(
Spec 𝑛 𝐸 P ℓ −∗ P ℓ ®𝑣 𝑢 (Spec 𝑛 𝐸 P ℓ)

){ ⋄(1 + |𝐸 |)
∗

(𝑤,𝑞) ∈𝐸
𝑤 ← [>0𝑞 ∅

}
[ ®𝑤/®𝑦] (`clo 𝑓 . _®𝑥 . 𝑡)

{
_ℓ.

Spec 𝑛 𝐸 P ℓ
Stackable ℓ 1 ∗ ℓ ← [1 ∅

}

CallSpec

|®𝑣 | = 𝑛 ⊲ (∀𝑢. P ℓ ®𝑣 𝑢 (Spec 𝑛 𝐸 P ℓ) −∗ {Φ} 𝑢 {Ψ})
{Spec 𝑛 𝐸 P ℓ ∗ Φ} (ℓ ®𝑣)clo {Ψ}

FreeSpec©«
⌜ℓ ∉ 𝑉 ⌝

Spec 𝑛 𝐸 P ℓ
Stackable ℓ 1
ℓ ←[1 ∅

ª®®®¬ ⇛
⊤
𝑉

( ⋄(1 + |𝐸 |)
∗

(𝑤,𝑞) ∈𝐸
𝑤 ← [>0𝑞 ∅

)
Fig. 11. High-level interface for closures: general case

the specification of a closure of arity 1 whose effect is to increment a reference 𝑟 that it receives as an

argument, the predicate P takes the form: _ ®𝑣 𝑢. ∀𝑟, 𝑛.⌜®𝑣 = [𝑟 ]⌝ −∗ {𝑟 ↦→ [𝑛]} 𝑢 {_(). 𝑟 ↦→ [𝑛 + 1]}.
Let us now consider the rule MkSpec’. Its first four premises are the same as in MkClo. In

addition, the premises on the second line ensure that P is a valid description of the behavior of the

function body, whose concrete form [ ®𝑤/®𝑦] [®𝑣/®𝑥]𝑡 is visible. In comparison with the low-level API

(§7.2), the work of reasoning about the function body is shifted from the closure invocation site to

the closure construction site.

A General Interface. The Spec API appears in Figure 11. Spec generalizes Spec′ in three ways. First,

in the last premise ofMkSpec, we make the assumption Spec 𝑛 𝐸 P ℓ available while reasoning about
the body of the function. This assumption is exploited and consumed in the course of this reasoning.

Accordingly, in the postcondition of the call, in the conclusion of CallSpec, we get just Ψ, whereas
in CallSpec’ we would automatically get Spec′ 𝑛 𝐸 P ℓ in addition to Ψ. Thus, with CallSpec, the

existence of the closure is not necessarily preserved through the call. If it is preserved, then this

can be expressed via suitable choices of P and Ψ. Second, we parameterize P with the location ℓ

of the closure. This allows the specification of a closure to refer to the address of the closure: for

example, the specification may require a Stackable assertion for ℓ . Third, we parameterize P over

the assertion Spec 𝑛 𝐸 P ℓ . As a result, the applications of P in the premises ofMkSpec and CallSpec

take the form P ℓ ®𝑣 𝑢 (Spec 𝑛 𝐸 P ℓ). Without this form of “self-parameterization”, many uses of

the Spec API would require instantiating P with a recursively-defined predicate, which would be

cumbersome. Self-parameterization moves the need for a recursive definition from the API user
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to the API implementor, thereby making the API significantly easier to use. The use of the “self”

parameter is illustrated by the definition of the predicate Counter (§8.3), which appears in the

Appendix (§A.2). Overall, these changes allow the function body to exploit and possibly to consume

the assertion Spec 𝑛 𝐸 P ℓ , thereby allowing the closure to recursively invoke itself or to logically

deallocate itself.

The condition NonExpansive P in MkSpec asserts that Φ
𝑛
= Φ′ implies P ℓ ®𝑣 𝑢 Φ 𝑛

= P ℓ ®𝑣 𝑢 Φ′,
where

𝑛
= is equivalence down to step-index 𝑛 [Jung et al. 2018, §5]. Our triples, in particular, are

non-expansive in their postcondition: this matters because P is typically instantiated with a triple

or a conjunction of triples.

7.5 High-Level Closure API: Implementation Details
The assertion Spec 𝑛 𝐸 P ℓ is defined as follows:

Spec 𝑛 𝐸 P ℓ ≜ ∃ 𝑓 , ®𝑥, 𝑡,Q. ⌜ | ®𝑥 | = 𝑛⌝ ∗ Closure 𝐸 𝑓 ®𝑥 𝑡 ∗
let ®𝑤 = map fst 𝐸 in let ®𝑦 = fvclo(𝑓 , ®𝑥, 𝑡) in let body ®𝑣 = [ℓ/𝑓 ] [ ®𝑤/®𝑦] [®𝑣/®𝑥]𝑡 in

⊲ □(∀®𝑣 . ⌜ |®𝑣 | = 𝑛⌝ −∗ Spec 𝑛 𝐸 Q ℓ −∗ Q ℓ ®𝑣 (body ®𝑣) (Spec 𝑛 𝐸 Q ℓ)) ∗
⊲ □(∀®𝑣 . ⌜ |®𝑣 | = 𝑛⌝ −∗ Q ℓ ®𝑣 (body ®𝑣) (Spec 𝑛 𝐸 Q ℓ) −∗ P ℓ ®𝑣 (body ®𝑣) (Spec 𝑛 𝐸 P ℓ))

This is a guarded recursive definition: Spec appears (under a “later” modality) in its own definition.

The definition is existentially quantified over the code of the closure, represented by 𝑓 , ®𝑥 , and 𝑡 . It
is also existentially quantified over a specification predicate Q, which is required to be stronger

than P . This internal distinction between P and Q allows us to establish a consequence rule (that is,

a weakening lemma), which is part of the Spec API, but is not shown in Figure 11.

8 EXAMPLES
We now showcase the expressiveness of our program logic via a series of representative examples.

The description of linked lists and the two specifications of rev_append (§8.1) complete the opening

discussion of the paper (§2.2). This example illustrates a “container” data structure, which holds

pointers to the container’s elements. Linked list concatenation in continuation-passing style (§8.2)

demonstrates how to reason about (a chain of) one-shot, self-destructing closures. This example also

involves a recursive closure. A “counter” object with two methods, implemented by two closures

that share a private mutable reference (§8.3), demonstrates how to reason about closures with

shared private state. Finally, we present a specification for a “stack” abstract data type (§8.4). This

API illustrates the transfers of pointed-by assertions that take place when an element is inserted

into or extracted out of a container. We propose three implementations of stacks, which have a

common behavior, but different space usage. The first implementation demonstrates a use of our

linked lists. The second implementation relies on a mutable array, and demonstrates that if one

omits to overwrite an array slot when a value is popped off the stack, then a memory leak appears

and the code cannot be verified. The third implementation is a generic construction of a stack as

a stack of stacks. It demonstrates modular reasoning as well as an amortized space complexity

analysis that exploits rational space credits.

In the examples that follow, we use SpaceLambda’s support for closures (§7) when defining local

functions, and we use its primitive code pointers (§3) when defining closed toplevel functions.

It would arguably be more elegant to avoid such a mixture and use closures everywhere: after all, a

true high-level programming language offers just one kind of functions. However, constructing

closures at the top level raises a technical problem that is orthogonal to the topic of this paper,

namely the problem of modeling toplevel effectful expressions in Iris. (A closure construction
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expression in SpaceLambda is effectful: it allocates memory.) We have carried out a preliminary

investigation of this problem, but leave its resolution to future work.

We find that, in practice, pointed-by assertions and Stackable assertions often go hand in hand.

This is not surprising, since the former keep track of predecessors in the heap, while the latter keep

track of predecessors in the stack. This leads us to introduce 𝑣 ←↪𝑝 𝐿 as sugar for the conjunction

𝑣 ←[𝑝 𝐿 ∗ Stackable 𝑣 𝑝 . We refer to this new assertion as a handle for the value 𝑣 . In particular, the

assertion 𝑣 ←↪1 ∅, which we call a full empty handle, guarantees that there are no pointers to 𝑣

from the heap or from the invisible part of the stack. If this assertion is at hand and if, in addition,

𝑣 is not a visible root, then 𝑣 can be logically deallocated.

8.1 Linked Lists and Linked List Reversal
We represent linked lists as blocks whose first field contains a tag. An empty list is encoded as a

block of size 1 with tag 0. A list cell is encoded as a block of size 3 with tag 1 and two fields holding

the head and tail of the list. The predicate List vps xs asserts that there is a well-formed linked list

at location xs whose logical model is vps, a mathematical list of pairs of a value 𝑣 and a nonzero

fraction 𝑝 . It is defined as follows:

List vps xs ≜ match vps with

| [] ⇒ xs ↦→ [0]
| (𝑣, 𝑝) :: vps′ ⇒ ∃xs′ . xs ↦→ [1; 𝑣 ; xs′] ∗ 𝑣 ←↪𝑝 {xs} ∗ xs′ ←↪1 {xs} ∗ List vps′ xs′

We adopt the convention that when a value 𝑣 is inserted into a linked list, a fractional handle

𝑣 ←↪𝑝 ∅ is consumed; if 𝑣 is later extracted out of the linked list, this handle is returned to the

caller. This allows the linked list to internally record that a certain linked list cell is a predecessor

of 𝑣 , without revealing the address of this cell to the user. We use this idiom in the description of

containers other than linked lists: see, for instance, our stack API (§8.4).

The definition of List vps xs has a standard overall structure [Reynolds 2002]. When vps is
empty, this predicate boils down to the points-to assertion xs ↦→ [0]. When vps is a nonempty

list (𝑣, 𝑝) :: vps′, the predicate begins with the points-to assertion xs ↦→ [1; 𝑣 ; xs′], which describes

a 3-field cell. Moreover, what is new, it contains the handles 𝑣 ←↪𝑝 {xs} and xs′ ←↪1 {xs}. As
explained above, the first handle records the fact that the cell xs is a predecessor of the value 𝑣 .
The second handle records the fact that the cell xs is a predecessor of the next cell, xs′. Because
this handle carries the fraction 1, the pointer from xs to xs′ is a unique pointer : there are no other

pointers (from the heap or the stack) to xs′. More generally, there can be no direct pointers from

the outside to an internal cell. The ability to express this property is unusual: indeed, via points-to

assertions, traditional Separation Logic can express unique ownership, that is, control who may

dereference a pointer; however, it cannot express the fact that a pointer is unique.
3
Pointed-by

assertions [Kassios and Kritikos 2013; Madiot and Pottier 2022] and our Stackable assertions add this
ability, enabling us to express properties about the shape of the heap, in a way that is reminiscent

of the literature on ownership types and uniqueness types [Clarke et al. 2013].

We are now ready to present the two specifications of the function rev_append that we mentioned

at the beginning of the paper. Recall (§2.2) that this function expects two lists xs and ys and returns
a list whose elements are the elements of xs in reverse order followed with the elements of ys. The
two specifications appear in Figure 12. The first specification allows the caller to retain the root xs (a
triple with souvenir expresses this) and asserts that rev_append has linear heap space complexity: it

requires 3× |vps | space credits. The second specification requires the caller to provide (and give up)

3
The predicate List in traditional Separation Logic does forbid two valid linked lists from sharing a suffix, but does not rule
out the existence of a rogue pointer (without any access permission) from the outside into a linked list.
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⟨ {𝑥𝑠} ⟩
{
List vps xs ∗ ⋄(3 × |vps |)
List wqs ys ∗ ys←↪1 ∅

}
(rev_append [xs; ys])ptr

_zs.
List ( 1

2
vps) xs

List (rev ( 1
2
vps) ++ wqs) zs

zs←↪1 ∅

{
List vps xs ∗ xs←↪1 ∅
List wqs ys ∗ ys←↪1 ∅

}
(rev_append [xs; ys])ptr

{
_zs.

List (rev vps ++ wqs) zs
zs←↪1 ∅ ∗ ⋄1

}
Fig. 12. Two specifications for rev_append

append ≜ `ptr . _[xs; ys] .
let aux = `cloself . _[xs;𝑘] .

if (is_nil [xs])ptr then (𝑘 [ys])clo else
let𝑥 = (head [xs])ptr in
let xs′ = (tail [xs])ptr in
let𝑘′ = `clo . _[𝑟 ] .

let𝑝 = (cons [𝑥 ; 𝑟 ])ptr in (𝑘 [𝑝])clo in
(self [xs′;𝑘′])clo in

let id = `clo . _[𝑥] . 𝑥 in
(aux [xs; id])clo

mk_counter ≜ `ptr . _[] .
let 𝑐 = (ref [0])ptr in
let 𝑖 = `clo . _[] . (incr [𝑐])ptr in
let𝑔 = `clo . _[] . (get [𝑐])ptr in
{ 𝑖 , 𝑔 }

Fig. 13. Linked list concatenation in continuation-passing style, and a “Counter” object

a unique pointer to xs and asserts that rev_append has constant heap space complexity. Indeed, in

this case, rev_append requires zero space credits because, at each step, one cell of the list xs can be

logically freed before one new list cell is allocated.

Both specifications in Figure 12 require the handle ys ←↪1 ∅. That is, they require a unique

pointer to the list ys. This is necessary because ys becomes a suffix of the list that is returned by

rev_append. If the caller was allowed to keep a copy of the pointer ys, then this copy would become

a pointer from the outside to an internal cell, a situation which our definition of List forbids.
The two specifications differ slightly in their postconditions. The postcondition of the second

specification describes the output list as List (rev vps ++ wqs) zs. It also contains one space credit:

this is the size of the “nil” block that terminates the list xs, which is freed. The postcondition of the

first specification is more complex because the values contained in the input list xs become shared

between the input list xs and the output list zs. We express this by splitting fractions:
1

2
vps denotes

a copy of the list vps where the fraction associated with every value has been halved.

Certain functions, such as rev_append and append, admit several useful and incomparable speci-

fications. In systems that keep track of ownership, whether they are program logics or type systems

(such as Rust), it often appears unavoidable to assign several specifications to an operation. Avoiding

duplication (of code, specifications, or proofs) remains a challenging problem.

8.2 Continuation-Passing Style
To demonstrate our ability to reason about nontrivial use of closures, we present a function that

constructs the concatenation of two linked lists and is written in continuation-passing style (CPS).

Its implementation appears in Figure 13. The main function, append, expects two linked lists xs
and ys. It first allocates a (recursive) closure aux, described below, which captures ys. Then, it
invokes this closure, with a closure for the identity function as a continuation.

The function aux expects two arguments xs and 𝑘 . If xs is nil, then it applies the closure 𝑘 to the

linked list ys. Otherwise, it allocates a new closure 𝑘 ′, whose purpose is to “cons” the element 𝑥 in
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⟨{xs}⟩

⋄(2 × 3 × |vps | + 3)

List vps xs
List wqs ys ∗ ys←↪1 ∅

 (append [xs; ys])ptr
_zs.

⋄(3 × |vps | + 3)
List 1

2
vps xs

List ( 1
2
vps ++ wqs) zs
zs←↪1 ∅


⋄(3 × |vps | + 3)

List vps xs ∗ xs←↪1 ∅
List wqs ys ∗ ys←↪1 ∅

 (append [xs; ys])ptr
_zs.

⋄(3 × |vps | + 4)
List (vps ++ wqs) zs

zs←↪1 ∅


Fig. 14. Specifications for linked list concatenation in continuation-passing style

{
⋄7

}
(mk_counter [])ptr

_ℓ. ∃𝑖, 𝑔.
ℓ ↦→ [𝑖;𝑔] ∗ ℓ ←↪1 ∅
𝑖 ←↪1 {ℓ} ∗ 𝑔←↪1 {ℓ}

Counter 0 𝑖 𝑔

{
Counter 𝑛 𝑖 𝑔

}
(𝑖 [])clo

{
_ . Counter (𝑛 + 1) 𝑖 𝑔

}{
Counter 𝑛 𝑖 𝑔

}
(𝑔 [])clo

{
_𝑚. ⌜𝑚 = 𝑛⌝ ∗ Counter 𝑛 𝑖 𝑔

}(
Counter 𝑛 𝑖 𝑔

𝑖 ←↪1 ∅ ∗ 𝑔←↪1 ∅

)
⇛⊤∅

(
⋄5

)
Fig. 15. An interface for a “Counter” object

front of the linked list produced by the concatenation of xs′ and ys. The closure 𝑘 ′ captures the
values of 𝑘 , 𝑥 and xs. After allocating this closure, aux invokes itself with arguments xs′ and 𝑘 ′.

Like rev_append (§8.1), append admits two specifications presented in Figure 14, which differ in

their assumption about xs. If the linked list xs comes with a full empty handle, then it can be logically

deallocated, which pays for the space occupied by the new list that is constructed; otherwise, this

space must be paid for. Besides, internally, append needs a certain amount of temporary storage,

whose size is linear in the length of the list xs, and which is released when append returns. This

temporary storage is described by the space credits that appear both in the precondition and in the

postcondition, reflecting a “high water mark”.

The number 3 × |vps | that appear in these specifications, where |vps | denotes the length of the

linked list xs, corresponds to the space usage of the linked chain of continuations that is formed in

the heap. In the first triple, an additional 3 × |vps | credits are needed, because of the allocation of

new linked list cells. One credit is used by the identity closure. Another two credits are used by the

closure aux. In the second triple, one credit is recovered by deallocating an empty linked list.

The continuations involved in this example are one-shot, i.e., called only once. They are self-

destructing continuations: in our proofs, we logically deallocate them as soon as they are invoked.

8.3 Counter Objects
We now present an example of a procedural abstraction [Reynolds 1975], also known as an object:

in Cook’s words [2009], “an object is a value exporting a procedural interface to data or behavior”.

Our example is a “counter” object, whose internal state is stored in a mutable reference, and whose

procedural interface is given by a pair of closures: a closure 𝑖 increments the counter; a closure 𝑔
gets its current value. Although these closures share an internal state, they can be passed around

and invoked independently.

Figure 13 presents the code. The toplevel function mk_counter allocates and returns a fresh

“counter”, that is, a pair of closures. A reference is represented as a single-field block, and a pair as

a two-field block. The syntactic sugar { 𝑖 , 𝑔 } allocates, initializes and returns a pair, represented as

a heap block of size 2. The definitions of the auxiliary functions ref , incr and get are not shown.
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{
⋄𝐴

}
(create [])ptr

{
_ℓ.

Stack [] ℓ
ℓ ←↪1 ∅

}
⟨ {ℓ} ⟩


⌜ |vps | < 𝐶⌝
Stack vps ℓ
⋄𝐵 ∗ 𝑣 ←↪𝑝 ∅

 (push [𝑣 ; ℓ])ptr
{
_ . Stack ((𝑣, 𝑝) ::vps) ℓ

}
⟨ {ℓ} ⟩

{
Stack ((𝑣, 𝑝) ::vps) ℓ

}
(pop [ℓ])ptr

{
_𝑣 .

Stack vps ℓ
⋄𝐵 ∗ 𝑣 ←↪𝑝 ∅

}
(
Stack vps ℓ
ℓ ←↪1 ∅

)
⇛⊤∅

( ⋄(𝐴 + 𝐵 × |vps |)
∗

(𝑣,𝑝 ) ∈vps
(𝑣 ←↪𝑝 ∅)

)
Fig. 16. An interface for possibly-bounded stacks

The specification of the counter (Figure 15) consists of four components: the specification

of mk_counter , which returns a pair of closures; the specifications of these closures; and a ghost

update that allows the joint logical deallocation of these closures and of the counter’s internal state.

The precondition ofmk_counter states that the creation of a counter requires 7 space credits: one

credit for the shared reference 𝑐 , two credits for each of the two closures, and two credits for the

pair of closures. Its postcondition indicates that mk_counter returns a full empty handle on a pair

of unique pointers 𝑖 and 𝑔. The abstract predicate Counter 0 𝑖 𝑔 describes the current value of the
counter (which initially is zero) and asserts that 𝑖 and 𝑔 are its “increment” and “get” methods. Its

definition appears in the Appendix (§A.2). Thus, the fact that there is a pair at location ℓ is exposed,

but the nature of the objects at locations 𝑖 and 𝑔 is not revealed. The user may access the pair to

obtain the addresses 𝑖 and 𝑔. If or when so desired, she may also logically deallocate the pair.

The closure invocations (𝑖 [])clo and (𝑔 [])clo require the assertion Counter 𝑛 𝑖 𝑔. The former

updates this assertion to Counter (𝑛 + 1) 𝑖 𝑔, reflecting the fact that the internal state of the counter

has been changed. The latter leaves this assertion unchanged, and asserts that the result of the

invocation is 𝑛, the current value of the counter.

Deallocating a counter (a logical operation) consumes Counter 𝑛 𝑖 𝑔 as well as the handles for 𝑖
and 𝑔 and produces 5 space credits. By deallocating the pair of 𝑖 and 𝑔, one can recover 2 more

credits. These credits add up to 7, which was the cost of allocating a counter in the first place.

8.4 Stacks
We verify an unbounded-capacity mutable stack implemented as a linked list, a bounded-capacity

stack implemented as an array, and a functor that constructs a stack of stacks. Figure 16 presents a

common interface for all our stacks. This interface is parameterized with a capacity 𝐶 , which is

either an integer or +∞. It is also parameterized with two constants: 𝐴 is the number of credits

required to allocate an empty stack, and 𝐵 is the number of credits required by a push operation.

The specifications rely on the abstract predicate Stack vps ℓ , which asserts that at address ℓ there

is a valid stack whose elements are described by the mathematical list vps. As in the specification

of linked lists (§8.1), vps is a list of pairs of a value and a nonzero fraction. According to these

specifications, create consumes 𝐴 space credits and produces a fresh empty stack; push consumes

𝐵 space credits and a fractional handle for the value that is inserted into the stack; pop gives up

these assertions. In addition, push requires the number of elements in the stack to be less than

the stack’s capacity 𝐶 . This requirement is trivially satisfied if 𝐶 is +∞. Two additional operations

(not shown) allow testing whether a stack is empty and testing whether a stack is full. Finally, the

logical deallocation of a stack allows recovering all of the space occupied by the stack, namely

𝐴 + 𝐵 × |vps | space credits, where |vps | is the number of elements of the stack. We emphasize that

the deallocation of a stack is an implicit operation at runtime: there is no code for it. Nevertheless, a
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deallocation lemma must be included in the stack API and must be established inside the abstraction

boundary of stacks.

Our three implementations of stacks (not shown) differ in their space complexity. Each of them

is verified with respect to a particular instantiation of the parameters 𝐴, 𝐵, and 𝐶 .

Our first implementation consists of a mutable reference to a linked list. The reference occupies

1word, an empty list occupies 1word, and each list cell occupies 3words. This stack has unbounded

capacity. Hence, this implementation satisfies our common interface for the parameters 𝐴 = 2,

𝐵 = 3, and 𝐶 = +∞.
Our second implementation consists of a record where one field holds the logical size of the

stack and one field holds a pointer to an array of fixed capacity𝑇 . Every unused cell in this array is

filled with a unit value. This implementation satisfies our interface with creation cost 𝐴 = 𝑇 + 2,
insertion cost 𝐵 = 0, and bounded capacity 𝐶 = 𝑇 .

Our third implementation is generic: it is a functor that expects two implementations of stacks, say

𝑋 -stacks and 𝑌 -stacks, and produces a new implementation, say 𝑍 -stacks. A 𝑍 -stack is implemented

as a pair made of (1) a nonempty 𝑌 -stack storing the elements at the top of the stack, and (2)

a 𝑋 -stack of full 𝑌 -stacks, storing all the remaining elements. To simplify the explanations, we

assume that 𝑌 -stacks are bounded—an assumption that our formalization does not make. Let us

write 𝑋 .𝐴 and 𝑋 .𝐵 and 𝑋 .𝐶 for the space complexity parameters of X-stacks, and likewise for

𝑌 -stacks. We formally establish that our 𝑍 -stacks have creation cost 𝐴 = 𝑋 .𝐴 + 𝑌 .𝐴 + 2, insertion
cost 𝐵 = 𝑌 .𝐵+ (𝑌 .𝐴+𝑋 .𝐵)/𝑌 .𝐶 , and capacity𝐶 = 𝑋 .𝐶× (1+𝑌 .𝐶). The insertion cost is of particular

interest. An empty Y-stack is allocated and pushed on the X-stack only every 𝑌 .𝐶 push operations

on the 𝑍 -stack: this explains the fractional cost (𝑌 .𝐴 + 𝑋 .𝐵)/𝑌 .𝐶 . Obtaining this bound requires

rational space credits and an amortized analysis, which involves defining a suitable potential

function and saving space credits in the definition of Stack for 𝑍 -stacks.

By applying the functor to our previous two implementations of stacks as arrays and stacks as

linked lists, one obtains a time- and space-efficient implementation of chunked stacks, that is, linked
lists of fixed-capacity arrays.

9 RELATEDWORK
Reasoning about Space without a GC. Hofmann [1999, 2003] introduces space credits in the setting

of an affine type system for the _-calculus. Hofmann [2000] and Aspinall and Hofmann [2002] adapt

the idea to LFPL, a first-order functional programming language without GC and with explicit

destructive pattern matching. There, a value of type ^ exists at runtime and can be understood

as a pointer to a free block in the heap. Subsequent work aims at automating space complexity

analyses. In particular, Hofmann and Jost [2003] propose an affine type system where types carry

space credits. Hofmann and Jost [2006]; Hofmann and Rodriguez [2009, 2013] analyze a variant

of Java where garbage collection has been replaced with explicit deallocation. RaML [Hoffmann

et al. 2012a,b, 2017] analyzes a fragment of OCaml, also without GC and with explicit destructive

pattern matching. Niu and Hoffmann [2018] present a type-based amortized space analysis for

a pure, first-order programming language where destructive pattern matching can be applied to

shared objects, an unusual feature. Their system performs significant over-approximations: when

a data structure becomes shared, the logic charges the cost of creating a copy of this data structure.

As far as we understand, this analysis can be used to reason in a sound yet very conservative way

about a programming language with GC.

Chin et al. [2008, 2005] present a type system that automatically keeps track of data structure

sizes. The type system incorporates an alias analysis, which distinguishes between shared and

unique objects and allows unique objects to be explicitly deallocated. Shared objects can never be
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logically deallocated. Specifications indicates how much memory a method may need (a high-water

mark) and how much memory it releases, in terms of the sizes of the arguments and results.

Compared with type systems, program logics offer weaker automation but greater expressiveness.

Aspinall et al. [2007] propose a VDM-style program logic, where postconditions depend not only on

the pre-state, post-state, and return value, but also on a cost. Atkey [2011] proposes an extension

of Separation Logic with an abstract notion of resource, such as time or space, and introduces an

assertion that denotes the ownership of a certain amount of resources. All of the work cited above

concerns languages with explicit deallocation, therefore with no need to reason about unreachability.

Reasoning about unreachability is a central challenge in the presence of garbage collection.

Reasoning about Space with a GC. Hur et al. [2011] propose a Separation Logic for the combination

of a low-level language with explicit deallocation and a high-level language with a GC. They are

interested in verifying just safety, not space complexity. As far as we are aware, only Madiot and

Pottier [2022] have proposed a Separation Logic that allows reasoning about space in the presence

of a GC. Their logic concerns a low-level language with explicit stack cells. In contrast, we propose

a program logic for a high-level language, a call-by-value _-calculus with support for closures.

Their logic supports concurrency, but they do not propose any examples of concurrent programs

with verified space complexity bounds. We do not deal with concurrency.

Space-Related Results for Compilers. Paraskevopoulou and Appel [2019] prove that, in the presence
of a GC, closure conversion is safe for space: that is, it does not change the space consumption of

a program. They view closure conversion as a transformation from a CPS-style _-calculus into itself.

This calculus is equipped with two different environment-based big-step operational semantics.

The “source” semantics implicitly constructs a closure for each function definition by capturing

the relevant part of the environment and storing it in the heap. The “target” semantics performs

no such construction: it requires every function to be closed. In either semantics, the roots are

defined as the locations that occur in the environment. Up to the stylistic difference between a

substitution-based semantics and an environment-based semantics, this definition is equivalent to

the “free variable rule” [Morrisett et al. 1995]. In Paraskevopoulou and Appel’s low-level calculus,

there is no notion of “invisible” roots. In our high-level calculus, on the contrary, we believe that

the distinction between “invisible” and “visible” roots naturally arises.

Besson et al. [2019] prove that (an enhanced version of) CompCert [Leroy 2021] preserves

memory consumption when compiling C programs. Gómez-Londoño et al. [2020] prove that the

CakeML compiler respects a cost model that is defined at the level of the intermediate language

DataLang, which serves as target of closure conversion; our cost model is analogous to theirs. As

explained earlier (§2), our work is complementary: adapting our program logic to DataLang would

allow obtaining end-to-end space complexity guarantees about CakeML programs.

10 CONCLUSION
We have presented a Separation Logic to reason about heap space consumption in a high-level

programming language with mutable dynamically-allocated data structures, closures, and garbage

collection. Ourmain contributions include a novel treatment of the concept of root in a program logic

and novel high-level reasoning rules for closures. We have verified a gallery of challenging examples,

which involve abstract “container” data structures, first-class closures, closures with shared internal

state, and amortized complexity arguments, among other aspects. Our main directions for future

work include supporting concurrency; supporting weak references [Hallet and Kfoury 2005] and

ephemerons [Hayes 1997]; and refining our cost model to account for certain compiler optimizations,

such as the static allocation of structured constants.
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A APPENDIX
A.1 Definitions of the closure macros
The definition of the closure macros `clo 𝑓 . _®𝑥 . 𝑡 and of (ℓ ®𝑤)clo appears below. Both of them

generate SpaceLambda syntax. We write 𝑡1 ; 𝑡2 is as sugar for let𝑥 = 𝑡1 in 𝑡2 where 𝑥 ∉ fv(𝑡2).

`clo 𝑓 . _®𝑥 . 𝑡 ≜
let 𝑓 = alloc (𝑛 + 1) in
𝑓 [0]←codeclo(𝑓 , ®𝑥, 𝑡) ;
𝑓 [𝑖 + 1]←𝑦𝑖 ; # for each 𝑖 in [0, 𝑛)
𝑓

codeclo(𝑓 , ®𝑥, 𝑡) ≜ `ptr_. _(𝑓 :: ®𝑥).
let𝑦𝑖 = 𝑓 [𝑖 + 1] in # for each 𝑖 in [0, 𝑛)
𝑡

(ℓ ®𝑤)clo ≜ ((ℓ [0]) (ℓ :: ®𝑤))ptr
First, we compute, at the meta-level, fvclo(𝑓 , ®𝑥, 𝑡) = [𝑦0; . . . ;𝑦𝑛−1], the list of free variables of the

closure of length 𝑛. Recall that the free variables of the closure correspond to the set fv(𝑡) \ ({𝑓 }∪ ®𝑥).
The macro `clo 𝑓 . _®𝑥 . 𝑡 generates code which allocates a block of size 𝑛 + 1, names it 𝑓 , stores a code

pointer in the first field, stores the values of the free variables in the remaining fields, and returns

the location of this block. The code pointer is defined by the macro codeclo(𝑓 , ®𝑥, 𝑡). It is the code
of a function whose parameters are 𝑓 (the closure itself) followed with ®𝑥 . This function loads the

values stored in the closure and binds them to the variables 𝑦0, . . . , 𝑦𝑛 before executing the body 𝑡 .

The closure invocation macro (ℓ ®𝑤)clo expands to a piece of code which first fetches the code

pointer stored in the fist field of the closure, then invokes this code pointer.

A.2 The Counter predicate
The Counter predicate is internally defined as follows:

Counter 𝑛 𝑖 𝑔 ≜ ∃𝑐. 𝑐 ↦→ [𝑛] ∗ Stackable 𝑐 1 ∗
Spec 0 [(𝑐, 1/2)]

(
_ 𝑢 Φ. ∀𝑛. {𝑐 ↦→ [𝑛]} 𝑢 {_ . 𝑐 ↦→ [𝑛 + 1] ∗ Φ}

)
𝑖 ∗

Spec 0 [(𝑐, 1/2)]
(
_ 𝑢 Φ. ∀𝑛. {𝑐 ↦→ [𝑛]} 𝑢 {_𝑚. ⌜𝑚 = 𝑛⌝ ∗ 𝑐 ↦→ [𝑛] ∗ Φ}

)
𝑔

The existentially quantified location 𝑐 is the address of the reference that stores the current

value 𝑛 of the counter. The assertion keeps a full points-to assertion for 𝑐 and the Stackable 𝑐 1
assertion. It also holds Spec predicates for the closures 𝑖 and 𝑔. These closures have arity 0. The

environment [(𝑐, 1/2)] means that each closure holds a fraction 1/2 of the pointed-by assertion

of 𝑐 . The triples describe how each of the two closures interacts with the contents of the reference 𝑐 .

The “self” parameter Φ stands for the ownership of the closure itself. The occurrence of Φ in the

postcondition reflects the fact that the closure is preserved through the call: that is, the closure

does not logically deallocate itself.

A.3 Logical Deallocation of Regions & Cycles
Following Madiot and Pottier [2022, §3.4], we provide a cloud assertion to logically deallocate a

group of pointers closed under predecessors (including cycles). The general form of our cloud

assertion is 𝐷 ,𝑛
𝑃 where 𝐷 and 𝑃 are sets of location. The 𝐷 ,𝑛

𝑃 assertion:

(1) Holds the full points-to, pointed-by and Stackable assertions for every location ℓ in 𝐷

(2) Guarantees that all the predecessors of locations in 𝐷 lies in 𝑃

(3) Indicates that the total size of blocks pointed by locations in 𝐷 is 𝑛.

Cloud assertions are governed by the following rules.
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⌜True⌝ −∗ ∅,0

𝑃 CloudEmpty

𝐷 ,𝑛
𝑃 ∗ ℓ ↦→1 ®𝑤

ℓ ←[1 𝐿 ∗ Stackable ℓ 1
−∗ ({ℓ} ∪ 𝐷) ,𝑛+size ( ®𝑤 )

𝑃 if pos(𝐿) ⊆ 𝑃 CloudCons

𝐷 ,𝑛
𝐷 ⇛⊤

𝑉
⋄𝑛 ∗ ( ∗

ℓ∈𝐷
†ℓ) if 𝐷 ∩𝑉 = ∅ CloudFree

The CloudEmpty rule allows the user to create an empty cloud. The CloudCons rule allows the

user to add a new element in the cloud. The precondition of the rule requires a cloud 𝐷 ,𝑛
𝑃 , the

full points-to and Stackable assertion. The precondition also requires the full pointed-by assertion

ℓ ← [1 𝐿, such that the set of the elements in 𝐿 with a positive multiplicity, written pos(𝐿), is
included in 𝑃 . The CloudFree rule allows the user to logically deallocate the a cloud 𝐷 ,𝑛

𝐷 ,

which guarantee that 𝐷 is closed under predecessors. The rule requires that 𝐷 and the set of

visible roots 𝑉 are disjoint. The rule generates the total number of space credits ⋄𝑛, as well as an
assertion †ℓ for every location ℓ in 𝐷 .

B INSIGHTS OF THE PROOF OF THE SOUNDNESS THEOREM
We first give the definition of our triples (§B.1), present an alternative semantics used internally

(§B.2), give the key internal definitions (§B.3), and explain how to exploit ghost state to define the

various assertions of our logic (§B.5). All the presented definitions and theorems are formalized in

Coq, see [Moine et al. 2022].

B.1 Definition of Triples and Weakest Preconditions
Our formalization leverages intermediate triples with a boolean mode𝑚 ∈ {⊥;⊤}. As in §5.3,the

mode ⊤ describes a normal mode, whereas ⊥ denotes a restricted mode where deallocation is not

permitted. Triples with mode are written [𝑚] {Φ} 𝑡 {Ψ}.
Triples with souvenir are defined in terms of triples with mode. In the following definition,𝑀 is

a map from locations to fractions; this map stores the fractions of the framed Stackable assertions.

⟨𝑅?⟩ {Φ} 𝑡 {Ψ} ≜ if 𝑅? = NoFree

then [⊥] {Φ} 𝑡 {Ψ}
else ∀𝑀. 𝑅? ⊆ dom(𝑀) =⇒ [⊤] {Φ ∗ Stackables 𝑀} 𝑡 {_𝑣. Ψ 𝑣 ∗ Stackables 𝑀}

Triples with mode are derived, similarly to standard triples in Iris [Jung et al. 2018, §6], from

a Weakest Precondition (WP) assertion, written wp𝑚 𝑡 Ψ. Technically, triples with mode are

defined as [𝑚] {Φ} 𝑡 {Ψ} ≜ �(Φ −∗ wp𝑚 𝑡 Ψ). Here, � denotes the persistence modality: for any

proposition 𝑃 , the assertion �𝑃 captures the idea that 𝑃 holds forever. The definition of our WP is

presented in §6.

For presentation purposes, we presented the heap size limit 𝑆 as a constant. However, in our Coq

formalization, this limit appears as a parameter of the semantics. Hence, the WP also universally

quantifies over the heap size limit 𝑆 , which appears as a parameter of the semantics and the state

interpretation predicate. This universal quantification gives intuition that an assertion wp𝑚 𝑡 Ψ is

independent of 𝑆 .

B.2 Semantics with GC Steps Under Context
The assertion wp𝑚 𝑡 Ψ should guarantee that 𝑡 is not a stuck term, meaning that it can take

a reduction step, possibly after a GC step. Here, 𝑡 might be a subterm of the whole program.

However, our reduction relation only accounts for GC steps performed at the level of the whole

program. In other words, we have no means of describing a GC step performed at the level
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of a subterm. To overcome this apparent issue, we introduce an alternative semantics, written

𝑅 ⊢ 𝑡 /𝜎 ctx ∪ (gc ; head)−−−−−−−−−−→ 𝑡 ′ /𝜎 ′, where 𝑅 denotes a set of invisible roots. The sole purpose of this

semantics is to define WP and establish the soundness of our program logic. Is is defined by the

two rules shown below.

AltRedCtx

𝑅 ∪ locs(𝐾) ⊢ 𝑡 /𝜎 ctx∪ (gc ; head)−−−−−−−−−−→ 𝑡 ′ /𝜎 ′

𝑅 ⊢ 𝐾 [𝑡] /𝜎 ctx∪ (gc ; head)−−−−−−−−−−→ 𝐾 [𝑡 ′] /𝜎 ′

AltRedGCHead

𝑅 ∪ locs(𝑡) ⊢ 𝜎 gc−→ 𝜎 ′ 𝑡 /𝜎 ′ −→ 𝑡 ′ /𝜎 ′′

𝑅 ⊢ 𝑡 /𝜎 ctx∪ (gc ; head)−−−−−−−−−−→ 𝑡 ′ /𝜎 ′′

The rule AltRedCtx performs a reduction under a context, adding the locations of the context 𝐾 ,

to the set of invisible roots. The AltRedGCHead rule performs a GC step followed by a head

reduction. The roots considered by the GC are the union of the invisible roots 𝑅 and the visible

roots locs(𝑡). In order to establish the soundness theorem, we establish semantics equivalence

between 𝑡 /𝜎
step ∪ gc−−−−−−→ 𝑡 ′ /𝜎 ′ and ∅ ⊢ 𝑡 /𝜎 ctx ∪ (gc ; head)−−−−−−−−−−→ 𝑡 ′ /𝜎 ′, up to GC steps performed after

reaching a final value.

B.3 Auxiliary Definitions for the Central Invariant
We introduce additional terminology needed to define the central invariant.

Definition B.1 (Validity of a location). We say that a location ℓ is valid in store 𝜎 if ℓ is bound

in 𝜎 , that is, if ℓ has been allocated, regardless of whether it has been subsequently deallocated.

Definition B.2 (Freed set). The set freed (𝜎) is the set {ℓ | 𝜎 (ℓ) = �} of the locations of 𝜎 that have

been freed by the GC.

Our semantics ensures that a store 𝜎 is not an arbitrary map from location to blocks, but has

a well-formed structure with respect to the set of roots of the program: roots are valid locations,

every successor of a valid location is itself valid, and there is no reachable dangling pointer.

Definition B.3 (Well-formed store). A store 𝜎 is well-formed with respect to a set of roots 𝑅,

written 𝑅 |= 𝜎 , if:
(1) The roots 𝑅 are valid; that is 𝑅 ⊆ dom(𝜎)
(2) Successors are valid: for any valid location ℓ , successors(𝜎, ℓ) ⊆ dom(𝜎)
(3) No deallocated block is reachable from 𝑅; that is, reachable(𝜎, 𝑅) ∩ freed (𝜎) = ∅

The programmer does not control when the GC is triggered and how much work it performs.

Hence, it is useful to introduce a distinction between the physical store 𝜎 that exists at runtime

and the logical store \ that the programmer has in mind when carrying-out proofs [Madiot and

Pottier 2022]. In the physical store, the GC deallocates blocks at somewhat unpredictable times.

In the logical store, the user of the logic explicitly deallocates blocks using the LogicalFree rule.

Nevertheless, given a set of roots 𝑅, the physical and logical stores remain related: they are both

maps from location to blocks, that have the same domain, the same reachable locations from 𝑅, and

the same content at every reachable location.

Definition B.4 (Relation between physical and logical stores). Two stores 𝜎 and \ are related with

respect to roots 𝑅, which we write 𝑅 |= 𝜎 ≈ \ if:

(1) dom(𝜎) = dom(\ )
(2) reachable(𝜎, 𝑅) = reachable(\, 𝑅)
(3) For any location ℓ , if ℓ ∈ reachable(𝜎, 𝑅), then 𝜎 (ℓ) = \ (ℓ)
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B.4 Predecessor maps
To define pointed-by assertions, we follow Madiot and Pottier [2022] and introduce a predecessor

map, written 𝜋 , from locations to (unsigned) multiset of locations. A predecessor map 𝜋 describe

essentially the transposed graph of a logical store \ . Madiot and Pottier define pointed-by assertions

as fragmentary ownership of this predecessor map 𝜋 . They also define the consistence between a

predecessor map and a store as follows.

Definition B.5 (Consistence). A logical store \ is consistent with a predecessor map 𝜋 , writ-

ten consistent (\, 𝜋), if:
(1) The domain of 𝜋 corresponds to non-deallocated locations: dom(\ ) \ freed (\ ) = dom(𝜋)
(2) For any two locations ℓ and ℓ ′ in dom(𝜋), the multiplicity of ℓ ′ in successors(\, ℓ) is less than

or equal to the multiplicity of ℓ in 𝜋 (ℓ ′)
(3) For any two locations ℓ , the inclusion 𝜋 (ℓ) ⊆ dom(\ ) holds

We adapt this approach to our more general settings, which tolerates leftover pointed-by asser-

tions of the form ℓ ← [0 𝐿, where ℓ is deallocated. Such assertions may appear after a deallocation,

because null fractions are not gathered at the point of logical deallocation. The difficulty is that,

these leftover assertions cannot be defined as fragmentary ownership of the predecessor map 𝜋 ,

because it contains only non-deallocated locations. Therefore, we introduce a leftover map `, a
map of locations to signed multisets with only nonpositive occurrences, to account for leftover

pointed-by assertions.

Definition B.6 (Strong consistence). A store\ , a predecessormap𝜋 , and a leftovermap ` are strongly
consistent, written as a ternary operation stronglyConsistent (\, 𝜋, `), if:
(1) \ and 𝜋 are consistent: consistent (\, 𝜋)
(2) dom(`) = dom(\ )
(3) Predecessors of a deallocated location must have a negative multiplicity: for all locations ℓ ,

the multiplicity of all elements in ` (ℓ) is negative
(4) Predecessors of a deallocated location must be themselves deallocated: for any two locations ℓ

and ℓ ′, if 𝜎 (ℓ) ≠ � and ℓ ′ ∈ ` (ℓ) then 𝜎 (ℓ ′) = �

B.5 Ghost State, Central Invariant, and Definition of Assertions
To realize points-to assertions, Iris defines a certain piece of ghost state, defines an assertion Heap \
that ties a store \ to this ghost state, and defines the points-to assertion ℓ ↦→𝑝 𝑏 in terms of this

ghost state [Jung et al. 2018, §6.3.2]. This machinery is implemented within the Iris gen_heap
library [Iris 2022], which we build on.

Let us now focus on pointed-by assertions, which involve signed multisets and possibly null

fractions. Recall from §4.3 the invariant that a null fraction can only be attributed to a nonpositive

signed multiset. We write the group of signed multisets over a countable set L, equipped with the

disjoint union, as SMultiset(L). In Iris, the content of ghost cells should belong to a camera, which
corresponds, roughly speaking, to a “step-indexed Resource Algebra”. The concept of Resource

Algebras is itself a generalization of Partial Commutative Monoids (PCMs) [Jung et al. 2018].

Definition B.7 (Signed multisets with Fraction). The structure “Signed Multisets with Fraction

(SMF) over a countable set L” is the Resource Algebra whose elements are of [0, 1] ×SMultiset(L),
where for every element (𝑝,𝑋 ), if 𝑝 = 0, then 𝑋 contains only elements with a nonpositive

multiplicity. The composition law is defined as (𝑝1, 𝑋1) · (𝑝2, 𝑋2) ≜ (𝑝1 + 𝑝2, 𝑋1 ⊎ 𝑋2).

In Iris, the resource algebra Auth(𝑀) describes the authoritative resource algebra over the re-
source algebra𝑀 [Jung et al. 2018, §6.3.3]. This resource algebra gives access to •𝑎, the authoritative
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ownership of 𝑎, and ◦𝑏, the fragmentary ownership of 𝑏. Together, these two assertions entails

that𝑏 ≼ 𝑎, which means that there exists an element 𝑐 of the algebra such that 𝑎 = 𝑏 ·𝑐 . Authoritative
resource algebra are used to set up the ghost state. In the definition that follows, we note 𝑋 →fin 𝑌

the resource algebra of finite maps from a type 𝑋 to a resource algebra 𝑌 .

Definition B.8 (Ghost state). We introduce three ghost cells 𝛾 , 𝛿 and Z for the central invariant.

Ghost cell Used to define Associated resource algebra

𝛾 Space Credits Auth( [0,∞))
𝛿 Pointed-by assertions Auth(L →fin SMF(L))
Z Stackable assertions Auth(L →fin (0, 1])

We next state the central invariant, or state interpretation invariant [Jung et al. 2018, §7.3], which
is an assertion that holds in between every two steps of computation (§B.1). In the definition shown

below and explained afterwards, given a fraction 𝑞, we write 𝑞.𝑆 for the map {(𝑞, 𝑥) | 𝑥 ∈ 𝑆}
and 𝑞.𝑀 for the map {(𝑘, (𝑞, 𝑣)) | (𝑘, 𝑣) ∈ 𝑀}.

Definition B.9 (Central Invariant). The central invariant is parameterized by (1) the mode𝑚, (2) the

physical store 𝜎 , (3) a map ^ of locations to fractions, such that dom(^) corresponds to the set of

invisible roots, and (4) a set 𝑉 of locations, that corresponds to the visible roots.

interp 𝑚 𝜎 ^ 𝑉 ≜ ∃\, 𝜋, `.



⌜(dom(^) ∪𝑉 ) |= 𝜎 wf⌝ ∗ ⌜(dom(^) ∪𝑉 ) |= \ wf⌝ ∗
⌜(dom(^) ∪𝑉 ) |= 𝜎 ≈ \⌝ ∗ ⌜size(\ ) ≤ 𝑆⌝ ∗
⌜stronglyConsistent (\, 𝜋, `)⌝ ∗ Heap \ ∗
• (1.𝜋 ∪ 0.`) 𝛿 ∗ • (𝑆 − size(\ )) 𝛾 ∗ • (1.dom(\ )) Z ∗
if𝑚 = ⊤ then ◦^ Z

else ⌜True⌝

The definition begins with an existential quantification over a logical store \ , a predecessor

map 𝜋 , and a leftovermap `. These three entities must be strongly consistent (Definition B.6).

The invariant records that the logical store \ has a size less or equal to the maximum size 𝑆 . The

invariant also records that the two stores are well-formed (Definition B.3) and that they are related

with respect to the set of roots dom(^) ∪ 𝑉 (Definition B.4). The remaining assertions are defined

with respect to the logical store.

The assertion Heap \ is inherited from Iris and is used to give meaning to the points-to asser-

tion ℓ ↦→𝑝 𝑏, where 𝑝 is a fraction in (0, 1]. Because 𝜎 and \ are related, in the presence of a points-to

assertion ℓ ↦→𝑝 𝑏 for a reachable location ℓ , one can deduce that 𝜎 (ℓ) = 𝑏. The deallocation witness

† ℓ is a special-case of points-to assertion, defined as ℓ ↦→□ �, where □ is a discarded fraction,

see Vindum and Birkedal [2021]. This definition implies in particular that † ℓ is duplicable.
The authoritative assertion • (𝑆 − size(\ )) 𝛾

records the total number of circulating space

credits. Intuitively, this assertion governs the number of space credits available. It corresponds

to the difference between the maximum size of the logical store and its current size. The space

credits assertion ⋄𝑐 is defined to the fragmentary assertion ◦ 𝑐 𝛾
. Using the composition laws

of the resource algebra Auth( [0,∞), +), one can deduce from ◦ 𝑐 𝛾
that 𝑐 + size(\ ) ≤ 𝑆 , which

means that the logical store \ contains at least 𝑐 words of free space.

The authoritative assertion • (1.𝜋 ∪ 0.`) 𝛿
gives meaning to pointed-by assertions. Recall

from §B.4 that the predecessor map 𝜋 contains the positive signedmultisets of allocated predecessors.

The leftover map ` has only nonpositive signed multisets, with fraction 0, and records every

leftover assertions. We define the pointed-by assertion ℓ ← [𝑞 𝐿 as the fragmentary ownership

◦ [ℓ := (𝑞, 𝐿)] 𝛿
. In particular, if 𝑞 = 1 then one can deduce that 𝐿 is an over-approximation of the

predecessors of ℓ .
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The authoritative assertion • (1.dom(\ )) Z
gives meaning to the Stackable assertions. The

assertion Stackable ℓ 𝑝 is defined as the fragmentary ownership ◦ [ℓ := 𝑝] Z
. Moreover, the

fragmentary assertion ◦^ Z
is stored inside the invariant; but only if the mode is set to ⊤. In the

restricted mode⊥, there is no need to account for any Stackable assertion. Recall that ^ corresponds

to the map from location to positive fractions of Stackable assertions given by the user during the

application of the Bind rule. Therefore, if the user is able to exhibit the assertion Stackable ℓ 1, with
fraction 1, in the ⊤ mode, then the property ℓ ∉ dom(^) can be deduced. This property expresses ℓ

is not an invisible root, and plays a central role in the justification of the LogicalFree rule.

The LogicalFree rule is expressed as a ghost update parameterized by a set of locations 𝑉 §4.2.

As explained in §5.1, this ghost update is in fact also parameterized by the current mode𝑚. Formally,

the ghost update Φ ⇛𝑚
𝑉

Φ′ is defined as a primitive ghost update⇛ allowing a temporary access

to the central invariant.

Φ ⇛𝑚
𝑉 Φ′ ≜ ∀𝜎, ^. (interp 𝑚 𝜎 ^ 𝑉 ∗ Φ) ⇛ (interp 𝑚 𝜎 ^ 𝑉 ∗ Φ′)

We prove the soundness theorem by instantiating the generic soundness theorem of Iris [Jung

et al. 2018, §5.8], and by exploiting the equivalence result that relates our alternative semantics

introduced in §B.2 (∅ ⊢ 𝑡 /𝜎 ctx ∪ (gc ; head)−−−−−−−−−−→ 𝑡 ′ /𝜎 ′) to the original semantics (𝑡 /𝜎
step ∪ gc−−−−−−→ 𝑡 ′ /𝜎 ′).
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