
Language abstractions and scheduling techniques
for efficient execution of parallel algorithms on
multicore hardware

Arthur Charguéraud (Inria), 2020

Addentum to Part 1: Semantics of exceptions

Published: 2020-05-25

I have been convinced by arguments that proper support for exceptions would
be needed for the first implementation of the DAG-calculus. I sketch below
what could be an extension of the DAG-calculus with customizable support for
exception handling.

Unlike the rest of the material, I am here describing “ideas of the week-end”, as
opposed to fully worked-out, peer-reviewed, research results. Inevitably, there
will remain a few rough edges.

Quick recap on the DAG-calculus without exceptions

In the DAG-calculus, a node describes a piece of computation. Initially, the
DAG consists of a single node, which describes the entry point of the program.
During the execution, new nodes are created dynamically. The original entry
point then becomes the “sink” node, at the bottom of the DAG, and describes
the final exit point of the program. Typically, a fork-join operation introduces to
fresh nodes, and updates the current node to represent the continuation, i.e. the
computation that comes after the fork-join.

An edge from A to B indicates that node A must complete before node B is
allowed to start. When a node completes, it is removed from the DAG, together
will all its associated edges. After the removal of these edges, other nodes
that previously had dependencies (incoming edges) may become “ready” (zero
incomming edges).

Every node features an “instrategy”, which controls the representation of the
incoming edges, and an “outstrategy”, which controls the representation of the
outgoing edges. When a node A completes, its outstrategy takes care of notifying
the target of the outgoing edges of the removal of the edges. For example, for
an edge from node A to node B, the instrategy of node B has is notified. Note
that, depending on the in- and out- arity of the nodes, the methods associated
with in- and out-strategies may need to handle queries concurrently.

1



Extension of the DAG-calculus with exceptions, first with-
out futures

In the original presentation of the DAG-calculus, the only information carried
out by the edges is whether a node has terminated. The result value produced
by a computation can be transfered via the shared memory. In a language like
ML, furthermore extended with exceptions, it makes sense for edges to carry the
result produced by a node: either a value, or an exception.

The API for in- and out-strategies (which I haven’t detailed so far), could be
refined for handling return values and exceptions. More precisely, when an edge
from A to B is removed, the instrategy of the node B receives the result of node
A. If this result is an exception, the instrategy can follow different policies for
how to handle the exception. This policy may be chosen on a per-node basis.

I see 3 useful patterns:

1. The policy that combines exceptions: if one edge or more carries an
exception, then, when all incoming edges are removed (i.e. all branches
have completed), propagate an exception that consists of the list of the
exceptions gathered.

2. The policy that respects sequential execution order: collect results and
exceptions from the incoming edges; if the resulting tuple is of the form
(v1, ..., vi, exn1, _, _, _), where the underscore indicate either a
value, or an exception, or no result obtained yet, then propagates the
exception exn1.

3. The policy that allows for eager propagation of exceptions: as soon as one
edge carries an exception, propagate this exception. This policy is non-
deterministic, but allows for debugging without waiting. If non-determinacy
is an issue for debugging, it is always possible for the programmer to switch
to another policy, presumably by means of setting the right flag in his
code.

Note that, with policy 3, if a node raises an exception and that this exception is
not caught, then the program would immediately terminate on that exception,
without noticeable delay (just the time required to walk down a chain of edges).

Let me first clarify what it means to “propagate an exception”. If the instrategy of
a node decides to propagate an exception e, it essentially means that the contents
of the computation associated with that node will be patched with a leading
raise e. In other words, the exception will be raised in the stack associated with
the computation of that node. This allows for semantically-enclosing exceptions
handler to catch the exception.

It now remains to explain what happens to the branches that are cancelled,
i.e. that have not yet terminated when an exception is propagated from another
branch (for policies 2 and 3).

2



Cancelling the execution of disconnected nodes

If the instrategy associated with a node decides to propagate an exception before
waiting for completion of all incoming edges (branches), its action over the
DAG consists of effectively removing the remaining incoming edges into the
node. Thereby, a sub-DAG gets disconnected from the rest of the DAG, that is,
nodes no longer have a path reaching the sink. The results associated with the
disconnected nodes are no longer needed.

If computations were pure, all these nodes could be discarded at once, and those
currently running could be interrupted abruptly. However, in a world of impure
computations, cancelling computations at arbitrary points is certainly not a
good idea. The post on Trio makes that point too.

For cancelling computations, we need to somehow notify the nodes that they
are no longer needed, and let them handle this notification on their own.

• If a node has not yet started, the scheduler may test before starting its
execution whether the node is marked as cancelled. If so, it may invoke a
custom finalize method that the programmer may have registered. For
finalize methods to be executed in the right order, it seems necessary to
follow the DAG order, that is, to invoke finalize only on ready tasks.

• If a node is currently running, it seems safe to raise the Cancel exception
only at checkpoints that the programmer has marked explicitly in its code,
via the checkpoint instruction.

For many parallel algorithms, the node from the DAG are set up in such a way
that their execution time is never too long before they complete or invoke yield.
For such nodes, it is perfectly acceptable to not attempt cancelling the execution
of the node while it is executing. In other words, it suffices for cancellation to
be checked before starting a node, and the checkpoint instructions do not need
to appear anywhere explicitly in the code.

On the contrary, for programs that may feature nodes that involve long sequential
execution, placing the checkpoint instructions can be quite tricky, especially
if the code calls into existing sequential library. Dealing with this situation is
certainly going to be challenging. A number of libraries could be identified as
“safe to interrupt any time”. In that case, the polling on cancellation could be
handled by the runtime system. Not all libraries, however, would satisfy this
property.

Support for futures

The problem that I discussed with futures is that it is not always clear where to
propagate the exceptions that they may raise. Another important problem, at
least for languages without a garbage collector, is that it is not clear at which

3

https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/#no-really-nurseries-always-wait-for-the-tasks-inside-to-exit


point a future is no longer needed, and thus can be removed from the DAG (in
the model) and deallocated (in the implementation).

We can address both of these problems through the introduction of “shadow
edges”. A shadow edge relates a node A that describes a future to a node
B, typically a node associated with a “finish” block (or a “nursery” in Trio’s
vocabulary). The interpretation of such an edge is double:

1. If the execution of the future raises an exception, then this exception
is delivered to the instrategy of node B. This instrategy should have a
policy able to handle such exceptions, and to prioritize its propagation
with respect to that of other exceptions within the same scope.

2. If all proper incoming edges to node B have completed (i.e. if only incoming
shadow edges remains on B), then the shadow edges incoming into B are
removed. At this point, the node B becomes ready to execute. The future
A gets disconnected from the DAG. This future will never be forced in the
future, and it can be removed from the DAG. If it is running, its execution
may be cancelled as explained above.

Note that there are a number of well-scoping rules (to be made precise) that the
code should satisfy for things to work out smoothly. In particular, a future must
not be forced outside of its scope.

Overall, the extension of the DAG-calculus that I’m sketching maintains the key
property that the semantics can be explained independently of the scheduler. In
particular, it is not specified how fast nodes are cancelled. This leaves room for
many possible scheduler implementations.

Implementation of cancellation

For implementation the DAG-calculus without support for exceptions, it was suf-
ficient to store, in out-strategies, pointers on instrategies. To support cancellable
nodes, it seems to me that for an efficient implementation one would need back-
ward pointers, following the edges backwards. Cancellation of branches would be
implemented by a reverse DFS traversal of the graph. An implementation faces
a number of complications due to potential races between the forward traversal
of outgoing edges after nodes complete, and the backward traversal of edges for
cancellation. Interesting research work ahead!

Tempting but tricky: exceptions for early algorithmic ter-
mination

Consider the function array_any_index_of x a, which searches for the index
of any occurence of x in the array a. The code is implemented using the
parallel_for construct, using a function that raises an exception as soon

4



as one occurence is found. The annotation exn:eager specifies the “eager
propatation of exception” (policy 3, above).

exception Occurence of int

let array_any_index_of x a =
let n = Array.length a in
try

parallel_for ~exn:eager 0 (n - 1) (fun i ->
if a.(i) = x then raise (Occurence i));

None
with Occurence i -> Some i

There are three important aspects that the programmer must be aware of:

1. Unlike for sequential code, the occurence reported isn’t necessarily the
first one. For that, one would need to follow another policy for handling
exceptions, e.g. writing ~exn:sequential. But doing so means that in
many cases, a large fraction of the array needs to be traversed even when
an occurence is found early.

2. Unlike for sequential code, there is no guarantee that the function ter-
minates faster than O(n), even if the array contains x in a cell near the
front of the array. The randomness in the scheduler may very well lead to
this segment of the array being processed last. In fact, depending on the
scheduler, even if an occurence is found early, the delay associated with task
cancellation may result in the entire array being traversed nevertheless.

3. Last, and most importantly, such an introduction of “speculative par-
allelism” like in the example considered is generally counterproductive
for performance. Of course, if all the cores are free, then the above
parallel_for is the only mean of providing these cores with some work.
However, assume this code to be executed in a context that already spawned
many parallel subtasks, and assume that the array contains an occurence,
say at index “n/2 - 1”. In a work stealing execution, if another core acquire
some of the work involved, it is likely that all the cells of the array will be
traversed. Yet, a sequential execution would have traversed only half on
the array. Thus, the parallel execution will be crippled by the fact that it
performs unnecessary work.

What the third point suggests is that speculative parallelism is not always a win.
One would need some means of expressing priority: exploit parallelism from this
specific parallel-for construct only when the scheduler has no other ready node
to work on. Yet, this kind of rules generally is hard to exploit for at least two
reasons:

• It is not easy for decentralized schedulers to handle this kind of priorities,
because they do not have a global view of what nodes remain to be executed.

• Any policy based on tests such as “if there is no other ready node available
at that point in time” can be defeated when another running task suddently

5



starts spawning a large number of parallel nodes (with higher priority).

6


	Language abstractions and scheduling techniques for efficient execution of parallel algorithms on multicore hardware
	Addentum to Part 1: Semantics of exceptions
	Quick recap on the DAG-calculus without exceptions
	Extension of the DAG-calculus with exceptions, first without futures
	Cancelling the execution of disconnected nodes
	Support for futures
	Implementation of cancellation
	Tempting but tricky: exceptions for early algorithmic termination


