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Abstract
In this paper, we propose an empirical method for evaluating the
performance of parallel code. Our method is based on a simple
idea that is surprisingly effective in helping to identify causes of
poor performance, such as high parallelization overheads, lack of
adequate parallelism, and memory effects. Our method relies on
only the measurement of the run time of a baseline sequential
program, the run time of the parallel program, the single-processor
run time of the parallel program, and the total amount of time
processors spend idle, waiting for work.

In our proposed approach, we establish an equality between the
observed speedups relative to the baseline and three terms that we
call parallel work, idle time, and work-inflation, where all terms
except work inflation can be measured empirically with precision.
We then use the equality to calculate the difficult-to-measure work-
inflation term, which includes increased communication costs and
memory effects due to parallel execution. By isolating the main
factors of poor performance, our method enables the programmer
to assign blame to certain properties of the code, such as parallel
grain size, amount of parallelism, and memory usage.

We present a mathematical model, inspired by the work-span
model, that enables us to justify the interpretation of our measure-
ments. We also introduce a method to help the programmer to vi-
sualize both the relative impact of the various causes of poor per-
formance and the scaling trends in the causes of poor performance.
Our method fits in a sweet spot in between state-of-the-art profiling
and visualization tools. We illustrate our method by several empir-
ical studies and we describe a few experiments that emphasize the
care that is required to accurately interpret speedup plots.

1. Introduction
In the current state of the art, implementing a parallel algorithm on
a multicore machine requires more than translating the algorithm
to a parallel program by using a language or a parallelism API such
as OpenMP [16], TBB [12], X10 [5], or Cilk Plus [9]. After a first
the implementation is complete, the programmer will likely have to
tune the implementation by experimenting with several important
parameters and optimizations in order to elicit decent performance
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from the implementation. To this end, the programmer typically
compares the performance of the parallel code with multiple pro-
cessors to the performance of a sequential baseline and computes
the speedup achieved as the ratio of the time for the baseline to
the time for the multiprocessor run. It is well known that, for this
comparison to be meaningful, the baseline has to be selected care-
fully and must be an optimal sequential algorithm and an optimized
implementation.

After an initial implementation, speedup curves that the pro-
grammer obtains usually resemble those that are shown in Figure 1.
Three of the speedups are taken from runs of three different con-
figurations of the Cilksort benchmark [6], and the other speedup is
taken from one run of the Maximal Independent Set benchmark [3].
These speedups scale poorly, deviating significantly from the linear
optimum. Faced with such results, the programmer has to study the
performance of the code to identify and eliminate causes of subop-
timal performance.

There are four main non-overlapping factors that contribute to
suboptimal parallel performance.

• Algorithmic overheads, which correspond to the difference in
the amount of work performed by the sequential baseline pro-
gram and the sequential execution of the parallel program.

• Scheduling overheads, which consists of the cost of creating
threads plus the cost of performing load balancing.

• Lack of parallelism in the application, that leads to idling pro-
cessors which are starving for work.

• Work inflation, which we define as the increase in the cost of the
operations performed in a parallel run compared with a single-
processor run, when executing the parallel code.

Note that the first and the last factors are different. On the one
hand, algorithmic overheads primarily stems from the fact that a
parallel algorithm is usually more complex that a sequential al-
gorithm for the same problem. On the other hand, work inflation
measures the increase in work of the parallel implementation as we
increase the number of processors. Work inflation includes memory
subsystem effects, and the costs for communication, synchroniza-
tion such as memory fences and atomic operations, false sharing,
maintenance of cache coherency, contention at the memory bus,
and memory consistency protocol. Because work inflation occurs
at the hardware level, the overall impact of work inflation is diffi-
cult, if not impossible, to measure directly.

A key step in the tuning process is that of identifying which
of the four factors are significant. For example, as we will see,
each of the speedup curves in Figure 1 is poor due to just one or
two of the four factors. By just looking at the speedup curves, it is
not possible to determine which factors harm scalability and by
how much. In general, despite the rich information they convey
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Figure 1. Traditional speedup curve showing four poor speedups.
The y axis represents the speedup and the x axis the number of
processors.

regarding scalability, speedup curves by themselves can provide
only vague hints into what factors harm scalability.

Although there are several performance tools to analyze paral-
lel applications, there are currently neither tools nor widely-known
methods that enable programmers to analyze the relative impact
on scalability of the different factors, such as those above. The
Cilkview analyzer can be used to predict the scalability of an
application based on the logical parallelism expressed in control
structure of the code [8]. However, if the code expresses plenty
of parallelism, Cilkview analyzer is unlikely to provide addi-
tional insights into the causes of poor performance. Tools such
as Intel Thread Profiler [10], Intel Parallel Amplifier [11], HPC-
Toolkit [18], Kismet [13] and Kremlim [7] can provide detailed
information on the utilization of the processors over time and on
the breakdown of the relative importance of the subroutines of
the program. Predator [1] can detect false sharing in instrumented
runs of application code. Each of these tools fills an important
gap in the toolkit of a parallel programmer. Nevertheless, none of
the tools is suitable for analyzing all types of performance issues.
Cilkview relies on binary instrumentation and analyzes only in-
struction counts. The other tools rely on various forms of relatively
heavyweight instrumentation. It is well known that, although it is
sometimes essential to understand certain aspects of performance,
heavyweight instrumentation causes interference that can obscure
the global picture, that is, the performance of the production binary,
which typically has little or no instrumentation.

In this paper, we present an experimental method for diagnos-
ing observed performance and scalability problems. Our proposal
rests on some simple observations but it provides a surprisingly ef-
fictive and non-intrusive approach to understanding performance
and diagnosing performance problems. We have not seen methods
similary to ours formulated and published before.

Our approach relies on the following measurements:

• the sequential execution time of the baseline program,
• the sequential execution time of the parallel program,
• the parallel execution time of the parallel program (with differ-

ent numbers of cores),
• the total time that processors spend idling (waiting for work).

Using these measures, we show that it is possible to derive the
amount of work inflation, a quantity that is difficult to measure
directly. More generally, we are able to calculate the amount of
speedups lost due to overheads associated with the parallel algo-
rithm, the amount of speedups lost due to idle time, and the amount

of speedups lost due to the work inflation. By measuring and calcu-
lating these values for various number of processors, we can study
scalability trends, and the factors contributing the observed results.
As we describe (§2.1), these quantities can be measured unintru-
sively, without heavy instrumentation of the binary, and are there-
fore representative of the actual, observed performance (they are
not based on simulations or profiling information).

Using such measurements, we propose an approach to visu-
lazing important performance information in the form of factored
speedup plots that include three additional speedup plots, all of
which are calculated with respect to the optimized sequential base-
line. These plots enable studying the different contributing factors
to the speedups.

• A maximal speedup plot shows the speedups that the program
would obtain if we ignore work inflation and idle time. In
other words, the maximal speedup plot shows the speedups that
would be achieved if the speedup of the parallel program were
scaling up linearly with the number of processors.

• An idle-time-specific speedup plot takes into account idle time
but ignores work inflation. In other words, idle-time-specific
speedups represent the speedups that would be obtained if only
the idle time and algorithmic overheads (the overheads of the
parallel program with respect to the baseline) were preventing
the program from achieving maximal speedups.

• An inflation-specific speedup plot shows the speedups that the
program would obtain if we ignore idle time. In other words, the
inflation-specific speedup represents the speedup that would be
achieved if only the work inflation and the algorithmic over-
heads were preventing the program from achieving maximal
speedups.

Figure 2 shows the factored speedup curves for the Cilksort
benchmark with one specific configuration. Our factored speedup
plot enables the programmer to visualize all three curves at once.
The plot brings three types of information: (1) the absolute position
of the curves, (2) the relative position of the curves (i.e., the gaps
between the curves), (3) the shapes of the curves (i.e., curvature),
which informs on the scaling of specific speedup curves.

Our factored speedup plot plays a complementary role to the
parallel-performance analyzers. If the factored speedup plot sug-
gests lack of parallelism in the application, then the programmer
may choose to find the bottleneck using a tool such as Cilkview.
If the program is large and it is not clear which pieces of the code
to blame for lack of parallelism, the programmer may search for
the most significant regions of code using one of the tools, such as
HPCToolkit and Kremlin. If work inflation is high, the program-
mer may choose to look for potential false sharing with Predator,
for example. After a problematic region of code is identified, the
programmer may synthesize from the region a smaller benchmark
program and repeat the process from above.

We intend our method to complement other tools by guiding
the selection of the appropriate performance debugging tool. As a
bonus, our factored speedup plots give a unique perspective on the
performance of the program, because unlike the other tools, our
method enables the programmer to observe patterns in the perfor-
mance of their production code that are visible in neither traditional
speedup plots nor existing parallel performance tools. The close
correspondence between the production binary and our lightweight
profiling binary is possible thanks to the fact that instrumentation
we insert into the program has no noticable impact on the perfor-
mance of the parallel code.

While developing algorithms and studying their efficiency with
the help of factored speedup plots, we have often been impressed
by how much work inflation (and thus speedups) could be affected,
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Figure 2. Factored speedup curves (top to bottom): linear, maxi-
mal, idle-time specific, inflation specific, and actual speedups for
Cilksort. The arrows indicate gaps between the speedup curves that
helps identify the contribution of each factor.

in counterintuitive ways, by the degree of optimization of the pro-
gram code, and by the size of input data with respect to the size
of the cache. In order to illustrate the extent to which speedups
can be affected by these two aspects, we complete our paper
with microbenchmark studies demonstrating how seemingly mi-
nor changes in the parameters can significantly affect the speedups
measured.

Our paper is organized as follows.

• We present a model, inspired by the work-span model, which
accounts for work inflation, even though work inflation cannot
be predicted by any theory and cannot be measured directly.

• We introduce factored speedup plots as a practical technique for
visualizing the relative contribution of each of the three main
sources of slowdown considered by our model: overheads, idle
time and work inflation.

• We describe two artifacts that may significantly affect the in-
terpretation of speedup curves. Although the existence of these
effects is well know, we believe that the degree to which they
can impact work inflation is often underappreciated.

2. A Method for Diagnosing Performance Problems
We describe a method for diagnosing problems with performance
and scalability by identfying the contributions of the factors that
mentioned in the introduction. For the purposes of mathematical
simplicity, we do not consider scheduling overheads first, and as-
sume that our measurements (programs and schedulers) are deter-
ministic. We later describe how to account for non-determinism
(Section 2.7) and scheduling overheads (Section 2.8).

2.1 Measures
Given a parallel program, and given an associated sequential base-
line program, our approach relies on the four following measures.

• Ts, the execution time of the sequential baseline.
• TP , the execution time of the parallel program with P cores.

• IP , the total idle time associated with the parallel program
(measured by instrumenting the scheduler).

• T1, the 1-core execution time of the parallel program. We call
T1 the “parallel work with 1 core”.

Measuring Ts, TP and T1 is simply achieved by querying the
system time at the beginning and at the end of the executions.
In particular, it does not require any instrumentation of the code
being benchmarked. Measuring IP is just slightly more complex.
We measure the total idle time by modifying the main loop of the
scheduler code that is executed by each core, and which handles
load balancing operations. For each core independently, we com-
pute the sum of the duration of the periods of time during which the
core is waiting to acquire work. We call such periods idle phases,
and we measure their duration using unobtrusive cycle-counter in-
structions, which are provided by modern multicore machines.

We now argue that the cost of our instrumentation of the sched-
uler is negligible in front of the execution time of the program.
For each idle phase, we perform two queries to the cycle counters,
and update one field from the thread-local storage. To end an idle
phase, the processor needs to receive at least one task, and the time
required to complete the execution of this task is in general a lot
greater than the cost of measuring the duration of the idle phase.

Moreover, when a work-stealing scheduler is used, the total
number of idle phases is relatively small. More precisely, the num-
ber of idle phases is bounded by P − 1 plus the number of steals,
because initially all cores are idle but one, and each idle phase can
only end as a result of a successful steal. Analysis of work stealing
shows that, for all programs that exhibit sufficient parallelism, the
number of steals is, with high probability; relatively small in front
of the total number of tasks [2]. In summary, the overhead of our
instrumentation is, for all practical purposes, negligible in front of
the total execution time.

2.2 Definitions
Using the 4 measurements, we derive two additional quantities.

• WP , the parallel work with P cores.
• FP , the work inflation with P cores.

To see how to calculate these additional quantities, we start with
a simple fact.

Fact 2.1 (time decomposition) The total amount of time available
to the P cores during a run that lasts TP time decomposes in work
time and idle time.

P · TP = WP + IP .

This fact makes it immediately possible to calculate WP .
Recall that we define work inflation as the increase in work as a

result of parallel execution. This leads to the following fact.

Fact 2.2 (definition of work inflation) Work inflation (at P cores)
is the difference between the work performed by the parallel pro-
gram when using P cores and the work performed by the same
program when using a single core. We therefore have:

FP = WP − T1.

As shown by the fact below, we can calculate the work inflation FP

Fact 2.3 (formula for work inflation)

FP = P · TP − IP − T1.

For the purpose of analysing speedups (Section 2.3) and of
comparison with the work-span model (Section 2.6), we combine
the previous facts so as to obtain a reformulation of the parallel
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execution time in terms of the values of T1 (1-core execution time
of the parallel program), IP (idle time) and FP (work inflation).

Fact 2.4 (reformulation of parallel time) The parallel execution
time can be expressed as follows:

TP =
T1 + IP + FP

P
.

2.3 Factored speedup plots
In order to better understand the effect of work inflation and idle
time on the speedup values achieved by parallel programs, we re-
formulate, using Fact 2.4, the expression of speedup values, which
is defined as the baseline time divided by the parallel time.

Fact 2.5 (reformulation of speedups) The speedup at P cores
can be reformulated as follows:

speedup =
Ts

TP
=

P · Ts

T1 + IP + FP

Starting with this formula, we propose four speedup measures
that offer upper bounds of varying degrees of precision. Analyzing
these speedups and the gaps between them we can determine the ef-
fects of work inflation and other characteristics of the computation
on the performance.

Linear speedups. When using P cores to perform a computation,
we generally do not expect the parallel execution to be more than
P times faster than the sequential baseline. Therefore, the linear
speedup at P cores is equal to the value P .

Maximal speedups. We define the quantity

P · Ts

T1

as the maximal speedup because it assumes the work inflation
and the idle time to be zero. Maximal speedups offers a realistic
upper bound on the parallel speedup by taking into account the
(possibly) additional work that must be performed by the parallel
run in relation to the sequential run.

Idle-time-specific speedup. We define the quantity

P · Ts

T1 + IP

as the idle-time-specific speedup because it assumes work inflation
to be zero but takes into account available parallelism (as measured
by the idle time).

Inflation-specific speedup. We define the quantity

P · Ts

T1 + FP

as the inflation-specific speedup because it assumes idle time to be
zero but takes into account work inflation. In the formula above,
since we cannot measure FP directly, we deduce it from TP and
IP . More precisely, the inflation-specific speedup is computed as
(P · Ts)/(P · TP − IP ).

Actual Speedups. By definition, the actual speedup is:

Ts

TP

2.4 Minding the gap
The three forms of speedups help analyze the empirical behavior
of a parallel algorithm by isolating several different effects into
different curves. Figure 2 shows an example. The linear speedup
is drawn as the diagonal. Right below it is the maximal speedup,
drawn with a solid black line.

The gap labelled A between the linear and the maximal speedups
shows the amount of the algorithmic overheads that can be expected
from parallelization and the overhead of thread creation. In other
words, we can expect to match maximal speedups if the computa-
tion is fully parallel and only on parallel hardware that is able to
support all operations with excellent scalability.

Right below the maximal speedup curve lies the idle-time-
specific speedup curve, which takes into account the amount of
parallelism but excludes work inflation. The gap labelled B be-
tween idle-time-specific speedup and the maximal speedup shows
the idle time, which, assuming an close-to-greedy scheduler and
a sufficiently-fine granularity of the tasks, reflects the scarcity of
parallelism in the computation: the larger the gap, the scarcer is
parallelism. We can expect to match idle-time-specific speedups
only on parallel hardware that exhibits no noticable communica-
tion overheads and is able to scale memory operations well.

Right below the idle-time-specific speedup curve lies the inflation-
specific speedup curve. The gap labelled C between the maximal
speedup and the inflation-specific speedup illustrates the amount of
work inflation: the larger the gap, the greater the work inflation.

At the bottom, the actual speedup curve reports on the speedups
actually measured. The speedups include all measured factors (al-
gorithmic overheads, idle-time, and work inflation. The gap la-
belled D illustrates the amount of speedup lost to idle time and
work inflation combined. Finally, note that the gap between the ac-
tual speedup curve and idle-time-specific speedup curve indicates
the amount of work inflation, and that the gap between the actual
speedup curve and the inflation-specific curve speedup indicates
the amount of idle time.

2.5 Minding the curvature
In addition to studying the space between the curves, it is often
also possible to deduce useful information from the curvature of
the curves. A few features are particularly informative.

If the maximal speedup curve is not a straight line but instead
tends to flatten, then this curve indicates that the amount of over-
head increases with the number of cores. In such case, the algorithm
presumably would not scale up well with the number of cores.

Let us assume that the overhead curve appears as a straight line.
If the idle-time-specific curve flattens towards a horizontal line,
then this curve indicates that the additional computation time pro-
vided by using more cores is mostly wasted as idle time. Presum-
ably, the program lacks parallelism.

If the inflation-specific curve flattens towards a horizontal line,
then this curve indicates that the additional computation time pro-
vided by using more cores is almost entirely converted into work
inflation. This situation is generally characteristic of a memory bot-
tleneck that limits the throughtput of the operations performed on
the main memory.

If the inflation-specific curve ends up slopping downwards, then
this curve indicates that using more cores actually degrades the
performance of the parallel program. This situation is typically
caused by synchronization, in particular extensive use of either
atomic operations or false sharing or both.

2.6 Work-span model versus inflation model
Comparing our proposed model with the work-span model brings
out interesting similarities and differences between the two ap-
proaches. Consider a parallel program with work T1 and span T∞,
and whose parallel time is TP on P processors. In the work span
model (based on Brent’s theorem [4], using a greedy scheduler),
the parallel time, ignoring scheduling costs, is bounded as

TP ≤
T1

P
+ T∞.
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By comparison, our model does not provide an upper bound,
but instead the following exact equality that involves (measured)
idle time and (derivable) work inflation (Fact 2.4),

TP =
T1

P
+

IP
P

+
FP

P
.

If we ignore scheduling costs, then there are two important dif-
ferences between the work-span model and our approach. First, our
proposal relies on the measurement of the actual average amount of
idle time per core (that is, IP /P ), rather than an upper bound com-
puted as a property of the computation (that is, the span T∞). Sec-
ond, our proposal includes a term for work inflation, whereas the
work-span model completely ignores the possibility for the cost of
a same operation to depend on the parallel load of the machine.
This term, FP /P , denotes the average increase in work per proces-
sor between the uniprocessor work and multiprocessor work.

2.7 Generalization to non-deterministic executions
In this section, we justify that our approach naturally extends to
non-deterministic executions. We call run a particular instance of a
program execution. In particular, for a parallel execution, the run
describes the schedule, that is, for each instruction, the time at
which and the core on which it gets executed. We let Rs denote
the set of runs of the sequential baseline,RP the set of runs of the
parallel program with P cores, andR1 the set of runs of the parallel
program with 1 core. We let R be a random variable ranging over
one of these three sets of runs.

• Given a run R in Rs, we let Ts(R) denote the execution time
of this run.

• Given a run R inRP , we let TP (R) denote the execution time
of this run.

• Given a run R in RP , we let IP (R) denote the total idle time
involved in this run.

• Given a run R in R1, we let T1(R) denote the execution time
of this run.

We then define the parallel work of a run as follows:

WP (R) ≡ P · TP (R)− IP (R)

We define the work inflation of a run as the difference between the
parallel work of this run and the expected work of a 1-core run.
Regarding the latter, we write E[T1(R

′)] the expected execution
time of a random run R′ in R1. The formal definition of work
inflation is thus:

FP (R) ≡ WP (R)− E[T1(R
′)].

We write Ts the expected value of Ts(R), for R inRs. Similary,
we write TP and IP the expected values of TP (R) and IP (R),
respectively, for R in RP , and write T1 the expected value of
T1(R) for R in R1. (Note that T1 is the same as E[T1(R)].) With
this notation, the earlier definitions given for the deterministic case
can be applied without any modification. In particular, we define:

• Ideal speedup, as the value P .
• Maximal speedup, as the value P ·Ts

T1
.

• Idle-time-specific speedup, as the value P ·Ts
T1+IP

.

• Inflation-specific speedup, as the value P ·Ts
P ·TP−IP

.

• Actual speedup, as the value Ts
TP

.

Observe that, in the formulae above, we have chosen to compute
the ratios of expected values, as opposed to the expected values of
ratios. For example, we define actual speedup as E[Ts(R)]

E[TP (R′)] and not

as E[ Ts(R)
TP (R′) ]. The alternative choice would also be possible. How-

ever, we believe that, given a sample of measured runs, it makes
more sense to report the speedup associated with the average execu-
tion time, rather than to report the average speedup value, because
speedups are only a tool for analysing performances, whereas the
execution time is what we ultimately care to minimize.

2.8 Accounting for scheduling costs
In this section, we explain how our approach smoothly generalizes
to take scheduling costs into account. We start by introducing the
following additional variables:

• S1, the scheduling work of a 1-core run of the parallel program.
• SP , the scheduling work of a P-core run of the parallel program.
• W1, the user work of a 1-core the parallel program. We call

“user work” the work performed by the user code as opposed to
that performed by the scheduler.

• WP , the computation work of a P-core the parallel program.
Here, WP plays has the same role as before, but it explicitly
excludes the scheduling work, which is no longer neglected.

Even though the 4 quantities above are hard to measure directly,
we can use them to help us to provide valuable interpretation to the
curves from factored speedup plots.

We define the scheduling work inflation, written F sched
P , as the

difference between the scheduling work performed by P cores and
that performed by a single core. Symmetrically, we define the user
work inflation, written F user

P , as the difference between the user
work performed by P cores and that performed by a single core.
Finally, we define the work inflation to be the sum of the user work
inflation and the scheduling work inflation.

F sched
P ≡ SP − S1

F user
P ≡ WP −W1

FP ≡ F user
P + F sched

P

As we are going to establish next, the value of FP , which
denotes the total work inflation, can be computed from the same
four measures as before. To prove it, we begin with two simple
observations.

Fact 2.6 (decomposition of 1-core execution times) The execu-
tion time of 1-core run of the parallel program decomposes as user
work plus scheduling work.

T1 = W1 + S1.

Fact 2.7 (decomposition of P -core execution times) The execu-
tion time of a P -core run of the parallel program decomposes as
user work, plus scheduling work, plus idle time.

P · TP = WP + SP + IP .

Combining these two facts and the three definitions above
shows that the total work inflation can be computed using exactly
the same formula as before (recall Fact 2.3), when we ignored all
scheduling costs.

Fact 2.8 (formula for work inflation, with scheduling costs)

FP = P · TP − IP − T1.

When taking into account scheduling costs, we continue using
exactly the same formulae for constructing factored speedup plots.
Only the interpretation of these plots needs to be refined slightly.

• The 1-core work (T1) now includes the scheduling work at 1-
core (S1). So, the maximal speedup curves includes not just the
algorithmic overheads but also the scheduling work at 1-core.
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• The idle-time specific is, as before, based on the maximal
speedup, so it includes the scheduling work at 1-core.

• The inflation-specific speedup also includes the scheduling
work, but also the scheduling work inflation. As we explain
next, the scheduling work inflation is typically negligible.

When using a work stealing scheduler, the scheduling work in-
flation only includes the cost of performing load balancing and, if
using concurrent deques, the possible increase in the cost of access-
ing the deques due to concurrent accesses to the same cache lines.
For most practial applications, the number of steals is relatively
small and the accesses to the deques are relatively cheap in front of
the work performed by the threads, so the scheduling work inflation
(F sched

P ) is negligible. In such a case, the work inflation (FP ) can
be considered equivalent to the user work inflation (F user

P ).
As a concluding remark, we observe that the scheduling work

at 1-core (S1) can be estimated by running the sequential elision
of the parallel program. This elision consists of a copy of the par-
allel code in which all parallelism constructs are replaced with se-
quential constructs. For example, fork-join operations are replaced
with simple sequences. Let Telision denote the execution time of the
sequential elision. We can estimate S1 by considering the differ-
ence with the 1-core execution time of the parallel program. In
other words, S1 ≈ T1 − Telision. When the sequential elision pro-
gram is available, we can extend the factored speedup plot to re-
port its execution time. To that end, we add an extra curve, located
above the maximal speedup curve, showing the points at height:
(P · Ts)/Telision. This additional curve is useful in particular to eas-
ily spot issues related to granularity control, whereby the creation
of too-small tasks imposes significant scheduling overheads. When
granularity control is performed properly and an efficient sched-
uler is used, the new curve should collapse with that of maximal
speedups, reflecting the fact that scheduling costs (S1) are neglible.

3. Case studies
This section illustrates the application of our method on a multicore
machine with several different runs of a few benchmark programs.
We ported these programs from well-established benchmark suites,
such as the Cilk benchmarks and the Problem Based Benchmark
Suite, to our scheduling library. Although we selected only a few
benchmark programs, we emphasize that the methods we use are
readily applicable to any of the other benchmark programs in the
respective suites and, more generally, to any Cilk program.

3.1 Case study 1: typical factored speedup plots
To illustrate the utility of factored speedup plots in practice, we
consider a classic benchmark program, namely Cilksort, and use
factored speedup plots to analyze its performance. Cilksort sorts an
array of 32-bit integers, using a variant of merge-sort that relies
on a parallel merge operation, and relying on insertion-sort for
sorting sub-arrays of 20 elements or less. When the input is smaller
than a user specified cutoff, Cilksort reverts to sequential execution.
Sequentialized sorting uses the quicksort algorithm. Quicksort is
also used to measure the sequential baseline, used when computing
speedup values.

In our experiment, we control the size of the input array, and
the cutoff to determine how Cilksort behaves under different set-
tings. (We use the same cutoff for both the sort phase and the merge
phase.) More information on the experimental setup including ma-
chine details are described in Section 4. The goal of our experi-
ments is to illustrate various typical type of factored speedup plots
that one observe in practice.

In Chart (3.a), we consider a small array, containing 200k
items, and a small cutoff, of 200 items. This chart indicates that our
program suffers simultaneously from three problems: large parallel

work as indicated by the gap between the linear and the maximal
speedup curves, scarce parallelism as indicated by the gap between
the maximal and the idle-time-specific speedup curves, and work
inflation as indicated by the idle-time-specific and actual speedup
curves.

In Chart (3.b), we attempt to reduce the thread-creation over-
heads by increasing the cutoff size to 10k items. The gap between
the maximal speedup and the linear speedup closes indicating
that we have successfully reduced parallel work. Actual speedups,
however, have not improved—there are actually slightly worse—
because parallelism reduced as indicated by the increased gap be-
tween the maximal and the idle-time-specific speedup curves. This
suggests the cutoff is too large for this input, pinpointing exactly the
source of the problem. Remark: the fact that the inflation-specific
and idle-time-specific speedups are at about the same height indi-
cates that both work inflation and idle time contribute to roughtly
the same amount of lost speedups.

In Chart (3.c), we revert to the smaller cutoff of 200 items
and try instead to address the lack of parallelism, by increasing
the array size to 10 million items. The overheads in Chart (3.c) are
similar to those of Chart (3.a), which is expected since we used
the same cutoff value. The idle time has been reduced significantly,
thanks to the increase in the amount of parallelism available. In this
chart and the subsequent ones, the amount of idle time is negligible,
so idle-specific curves collapse onto maximal speedup curves, and
inflation-specific curves collapse onto actual speedup curves.

In Chart (3.d), we target a large array of 10m items and use
a not-too-small cutoff of 1000 items. The chart reports decent
speedups (28.5x at 40 cores), and the trend of the speedup curve
suggests good scalability.

In Chart (3.e), we increase further the array size, up of 100m
items, while keeping the same cutoff of 1000 items. The results
are very similar to Chart (3.d), only with slightly better speedups
(29.8x at 40 cores), showing that beyond a certain point, creating
more parallelism no longer reduces the idle time. In fact, from the
position of the overhead curve, which reaches 33.1x at 40 cores,
we can deduce that, no matter the array size, it is highly unlikely to
ever exceed a speedup of 33.1x on our test machine.

With Chart (3.f), we complete our case study with a last ex-
periment which aims at illustrating a situation where the amount of
work varies with the number of processors. To that end, we provide
to Cilksort a cutoff inversely proportional to the number of proces-
sors. Note that adapting the number of subtasks generated to the
number of processors is a classic technique, used for example in
Cilk’s compilation of for-loops.

For this last experiment, we consider an array of size 10m and
a cutoff of 8000/P . As the value of T1 actually depends on P , we
write it TP

1 . To obtain the values of TP
1 , we perform, for each value

of P , a single-processor run using the cutoff value 8000/P . The
results, shown in Chart (3.f), indicate that the idle time is negligible,
that the memory effects are very limited, and that overheads are
responsible for most of the lost speedups. Furthermore, on the chart
we are able to observe the curvature of the overhead curve. The
fact that the overhead curve is not a straight line but instead bends
downwards indicates that the amount of overhead increases with
the number of processors.

In summary, by looking at the curvature of the curves and the
space between the curves of an factored speedup plots, we are
able to visualize, all at once, the relative contribution to the loss
in speedups of each of the three possible sources of slowdown
identified by our model, and also to visualize the trends of these
contributions as the number of processors vary.
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Figure 3. Case study 2: factored speedup curves for Cilksort benchmark.

3.2 Case study 2: effect of NUMA allocation policies
We now describe how our factored speedup plot can be used to di-
agnose memory bottlenecks. For this study, we consider the Max-
imal Independent Set benchmark from the Problem Based Bench-
mark Suite. The maximal independent set problem is the following:
given a connected undirected graph G = (V,E) and find a subset
of the vertices U ⊂ V such that no vertices in U are neighbors in
G and all vertices in V \U have a neighbor in U . For input to the
benchark, we used the 2-d grid with 140m vertices. For the base-
line measurement, we use the sequential solution that is provided
by the Problem Based Benchmark Suite. The performance issue we
consider came to our attention when we ported the program from
the Cilk Plus dialect of C++ to be compatible with our native C++
scheduling library, namely PASL.

The plots in Figure 4 show two factored speedup plots repre-
senting two different NUMA configurations of the same applica-
tion. The runs of plot (a) and (b) use the default and the interleaved
NUMA configurations respectively. We describe the meanings of
the two configurations after first considering the results we observe
from the default configuration. In plot (a), we notice that the actual
speedup curve starts to flatten by ten processors and completely
flattens by twenty. The flattening of this curve happens even though
there is clearly no lack of parallelism: we know there is sufficient
parallelism because the idle-time specific curve hugs the maximal
curve. The inflation-specific curve shows that the most significant
factor harming scalability is work inflation.

Knowledge of our machine led us to the next step, that is,
to conjecture that significant work inflation is imposed by effects

relating to non-uniform memory access (a.k.a, NUMA). NUMA
implies that memory-access time depends on the memory location
relative to which processor makes the access. Our benchmarking
machine has four banks of RAM, with one bank assigned to each
physical chip in the machine. Each bank of RAM is close to the ten
cores on its corresponding chip and is far from all the other cores.
We suspected NUMA effects because scaling drops significantly
only when the number of cores exceeds ten. This point is the point
at which at least some of the cores have to make remote accesses to
access main memory.

We investigated the NUMA policies that are supported by our
machine and found that there are two of interest. In the default con-
figuration, namely the local or “first-touch” configuration, a page
in virtual memory is assigned a page in physical memory when
the page is first accessed. The page is assigned in physical mem-
ory to memory bank of the core that makes the first access. The
other configuration of interest is the interleaved configuration, in
which pages are assigned to memory banks in round-robin fash-
ion. Although the interleaved configuration increases cross-bank
traffic relative to the first-touch configuration, the interleaved con-
figuration reduces the chance of a bottleneck situation, in which
much more memory traffic goes through a few banks of RAM than
through other banks.

Suspicious of such a bottleneck, we tried the interleaved NUMA
configuration. The actual speedup we get from this configuration
is shown in Figure 4(b). Note that we can compare the spedups
of the two plots because all of the speedup curves use the same
baseline. The speedup achieved by the configuration is much better
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Figure 4. Factored speedup curves for Maximal Independent Set
benchmark.

than before, suggesting that, in the default configuration, there was
significant imbalance of NUMA assignments leading to contention
at the memory bus.

With these plots side by side, we can see additional patterns in
the respective curves. Observe that, even though it shows relatively
poor actual speedup, the first plot shows better maximal speedup.
The reason is that the single-processor run of the program runs
faster with the local than with the interleaved NUMA configuration.
In other words, the same NUMA configuration that harms the
performance of the sequential run helps the performance of the
parallel run. Moreover, this particular improvement comes into
effect when the number of cores exceeds ten, because the effect
is a NUMA effect.

To summarize, while the factored speedups provided all the
information we needed to diagnose the NUMA issue, the curves
gave us a clear picture of where to start looking. In particular, the
fact that the curve flattens between ten and twenty processors gave
us a strong hint that the issue is NUMA related.

4. Sources of Work Inflation
In this section, we present what we believe to be two particularly
striking and subtle causes of work inflation. To simplify their pre-
sentation, we distill the causes of the work inflation in simplified
benchmarks. Our measurements show that work inflation can af-
fect speedups by nearly a factor two. In particular, we show that the
speedups achieved may greatly vary with the size of the input data
considered, and that they may greatly vary with the degree of opti-
mizations that applies to pieces of code involved both in the base-
line program and in the parallel program. In such circumstances,
a higher degree of optimizations (which leads to reduced absolute
execution time) may lead to smaller speedup values.

The benchmark. To illustrate work inflation, we use a simple
array microbenchmark, which is controlled by three parameters:
array size M , a computation load L, a gap size G, and a number
of repetition R. Given a set of values, the benchmark starts by
allocating M cells each of which contain a single 64-bit integer.
The program then process every cell of the array once, and repeat
this entire process R times. To process a cell c, the benchmark
performs L integer additions using the value at c and writes the
resulting value back into c. We implement the parallel for-loop
by dividing the total range until a sufficiently small range of 1000
items, which are then processed sequentially.

When the gap size G is equal to 1, each thread processes a group
of 1000 consecutive array items sequentially. When the gap size G
is more than 1, threads still process groups of 1000 items, but acting
over items spaced out by G cells, in such a way that, ultimately,
each array cell gets processed exactly once. To be precise, the i-th
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cell processed is that at index “(iG + b iG
M
c)modM” in the array.

By considering values of G greater than 1, for example 32, we are
able to greatly increase the number of cache misses.

Input size and work inflation. Our first experiments illustrate an
interesting relationship between input data size speedups. On the
one hand, it is well-known that, with small inputs, parallel pro-
grams may not generate sufficient parallelism to result in good
speedups. On the other hand, large inputs that do not fit in the L3
cache lead to numerous cache misses, and they are typically associ-
ated with important levels of work inflation because the main mem-
ory becomes the bottleneck. As we show, however, there can be a
range of input instances large enough to generate abundant paral-
lelism, and nevertheless small enough to avoid significant work in-
flation. With such input instances, one is able to measure speedup
values much greater than speedups that could be achieved when
scaling to a larger number of cores or to larger input instances.

Figure 5 illustrates the runtime and speedup for our microbench-
mark with different array sizes M and different numbers of proces-
sors. In these experiments, we set the gap size to be G = 32, and
set the repeat count R to be 4·108

M
so that the total number of op-

erations (a measure of the complexity of the benchmark) remains
the same for all input sizes (i.e., 4 · 108). The runtime curve (Fig-
ure 5, top) shows that compared with small input sizes, a sequential
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run, the topmost curve, is 2.2 times slower for inputs larger than
16 · 106 —increasing from 11.3 seconds to 24.9 seconds. This out-
come is expected, because the 30MB L3 cache of this processor
approximately 4 · 106 (64-bit) integers. What is interesting is that
the slowdown is amplified in parallel runs. For example with 30
cores, larger arrays are 3.7 times slower compared with the smaller
—increasing from 0.37 seconds to up to 1.37 seconds. While it is
generally known that higher number of cache misses slow down a
program execution, what is interesting here is that this slow down
affects performance differently at different size. This behavior is
likely due to the saturation of the memory bus at high parallel loads.

The fact that, when increasing the array size, parallel runs are
slowed down more than sequential runs indicates that the work
inflation increases with the array size. A direct consequence is that,
as shown by the curve at the bottom in Figure 5, speedups can
decrease by vary significantly when operating on larger arrays. For
example, with 40 cores, the speedup for small array is close to 35x,
but with larger arrays it drops below 20x.

In summary, while with small inputs, the benchmark achives
nearly perfect speedups, at large input sizes, the speedups decrease
significantly. This suggests that work inflation can be significant
and it should be accounted for by considering a range of input sizes,
not just those input sizes that provide sufficient parallelism.

Work inflation and optimization. Since speedups are calculated
with respect to a baseline sequential program by calculating the ra-
tio of the runtime of the sequential baseline to the runtime of the
parallel code, it might be concluded that optimizing both programs
to the same degree would suffice to perform a fair evaluation. In
fact, the parallel code is often written by using the pieces of the se-
quential code, as this is often the easy and the natural thing to do. As
we show next, speedups can be highly sensitive optimizations, not
just because optimizations can improve the baseline performance—
which is generally known and understood—but also because opti-
mizations can impact serial and parallel code in different ways, by
leading to different amounts of work inflation.

To demonstrate the effect of optimization on work inflation, we
consider our simple microbenchmark and run it with M = 600·106
(that is, a 4.8Gb array), R = 1, and different values of computa-
tional load L ranging from 1 to 8. Recall that the microbenchmark
perform L additions after reading a cell and writes back the com-
puted value to the memory. The differing values of L suggest what

can happen with highly optimized code L = 1 and poorly opti-
mized code L = 8.

The plot Figure 6 shows the curves for different values of L that
we consider. The measurements show that the more the additions,
the better the speedups, suggesting that additional work due to more
additions create relatively less work inflation. This is likely true
because in parallel run, all computation become memory bound
waiting for the memory operations to complete, during which time,
they can perform the addition operations, which commute, locally
without having the value of the cell being updated until it finally
arrives. This means essentially that the addition operations are par-
allelized by the hardware to overlap with the memory operations,
reducing the relative significance of work inflation. We tested this
hypothesis in two ways. First, we changed the addition operations
to operations that do to commute with the reads; this reduced the
relative work inflation, ultimately improving the speedups. Second,
we ran the benchmark with larger values of L, which increased the
memory latency for the sequential run and thus decrased the rela-
tive work inflation.

In summary, when memory operations become a bottleneck in
the parallel run, increased computational load due to non-agressive
optimization can artifically increase speedup by reducing relative
work inflation. It is therefore not sufficient to optimize the sequen-
tial baseline and the parallel code to the same degree. The baseline
as well as the parallel code should be highly optimized in order to
make sure that the effects of work inflation are not masked.

5. Related work
Prediction of parallel speedup. Cilkview [8], Intel Parallel Advi-
sor [10], Intel Parallel Amplifier [11], and Kismet [13] are software
tools whose purpose is to profile and to analyze the potential scala-
bility of programs on an arbitrary number of cores. Cilkview, Intel
Parallel Advisor, and Intel Parallel Amplifier rely on user-supplied
annotations, whereas Kismet tries to automatically detect paral-
lelism in the application. We focus instead on identifying the causes
of suboptimal speedup of a given parallel program on a given ma-
chine with a fixed set of cores.

Modeling parallel performance. Our techniques and those used
for Cilkview share a common basis in the DAG model of computa-
tion. However, we use the DAG model in different ways to achieve
different goals. On the one hand, the Cilkview profiler measures the
work and span during the instrumented run of a parallel applica-
tion on a single processor. The Cilkview analyzer predicts from the
work and span the upper and lower bounds on the speedup curves
that can be achieved by the application on an arbitrary number of
processors. On the other hand, based on a mix of sequential and
parallel runs, our analyzer plots, next to the actual speedup curve,
a synthetic speedup curve that projects the amount of speedup lost
due to idle time and parallelism overheads, allowing to visualize
the amount of speedups lost due to memory effects.

In Cilkview, work and span are measured by number of instruc-
tions issued by the program, as opposed to wall-clock time. By con-
sidering instruction counts, the scalability prediction of Cilkview
is completely oblivious to memory effects that could substantially
harm scalability. Our work, although it is limited in that it consid-
ers only typical execution paths as opposed to worst-case execution
paths, is able to deduce the amount of memory effects that impact
the parallel runs.

Cilkview, being based on the work-span model, tries to evaluate
the span. To that end, it considers a “burdened-dag model”, where
the weight of fork nodes is burdened with an estimate of the cost of
thread migration. The span measured in this burdened DAG gives
a worst-case estimation of the span. In our work, we do not try
to measure the span at all. Instead, we rely on the measure of the
actual idle time, as explained in §2.6. Cilkview may nevertheless
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provide a complementary role in helping to estimate worst-case
bounds on the idle time.

Identifying sequential bottlenecks in big programs. The HPC-
Toolkit [18, 19] is a software tool for profiling big parallel soft-
ware that consists of many functions. HPCToolkit reports, on a per-
function basis, estimated values of parallel idle time and parallelism
overheads. Kremlin [7] is another software tool whose purpose is
to help guide the parallelization of large preexisting sequential pro-
grams. Kremlin, like HPCToolkit, focuses on the question: what
parts of the program are most profitable to parallelize? As such,
the primary focus of these tools is to assign blame to pieces of code
that are imposing bottlenecks to parallelization.

In contrast, our focus is to analyze the performance of algo-
rithms individually rather than to try to analyze the relative per-
formance of multiple algorithms in the same program. Put another
way, our focus concerns the stage after the programmer has identi-
fied a bottleneck code. At this point, the goal is to isolate the code
and benchmark it independently to try and improve its scalability.

Often, blame-assigning tools, such as HPCToolkit and Kremlin,
neglect to report in a synthetic way complementary pieces of in-
formation that would be helpful for understanding causes of poor
speedup. Our factored speedup plots show a global view of the ac-
tual parallel performance of the optimized, production-ready code.
In addition to providing a synthetic view of the data, our factored
speedup plots show the speedup trends as the number of processors
vary. The trends are useful, among other things, for extrapolating
the ability of an algorithm to scale up to larger number of cores.

Profiling techniques. The aforementioned profilers, as well as
other related ones [14, 15, 17], collect rich profiling data from in-
strumented runs of an application. Although sometimes useful, rich
profiling data is not necessarily the best approach. Problematically,
the instrumentation itself may affect the performance of the appli-
cation being profiled. On the contrary, our approach relies on prac-
tically zero-overhead instrumentation and as such can be applied to
production-ready user code.

In our approach, the required instrumentation consists of mea-
surement of run time of the sequential baseline program, single-
processor run time of the parallel program, run times of the parallel
program on different subsets of the available processors, and total
parallel idle time for each parallel run. All of these metrics are triv-
ial to measure and can be readily measured in almost any platform.
Many other profilers require substantial implementation effort in
the form of compiler support or binary instrumentation.

To summarize, while we acknowledge the interest of full-
program analysis and of rich instrumentation, we have found that
our approach, despite being very lightweight, is able to report a
large amount of useful information helping to analyse the scalabil-
ity issues affecting a particular parallel algorithm.

6. Conclusion
On modern hardware, the impact of memory effects on the perfor-
mance of parallel program is too important to be neglected. While
these effects have shown difficult to model accurately, developers
of parallel programs could greatly benefit of tools for analysing the
relative impact of memory effects. In this paper, we have presented
a simple model for the analysis of parallel computations. Our model
is tailored for the analysis of experimental performance results, and
it aims an analysing samples of executions. In that respect, it con-
trasts with the traditional work-span model, which provides a the-
ory for computing bounds for worst-case executions.

Our model is based on the simple observation that, by sampling
the execution time of single-processor runs and measuring idle time
in parallel runs, we are able to deduce the amount of memory
effects. Moreover, we have shown how to plot charts for visualizing

the amount of speedups lost due to overheads, that lost due to
idle time, and that lost due to memory effects. These charts allow
to visualize not only the relative contribution of each source of
slowdown, but also their trend as the number of processors grow.
Although we have not seen such charts appear previously in the
literature, they are, in our experience, helpful for the day-to-day
development of parallel algorithms.
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Appendix
Experimental setup. We conducted all the experiments described on
our test machine, a 40-core Intel machineWe also ran the same experiments
on an AMD machinewhich features a deeper memory hierarchy, and ob-
served similar results.

Our primary test machine hosts 4 Intel E7-4870 chips running at
2.4GHz and has 1Tb of RAM. Each chip has 10 cores and shares a 30Mb
L3 cache. Each core has 256Kb of L2 cache and 32Kb of L1 cache, and
hosts 2 SMT threads, giving a total of 80 hardware threads, but to avoid
complications with hyperthreading we did not use more than 40 threads.
The system runs Ubuntu Linux (kernel version 3.2.0-43-generic).

Our secondary test machine hosts 4 AMD Opteron 6172 “Magny
Cours” chips running at 2.1GHz and has 128Gb of RAM. Each chip has
2 NUMA nodes, each of them has 6Mb of L3 cache and contains 6 cores.
Each core has 512Kb of L2 cache and 64Kb of L1 cache. The system runs
Ubuntu Linux (kernel 2.6.32-50-server).

All our programs are implemented in C++, compiled with GCC 4.8,
and rely on the scheduling library PASL, which itself relies on a work
stealing scheduler. PASL provides two schedulers: one implemented with
concurrent deques (like in Cilk), and another one implemented using private
deques (see [2]). Both schedulers gave similar results on the benchmarks
described in the present paper.1

6.1 Case study 3: comparison between two schedulers
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Figure 7. Factored speedup plots for Samplesort benchmark.
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