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Abstract. The Particle-in-Cell (PIC) method allows solving partial dif-
ferential equation through simulations, with important applications in
plasma physics. To simulate thousands of billions of particles on clus-
ters of multicore machines, prior work has proposed hybrid algorithms
that combine domain decomposition and particle decomposition with
carefully optimized algorithms for handling particles processed on each
multicore socket. Regarding the multicore processing, existing algorithms
either suffer from suboptimal execution time, due to sorting operations or
use of atomic instructions, or suffer from suboptimal space usage. In this
paper, we propose a novel parallel algorithm for two-dimensional PIC
simulations on multicore hardware that features asymptotically-optimal
memory consumption, and does not perform unnecessary accesses to the
main memory. In practice, our algorithm reaches 65% of the maximum
bandwidth, and shows excellent scalability on the classical Landau damp-
ing and two-stream instability test cases.

Keywords: Particle-in-Cell simulation; plasma physics; strong scaling;
weak scaling; hybrid parallelism; SIMD architecture.

1 Introduction

The Particle-in-Cell (PIC) method allows for simulations of a wide range of
phenomena in plasma physics. For instance, it may be used to simulate the
motion of a set of charged particles. In a PIC simulation, time is discretized,
and the electric field is approximated using a grid. At each time step, each
particle is accelerated with respect to that electric field, and moves according
to its velocity. At its new location, each particle contributes its charge to the
electric field, locally approximated using a grid. The resulting electric field is
then involved at the next time step for accelerating particles [6, 16].

To increase the accuracy of a simulation, it is desirable to simulate as many
particles as can be fit in the memory, and to perform as many time steps as
possible. Thus, typically, both the memory and the execution time are limiting
factors for such simulations. Practical simulations involve billions of particles
(technically, of super-particles that approximate a set of nearby particles), in-
volve large grids with millions of cells, and execute for thousands of time steps.
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The challenge is to leverage the computing power of clusters of modern mul-
ticore hardware, where parallelism is available at two levels: across several ma-
chines, and among the cores of a same processor. The two levels differ signifi-
cantly in that cross-machine communication is by several orders of magnitude
more costly than in-machine communication through the shared memory. This
difference explains the success of hybrid algorithms, which adopt two or three
different strategies for efficiently exploiting all the parallelism available.

When the grid over which the simulation takes place is very large, the cost
of maintaining a copy of the entire grid on every machine is prohibitive. In such
situations, one resorts to domain decomposition, thereby assigning the available
machines to subdomains of the grid space. A first challenge in domain decompo-
sition is to balance the load. Possible solutions involve space-filling curves [1, 14],
Barnes-Hut trees (or Octrees) [2, 26], or rectilinear partitioning (i.e., using paral-
lelepipeds) [21, 22]. A second challenge is associated with the significant amount
of communication involved for redistributing the particles that move across the
subdomain boundaries. A typical plasma simulation may involve a significant
fraction of fast-moving particles that frequently cross subdomains boundaries,
thus requiring heavy cross-machine communication.

When the grid is not too large, particle decomposition may be used: particles
are distributed evenly to the machines, each of which replicates the description
of the electric field. The machines synchronize at every time step, by communi-
cating the contribution of their particles to the charge density, in order to update
the electric field. A successful hybrid approach, known as domain cloning [18,
23], consists of using domain decomposition in order to create subdomains that
are just small enough for particle decomposition to apply.

Assuming the use of domain cloning, there remains need for an efficient algo-
rithm to process the set of particles hosted on a single multicore machine with
shared memory. Designing an efficient multicore algorithm for this core process-
ing is the focus of this paper. Prior work on multicore algorithms for the PIC
method have argued that storing particles in memory according to their position
in the grid may yield significant benefits with respect to the locality of memory
accesses, despite the cost of sorting. Moreover, prior work observes that if the
particles are, at all times, grouped according to the cell in which they lie, then
one may save the need to store, for each particle, the index of its containing cell.

For the benefits of locality to outweigh the cost of sorting, the sorting al-
gorithm needs to be parallel and carefully optimized. Prior work (detailed in
Sect. 2) has investigated the use of parallel versions of radix sort and counting
sort, and optimizations of these to take into account the fact that not all par-
ticles move to remote cells. Prior work has also attempted by various means to
reduce the memory usage associated to PIC codes, and to limit the number of
synchronization barriers and of atomic instructions (e.g., compare-and-swap and
fetch-and-add), which are more costly than conventional read-write operations.

All the PIC parallel algorithms targeting multicore architectures, as far as
we know, suffer from at least one of two problems. (1) Many algorithms are sub-
optimal in the execution time. On the one hand, algorithms that do not reorder



particles during the simulation suffer from poor locality, which leads to a higher
number of cache misses and limits opportunities for vectorized processing. On
the other hand, algorithms that do reorder particles—using sorting or maintain-
ing buckets of nearby particles—involve nontrivial operations. In particular, the
use of buckets is challenging in the context of a parallel algorithm: if buckets are
per-thread, they need to be merged eventually; and if buckets are shared, they
require expensive atomic operations for synchronization. (2) Many algorithms
are suboptimal in space usage. On the one hand, algorithms that do not main-
tain particles sorted by cell index at all times require extra space to store those
indexes for each particle. On the other hand, algorithms that do reorder parti-
cles typically involve auxiliary arrays to perform out-of-place sorting, or involve
arrays with spare capacity to deal with the variability of the cardinality of each
bucket. Since both the execution speed and the memory consumption are limit-
ing factors in PIC simulations, we believe that there is space for improvement.

This work presents a novel parallel algorithm (detailed in Sect. 3) for PIC sim-
ulations on multicore architectures, featuring at the same time: asymptotically-
optimal memory consumption, minimal bandwidth usage, competitive constant
factors on the execution time, and excellent scalability. More precisely:

– Our algorithm reads and writes each particle exactly once from the main
memory at each time step, thus is optimal in terms of memory transfer.

– Our algorithm requires, in addition to the minimal amount of space required
for storing the particles, a space overhead that is constant for a fixed grid
and a fixed hardware. In particular, our space usage does not depend on the
number of particles that cross cell boundaries.

– Our algorithm allows all the cells of the grid to be treated in parallel, ex-
posing an amount of parallel threads sufficient to feed all the cores, even in
the face of relatively non-uniform distribution of the particles in space.

– Our algorithm involves only 3 synchronization points per time step, and it
does not require any atomic operation.

The experiments (detailed in Sect. 4) performed on a 18 core, 2.3 GHz ma-
chine, on a 128x128 grid, show the following results:

– Compared with a carefully optimized, vectorized implementation of the stan-
dard approach that consists of assigning particles to cores, and sorting the
particles every 20 time steps (frequency found to be optimal) our algorithm
is 13% slower on a single core execution, but 36% faster on a 18 core exe-
cution. We explain the better scalability by the fact that we perform fewer
memory accesses, and thus put much less pressure on the memory bus.

– Our algorithm reaches 65% of the maximal achievable bandwidth, as mea-
sured by the Stream reference benchmark. Given that our algorithm per-
forms as few accesses as possible to the main memory, we conclude that
there remains limited space for further improvements of the execution time.

– In terms of strong scaling, for a given input of 900 million particles, our
algorithm achieves a 14.6x speedup on 18 cores, relative to its execution on
a single core. In terms of weak scaling, our algorithm is only 18% slower



for simulating 1,800 million particles with 18 cores than it is for simulating
100 million particles with a single core.

– In terms of raw performance, our algorithm, when executed on 18 cores,
processes 861 million particles per second. Equivalently, one core is able to
process one particle at one time step in no more than 48 cycles, all inclusive.

In addition to our experiments on a single machine, we studied scalability
on up to 128 sockets (64 dual-socket machines), each socket hosting 18 cores.
We followed the particle decomposition approach, with each socket storing a
copy of the electric field grid. As soon as all sockets have updated their charge
density, we rely on a global MPI reduction to allow each socket to obtain the
sum of the charge densities of all the sockets. Each socket then uses this total
charge density to update the electric field. An execution involving 128 sockets
and 128 times more particles is only 8% slower than an execution on a single
socket, thus demonstrating excellent scalability. Overall, using the 2,304 cores
available on the 64 machines, we are able to successfully simulate 230 billion
particles (2.3 · 1011) for 100 iterations in no more than 228 seconds.

One key ingredient in our approach is the use of an optimized bag data
structure for storing particles. A bag is essentially a linked list of fixed-size arrays,
called chunks. Practice shows that chunks with a capacity of 512 particles yield
optimal results. Our bags are thus extensible containers, with a fixed memory
overhead—at most the size of an empty chunk. These bags support efficient
iteration, essentially as fast as with a static array. Most importantly, chunks may
be freed while iterating over the elements of the bag. This possibility enables us
to perform our operations as in an out-of-place algorithms, yet without having
to pay for the twofold space overhead associated with out-of-place algorithms.

At a given iteration of the simulation, we use one bag per cell from the grid,
for storing the particles in this cell. To prepare for the next iteration, we need to
distribute particles to different bags, which are associated with the next iteration.
In order to avoid data races between the several cores that move the numerous
particles, we allocate one bag for each cell and for each core. Once all particles
are distributed in these bags, we merge, for each cell, the bags associated with
that cell (there are as many such bags as cores). Since each merge operation
takes constant time, as it amounts to an in-place concatenation of two linked
lists, the overall cost of merging all these bags is O(nbCores×nbCells). This cost
is, in practice, small compared to the processing of all the particles. Once the
bags are merged, the particles are readily sorted for the next iteration.

One might worry about the memory overhead associated with the numerous
bags involved. Yet, the total memory footprint of our algorithm is equal to the
minimal amount of space required for representing all the particles, plus a fixed
memory overhead of the form: nbCores×nbCells×sizeOfChunk×bytesPerParticle,
where bytesPerParticle is 24. For example, in a simulation on a 128x128 grid, with
chunks of size 512, executing on 18 cores, the memory overhead is 7.3 GB. This
may be significant in absolute terms, nevertheless it is much less than what is
required by competing algorithms whose memory overheads are proportional to
the number of particles, e.g. accounting for 50% of the total memory usage.



Parameters

N : number of particles.

X × Y : size of the grid.

∆t: duration of a time step.

Variables

particles[0..N − 1]: set of particles,
with position and velocity.

ρ[0..X][0..Y ]: charge density.

E[nbCells]: electric field.

Algorithm

Foreach time step

Set all cells of ρ to 0

Foreach particle

Read E values near particle position

Update particle velocity v += q
m
E∆t

Update particle position x += v∆t

Add particle charge to ρ near particle position

Compute E from ρ Poisson solver

Fig. 1. High-level description of the Particle-in-Cell (PIC) method.

2 PIC Method and Related Work

Fig. 1 shows the general pattern of the PIC method, applied to the resolution of
the Vlasov-Poisson system of differential equations shown below, which models
the time evolution of the distribution function f of charged particles in a plasma.

∂tf + v · ∇xf +
q

m
E · ∇vf = 0 Vlasov

∇xE = ρ = q

(∫
f(x, v, t)dv − 1

)
Poisson

In a concrete implementation, one needs to select a particular interpolation
scheme for computing the electric field and accumulating the charges. Our code
performs linear interpolation from the four corners of the grid cell where the par-
ticle lies—the so-called Cloud-in-Cell model [5]. Remark: optimized PIC codes
implement the accumulation of the charge into ρ using an intermediate data
structure that enables vectorized processing of the four corners [25].

One central aspect in the design of a PIC implementation is how the particles
are stored in the shared memory, and how the particles are assigned to the various
cores acting over this shared memory. A first approach is to represent each 2d
particle with 32 bytes (4 doubles) to describe their positions and velocities.
A more efficient approach is the “index plus offset” representation [8, III.E.].
The idea is to store the index of the containing cell (1 int, 4 bytes) and the
position of the particle relative to the corner of that cell (2 floats, 8 bytes).
This representation requires 28 bytes per particle if stored in an SoA fashion, but
32 bytes per particle if stored in an AoS fashion, due to padding. In the remainder
of this paper, we will assume that every algorithm uses this representation.

A common approach consists of storing the particles in a static array. Prior
work has investigated the benefits of sorting this array by cells, to improve
locality [7, 17]. Sorting may be performed either in between every iteration, or
only every so many iterations. Note that the best frequency for sorting is not so
easy to select: it is both architecture-dependent (due to the relative benefits of
locality) and input-dependent (particles move faster in a “hot” plasma). Even
when sorting is involved, the array of particles may be stored either in an Array
of Structures (AoS) [8] fashion, or in a Structure of Arrays (SoA) [3] fashion.



Going further in terms of sorting, one may try to keep the particles sorted by
cell at all times. In other words, instead of storing particles directly in an array,
one stores the particles in nbCells distinct sets of particles. This approach has two
main benefits: locality is exploited at its best, and only 24 bytes are required per
particle as there is no need to store the cell index. The key challenge is how to
represent sets of particles, given than the size of these sets may vary dynamically
as the particles move across the grid.

In the Particle-Particle/Particle-Mesh algorithm [16, Sect. 8.4.], each set is
represented as a linked list. Yet, this data structure is very inefficient due to
memory indirections. Alternatively, one could use a vector (resizable array).
However, the copy involved in the resize operations, despite their O(1) amortized
cost, induce a significant slowdown in practice: using std::vector from C++

in simulations with an average of 2, 288 particles per vector incurred a 50%
slowdown compared to our chunks. Another approach is to “hope” that the
distribution of particles does not become very unbalanced, at least no more
than by some constant factor (e.g. 2). Under this assumption, one may represent
each set as a fixed-size array. The resulting representation is an Array of Arrays
of Structures (AoAoS) [24, 10]. The arrays have their size fixed at the beginning
of the simulation. If, at some point in the simulation, the number of particles in
a given cell exceeds this size, an error is triggered and the simulation must be
interrupted. This approach is thus not very robust.

Other researchers have investigated more evolved dynamic set data struc-
tures, combining arrays with trees, such as the Packed Memory Arrays (PMA)
[4, 12]. This structure consists of a big array containing a fraction of unused cells,
and that supports dynamic rebalancing of these “holes”. Yet, dealing with the
holes and rebalancing them increases the number of memory operations, result-
ing in poorer performance. Furthermore, the parallelization scheme proposed for
PMA [11, Chap. 5] incurs additional overheads, as the structure then needs to
be scanned twice. Particle binning [20] is a closely related technique that can be
efficiently parallelized. However, its efficiency critically relies on the assumption
that only a small fraction (e.g. 2%) of the particles change cell at each time step.

One closely related piece of work [9] targets GPU hardware and is based on
frame lists, a structure analogous to our chunks. This work nevertheless differs
from ours in two major ways. First, it stores particles by supercells (blocks of
adjacent cells), whereas we organize them by cell. We thereby save the need to
store the cell index of each particle. Second, this prior work updates in place the
particles that do not change supercell but move other particles to their correct
frame list using atomic operations. This process leaves holes that are removed
in a subsequent compaction pass. In contrast, we require a single pass over the
particles, and we avoid the need for atomic operations.

Fig. 2 summarizes the memory usage of the aforementioned algorithms, to
compare against our proposal, which, asymptotically, requires a smaller amount
of memory. The last column shows that, for 64 GB of total memory or more,
our algorithm is able to fit a much larger number of particles in memory.



2d Particle-in-Cell multicore algorithm
Memory usage

(in bytes)1
Largest N for

64 GB (in billions)

Out-of-place counting sort (AoS) [8] 32 · 2N 0.9

Out-of-place counting sort (SoA) [3] 28 · 2N 1.0

Always sorted, static arrays (AoAoS) [24] ≥ 24 · 1.5 ·N ≤ 1.6

Always sorted, packed arrays [12, 11] 24 · (1.4N +M) 1.0 ≤ N ≤ 1.7

In-place counting sort (AoS) [7] 32 ·N 1.8

Buffered counting sort (SoA) [17] 28 · (N +M) 1.0 ≤ N ≤ 2.0

Always sorted, binning (AoSoA) [20] 24 · 1.17 ·N 2.0

Always sorted, chunk bags (this paper)
(
24 + 16

chunkSize

)
·N +C 2.1

Fig. 2. Memory usage of 2d PIC implementations for multicores. N denotes the number
of particles, M is the maximum number of particles crossing cell boundaries on one
iteration (M can be up to N in our simulations), and C = 24× chunkSize× nbCores×
(2 nbCells+1)+O(nbCells×nbCores), which is a constant for a given grid and hardware.

3 Our Multicore Algorithm for the PIC Method

Our approach is based on a realization of the sets of particles using a data
structure, which we here refer to as chunk bag. This data structure is an optimized
variant of a relatively standard structure for representing extensible sequences.
A chunk bag essentially consists of a linked list of fixed-capacity arrays, called
chunks. Each chunk stores a pointer to the next chunk (possibly a null pointer),
a fixed-capacity array of particles, and a size field. Each bag stores a pointer on
its first chunk and on its last chunk from that linked list.

As an optimization, a bag also keeps pointers to the next available location in
the array of the last chunk, and to the location one past the last in the last chunk.
These auxiliary pointers save an indirection each time we add a particle to the
data structure—such optimizations are typical for container data structures [15].
As an exception, we do not maintain the size field of the back chunk, since this
size value can be deduced from the two auxiliary pointers. In summary:

struct chunk { struct chunk* next; int size;

particle items[CHUNK_SIZE]; } chunk;

struct { chunk* front, back; particle* back_end, back_head; } bag;

The bag data structure supports the following operations. Add: inserts a
particle into a bag, in O(1). An insertion may require allocating a new chunk,
but the associated overhead is amortized over the size of a chunk. Moreover,
since all chunks have the same size, allocation and deallocation are optimized
using free lists. Iter: iterates over all the particles in the bag. This operation
is almost as efficient as iterating over a static array. Most importantly, chunks

1 In [24], the factor 1.5 allows each cell to contain up to 50% more particles than the
average; above that threshold, the simulation must be interrupted. In [12], the factor
1.4 comes from the fact that 40% of the array is reserved for unused cells (holes). In
[20], the factor 1.17 similarly corresponds to 6% unused cells and overflow buffers. In
our work, the term 16

chunkSize
accounts for the size of the fields next and size associated

with each chunk (the computation of our largest N uses chunkSize = 512).



bag particles[0..nbCells− 1], particlesNext[0..nbCores− 1][0..nbCells− 1]
double ρ[0..X][0..Y ], E[0..X][0..Y ], ρNext[0..nbCores− 1][0..nbCells− 1][0..3]

1 Foreach time step
2 Set in parallel
3 particlesNext[0..nbCores− 1][0..nbCells− 1] to empty
4 ρNext[0..nbCores− 1][0..nbCells− 1][0..3] and ρ[0..X][0..Y ] to zero
5 Parallel Foreach idCell in 0 . . . nbCells-1
6 Read E[x][y], for each (x, y) among the 4 corners of cell idCell
7 Foreach chunk in particles[idCell]
8 Foreach particle in that chunk
9 Update particle velocity
10 Foreach particle in that chunk
11 Update particle position
12 Compute idCellNext, the index of the cell containing the particle
13 Add the particle into particlesNext[currentCoreId][idCellNext]
14 Accumulate its charge into ρNext[currentCoreId][idCellNext][0..3]
15 Deallocate that chunk
16 Parallel Foreach idCell in 0 . . . nbCells− 1
17 Set particles[idCell] to particlesNext[0][idCell]
18 For idCore in 1 . . . nbCores-1
19 Merge particlesNext[idCore][idCell] into particles[idCell]
20 For idCore in 0 . . . nbCores-1, For i in 0 . . . 3
21 ρ[x][y] += ρNext[idCore][idCell][i], where (x, y) is i-th corner of cell idCell
22 Compute E from ρ using a Poisson solver

Fig. 3. Our parallel algorithm for the PIC method on multicore architectures.

may be deallocated while the iteration over the bag proceeds (line 15). Merge:
two bags may be merged in-place, in O(1), by concatenating the two linked lists
involved. Importantly, no compaction is involved. In particular, after a merge, a
non-full chunk may appear in the middle of a linked list of chunks.

The pseudo-code of our algorithm appears in Fig. 3. The key ideas have been
described in the introduction. An important addition is the loop fission that we
have applied in order to exploit the Single Instruction on Multiple Data (SIMD)
feature. Particles update their velocity by interpolating the value of the electric
field at their position. Since the interpolation formula is the same for all particles
from a same cell, it may be implemented using vectorized instructions. To that
end, we isolated the velocity update operations. As long as the data from one
chunk fits into the L1 cache, this does not increase the number of accesses to
the main memory. Otherwise, an additional level of tiling can be applied.

To summarize, our algorithm has three key features. First, at each step, each
particle is read from and written into the main memory exactly once (read on
line 9, still in cache for lines 11-14, and write on line 13). Thus, our algorithm does
not perform unnecessary accesses to the main memory. Second, each time step
involves only three synchronization points: one at the end of each parallel loop
(lines 2, 5, and 16). Third, thanks to the use of core-indexed data structures for
ρ and for particlesNext, we avoid data races and do not need atomic operations.
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4 Empirical Results

Our experiments were conducted on the Marconi supercomputer, on which we
were granted the use of 64 nodes with 2 sockets each. Each socket is an Intel Xeon
E5-2697 v4 @2.3 GHz (Broadwell), with 64 GB of RAM, 4 memory channels,
and 18 cores. Our C code was compiled using Intel C Compiler 17.0.1, using the
FFTW3 library [13] for the Poisson solver, and storing 512 particles per chunk.

We ran simulations on two classical test cases [6, 16] and checked that they
matched the expected mathematical results. We used periodic boundary condi-
tions, and the following initial distributions:(
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Two-stream instability

One important challenge faced by prior work is that performance significantly
depends on the percentage of particles crossing cell boundaries at each time step.
In constrast, the performance of our algorithm should, by design, not depend so
much on the percentage of crossing particles. To empirically verify this claim,
we increased particle velocities by a factor 100 (raising vth from 0.01 to 1.0). For
Landau damping, this increased the percentage of crossing particles from 1.8% to
87%, but increased execution time by only 4.64%. For two-stream instability, this
increased the percentage of crossing particles from 12% to 98%, but increased
execution time by only 4.59%.

Figure 4 reports a strong scaling for our algorithm, and compares it with
prior work using SoA [3], carefully optimized for the same architecture. Although
the SoA algorithm is slightly faster when using 4 cores or less, our algorithm,
which puts less pressure on the memory bus, outperforms it for more cores.
With 18 cores, our algorithm is 36% faster and is able to update 861 million
particles per second. Note that this experiment simulates 900 million particles,
which is the maximum that out-of-place sorting can accommodate, whereas our
algorithm could handle more than twice as many particles.

Figure 5 shows the memory bandwidth of our code when performing a weak
scaling. We take as reference the Stream benchmark [19], which aims at evaluat-
ing the maximal bandwidth that can be reached in practice. The Stream bench-
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mark reaches 63.4 GB/s, which corresponds to 83% of the theoretical peak of
our hardware (76.8 GB/s). As Figure 5 shows, on 18 cores, our algorithm reaches
more than 65% of the reference memory bandwidth. Since our algorithm does
not perform unnecessary accesses to the main memory, we conclude that our
code is not far from exploiting the machine at its best.

Figure 6 reports on the performance of hybrid parallelism, with a weak scal-
ing of our code on 128 sockets (2,304 cores), using one MPI process per socket,
and 18 OpenMP threads per socket, i.e. one thread per core. The results show an
almost perfect scaling, with only 8% overhead when scaling from 1 to 128 sock-
ets. This overhead is expected, due to the (logarithmic) communication costs
involved in the MPI ALLREDUCE communication. This experiment demonstrates
the efficiency of our parallel algorithm at the scale of 230 billion particles.
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