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Abstract Union-Find is a famous example of a simple data structure whose amortized
asymptotic time complexity analysis is nontrivial. We present a Coq formalization of this
analysis, following Alstrup et al.’s recent proof (2014). Moreover, we implement Union-
Find as an OCaml library and formally endow it with a modular specification that offers
a full functional correctness guarantee as well as an amortized complexity bound. In order
to reason in Coq about imperative OCaml code, we use the CFML tool, which implements
Separation Logic for a subset of OCaml, and which we extend with time credits. Although
it was known in principle that amortized analysis can be explained in terms of time credits
and that time credits can be viewed as resources in Separation Logic, we believe our work
is the first practical demonstration of this approach. Finally, in order to explain the meta-
theoretical foundations of our approach, we define a Separation Logic with time credits for
an untyped call-by-value λ -calculus, and formally verify its soundness.

1 Introduction

The Union-Find data structure, also known as a disjoint set forest (Galler and Fischer, 1964;
Cormen et al, 2009), is widely used in the areas of symbolic computation, where it serves
as the foundation of every unification algorithm, and graph algorithms, such as Kruskal’s
minimum spanning tree algorithm. It maintains a collection of disjoint sets and keeps track
in each set of a distinguished element, known as the representative of this set. It supports the
following basic operations: make creates a new element, which forms a new singleton set;
find maps an element to the representative of its set; union merges the sets associated with
two elements; eq tests whether two elements belong to the same set.

Union-Find is among the simplest classic data structures, yet requires one of the most
challenging complexity analyses. Tarjan (1975) and Tarjan and van Leeuwen (1984) prove
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that the worst-case time required by a sequence of m operations involving at most n ele-
ments is O(m ·α(n)). The function α , an inverse of Ackermann’s function, grows so slowly
that α(n) does not exceed 5 in practice. This analysis is progressively simplified over the
years (Kozen, 1992), resulting in a readable 2.5-page proof that appears in Tarjan’s online
course notes (1999). It also appears in the textbook Introduction to Algorithms (Cormen
et al, 2009), where it occupies about 8 pages. In this proof, the parameter n must be a priori
fixed, and represents an upper bound on the number of elements that can ever appear in the
data structure. In more recent work, Kaplan et al. (2002) and Alstrup et al. (2014) establish
(among other results) a more precise and more pleasant bound: each operation has worst-
case amortized complexity O(α(n)), where n is the number of elements in the data structure
at the time this operation is performed. In fact, they prove even tighter results, stated in terms
of the sizes of equivalence classes, as opposed to the size of the entire data structure. For
our purposes, taking n to be the current number of elements in the data structure seems good
enough, and allows exposing a specification that seems as simple as one might hope for.

In this paper, we make the following contributions:

1. We prove the correctness of an abstract (mathematical) presentation of the Union-Find
data structure, described in terms of graphs and relations, and verify its time complexity,
following Alstrup et al.’s potential-based analysis (2014). We check these proofs using
the Coq proof assistant.

2. We extend Separation Logic with time credits, considered as resources. This allows us
to push our reasoning down to the level of actual source code instead of remaining at
the level of idealized algorithms. We implement support for time credits in the tool
CFML (Charguéraud, 2013), which translates OCaml code to Coq characteristic formu-
lae, thereby allowing Separation Logic proofs about OCaml code to be carried out in
Coq. This yields a practical program verification framework with support for dynamic
memory allocation, mutable state, aliasing, and (amortized worst-case) time complexity
analysis.

3. We formalize Separation Logic with time credits, in Coq, for an untyped call-by-value
λ -calculus, and prove that the logic is sound. Although this proof is not directly about
CFML, it helps increase our confidence that the reasoning rules implemented in CFML
are sound.

4. We present a realistic, pointer-based, imperative OCaml implementation of the Union-
Find data structure and, using CFML and Coq, we carry out a Separation Logic proof
of its correctness and time complexity. In other words, we verify that this OCaml code
correctly and faithfully implements the abstract Union-Find algorithm.

Our approach is modular in the sense that the Separation Logic specification that we
establish can be used to reason about client programs, without knowledge of the Union-Find
implementation. There is one caveat, though: our specifications expose hard-coded multi-
plicative and additive complexity constants, because we have not yet developed the theory
and tactics that are required to support the big-O notation. Thus, the specifications shown
in this paper do not allow changing the implementation of Union-Find without any impact
on the proofs of client programs. Adding support for the big-O notation, and validating our
specifications by proving the correctness of illustrative client programs, are left to future
work.

In summary, in this work, we carry out, in a unified framework, a mathematical analysis
of the correctness and time complexity of a nontrivial data structure and a step-by-step
analysis of its OCaml implementation. Our proofs are available online (Charguéraud and
Pottier, 2017).
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This is an extended and improved version of an earlier conference paper (Charguéraud
and Pottier, 2015). In comparison, in this paper:

1. We adopt Alstrup et al.’s time complexity analysis (2014), which leads to a slightly
simpler and more convenient specification of Union-Find in Separation Logic. In con-
trast, the conference paper follows Tarjan et al.’s analysis (Tarjan, 1999). Our online
archive (Charguéraud and Pottier, 2017) in fact contains both analyses, which share a
great deal of material.

2. We offer a thorough presentation of a Separation Logic with time credits for an untyped
call-by-value λ -calculus. This presentation is backed with a machine-checked proof of
soundness, which is also available online (Charguéraud and Pottier, 2017).

3. We extend our OCaml implementation of Union-Find by letting every set carry a piece
of user data, which is read and written via two additional operations, get and set.

4. We add a “ghost” operation, join, which causes two disjoint set forests to be regarded
as one forest. The fact that disjoint set forests support this operation (at no cost!) seems
under-emphasized in the literature, precisely because no code is required. However, in a
verified implementation, this fact must be proved. We believe that it is worth attracting
some attention to the need for such “ghost” operations in the specifications of certain
data structures.

The paper is organized as follows. First, we present an OCaml implementation of Union-
Find and give a high-level overview of our approach to specifying and verifying this code,
placing particular emphasis on our assumptions (§2).

Then, we introduce a Separation Logic for an untyped call-by-value λ -calculus and pro-
ceed to extend this logic with time credits (§3). For this logic, we describe the construction
of characteristic formulae (§4), a systematic way of applying the reasoning rules of the logic,
so as to obtain proof obligations expressed as ordinary logic formulae. The CFML tool also
relies on characteristic formulae to allow Separation Logic proofs about OCaml code to be
carried out in Coq.

Coming back to Union-Find, we present a specification of Union-Find in Separation
Logic with time credits (§5). We present the purely mathematical part of our proof, which
consists in an analysis of the operations on disjoint set forests and of their complexity (§6).
We relate our mathematical view of forests with their concrete layout in memory by defin-
ing an abstract Separation Logic predicate, named UF. We then prove that the OCaml code
satisfies its specification (§7). The paper ends with discussions of the related work (§8) and
of directions for future research (§9).

2 Overview

2.1 The Union-Find Data Structure: Signature

In OCaml syntax, the Union-Find data structure offers the following signature, where the
abstract type ’a elem is the type of elements:

type ’a elem
val make : ’a -> ’a elem
val get : ’a elem -> ’a
val set : ’a elem -> ’a -> unit
val eq : ’a elem -> ’a elem -> bool
val union: ’a elem -> ’a elem -> ’a elem
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val find : ’a elem -> ’a elem

The Union-Find data structure maintains a collection of disjoint sets and keeps track in
each set of a distinguished element, known as the representative of this set. With every set,
the data structure attaches a “datum”, that is, an OCaml value. The type of these data values,
which is chosen by the user, is represented by the type variable ’a. The type of elements,
’a elem, is parameterized with ’a, and the operations are polymorphic in ’a. There is no
type of sets: instead, a set is designated by any of its elements. For instance, the function get,
whose purpose is to read the datum attached with a set, takes an element as an argument. It
finds which set this element lies in, and returns the datum attached with this set.

The function make creates a new element and places it in a new singleton set. It expects
a value of type ’a, which it attaches to the newly created set. The functions get and set
consult and update the value attached with a set. The function eq tests whether two elements
belong in the same set. The function union merges two sets. (If union is applied to two
elements of the same set, nothing happens.) It arbitrarily chooses and keeps one of the two
data values attached with these sets; the other value is lost. If desired, get and set can be
used to obtain other behaviors, such as computing a new datum based on the existing two
data values. The function find returns the representative element of a set. It may seem as
though find can be of no service to the user: after all, none of the functions that we expose
can distinguish between two equivalent elements! Indeed, the main uses of find are internal:
it is used in the implementation of union and eq. Nevertheless, there are scenarios where
find is useful to the user. For instance, exposing find is necessary if at some point the
user wishes to keep pointers only to representative elements, so that every nonrepresentative
element can be reclaimed by the garbage collector.

The type ’a elem equipped with the operations make, get, set, and eq offers the same
signature as the built-in type ’a ref equipped with the operations ref, !, :=, and ==.
In OCaml, as in the other programming languages of the ML family, ’a ref is the type
of “references”, or mutable memory cells. Thus, the abstract types ’a ref and ’a elem are
close cousins. The key operation that the former lacks and the latter supports is union. In
other words, the Union-Find data structure can be viewed as an efficient implementation of
an abstract type of “mergeable memory cells”. This is a concise informal way of explaining
the purpose of this data structure, which we believe is seldom presented in such a light.

2.2 The Union-Find Data Structure: Implementation

Disjoint set forests were invented by Galler and Fischer (1964). In such a forest, an element
either points to another element (its parent) or points to no element and therefore is a root.
These pointers form a forest where each tree represents a set and where the root of the tree
is the representative element of the set. Thus, out of every node x, there is a unique maximal
path, whose endpoint is the root of x’s tree, that is, the representative element of x’s set.

The find operation follows this unique path. For greater efficiency, it performs path
compression: every node along the path is updated so as to point directly to the root of the
tree. This idea is attributed by Aho et al. (1974) to McIlroy and Morris.

The union operation updates the root of one tree so as to point to the root of the other
tree. To decide which of the two roots should become a child of the other, we apply linking-
by-rank (Tarjan, 1975; Tarjan and van Leeuwen, 1984). A natural number, the rank, is asso-
ciated with every root. The rank of a newly created node is zero. When performing a union,
the root of lower rank becomes a child of the root of higher rank. In case of equality, the
new root is chosen arbitrarily, and its rank is increased by one.
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type rank = int

type ’a elem =
’a content ref

and ’a content =
| Link of ’a elem
| Root of rank * ’a

let make v =
ref (Root (0, v))

let rec find x =
match !x with
| Root (_, _) ->

x
| Link y ->

let z = find y in
x := Link z;
z

let get x =
let x = find x in
match !x with
| Root (_, v) ->

v
| Link _ ->

assert false

let set x v =
let x = find x in
match !x with
| Root (r, _) ->

x := Root (r, v)
| Link _ ->

assert false

let link x y =
if x == y then x else
match !x, !y with
| Root (rx, vx), Root (ry, _) ->

if rx < ry then begin
x := Link y; y

end else if rx > ry then begin
y := Link x; x

end else begin
y := Link x;
x := Root (rx+1, vx); x

end
| _, _ ->

assert false

let union x y = link (find x) (find y)

let eq x y = (find x == find y)

Fig. 1 OCaml implementation of Union-Find

We settle on path compression and linking-by-rank because they are simple, standard,
and have optimal time complexity. (Either one of them, alone, would not suffice.) There
exist other path compression strategies, such as path halving, and other linking strategies,
such as linking-by-size. An experimental survey of many variations of Union-Find is given
by Patwary et al. (2010).

Our OCaml implementation of Union-Find appears in Figure 1. The (mutually recursive)
definitions of the types ’a elem and ’a content can be read as follows: a node x is a
reference (that is, a mutable memory cell) whose content is either Link y, which means that
x is a nonroot node whose parent is y, or Root (r, v), which means that x is a root node
whose rank is r and which carries the user datum v. This is the code whose correctness and
complexity we formally establish.

Our code represents ranks as OCaml machine integers, of OCaml type int. Depending
on the target architecture, these integers are 31 or 63 bits wide. In our proofs, however, for
simplicity, an OCaml machine integer is modeled as an ideal (unbounded) integer, whose
type in Coq is Z. Thus, we do not prove the absence of overflows. Furthermore, if an overflow
occurs, then the code could in principle behave incorrectly, even though we have “verified”
its correctness. To remedy this problem, two approaches come to mind. One could either
modify the code to use arbitrary-precision integers, with relatively minor runtime overhead,
and no changes to the specifications and proofs; or, without any change to the code, modify
the specifications and proofs so as to impose a bound (dependent on the machine’s word
size) on the number of elements that can be created. In the particular case of the Union-
Find data structure, one can prove (and we have checked in Coq; §6.3) that the rank of
every element is at most log2 n, where n is the total number of elements. Thus, on a 64-
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bit architecture, for a rank computation to overflow, one would have to allocate about 2262

elements. One might wish to informally argue that this is impossible, by sheer lack of time.
Clochard et al. (2015) suggest how such a “proof-of-work” argument might be expressed
in a formal program verification framework. It would be interesting to find out whether and
how our Separation Logic-based approach can accommodate proof-of-work arguments; we
leave this question to future work.

2.3 Separation Logic with Time Credits

Separation Logic (Reynolds, 2002) offers a natural framework for proving the correctness
of imperative programs that manipulate the heap. In order to formally establish not just the
correctness but also the complexity of a program, we extend Separation Logic with time
credits.

A time credit is a resource that represents a right to perform one step of computation.
(What exactly constitutes one “step” is discussed in §2.7.) The assertion $n, where n is
a nonnegative integer, represents the ownership of n time credits, that is, a permission to
perform n steps of computation.

A certain number of credits can be explicitly requested as part of the precondition of
a function f , and can be used to justify the computation steps performed by f and by its
callees. For instance, a function that expects a list l as an argument and traverses this list
might require c× length l credits from its caller, where c is an implementation-dependent
constant. This would be specified by letting $(c× length l) appear (among other separated
conjuncts) in the precondition of f .

A function f need not consume all of the credits that it receives from its caller. Some
credits can be returned by f to its caller: this is specified by letting them appear as part
of the postcondition of f . At first, this might seem pointless: why would f request more
credits than it really needs, and return those that are left over? The answer is, in combination
with abstract predicates, this allows amortized reasoning. The specification of find, to be
presented shortly (§2.4), illustrates this.

In summary, there are several reasons why Separation Logic with time credits seems
particularly attractive. First, it deals with dynamic memory allocation and mutation. Second,
it allows reasoning about correctness and complexity at the same time, which means that the
properties established in the correctness proof (such as the balancedness of a tree) can be
exploited in the complexity proof. Last, it supports amortized complexity analyses.

Time credits, under various forms, have been used in several type systems (Danielsson,
2008; Hoffmann and Hofmann, 2010; Pilkiewicz and Pottier, 2011). Atkey (2011) has ar-
gued in favor of viewing credits as predicates in Separation Logic. However, Atkey’s work
did not go as far as using time credits in a practical, general-purpose program verification
framework. In this paper, we present such a framework, and demonstrate its practicality by
verifying the Union-Find data structure.

2.4 Formal Specification of Union-Find

In order to express the specification of every operation (make, find, and so on), we define an
abstract Separation Logic predicate, UF. This predicate has three parameters, namely D, R, V ,
where:

– D (for “domain”) is the set of all elements created so far;
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– R (for “representative”) is a total function that maps every element to its representative;
– V (for “value”) is a total function that maps every element to its associated datum.

The Separation Logic assertion UFDRV represents the unique ownership of a Union-Find
data structure whose current state is summarized by D, R, and V . Every operation requires
UFDRV as part of its precondition, and ensures UFD′R′V ′ as part of its postcondition, where
D′, R′, V ′ are related with D, R, V in a manner that reflects the effect of this operation.

This is all the user needs to know. In particular, the user need not know that the data
structure is represented in memory by a collection of objects (and pointers between them)
which form a disjoint set forest. The user need not know which paths exist in the forest, when
and how these paths are compressed, and so on. By making UF an abstract predicate, we
guarantee that the user does not have access to these implementation details, hence cannot
depend on them.

The specification of an operation f takes the form of a Hoare triple {H} f (x) {λy.Q}
where the Separation Logic assertions H and Q are the precondition and postcondition,
x stands for the argument, and y stands for the result. (The variable x occurs free in this
triple, and can appear in H and Q. In practice, it is usually explicitly universally quantified
in front of such a triple. The variable y is λ -bound and can appear only in Q.) For instance,
in Coq syntax, the specification of find (also shown in Figure 9) is as follows:

Theorem find_spec : ∀D R V x, x ∈ D→
app UnionFind_ml.find [x]
PRE (UF D R V ? $(2 * alpha (card D) + 4))
POST (fun y⇒ UF D R V ? [ R x = y ]).

The specification is universally quantified with respect to D, R, V , and the argument x. It
is subject to the requirement that x be a member of D. (This could equivalently be stated as
part of the precondition.) The notation app UnionFind_ml.find [x] is our concrete syntax
for referring to the application of the OCaml function find to one argument, namely x.
The precondition, which follows the keyword PRE, requires UFDRV together with a certain
number of time credits (explained further on). The postcondition, which follows the keyword
POST, guarantees UFDRV again, which means that find does not affect the user’s view of the
data structure. (Note that find internally performs path compression, so it does sometimes
modify the data structure, but in an unobservable way.) The postcondition also contains the
equality R x = y, which guarantees that the result y is the representative of x.

The definition of the predicate UF (which, as explained above, is not exposed to the user)
can be summarized as follows:

– There exists in the heap a collection of mutable memory cells of OCaml type ’a elem.
– The graph formed by these cells and by the pointers between them is a disjoint set forest.
– The set of all vertices is D. There is a path from every vertex x in D to the vertex R x,

which is a root, and which carries the user datum V x.
– There exist Φ time credits, where Φ is the current potential of the data structure, in

Tarjan’s terminology (Tarjan, 1985).

In Separation Logic, to know about a resource is to own it, so the first assertion above
implies the unique ownership of the memory cells.

For the same reason, the last assertion above implies the unique ownership of Φ credits.
These credits are “saved inside the data structure”, so to speak. They can be used to pay in
part for an operation and therefore decrease its apparent cost. Conversely, if one chooses
to advertise an apparent cost that is greater than the operation’s actual cost, then the extra
credits provided by the caller can be “saved”, that is, used to justify an increase of Φ .
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Because the invariant is defined in this way, when we formally verify the code, we are
naturally required to prove that, for each operation, the initial potential Φ , plus the number
of credits brought by the caller, covers the new potential Φ ′, plus the number of credits
consumed during the operation:

Φ + advertised cost of operation ≥ Φ
′+ actual cost of operation

For instance, according to the specification of find (shown earlier and in Figure 9), this
function ostensibly requires 2α(|D|)+4 credits from its caller, where |D| is the cardinality
of the set D. This is its apparent cost. Its actual cost (the number of computation steps
that it actually performs) may be lower or higher. Indeed, by unfolding the definition of the
predicate UF, one discovers that (1) in addition to these credits, find has access to Φ credits;
and (2) upon termination, find must arrange for Φ ′ credits to remain, where Φ ′ is the
potential of the data structure after the operation. (Due to path compression, Φ and Φ ′ may
differ.) In summary, the bound that explicitly appears in the precondition of find, namely
2α(|D|)+4, is a worst-case amortized time complexity bound.

Quite clearly, instead of stating that find requires 2 ·α(|D|) + 4 credits, it would be
preferable to state that it requires O(α(|D|)) credits. That would be more readable, more
modular, and would carry no less information about physical computation time. Developing
support for the big-O notation in our specifications and proofs is ongoing work (§9).

2.5 Verification of Imperative Code using Characteristic Formulae

To prove that the implementation of an operation satisfies its specification, we rely on
CFML (Charguéraud, 2010, 2013), which can be described as an implementation of (higher-
order) Separation Logic for a subset of OCaml. The CFML tool transforms an OCaml term t
into a characteristic formula, that is, a higher-order logic formula JtK, which describes the
semantics of t. More precisely, JtK denotes the set of all valid specifications of t, as follows:
for any precondition H and postcondition Q, the proposition JtKH Q holds if and only if
the Hoare triple {H} t {Q} is valid. Such a triple implies that, beginning in any state that
satisfies H, the term t runs safely, terminates, produces a value v, and leaves the machine in
a state that satisfies the assertion Qv.1

The characteristic formula JtK is automatically built from the term t by the CFML tool.
It is then exploited, in Coq, to formally establish that t satisfies a certain specification. More
concretely, we run CFML on the OCaml file UnionFind.ml, which contains the code for
Union-Find, as shown in Figure 1. We obtain a Coq file, UnionFind_ml.v, which contains a
series of axioms. For each toplevel OCaml function, we get two axioms: one asserts that this
function exists (and names it), while the other provides a means (based on this function’s
characteristic formula) of establishing a Hoare triple about this function. For instance, for
the OCaml function find, the following two axioms are generated:

Parameter find : func.
Parameter find__cf :
∀A_ : Type,
∀x : elem_ A_,

1 This explanation is deliberately slightly informal. It is written as though an OCaml value v could be
viewed as a Coq value, and avoids mentioning the type of v. In reality, CFML includes machinery for trans-
lating an OCaml type τ to a Coq type JτK and reflecting an OCaml value v as a Coq value JvK of type JτK.
For more details about this translation, the reader is referred to Charguéraud’s work (2013).
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∀H : hprop,
∀Q : elem_ A_→ hprop,
... (* find’s characteristic formula, applied to H and Q *)→
app find [x] H Q.

The value find is viewed in Coq as an object of abstract type func (§4.1). The type
elem_ A_ is the Coq counterpart of the OCaml type ’a elem (§7). hprop is a shorthand for
Heap→ Prop: it is the type of a Separation Logic assertion (§3.2).

The axiom find__cf states that, to establish a Hoare triple of the form app find [x] H Q,
it suffices to prove that the characteristic formula, applied to H and Q, holds.

The theorem find_spec, whose statement was shown earlier, can be proved by applying
this axiom (and cannot be proved in any other way). We place the statement and proof of
find_spec, and of other theorems like it, in a hand-written Coq file, UnionFind_proof.v.
The fact that find’s characteristic formula is large and unwieldy is hidden from the user.
CFML provides a library of Coq notations and tactics that allow us to carry out the proof of
find_spec in a natural style. As is usual in Coq, the proof is developed interactively, using a
mixture of native Coq tactics, such as induction, and CFML-specific tactics, including tactics
for applying the reasoning rules of Separation Logic and tactics for proving Separation Logic
entailments.

2.6 Trusted Computing Base

Our approach to program verification involves a number of layers, so we wish to clarify
what needs to be trusted at the transition from each layer to the next. There are three layers:

1. We prove Separation Logic specifications, in Coq, by relying on characteristic formulae.
2. One level down, we wish to argue that this yields a guarantee about the behavior of the

OCaml source code. This requires characteristic formulae to be sound with respect to
the semantics of OCaml.

3. One level down, we wish to argue this yields a guarantee about the behavior of the
compiled code. This requires the compiler to be semantics- and complexity-preserving.

Let us look in greater detail at the topmost layer. We express our specifications, and carry
out our proofs, using the Coq proof assistant. Therefore, we must trust Coq’s meta-theory
and implementation. Furthermore, for added convenience, our Coq proofs rely on a number
of standard logical axioms, including functional extensionality, propositional extensionality,
the law of excluded middle, and Hilbert’s ε operator2. The latter allows, e.g., defining “the
minimum element” of a subset of N before this subset has been proved nonempty (§6.4), or
referring to “the parent” of a node before it has been established that this node has a parent
(§6.5). In principle, we do not see any obstacle to carrying out our proofs without these
axioms, though with slightly higher effort.

Consider now the transition down to the second layer. We use the CFML tool to pro-
duce characteristic formulae what we accept as axioms in our Coq proofs. Therefore, we
must trust CFML’s meta-theory and implementation.3 The implementation of CFML is cur-
rently not verified. The first author has studied the meta-theory of CFML and proved, on

2 Hilbert’s ε operator applies to a predicate P of type A→ Prop, where A is an inhabited type. It produces
a value v of type A such that ∃x.Px implies Pv.

3 One known source of unsoundness in CFML is the gap between OCaml machine integers and Coq ideal
integers, which we have discussed already (§2.2).
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paper, that the characteristic formulae produced by CFML offer a sound means of reasoning
about OCaml code (Charguéraud, 2010, 2013). Furthermore, it is possible to formally verify
the metatheory and implementation of a characteristic formula generator. The results that we
present in Sections 3 and 4 of this paper are verified in Coq (Charguéraud and Pottier, 2017).
Also, in recent work, Guéneau et al. (2017) present a verified characteristic formula frame-
work for CakeML. Because the CakeML compiler and characteristic formula generator are
both verified, and agree on an operational semantics of CakeML, neither of them need be
trusted.

Last, consider the transition down to the third layer. We write OCaml code, and analyze
its complexity at the source level. Thus, we must trust the OCaml compiler to be correct, that
is, to produce machine code that has the same behavior and the same time complexity (up to
a program-dependent constant factor) as the source code. Whether this property holds, and
how it could be formally established, is what we examine next.

2.7 From High-Level Time Complexity Bounds to Physical Time Consumption

There are several levels at which the time complexity of a program can be measured. From
most abstract to least abstract, here are several levels that we can think of:

1. One can count how many operations of a specific kind are executed at the source level
(that is, when the source program is executed according to the operational semantics of
the source language). For instance, one can count how many function calls are executed
at the source level.

2. One can count how many operations of any kind are executed at the source level, that is,
how many reduction steps are taken when the source program is executed according to
the operational semantics of the source language.

3. One can count how many instructions are executed at the machine level, that is, how
many program instructions must be executed by a machine when the compiled program
is run. This measure depends on which target instruction set, compiler, and runtime
system are used.

4. One can measure how much physical time is spent when the compiled program is run.
This measure additionally depends on which machine, which operating system, and
which measurement methodology are used.

We attack the problem at the most abstract level, that is, level 1 above. We posit that one
function call consumes one credit. Using Separation Logic, we bound how many credits are
consumed, and therefore bound the number of β -reduction steps involved in the execution
of the OCaml source code, according to the operational semantics of OCaml.

Now, the question is, are the four levels above related to one another? Ideally, one would
hope that these four levels of measurement yield the same notion of time complexity, up to
constant factors, so that, when we establish an asymptotic time complexity bound at the
highest level, the same bound holds at the lowest level, too.

The fact that level 1 and level 2 above yield the same measure (up to a constant factor,
which depends linearly on the program size) is a property of the source language and of
its operational semantics. It could be formally stated and verified, if desired. (We have not
done so.) An intuitive argument why this property holds is that, in a fixed source program,
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every function body contains at most a constant number of instructions; so, the number of
reduction steps that are executed between two function calls is bounded by a constant4.

This idea, namely the idea that “it suffices to count the function calls”, is quite old. For
example, in the setting of a first-order functional programming language, Le Métayer (1988)
notes that “the asymptotic complexity and the number of recursive calls necessary for the
evaluation of the program are of the same order-of-magnitude”. In a higher-order functional
programming language, such as OCaml, it is possible to call a statically unknown function.
This mechanism can be used to define a fixpoint combinator, that is, to construct recursive
functions without explicitly using recursion. For this reason, every function call must be
counted, even if it is not visibly a recursive call. (It is possible to relax this rule slightly by
not counting the calls to a fixed set of built-in functions whose execution time is known to
be constant.) Danielsson (2008) describes a type system which enforces such a discipline.

The fact that level 2 and level 3 above are related (up to a constant factor, which de-
pends linearly on the program size) is a property of the target instruction set, compiler, and
runtime system. This property can in principle be formally stated and (for a fixed target in-
struction set, compiler, and runtime system) verified. Blelloch and Greiner (1995) and Sands
et al. (2002) independently address this question for call-by-value λ -calculus and prove that
counting reduction steps is a valid cost model. We assume that this property holds of the
OCaml compiler and runtime system. This has not been formally verified; however, if it did
not hold, that would arguably constitute a bug.

An intuitive argument why this property likely holds is that, ignoring for a moment the
memory allocation and garbage collection code, every source instruction is translated by the
OCaml compiler to at most a constant number of machine instructions. In particular, the
cost of evaluating a λ -abstraction (that is, building a closure) and the cost of evaluating a
variable (that is, accessing a field in a closure) are both bounded by a constant. In the OCaml
compilers, a flat representation of closures is employed, so the cost of building a closure is
(up to a constant) the number of free variables of this closure, which can itself be regarded
as a constant, as it depends only on the source program, not on the input data. Accessing a
field in a closure is just a memory read, so has constant cost as well.

The cost of memory allocation and garbage collection may naively seem uncontrollable,
as it is well-known that garbage collection can cause long pauses at unpredictable times.
However, it is not difficult to argue that certain collection algorithms, such as stop-and-copy,
have constant amortized per-allocation cost, provided there is “enough” free space, that is,
provided the ratio of heap size to live data size remains above a constant k, where k must
be strictly greater than 1 (Appel, 1992, Chapter 16). There are also “real-time” collection
algorithms with constant worst-case per-allocation cost, such as Baker’s (1978).

The CerCo project (Amadio and Régis-Gianas, 2011; Ayache et al, 2012; Amadio et al,
2014) has built compilers for C and ML which (roughly speaking) annotate every basic
block in the source program with the maximum actual cost (according to a concrete model
of the target machine) of the corresponding compiled basic block. Furthermore, these com-
pilers are verified, so that these annotations are guaranteed to be correct upper bounds. This
allows carrying out a worst-case-execution-time analysis in terms of the source program and
nevertheless obtain a concrete upper bound that holds at the machine level (that is, level 3
above). Furthermore, this proves that counting how many basic blocks are entered when the
source program is executed yields the same result, up to a constant factor (which depends

4 This argument assumes that the programming language has neither iteration statements (while, for,
etc.) nor unstructured control statements (break, continue, goto, etc.). One way of dealing with these
statements is to encode them in terms of recursive functions, so that, after this encoding, “counting every
function call” is indeed sufficient.
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v := x | n | () | (v,v) | l | µ f .λx.t | ref | get | set
t := v | if v then t else t | let x = t in t | (v v)

Fig. 2 Syntax of values and terms

EVAL-VAL

v/m ⇓0 v/m

EVAL-IF
v 6= 0 ∧ t1/m ⇓n v′/m′

∨ v = 0 ∧ t2/m ⇓n v′/m′

(if v then t1 else t2)/m ⇓n v′/m′

EVAL-LET
t1/m ⇓n1 v1/m′ [v1/x] t2/m′ ⇓n2 v/m′′

(let x = t1 in t2)/m ⇓(n1+n2) v/m′′

EVAL-APP
[µ f .λx.t/ f ] [v/x] t/m ⇓n v′/m′

((µ f .λx.t) v)/m ⇓(n+1) v′/m′

EVAL-REF
l /∈ dom(m)

(ref v)/m ⇓0 l/m] (l 7→ v)

EVAL-GET
l /∈ dom(m)

(get v)/m] (l 7→ v) ⇓0 v/m] (l 7→ v)

EVAL-SET
l /∈ dom(m)

(set (l, v))/m] (l 7→ v′) ⇓0 ()/m] (l 7→ v)

Fig. 3 Cost-instrumented big-step operational semantics

on the program), as measuring the cost of executing the compiled program. In other words,
these compilers preserve asymptotic complexity: when they are used, levels 1, 2 and 3 above
yield the same measure, up to a program-dependent constant factor.

Finally, the fact that levels 3 and 4 above are related (up to a constant factor) may sound
plausible, but would be difficult to prove, as that would require formal models of the machine
and operating system. Certainly the constant factor would have to be quite large, so as to take
into account the possibility of cache misses, page faults, interrupts, and so on.

3 Separation Logic with Time Credits

3.1 Source language syntax and semantics

We consider an imperative call-by-value λ -calculus (Figure 2). The syntactic categories are
values v and terms t. The values include variables x (also f ), integer literals n, the unit
value (), pairs (v1,v2), memory locations l, recursive functions µ f .λx.t, and the three prim-
itive operations for allocating, reading, and writing references. The terms include a construct
for returning a value, a conditional construct, sequencing, and function invocation.

Following common practice, the calculus is presented in “administrative normal form”.
That is, “let x = t1 in t2” is the sole sequencing construct: no sequencing is implicit in any
other construct. For instance, the conditional construct “if t then t1 else t2” cannot be ex-
pressed directly and must be encoded as “let x = t in if x then t1 else t2”. This presentation is
intended to avoid redundancy in the reasoning rules.

The operational semantics of the calculus is defined by a big-step evaluation judgment.
Because we wish to reason about time complexity, we adopt a cost-instrumented semantics.
The judgment t/m ⇓n v/m′ asserts that the evaluation of the term t in the initial memory m
terminates after n “steps” of computation, producing the value v and the final memory m′.
(A memory is a finite map of memory locations to values.) This judgment is inductively
defined in Figure 3. These rules are standard. As discussed earlier (§2.7), the only “steps”
that we wish to count are function calls, so EVAL-APP is the only rule where the counter n is
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[P] ≡ λh. h = /0 ∧ P
> ≡ λh.True
l ↪→ v ≡ λh. h = (l 7→ v)
H1 ? H2 ≡ λh. ∃h1h2. h1⊥h2 ∧ h = h1 ]h2 ∧ H1 h1 ∧ H2 h2
∃∃x.H ≡ λh. ∃x. H h

Fig. 4 Separation Logic assertions: syntax and interpretation

incremented. A simpler judgement t/m ⇓ v/m′, which does not carry a cost annotation, is
defined as ∃n. (t/m ⇓n v/m′).

3.2 Ordinary Separation Logic

In Separation Logic, an assertion H has type Heap→ Prop and describes a heap fragment.
Such an assertion has an ownership reading. If “we” know that H holds of a certain heap
fragment, then “we” are the unique owner of this heap fragment: that is, “we” have read-
write access to it, while “others” have no access to it. A heap (or heap fragment) h is just
a memory, that is, a finite map of locations to values: Heap ≡ Memory. This definition is
revisited in §3.3, where time credits are introduced.

Several fundamental forms of assertions are defined in Figure 4. These definitions re-
main in force in §3.3, where time credits are introduced.

The assertion [P] is true of an empty heap, provided the proposition P holds. (P has
type Prop.) This assertion is “pure” in the sense that it represents pure information and no
ownership. The “empty heap” assertion [ ] can be viewed as syntactic sugar for [True].

The “top” assertion > is true of any heap. It asserts that “we” may own a nonempty
heap fragment, but we know nothing about its contents. It is used in the interpretation of
Separation Logic triples (Definition 1, coming up) to describe a heap fragment that the user
has decided to discard.

The “points-to” assertion l ↪→ v is true of the singleton heap fragment (l 7→ v). This
assertion means that the reference cell at location l exists, is uniquely owned by “us”, and
currently contains the value v.

The separating conjunction H1 ? H2 is true of a heap h that can be split in two disjoint
parts h1 and h2 which respectively satisfy H1 and H2. Its definition involves two auxiliary
notions: h1⊥h2 asserts that the heaps h1 and h2 have disjoint domains; h1 ]h2 denotes the
union of two disjoint heaps. We also write Q ? H ′ as sugar for λx. (Q x ? H ′).

Existential quantification, lifted to the level of assertions, is written ∃∃x.H.
Entailment, written H1 � H2 and pronounced “H1 entails H2”, is defined as follows:

∀h. H1 h ⇒ H2 h. Entailment is used in the reasoning rules of Separation Logic (Figure 5,
coming up) and in the construction of characteristic formulae (§4). Entailment between
postconditions, written Q� Q′, is sugar for ∀x.(Q x)� (Q′ x).

A Separation Logic triple {H} t {Q} is defined as follows:

Definition 1 (Separation Logic Triple) A triple {H} t {Q} is short for the proposition:

∀m,H ′. (H ? H ′)m ⇒ ∃v,m′.
{

t/m ⇓ v/m′

(Q v ? H ′ ? >) m′

In order to understand this definition, it is useful to first read the special case where H ′

is the empty heap assertion. One finds that, for the Hoare triple {H} t {Q} to hold, starting
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FRAME
{H} t {Q}

{H ? H ′} t {Q ? H ′}

CONSEQUENCE
H � H ′ {H ′} t {Q′} Q′ � Q

{H} t {Q}

DISCARD-POST
{H} t {Q ? H ′}
{H} t {Q}

EXTRACT-PROP
P ⇒ {H} t {Q}
{[P] ? H} t {Q}

EXTRACT-EXISTS
∀x. {H} t {Q}
{∃∃x.H} t {Q}

VAL
{[ ]} v {λy. [y = v]}

IF
n 6= 0 ⇒ {H} t1 {Q}
n = 0 ⇒ {H} t2 {Q}

{H} (if n then t1 else t2) {Q}

LET
{H} t1 {Q′}

∀x. {Q′ x} t2 {Q}
{H} (let x = t1 in t2) {Q}

APP
v1 = µ f .λx.t {H} ([v1/ f ] [v2/x] t) {Q}

{H} (v1 v2) {Q}

REF
{[ ]} (ref v) {λx. ∃∃l. [x = l] ? l ↪→ v}

GET
{l ↪→ v} (get l) {λx. [x = v] ? l ↪→ v}

SET
{l ↪→ v′} (set (l, v)) {λx. l ↪→ v}

Fig. 5 Reasoning rules for ordinary Separation Logic; rule APP is revised in Figure 6

APP-PAY
v1 = µ f .λx.t {H} ([v1/ f ] [v2/x] t) {Q}

{$1 ? H} (v1 v2) {Q}

Fig. 6 Revised reasoning rules for Separation Logic with Time Credits

from any initial heap m that satisfies the precondition H, the term t must run without error
and terminate, producing some value v and some final heap m′, a fragment of which5 must
satisfy the postcondition Q v.

The universal quantification over an arbitrary heap predicate H ′ effectively “builds the
frame rule” into the interpretation of triples. That is, for {H} t {Q} to hold, executing t must
not affect the heap outside of the fragment described by the precondition H. To see why
Definition 1 indeed imposes this heap-preservation property, let m2 denote an arbitrary heap
fragment, and instantiate H ′ with the predicate “= m2”, which characterizes the heaps that
are exactly the same as m2. Then, according to Definition 1, starting from any initial heap m
of the form m1]m2, where m1 satisfies H, the term t must run without error and terminate,
producing some value v and some final heap m′ of the form m′1 ]m2, where a fragment of
m′1 satisfies Q v.

This is a logic of total correctness: in a valid triple, the precondition must be strong
enough to ensure termination. Anyway, when we extend the logic with time credits (§3.3),
we impose the even stronger requirement that the computation must terminate within a cer-
tain time bound, which is encoded in the precondition and postcondition.

The reasoning rules of Separation Logic appear in Figure 5. The first part of the rules,
from FRAME up to EXTRACT-EXISTS, are non-syntax-directed: they can be applied to any term t.

5 Requiring (Q v ? >) m′ is equivalent to requiring that Q v be satisfied by some fragment of m′. This
condition is more permissive than Q v m′. This yields extra flexibility: the postcondition need not describe all
of the final heap; it may describe just a part of it. This interpretation allows validating the “garbage collection”
rule, that is, rule DISCARD-POST in Figure 5.



Correctness and Amortized Complexity of a Union-Find Implementation 15

The remaining rules are syntax-directed: there is one rule for each construct in the syntax of
terms. We do not explain these rules, as they are standard (Reynolds, 2002).

Although these reasoning principles are presented in the form of inference rules, they
should not be read as an inductive definition of Hoare triples. Instead, each of them is really
a separate lemma, whose validity can be established, based on Definition 1. Thus:

Theorem 1 (Soundness of Separation Logic) Each of the reasoning rules in Figure 5 is
valid with respect to the interpretation of triples given by Definition 1.

The proof of this theorem is straightforward, and has been machine-checked (Char-
guéraud and Pottier, 2017).

The meaning of Separation Logic triples (Definition 1), as well as one of the reasoning
rules (rule APP in Figure 5), are revisited in §3.3, where time credits are introduced.

3.3 Separation Logic with Time Credits

We now extend Separation Logic with time credits. To do this, we must revisit the definition
of the type Heap of heap fragments. Instead of defining Heap as a synonym for Memory,
as in the previous section (§3.2), we let a heap h be a pair (m,c) of a memory m and a
natural number c, which represents a number of time credits that “we” own and are allowed
to spend. Thus, we posit:

Heap ≡ Memory×N.

This new interpretation of Heap allows us to define the assertion $n, which asserts the
ownership of (exactly) n time credits.

$n ≡ λ (m,c). m = /0 ∧ c = n

The definitions of the standard Separation Logic assertions (Figure 4) are unchanged,
provided some of our notation is lifted from the level of memories m to the levels of heaps h.
In the first equation, the empty heap /0 must be understood as a pair ( /0,0) of the empty
memory and zero time credits. Similarly, in the third equation, the singleton heap (l 7→ v)
must be understood as the pair ((l 7→ v),0) of the singleton memory (l 7→ v) and zero time
credits:

/0 ≡ ( /0,0)
(l 7→ v) ≡ ((l 7→ v),0)

In the fourth equation, the notions of disjointness of heaps and disjoint union of heaps are
defined in terms of disjointness of memories and disjoint union of memories, as follows:

(m1,c1)⊥ (m2,c2) ≡ m1⊥m2

(m1,c1)] (m2,c2) ≡ (m1]m2, c1 + c2)

In other words, the partial commutative monoid (Heap,]) is the product of the partial
commutative monoids (Memory,]) and (N,+).

Based on these definitions, the following equalities between assertions can be proved:

$(n+n′) = $n ? $n′ and $0 = [].

These equalities play an essential role in proofs of programs. In particular, thanks to the
left-hand equality, if at a function call the caller has m credits at hand and the callee requires
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n credits, then, provided m≥ n holds, one can transform $m into $n ? $(m−n). The first
conjunct is used to justify the call, while the second conjunct can be framed out during
the call, so n−m credits remain after the call. Furthermore, the left-hand equality, combined
with rule DISCARD-POST in Figure 5, allows weakening $m to $n when m≥ n holds, throwing
away m− n unneeded credits. This is typically useful when the branches of a conditional
construct require different amounts of credits.

At this point, credits are purely an accounting device: one can carry them around, split
them, join them, and so on, but they do not (yet) have any connection with the consumption
of actual computational resources, such as space, energy, or time. There remains to revise
the definition of Separation Logic triples (Definition 1) so as to connect the notion of credit
with the number of computation steps that are taken by the program, therefore allowing
credits to be interpreted as “time credits”.

Three steps are required to adapt Definition 1. First, the precondition H ? H ′ now ap-
plies not just to a memory m, but to a heap, which is now a pair (m,c) of a memory and a
number of credits. Similarly, the postcondition Q v ? H ′ ? > now applies to a pair (m′,c′) of
a memory and a number of credits. Second, the evaluation judgment t/m ⇓ v/m′ is replaced
with its cost-instrumented counterpart, written t/m ⇓n v/m′, where n denotes the number of
computation steps. Last but not least, we wish to keep track of a relationship between the
newly-introduced variables c, c′, and n. Therefore, we add the constraint c = n+ c′, which
captures the fact that the number of initially available credits is exactly the sum of the num-
ber of computation steps that are taken and the number of credits that remain. The revised
definition is thus as follows.

Definition 2 (Triples in Separation Logic with Time Credits) A triple {H} t {Q} is short
for the following proposition:

∀m,c,H ′. (H ? H ′)(m,c) ⇒ ∃n,v,m′,c′.


t/m ⇓n v/m′

(Q v ? H ′ ? >) (m′,c′)
c = n+ c′

In the particular case where H ′ is instantiated as the empty heap assertion, one finds that
the Hoare triple {H} t {Q} implies the following guarantee:

“If H (m,c) holds, then there exist n, v, and m′ such that t/m ⇓n v/m′ and c≥ n”.

That is, if (m,c) satisfies the precondition H, then the program t, executed in the initial
memory m, runs safely and terminates after at most c computation steps. In other words, the
number of credits that one (fictionally) initially supplies is an upper bound for the cost of
running the program.

All of the reasoning rules shown in Figure 5 except APP can be proved sound with respect
to the revised definition of triples. APP, as shown in Figure 5, is unsound. Indeed, a function
call costs 1 at runtime: this must be reflected in the reasoning rule by consuming one credit.
Therefore, we replace APP with APP-PAY (Figure 6).

Theorem 2 (Soundness of Separation Logic with Time Credits) Each of the reasoning
rules in Figure 5 except APP is valid with respect to the interpretation of triples given by
Definition 2. So is rule APP-PAY in Figure 6.

The proof of this theorem is again straightforward (Charguéraud and Pottier, 2017).



Correctness and Amortized Complexity of a Union-Find Implementation 17

JvK ≡ local(λHQ. H � Qv) (1)

Jif b then t1 else t2K ≡ local(λHQ. (b = true ⇒ Jt1KH Q)
∧ (b = false⇒ Jt2KH Q)

) (2)

Jlet x = t1 in t2K ≡ local(λHQ. ∃Q′. Jt1KH Q′ ∧ ∀x. Jt2K(Q′ x)Q) (3)

Jv1 v2K ≡ local(λHQ. Appv1 v2 H Q) (4)

Jlet f = (µ f .λx.t1) in t2K ≡ local (λHQ. ∀ f .(∀x. (Jt1K⊆ App f x))⇒ Jt2KH Q)

where F1 ⊆ F2 ≡ ∀HQ. F1 H Q ⇒ F2 H Q

(5)

Fig. 7 Construction rules for characteristic formulae

∀v. App ref v [ ] (λ r. (r ↪→ v))
∀rv. App get r (r ↪→ v) (λx. (r ↪→ v) ? [x = v])
∀rvv′. App set (r,v) (r ↪→ v′) (λ_.(r ↪→ v))

Fig. 8 The specifications of the primitive operations, expressed as axioms about App

4 Characteristic Formulae

We now give a characteristic-formula presentation of the Separation Logic described in
the previous section (§3). We first recall the construction of characteristic formulae in the
absence of time credits (§4.1), then adapt this construction slightly so as to account for time
credits (§4.2).

4.1 Ordinary Characteristic Formulae

As explained earlier (§2.5), the characteristic formula JtK is intended to denote the set of
all valid specifications of the term t. That is, for any precondition H and postcondition Q,
the proposition JtKH Q should hold if and only if the Hoare triple {H} t {Q} is valid. The
left-to-right implication is Theorem 3, further on. The right-to-left implication corresponds
to completeness: it is established in the first author’s Ph.D. thesis (Charguéraud, 2010), but
is not essential (and not proved) in the present paper.

The characteristic formula JtK is constructed in a compositional manner, by induction
over the syntax the term t. It is defined by the equations in Figure 7.

Two auxiliary predicates appear in characteristic formulae. The predicate App f vH Q
is defined as {H} f v {Q}. As far as the end user is concerned, it is abstract: it is never
necessary to unfold it (or to unfold the definition of a Hoare triple) in the course of reasoning
about a program. The predicate transformer local is explained further on and can be ignored
for the moment.

The equations in Figure 7 provide a syntax-directed reformulation of the reasoning rules.
For example, equation (3) mimics the two premises of the reasoning rule LET. Naturally, it
involves an existential quantification over the intermediate assertion Q′, which appears in the
premises of LET, but not in its conclusion. Equations (4) and (5) concern function definitions
and function applications. When a function is defined, an App assumption is introduced (5);
when a function is called, an App assumption is exploited (4). In short, equation (5) states
that if the body t1 of the function f satisfies a specification {H ′} · {Q′}, then one can assume
that a call f x satisfies the same specification.
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The characteristic formula for a recursive function definition, given in (5), does not build
in an induction principle. This is in contrast with the traditional Hoare logic rule for reason-
ing about a recursive function, which requires the user to supply a specification (as well as a
termination measure) and requires proving that the function body satisfies this specification
under the hypothesis that every recursive call satisfies it. Here, the characteristic formula is
constructed without any input from the user. In order to prove that a recursive function satis-
fies a certain specification, the user must state this fact as a lemma and prove it by induction,
using the induction facility of the host system—in our case, Coq. Such an induction is typi-
cally conducted over an argument of the function, or over an auxiliary variable that appears
in the specification. Thus, the induction hypothesis allows reasoning about recursive calls
on “smaller” arguments.

Because functions are values, equation (4) overlaps with the combination of equations (3)
and (1). This overlap is not problematic: all of the equations are correct anyway. That said,
one should give higher priority to equation (4), when applicable. Indeed, after App is made
abstract, equation (4) becomes more informative than the combination of equations (3)
and (1), as it introduces a hypothesis about App f that cannot otherwise be proved outside of
the abstraction barrier.

When App is made abstract, the reasoning rules REF, GET, and SET of Figure 5 must be
exposed in the forms of axioms about App, shown in Figure 8. These properties must be
exposed at this point because, outside of the abstraction barrier, they cannot be proved.

The predicate transformer local, which appears at the head of every node in a character-
istic formula, allows applying the structural rules of Separation Logic at any point during
reasoning. For example, to apply the FRAME rule while reasoning, one may exploit the fol-
lowing property of local: JtKH1 Q1 ⇒ localJtK(H1 ? H2)(Q1 ?H2). For each of the other
structural rules, namely CONSEQUENCE, DISCARD-POST, EXTRACT-PROP, and EXTRACT-EXISTS,
local enjoys a corresponding property. Should several structural rules be applied succes-
sively, local can be duplicated as many times as needed, thanks to the logical equivalence
localJtKH Q= local(localJtK)H Q. Should no structural rule be applied, local may simply be
eliminated, thanks to the implication JtKH Q ⇒ localJtKH Q. These properties follow from
the definition of local, which, for reference, is provided below:

localF H Q ≡ ∀h. H h ⇒ ∃H1H2Q1.


(H1 ? H2)h

F H1 Q1

Q1 ?H2 � Q?>

The CFML tool parses OCaml source code and produces its characteristic formula, ex-
pressed as a Coq proposition. Furthermore, CFML comes with a library of Coq tactics which
allows the user to reason at a high level, that is, in terms of the reasoning rules of Separation
Logic. There is no need for the user to read or understand characteristic formulae.

The manner in which CFML constructs characteristic formulae for OCaml code closely
follows the above description, with one major addition, namely, a transparent type-directed
lifting of OCaml values as Coq values. In the above presentation, every value v is viewed
in Coq as an object of type Val. Thus, every postcondition Q is viewed in Coq as a formula
of type Val→ Heap→ Prop. This forces the end user to explicitly work with predicates
that classify values, e.g., “this value represents an integer”, “this value represents a list of
integers”, and so on. By constrast, CFML exploits the type information present in OCaml
programs so as to transparently lift every OCaml value into a Coq value of suitable type.
Thus, an OCaml program of type int list is described in Coq using a postcondition of type
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(list int)→ Heap→ Prop. Thus, the end user is presented with the illusion that the program
produces “a list of integers”, as opposed to “a value that represents a list of integers”.

Through this lifting, every OCaml function is lifted as a Coq value of abstract type func.
By default, nothing is known about this type or its inhabitants. The only way for the user to
reason about functions is via the predicate App, whose type is ∀AB. func→ A→ (Heap→
Prop)→ (B→ Heap→ Prop)→ Prop.

For more information on CFML, the reader is referred to Charguéraud’s paper (2013).

4.2 Characteristic formulae with Time Credits

To ensure that a time credit effectively represents “a right to perform one function call”, we
must enforce the spending of one credit at every function call. One way of achieving this
is by modifying the characteristic formula generator. We alter equation (5) above to impose
the consumption of one credit at the beginning of every function body:

Jlet f = (µ f .λx.t1) in t2K ≡ local (λHQ. ∀ f .(∀x. (TickJt1K⊆ App f x))⇒ Jt2KH Q)

where

TickF ≡ λHQ. ∃H ′. H � $1? H ′ ∧ F H ′Q

The calculus presented here does not have iteration constructs. If it did, then a similar modi-
fication would be required so as to enforce the spending of one credit in every loop iteration.

An alternative way of enforcing spending, which does not require any change to the
characteristic formula generator, is to preprocess the source program. The transformation
inserts a call to an abstract function, named pay, at the beginning of every function body.
pay has type unit -> unit. It is analogous to Danielsson’s “tick” (2008).

One, and only one, specification is provided for pay. It causes one credit to be consumed
when pay is invoked:

Apppay()($1)(λ_. [ ])

The precondition $1 demands one time credit, while the postcondition [ ] is empty. Thus,
when reasoning about a call to pay, the user has no choice but to exploit this specification
and give away one time credit.

The two approaches described above are logically equivalent; we choose the former, but
the latter would work equally well.

The first author has proved that ordinary characteristic formulae are sound with respect
to ordinary Separation Logic (Charguéraud, 2010). We extend this theorem so as to account
for time credits.

Theorem 3 (Soundness of Characteristic Formulae)

∀t,H,Q. JtKH Q ⇒ {H} t {Q}

The proof is straightforward and has been machine-checked (Charguéraud and Pottier, 2017).
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(* The type "data" corresponds to the type variable "’a" in the OCaml code. *)
(* The type "elem" corresponds to the type "’a elem" in the OCaml code. *)

Implicit Types D : set elem.
Implicit Types R : elem→ elem.
Implicit Types V : elem→ data.

Definition UF D R V : heap→ Prop :=
... (* "UF D R V" should be viewed as an abstract assertion. *)

Theorem UF_properties : ∀D R V, UF D R V . UF D R V ? [
(∀ x, R (R x) = R x) ∧
(∀ x, x ∈ D→ R x ∈ D) ∧
(∀ x, x 6∈ D→ R x = x) ∧
(∀ x, x ∈ D→ V x = V (R x))

].

Theorem UF_create : ∀V, [ ] . UF /0 id V.

Theorem UF_join : ∀D1 R1 V1 D2 R2 V2,
UF D1 R1 V1 ? UF D2 R2 V2 .
UF

(D1 ∪ D2)
(fun x⇒ If x ∈ D1 then R1 x else R2 x)
(fun x⇒ If x ∈ D1 then V1 x else V2 x)

? [ D1 ∩ D2 = /0 ].

Theorem make_spec : ∀D R V v,
app UnionFind_ml.make [v]
PRE (UF D R V ? $3)
POST (fun x⇒
UF (D ∪{x} ) R (fun z⇒ If R z = R x then v else V z)
? [ x 6∈ D ]).

Theorem find_spec : ∀D R V x, x ∈ D→
app UnionFind_ml.find [x]
PRE (UF D R V ? $(2 * alpha (card D) + 4))
POST (fun y⇒ UF D R V ? [ R x = y ]).

Theorem get_spec : ∀D R V x, x ∈ D→
app UnionFind_ml.get [x]
PRE (UF D R V ? $(2 * alpha (card D) + 5))
POST (fun v⇒ UF D R V ? [ v = V x ]).

Theorem set_spec : ∀D R V x v, x ∈ D→
app UnionFind_ml.set [x v]
PRE (UF D R V ? $(2 * alpha (card D) + 5))
POST (# UF D R (fun z⇒ If R z = R x then v else V z)).

Theorem eq_spec : ∀D R V x y, x ∈ D→ y ∈ D→
app UnionFind_ml.eq [x y]
PRE (UF D R V ? $(4 * alpha (card D) + 9))
POST (fun b⇒ UF D R V ? [ b = true ↔ R x = R y ]).

Theorem union_spec : ∀D R V x y, x ∈ D→ y ∈ D→
app UnionFind_ml.union [x y]
PRE (UF D R V ? $(4 * alpha (card D) + 12))
POST (fun z⇒
UF D

(fun w⇒ If R w = R x ∨R w = R y then z else R w)
(fun w⇒ If R w = R x ∨R w = R y then V z else V w)

? [ z = R x ∨z = R y ]).

Fig. 9 Complete specification of Union-Find
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5 Specification of Union-Find

Our formal specification of the Union-Find library, shown in Figure 9, is expressed in Coq.
Using Coq sections and notations, we set things up so that the Coq types data and elem
respectively correspond to the OCaml types ’a and ’a elem in the code of Figure 1. The
type data is a parameter: the specification is polymorphic with respect to it, and it is up
to the client to instantiate it. The type elem, on the other hand, is abstract: the client is not
supposed to know how it is defined.

The specification begins with the declaration of a representation predicate, UF. Like
elem, it is abstract: the client is not supposed to know how it is defined. (We present and
explain its definition in §7.) The Separation Logic assertion UFDRV claims the existence
(and unique ownership) of a Union-Find data structure, whose current state is summed up
by the parameters D, R and V .

The parameter D, whose type is elem→ Prop, is the domain of the data structure, that
is, the set of all elements. The parameter R, whose type is elem→ elem, maps every element
to its representative. The parameter V , whose type is elem→ data, maps every element to
the datum that is carried by its equivalence class. In Coq, we assume that the type data is
inhabited. This benign assumption allows us to view V as a total function whose behavior
outside of D is irrelevant.

Since R maps an element to its representative, we expect it to be an idempotent function
of the set D into itself. Furthermore, although this is in no way essential, we decide that
R should be the identity outside D. Finally, because V maps an element to a datum that is
associated with its equivalence class, we expect V to be compatible with R. These properties
are advertised to the client via the first theorem in Figure 9, namely UF_properties. Its
statement is of the form UFDRV � UFDRV ? [P], which means that, if one owns UFDRV ,
then one can deduce that P holds. (Recall that � denotes entailment of assertions and that
[P] denotes a pure assertion.) Thus, UF_properties states that, if one owns UFDRV , then
D, R and V must enjoy the properties listed above.

The next theorem, UF_create, asserts that out of nothing one can create an empty
Union-Find data structure. Its statement is, again, an entailment. It can be exploited via
the rule of CONSEQUENCE of Separation Logic (Figure 5). Creating an empty Union-Find
data structure is a “ghost” operation: indeed, the OCaml code does not explicitly offer such
an operation. Yet, it is essential: without it, the library would be unusable, since UF appears
in the precondition of every operation other than UF_create.

In our conference paper (Charguéraud and Pottier, 2015), which follows the classic
proof (Tarjan, 1999; Cormen et al, 2009), UF_create takes a parameter N, which becomes
a (fixed) upper bound on the number of elements that can ever exist in this Union-Find
data structure. The parameter N must be fixed at this time because it appears in the defini-
tion of the potential function Φ . In contrast, in the present paper, we follow Alstrup et al.’s
proof (2014). This removes the need to fix N in advance and makes our specification easier
to understand and to use.

The third theorem, UF_join, represents another “ghost” operation. It asserts that two
disjoint (therefore independent) Union-Find data structures can be viewed as a single Union-
Find data structure. (The construct If P then e1 else e2, where P is in Prop, is a noncon-
structive conditional. It is defined using the law of excluded middle and Hilbert’s ε operator.)
Quite remarkably, the Union-Find data structure supports merging at zero cost! Although we
do not have enough experience to tell whether this theorem might be useful to some clients,
we believe that it deserves to be stated and proved. Its proof is conceptually trivial, and does
not require any change to the potential function, but still requires a nontrivial amount of
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work, as one must dig deep down into the definition of every internal invariant and check
that it is preserved by joining.

In principle, it should be possible to offer the converse ghost operation: that is, to allow
conceptually splitting a Union-Find data structure into two independent Union-Find data
structures, provided the split respects the equivalence classes. We have not done so at this
time.

Next comes the specification of the OCaml function make. The theorem make_spec
refers to UnionFind_ml.make, which is defined for us by CFML and has type func (§4.1).
It states that UnionFind_ml.make satisfies a certain triple, thereby describing the behavior
of make. The precondition is the conjunction of UFDRV , which describes the pre-state, and
of $3, which indicates that make works in constant time. In the postcondition, x denotes
the element returned by make. The postcondition describes the post-state via the assertion
UFD′RV ′, where D′ is D∪{x}, as the domain has grown, and where V ′ maps x to the user-
supplied datum v and elsewhere coincides with V . The postcondition also asserts that x is
new, that is, distinct from all previous elements. The new element is its own representative:
by our convention, R must be the identity outside D, so Rx must be x.

The next theorem provides a specification for find. The argument x must be a member
of D. In addition to UFDRV , the precondition requires 2α(|D|)+4 credits. This reflects the
amortized cost of find. The postcondition asserts that find returns an element y such that
Rx = y. In other words, find returns the representative of x. Furthermore, the postcondition
asserts that UFDRV still holds. Even though path compression may update internal pointers,
the parameters D, R, and V , which represent the client’s view of the state, are unchanged.

The specifications of get and set are analogous to that of of find. The function get
returns the datum v associated with the element x. This is expressed by the equation v =V x
in the postcondition. The function set updates the datum associated with (the equivalence
class of) x. This is expressed by replacing V in the postcondition with V ′, where V ′ maps
every element in the equivalence class of x to v and elsewhere coincides with V .

The specification of eq indicates that this function returns a Boolean result, which tells
whether the elements x and y are in the same equivalence class. Its cost is one (for calling eq)
plus the cost of two calls to find.

The precondition of union requires UFDRV together with 4α(|D|)+ 12 time credits.
The postcondition indicates that union returns an element z, which is either x or y, and has
the effect of updating the data structure to UFDR′V ′, where R′ (resp. V ′) maps to z (resp.
to V z) every element that was equivalent to x or y. This means that the equivalence classes
of x and y are merged and that, out of the two pieces of user data associated with these
classes, an arbitrary one is retained.

The function link is internal, so its specification (given in §7) is not public.

6 Mathematical Analysis of Disjoint Set Forests

We carry out a mathematical analysis of disjoint set forests. This is a Coq formalization
of the classic proof found in textbooks (Tarjan, 1999; Cormen et al, 2009) and of Alstrup
et al.’s proof (2014). The two proofs have the same overall structure, differing only in the
details of the potential function, so a large part of the effort is shared between them. Our
conference paper shows the classic proof; in this paper, we present Alstrup et al.’s version.
This mathematical analysis is independent of the OCaml code (Figure 1) and of the content
of the previous sections (§3–§5). For brevity, we elide many details; we focus on the main
definitions and highlight a few lemmas.
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6.1 Disjoint Set Forests as Graphs

We model a disjoint set forest as a graph. The nodes of the graph inhabit a type V which
is an implicit parameter throughout this section (§6). As in §5, the domain of the graph is
represented by a set D of nodes. The edges of the graph are represented by a relation F
between nodes. Thus, F xy indicates that there is an edge from node x to node y.

The predicate pathF is the reflexive, transitive closure of F . Thus, pathF xy indicates
the existence of a path from x to y. A node x is a root if it has no successor. A node x is
represented by a node r if there is a path from x to r and r is a root.

Definition is_root F x := ∀y, ¬ F x y.
Definition is_repr F x r := path F x r ∧is_root F r.

Several properties express the fact that the graph represents a disjoint set forest. First,
the relation F is confined to D: whenever there is an edge from x to y, the nodes x and y
are members of D. Second, the relation F is functional: every node has at most one parent.
Finally, the relation is_reprF is defined: every node x is represented by some node r. This
ensures that the graph is acyclic. The predicate is_dsf is the conjunction of these three
properties:

Definition confined D F :=
∀x y, F x y→ x ∈ D ∧y ∈ D.

Definition functional F :=
∀x y z, F x y→ F x z→ y = z.

Definition defined R :=
∀x, ∃y, R x y.

Definition is_dsf D F :=
confined D F ∧functional F ∧defined (is_repr F).

6.2 Correctness of Path Compression

The first part of our mathematical analysis is mostly concerned with the functional correct-
ness of linking and path compression. Here, we highlight a few results on compression.
Compression assumes that there is an edge between x and y and a path from y to a root z.
It replaces this edge with a direct edge from x to z. We write compressF xz for the re-
lation that describes the edges after this operation: in set-theoretic terms, it is defined as
F \ {(x,_)}∪{(x,z)}.

We prove that, although compression destroys some paths in the graph (namely, those
that used to go through x), it preserves the relationship between nodes and roots. More pre-
cisely, if v has representative r in F , then this still holds in the updated graph compressF xz.

Lemma compress_preserves_is_repr : ∀D F x y z v r,
is_dsf D F→ F x y→ is_repr F y z→
is_repr F v r→ is_repr (compress F x z) v r.

It is then easy to check that compression preserves is_dsf.
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6.3 Ranks

In order to perform linking-by-rank and to reason about it, we attach a rank to every node
in the graph. To do so, we introduce a function K of type V → N. This function satisfies
a number of interesting properties. First, because linking makes the node of lower rank a
child of the node of higher rank, and because the rank of a node can increase only when
this node is a root, ranks increase along graph edges. Furthermore, a rank never exceeds
log |D|. Indeed, if a root has rank p, then its tree has at least 2p elements. We record these
properties using a new predicate, called is_rdsf, which extends is_dsf. This predicate also
records the fact that D is finite. Finally, we find it convenient to impose that the function K
be uniformly zero outside of the domain D.

Definition is_rdsf D F K :=
is_dsf D F ∧
(∀ x y, F x y→ K x < K y) ∧
(∀ r, is_root F r→ 2^(K r) ≤ card (descendants F r)) ∧
finite D ∧
(∀ x, x 6∈ D→ K x = 0).

It may be worth noting that, even though at runtime only roots carry a rank (Figure 1),
in the mathematical analysis, the function K maps every node to a rank. The value of K at
nonroot nodes can be thought of as “ghost state”.

6.4 Ackermann’s Function and its Inverse

For the amortized complexity analysis, we need to introduce Ackermann’s function, written
Ak(x), where k ≥ 0. Let us write f (i) for the i-th power of a function f , which is defined by
f (0)(x) = x and f (i+1)(x) = f ( f (i)(x)). According to Tarjan (1999), Ackermann’s function
is defined as follows:

A0(x) = x+1 Ak+1(x) = A(x+1)
k (x)

Informally, Ak+1(x) can also be written Ak(Ak(...Ak(x)...)), where there are x+ 1 nested
applications of Ak.

This is transcribed in Coq as follows. We write iter i f for f (i).

Definition A k := iter k (fun f x⇒ iter (x+1) f x) (fun x⇒ x+1).

That is, Ak is the k-th power of λ f .λx. f (x+1)(x), applied to A0. The leftmost use of iter
is at type N→ N; the rightmost one is at type N. This definition is well-known; see, for
instance, Hutton (1999, §5.2) or Bertot and Castéran (2004, §4.3.3.2).

The inverse of Ackermann’s function, written α(n), maps n to the smallest k such that
Ak(1)≥ n holds. Below, mminle denotes the minimum element of a nonempty subset of N.
The function mmin is defined using Hilbert’s ε operator.

Definition alpha n := mmin le (fun k⇒ A k 1 ≥ n).

Alstrup et al. (2014) define αr(n) as one plus the smallest k such that Ak(r)≥ n+1 holds.

Definition alphar r n := mmin le (fun k⇒ A k r ≥ n + 1) + 1.
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In the case where r is 1, which is of particular interest to us, one finds α1(n) = α(n+1)+1.
Unfortunately, Alstrup et al. do not index Ackermann’s function Ak in the same way as
Tarjan and we do. They let k count from 1 and up, whereas, following Tarjan, we let k count
from 0 and up. For this reason, our definitions differ slightly from those found in Alstrup et
al.’s paper.

6.5 Potential

For every node x, Tarjan (1999) and Alstrup et al. (2014) write p(x) for the parent of x in the
forest. If x is not a root, p(x) is uniquely defined. We define p(x) using Hilbert’s ε operator:

Definition p F x := epsilon (fun y⇒ F x y).

Thus, p F x is formally defined for every node x, but the characteristic property F x (p F x)
can be exploited only if one can prove that x has a parent.

Alstrup et al.’s definition of the potential function (2014, §4.1) relies on a few auxiliary
definitions.

First, Alstrup et al. introduce an integer parameter r, which must satisfy r ≥ 1. Later on
(§7), we let r be 1, because that is good enough for our purposes. For now, we work with
an arbitrary r, because this is more general, allows us to follow Alstrup et al. more closely,
and requires no extra effort. Alstrup et al. define the “adjusted rank” of a node x as follows:
rankr(x) is obtained by adding r to the rank of x.

Then, they define the level and index of a nonroot node x. These definitions involve the
adjusted ranks of x and of its parent, as follows:

1. The level of x, written k(x), is one plus the largest k such that rankr(p(x))≥Ak(rankr(x))
holds. It lies in the semi-open interval [1,αr(rankr(p(x)))).

2. The index of x, written i(x), is the largest i such that rankr(p(x)) ≥ A(i)
k(x)−1(rankr(x))

holds. It lies in the interval [1,rankr(x)].

The formal definitions, shown below, rely on the function mmax, which is the dual of mmin
(§6.4). The parameters r, F , K are hidden by the use of Coq sections and notations.

Definition rankr x :=
K x + r.

Definition k x :=
mmax le (fun k⇒ rankr (p x) ≥ A k (rankr x)) + 1.

Definition i x :=
mmax le (fun i⇒ rankr (p x) ≥ iter i (A (k x − 1)) (rankr x)).

The potential of a node is written φ(x). Following Alstrup et al., if x is a root, then
φ(x) is αr(rankr(x)) · (rankr(x)+ 1). If x is not a root, then φ(x) is (αr(rankr(x))− k(x)) ·
rankr(x)− i(x)+1 if the condition αr(rankr(x)) = αr(rankr(p(x))) holds, and 0 otherwise.

Definition phi x :=
If is_root F x then

alphar (rankr x) * (rankr x + 1)
else If alphar (rankr x) = alphar (rankr (p x)) then

(alphar (rankr x) − k x) * (rankr x) − i x + 1
else

0.
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The total potential Φ is obtained by summing φ over all nodes in the domain D.

Definition Phi := fold (monoid_ plus 0) phi D.

6.6 Potential Analysis

The definition of the representation predicate UF, which we present later on (§7), explicitly
mentions Φ . It states that, between two operations, we have Φ time credits at hand. Thus,
when we try to prove that every operation preserves UF, as claimed earlier (§5), we are
naturally faced with the obligation to prove that the initial potential Φ , plus the number
of credits brought by the caller, covers the new potential Φ ′, plus the number of credits
consumed during the operation:

Φ + advertised cost of operation ≥ Φ
′+ actual cost of operation

We check that this property holds for all operations. The two key operations are linking
and path compression. In the latter case, we consider not just one step of compression (that
is, updating one graph edge, as in §6.2), but “iterated path compression”, that is, updating the
parent of every node along a path, as performed by find in Figure 1. To model iterated path
compression, we introduce the predicate ipcF xd F ′, which means that, if the initial graph
is F and if one performs iterated path compression starting at node x, then one performs
d individual compression steps and the final graph is F ′.

is_rootF x
ipcF x0F

F xy is_reprF yz
ipcF yd F ′ F ′′ = compressF ′ xz

ipcF x(d +1)F ′′

On the one hand, the predicate ipc is a paraphrase, in mathematical language, of the recur-
sive definition of find in Figure 1, so it is easy to argue that “find implements ipc”. This
is done as part of the verification of find (§7). On the other hand, by following Alstrup
et al.’s proof (2014), we establish the following key lemma, which sums up the amortized
complexity analysis of iterated path compression:

Lemma amortized_cost_of_iterated_path_compression: ∀D F K x,
is_rdsf D F K→
x ∈ D→
∃d F’,
ipc F x d F’ ∧
Phi D F K + 2 * alpha (card D) + 4 ≥ Phi D F’ K + d + 1.

(Here, the parameter r of Alstrup et al.’s analysis has been fixed; it is 1.) This lemma states
that, in any initial state described by D,F,K and for any node x, (1) iterated path compression
is possible, requiring a certain number of steps d and taking us to a certain final state F ′, and
(2) more interestingly, the inequality “Φ+advertised cost≥Φ ′+actual cost” holds. Indeed,
2α(|D|)+4 is the advertised cost of find (Figure 9), whereas d+1 is its actual cost, because
iterated path compression along a path of length d involves d +1 calls to find.

7 Verifying the Code

To prove that the OCaml code in Figure 1 satisfies the specification in Figure 9, we first
define the predicate UF, then establish each of the theorems in Figure 9.
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7.1 Definition of the representation predicate

In our OCaml code (Figure 1), we have defined ’a elem as a synonym for ’a content ref,
and we have defined ’a content as an algebraic data type whose data constructors are
Link of ’a elem | Root of rank * ’a. These definitions are mutually recursive. The
CFML tool automatically mirrors these type definitions in Coq as follows. First, it defines
content_ A_ as an inductive data type. Then, it defines elem_ A_ in terms of content_ A_.

Inductive content_ A_ :=
| Link : ref_ (content_ A_)→ content_ A_
| Root : rank_→ A_→ content_ A_.

Definition elem_ A_ :=
ref_ (content_ A_).

The type ref_ A_ is defined in CFML’s library as a synonym for loc, an abstract type of
memory locations. In this definition, the type parameter A_ is unused. This explains why
Coq accepts the definition of the type content_ A_. This type is not truly recursive: it is
just a sum type. Its left injection, Link, carries a memory location; its right injection, Root,
carries an integer rank and a datum of type A_.

The type data of §5 corresponds to A_ in the above definitions. The type elem of §5 is
an abbreviation for elem_ A_, which itself is convertible with loc.

To define the assertion UFDRV , we need two auxiliary predicates, Inv and Mem.
The auxiliary predicate Inv D F K R V relates our mathematical view of the data structure,

which is encoded by the parameters D,F,K,V , and the view that is exposed to the client,
which is encoded by D,R,V . In the client’s view, K disappears altogether, because the client
does not need to know about ranks. Furthermore, F is replaced with R, because the client
cares about the mapping from elements to representatives, but does not need a description
of the entire graph. The two views are related as follows:

Definition Inv D F K R V :=
is_rdsf D F K ∧
(∀ x, is_repr F x (R x)) ∧
(∀ x, V x = V (R x)).

The first conjunct is the invariant is_rdsf D F K, which describes a ranked disjoint set forest
(§6.3). The second conjunct requires the function R and the relation is_reprF to agree. The
last conjunct requires the function V to be compatible with the equivalence relation induced
by R, so that V can be thought of as a mapping of equivalence classes to user data.

The auxiliary predicate Mem D F K V M relates a model of a disjoint set forest, represented
by D, F , K, V , and a model of the memory, represented by a finite map M of memory
locations to values of type content_ data. (This view of memory is imposed by CFML.)
M maps a location x to either Linky for some location y or Rootk v for some integer k and
user datum v. The predicate Mem D F K V M explains how to interpret the contents of memory
as a disjoint set forest. It asserts that M has domain D, that M(x) = Linky implies the
existence of an edge of x to y, and that M(x) = Rootk v implies that x is a root, that x has
rank k, and that the user datum associated with x is v.

Definition Mem D F K V M :=
dom M = D ∧
∀x, x ∈ D→
match M[x] with
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Lemma link_spec : ∀D R V x y,
x ∈ D→ y ∈ D→ R x = x→ R y = y→
app UnionFind_ml.link [x y]
PRE (UF D R V ? $3)
POST (fun z⇒

UF D (fun w⇒ If R w = R x ∨R w = R y then z else R w)
(fun w⇒ If R w = R x ∨R w = R y then V z else V w)

? [ z = x ∨z = y ]
).

Fig. 10 Specification of the function link

| Link y⇒ F x y
| Root k v⇒ is_root F x ∧k = K x ∧v = V x
end.

At last, we are ready to define the assertion UFN DR:

Definition UF D R V := ∃∃F K M,
Group Ref M ?
[ Inv D F K R V ] ?
[ Mem D F K V M ] ?
$(Phi D F K).

The first conjunct asserts the existence in the heap of a group of reference cells, collec-
tively described by the map M. (The predicates Group and Ref are provided by CFML’s
library. Group is an iterated separating conjunction.) The second conjunct constrains the
graph (D,F,K) to represent a valid disjoint set forest whose roots are described by R, while
the third conjunct relates the graph (D,F,K) with the contents of memory (M). These two
conjuncts are pure assertions. The last conjunct asserts that we have Φ time credits at hand.
The definition is existentially quantified over F , K, and M, which are not exposed to the
client.

7.2 Verification

There remains to prove that every public operation meets its specification, that is, to establish
each of the theorems in Figure 9. To this end, we must also provide a specification for the
internal function link; its statement appears in Figure 10. It is essentially the same as the
specification of union. The differences are that link must be applied to two roots and has
constant cost. It is worth noting that link requires three time credits, even though it may
seem that one credit should be enough, as link makes no function calls. The extra two
credits are used to cover a possible increase in the potential of the data structure.

The proofs of these theorems involve a mix of standard Coq tactics and tactics provided
by CFML to prove Separation Logic entailments and apply the reasoning rules of Separation
Logic. These proofs are rather short, as all we need to do at this point is to establish a corre-
spondence between the operations performed by the imperative code and the mathematical
analysis that we have already carried out. The structure of these proofs follows the structure
of the OCaml code, so (in our experience) it is relatively easy to update a proof when the
code evolves.
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The CFML library is about 5Kloc. (We count nonblank, noncomment lines of code.) The
mathematical analysis of Union-Find (§6) is about 4.3Kloc. The specification of Union-Find
(Figures 9 and 10) and the verification of the code (§7) together take up about 0.8Kloc. Both
CFML and our proofs about Union-Find rely on Charguéraud’s TLC library, a complement
to Coq’s standard library. Everything is available online (Charguéraud and Pottier, 2017).

8 Related Work

8.1 Union-Find and its analysis

Disjoint set forests and linking-by-size are due to Galler and Fischer (1964), while path
compression is attributed by Aho et al. (1974) to McIlroy and Morris. Hopcroft and Ullman
(1973) study linking-by-size and path compression and establish an amortized bound of
O(log∗N) per operation, where N is the length of the sequence of operations under consid-
eration and log∗ is the iterated logarithm function. Tarjan (1975) studies linking-by-rank and
path compression and establishes the first amortized bound in O(α(N)). After several sim-
plifications (Tarjan and van Leeuwen, 1984; Kozen, 1992), this leads to a streamlined proof
that appears in Tarjan’s online course notes (1999) and in Cormen et al.’s textbook (2009).

Kaplan et al. (2002) and Alstrup et al. (2014) establish a “local” bound. That is, they
bound the amortized cost of find(x) by O(α(n)), where n is the size of x’s set. We follow
Alstrup et al.’s proof, but let n stand for the total number of elements in the data structure,
that is, the cardinal of the domain D, as this leads to a slightly simpler statement for the end
user, and should still be strong enough for all practical purposes. Alstrup et al.’s proof has
the same overall structure as the textbook proof, but offers the advantage that the definition
of the potential function Φ does not depend on N, so N does not need to be fixed when the
Union-Find data structure is created.

Unfortunately, to the best of our understanding, none of the modern proofs conveys
much intuition, as the potential function seems to be pulled out of a hat, so to speak (§6.5).
More intuition is offered by Harfst and Reingold (2000) and by Seidel and Sharir (2005),
whose analysis is based on recurrence equations, and offers more and more precise bounds
as one refines the analysis.

Galil and Italiano (1991) offer a survey of the literature on Union-Find and its variants.

8.2 Machine-checked proofs of Union-Find

We know of a few machine-checked proofs of the functional correctness of Union-Find.
None of them deals with the algorithm’s time complexity.

Conchon and Filliâtre (2007) present an efficient persistent Union-Find algorithm, based
on two persistent arrays, which respectively store link and rank information. They verify
both the Union-Find algorithm and the underlying persistent array data structure in Coq.
The proofs are not based on the actual OCaml code, but on a (manually-constructed) Coq
model of the OCaml code. This approach is analogous to ours, except CFML automates the
process of modeling in Coq the meaning of an OCaml program.

The Ynot distribution (Chlipala et al, 2011) includes an imperative Union-Find imple-
mentation, based on two arrays, which respectively store link and rank information. The
code and its proof (which is carried out in Separation Logic) are both written in Coq.
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Lammich and Meis (2012, Chapter 18) establish the correctness of a similar Union-Find
implementation. They use two arrays, which respectively store link and size information.

Krishnaswami (2012, Chapter 5) presents a (paper) proof of Union-Find. Like us, he
uses heap-allocated vertices, and therefore supports the dynamic creation of new vertices.
He performs path compression and linking by rank. His specification of Union-Find uses an
abstract Separation Logic predicate H(φ), where φ is presented as a “formula” in a “little
logic” whose syntax is φ ::= I | elt(x,y) | φ ⊗φ . The atom elt(x,y) means that the represen-
tative of x is y; the tensor ⊗ allows constructing conjunctions of several such facts; and I
is the unit of the tensor. A moment’s thought reveals that this is just a syntactic presenta-
tion of our function R, which maps every element to its representative. So, Krishnaswami’s
specification is, in spirit at least, relatively close to ours.

We note that Union-Find is part of the VACID-0 suite of benchmark verification prob-
lems (Leino and Moskal, 2010). However, we did not find any solution to this particular
benchmark problem online.

8.3 Formal approaches to reasoning about program complexity

The idea of using a machine to assist in the complexity analysis of a program goes back at
least as far back as Wegbreit (1975). He extracts recurrence equations from the program and
bounds their solution. More recent work along these lines includes Le Métayer’s (1988) and
Danner et al.’s (2013). Although Wegbreit aims for complete automation, he notes that one
could “allow the addition to the program of performance specifications by the programmer,
which the system then checks for consistency”. We follow this route.

Okasaki (1999) explains how to reason about suspensions (also known as thunks; a
simple data structure that offers a form of memoization) in terms of “debits”. He uses this
approach in the study of many purely functional data structures. The advantage of the debit
discipline is that it does not come with an affinity restriction: whereas duplicating a credit
is unsound, duplicating a debit is sound. Danielsson (2008) formalizes Okasaki’s idea in a
type system. Pilkiewicz and Pottier (2011) show how suspensions and debits can be imple-
mented as a library on top of mutable state and credits. Madhavan et al. (2017) present an
automated system that infers and verifies resource bounds for higher-order functional pro-
grams with suspensions and (more generally) with memoization tables. They transform the
source program to an instrumented form where the cache is explicit, so that its state can be
described monotone assertions, which remain valid as the cache grows. Thus, it is possible
to assert that a suspension has been forced already, so that forcing it again will have zero
cost. This seems analogous in Okasaki’s terminology to asserting that a suspension has zero
debits, also a monotone assertion. In contrast with previous work, Madhavan et al. are able
to keep track of aliasing (that is, equalities) between suspensions. This is required in order
to obtain precise complexity bounds for lazy data structures that involve scheduling.

Type systems with support for controlling time complexity have been proposed, among
others, by Dornic, Jouvelot, and Gifford (1992), by Reistad and Gifford (1994), and by Crary
and Weirich (2000). In the former two systems, a function type is annotated with a “latent
cost”, which may depend on the size of the procedure’s arguments. For instance, a function
whose execution requires three steps of computation could have type int→3 int. In Crary
and Weirich’s system, there is a global “virtual clock”, and a function type specifies the
function’s beginning and ending clock readings. A function whose execution requires three
steps of computation could have type ∀n.(int,n+ 3)→ (int,n). These type systems do not
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involve linearity (or affinity), therefore do not have a first-class notion of “time credit” and
do not allow reasoning about amortized time complexity.

A Hoare logic with support for reasoning about certain measures, including instruction
counts, maximum stack space, and the number of heap allocations, has been proposed by
Aspinall et al. (2007). This is not a separation logic, though, so there are no “time credits”
and no amortized reasoning. The CerCo project (Amadio and Régis-Gianas, 2011; Ayache
et al, 2012; Amadio et al, 2014), mentioned earlier (§2.7), pursues closely related goals.

A line of work by Hofmann et al. (Hofmann and Jost, 2003; Hoffmann and Hofmann,
2010; Hoffmann et al, 2012) aims to infer amortized time and space bounds. Because em-
phasis is on automation, these systems are limited in the bounds that they can infer (e.g.,
polynomial bounds) and/or in the programs that they can analyze (e.g., without side effects;
without higher-order functions). In recent work, Hoffmann, Das and Weng (2017) automat-
ically infer tight polynomial amortized complexity bounds for nontrivial OCaml programs.
Higher-order functions are supported, as far as we understand, by repeating their analysis
when they are applied. Side effects are supported, albeit with the severe restriction that the
time complexity of the code is not allowed to depend on mutable state.

McCarthy et al. (2016) present a Coq monad that allows the time complexity of a Coq
computation to be expressed in its type. This approach requires the code to be correctly
instrumented with “pay” instructions: this can be done either manually or automatically,
using an external tool, implemented in Racket. This is analogous to the manner in which
CFML instruments the OCaml code with pay instructions. In McCarthy et al.’s approach,
the source code is written in Coq, which implies that it must be side-effect free, and that
great care must be taken to ensure that the time complexity monad is erased when the code is
extracted to OCaml. Our approach, in contrast, is based on OCaml source code, so extraction
is not a problem. Furthermore, our use of Separation Logic with time credits allows us to
deal with mutable state and to carry out amortized complexity arguments.

Nipkow (2015) presents machine-checked amortized analyses of several data structures,
including skew heaps, splay trees and splay heaps. As he seems to be mainly interested in
the mathematical analysis of a data structure, as opposed to the verification of an actual
implementation, he manually derives from the code a “timing function”, which represents
the actual time consumed by an operation.

8.4 Separation Logic and time credits

There is a huge body of work on program verification using Separation Logic. We are par-
ticularly interested in embedding Separation Logic into an interactive proof assistant, such
as Coq, where it is possible to express arbitrarily complex specifications and to perform
arbitrarily complex proofs. The Union-Find case study exploits this power in several ways:
we find that (say) reasoning about a complex potential function (§6) or working with iter-
ated separating conjunctions (§7) is not significantly more difficult in Coq than on paper.
In contrast, supporting iterated separating conjunctions in an automated program verifier is
possible but challenging (Müller et al, 2016). The interactive approach to program verifica-
tion has been explored in several projects, including Ynot (Nanevski et al, 2007, 2008a,b;
Chlipala et al, 2009), Bedrock (Chlipala, 2013), and CFML (Charguéraud, 2010, 2013).

Separation Logic is modular and allows independent verification of the implementation
of a data structure and of its clients, based on a common specification. Separation Logic al-
lows expressing the fact that a data structure is uniquely-owned and (therefore) must be used
in a single-threaded manner. This is particularly important for certain data structures whose
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amortized complexity guarantees can be subverted if this restriction is violated (Okasaki,
1999).

The idea of extending a type system with time credits, viewed as affine resources, has
been proposed by Pilkiewicz and Pottier (2011). Atkey (2011) applies to the same idea to
Separation Logic. The extension of Separation Logic with time credits is very modest; in
fact, if the source program is explicitly instrumented by inserting calls to pay, no modifi-
cation of the verification toolchain is required. We believe that we are the first to follow
this approach in practice to perform a modular verification of functional correctness and
complexity for a nontrivial data structure.

Although we have exploited one particular implementation of Separation Logic, namely
CFML, the idea of time credits could equally well be implemented on top of other flavors of
Separation Logic, such as Hoare Type Theory (Nanevski et al, 2007, 2008a,b; Chlipala et al,
2009), and Iris (Jung et al, 2015, 2016; Krebbers et al, 2017). In particular, because Iris has
monotonic state and “hidden state” (that is, shared invariants), we believe that Pilkiewicz
and Pottier’s analysis of thunks in terms of time credits (2011) could be reconstructed and
machine-checked in an extension of Iris with time credits.

Hoffmann, Marmar and Shao (2013) use time credits in Concurrent Separation Logic.
They use the logic to prove the lock-freedom of several concurrent data structures. They
show that the logic can express a “quantitative compensation scheme” whereby a thread that
makes progress in an operation logically provides time credits to other threads to compen-
sate for possible interference it may have caused. The beauty of this approach is that no
ad hoc reasoning rules are needed: the only alteration with respect to ordinary Concurrent
Separation Logic is in the reasoning rule for while loops, which states that each iteration
consumes one credit.

8.5 Space

We focus on time complexity. Would it be more difficult to reason about space complexity?
Whereas time, once spent, is lost forever, space can be reclaimed and reused. If it is clear in
the source code where allocation and deallocation take place, then bounding space should
be no more difficult than bounding time.

Stack space, for instance, seems relatively easy to reason about, because it is evident
in the source code where stack frames are allocated and deallocated. The Hoare logic by
Aspinall et al. (2007) can reportedly keep track of the maximum stack space required by a
program. Carbonneaux et al. (2014) describe a quantitative Hoare logic which can be used
to verify a stack-space bound at the level of C source code. The required constants, such
as stack frame sizes, are automatically provided by the compiler. The concrete bound thus
obtained is guaranteed to hold of the machine code produced by the compiler.

Heap space is similarly relatively easy to control, provided it is clear, by inspection of the
source code, or by inspection of a type derivation, where deallocation or re-use take place.
However, for explicit deallocation to be safe, an ad hoc type discipline must be adopted. For
instance, a linear type system for guaranteeing that a functional program runs in a fixed-
size heap has been proposed by Hofmann (2000) and subsequently improved and imple-
mented (MacKenzie and Wolverson, 2003; Aspinall et al, 2008).

Controlling heap space in a garbage-collected programming language, such as OCaml,
seems much more challenging. Whereas heap allocation sites are evident in the source code,
it is difficult to predict when an object is deallocated, therefore difficult to bound the max-
imum live heap space that a program requires. Proving an OCaml program correct using
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Separation Logic does not evidently help, because ownership and reachability are unrelated
concepts. Reachability does not imply ownership: the program may well hold a pointer, yet
have no permission to dereference it. Conversely, ownership does not imply reachability: the
assertion ∃l.(l ↪→ v) guarantees that the program owns some heap cell, yet the program may
well have discarded the address of this cell. Finally, the Separation Logic implemented in
CFML imposes unique ownership of mutable memory blocks, but does not keep any track
of immutable memory blocks.

9 Conclusion and Future Work

We have demonstrated that the state of the art has advanced to a point where one can (and,
arguably, one should) prove not only that a library is correct but also that it meets a certain
time complexity bound.

Our current approach permits amortized reasoning by default. A Hoare triple of the
form {$n ? I} t {λ_. I}, where I is a (possibly abstract) separation logic assertion, can
be informally interpreted as “the command t has amortized time complexity n”. The actual
worst-case cost of this command, however, could be greater than n, if the assertion I controls
a certain number of credits. UFDRV is an example of such an assertion. This gives rise to
two questions.

First, is it possible to indicate that a Hoare triple represents a nonamortized guarantee?
The answer is positive. To guarantee such a property about the triple {$n ? I} t {λ_. I}, it
suffices to prove that the assertion I is “creditless”, that is, if I holds of a heap (m,c), then
c must be zero. If I is creditless, then the execution of the command t requires at most n
computation steps.

Second, is it possible, in a single triple, to express both amortized and nonamortized
bounds? For instance, can one express the fact that find has amortized cost O(α(|D|)) and
nonamortized cost O(log(|D|)), without duplicating its analysis? The answer is negative in
our system as of today, but positive in principle. In order to carry out amortized and non-
amortized analyses at the same time, we suggest proceeding as follows. Extend the system
with a distinction between two kinds of credits, written (say) $1 and $1, and impose the rule
that a computation step costs one credit of each kind: that is to say, pay consumes $1 ? $1.
Adopt the convention that “saving” ordinary credits is permitted, where saving “heavy”
credits is not. Keep the definition of UFDRV , unchanged: it involves Φ ordinary credits and
no heavy credits. Prove and publish the fact that UFDRV is a heavy-creditless assertion:
this guarantees that the above convention is respected. Finally, establish a Hoare triple for
find, whose precondition might be UFDRV ? $(2α(|D|)+4) ? $(log(|D|)+1). Because
UFDRV is heavy-creditless, this guarantees that find actually requires at most log(|D|)+1
computation steps, and at the same time, states that its amortized cost is 2α(|D|)+ 4. Of
course, establishing such a triple involves extra work, as one must keep track of two kinds
of credits everywhere. Still, the step-by-step analysis of the code is carried out just once.

There are many directions for future work.
One could study different compression strategies (e.g., tail-recursive find, path splitting,

path halving) and linking strategies (e.g., linking-by-size).
It would be desirable to verify a client of Union-Find, such as a first-order unification

algorithm, or Kruskal’s minimum spanning tree algorithm, so as to ensure that our specifi-
cation of Union-Find is usable. Also, it should be possible to publish one or more simplified
versions of our specification, which for many clients would be good enough. For instance,
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we could phrase a simplified specification in terms of a partial equivalence relation E in-
stead of a domain D and a total function R. Indeed, every function except find can be given
a useful specification in terms of E, and most clients likely do not need find. Exposing such
a simplified specification would not require a new analysis of the code: it should be just a
thin layer on top of our current specification.

Concerning our verification methodology, we would like to close the gap between OCaml
machine integers and Coq ideal integers (§2.2). Can proof-of-work arguments (Clochard
et al, 2015) be expressed in (a suitable extension of) Separation Logic with time credits?

Finally, we wish to use the big-O notation in specifications. For instance, instead of
advertising that find requires 2 ·α(|D|)+ 4 credits, it would be preferable to state that it
requires O(α(|D|)) credits, thus avoiding explicit mentions of the multiplicative factor 2
and the additive constant 4. The use of such concrete constants is noisy and compromises
modularity, as it contaminates every (direct and indirect) user of the data structure. If, after
a change in the code of find, the constant 4 must be replaced with 5, then every (direct and
indirect) user of the Union-Find data structure must be updated! Furthermore, hiding these
constants does not truly cause any loss of information, since the “computation steps” that
we are counting are related to physical computation time only up to an unknown constant
factor anyway.

Technically, working with the big-O notation poses several challenges. For one thing,
although the meaning of this notation is well-defined for functions of one variable, it is
more subtle when dealing with functions of several variables (Howell, 2008, 2012). Fur-
thermore, the big-O notation hides several existential quantifiers, so, if used naively, causes
many proofs to begin by exhibiting several witnesses, which the user must painfully guess.
Engineering work is required so as to build Coq tactics that allow these witness to be built
incrementally and transparently, as the proof progresses.
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