
Dag-Calculus:
A Calculus for Parallel Computation

Technical Appendix

This appendix consists of two main parts: in the first, we prove correct the trans-
lations of parallel primitives into the dag calculus, in the second, we prove that the
scheduling algorithm implements the rules of the dag calculus. Concretely, Appendix A
provides auxiliary definitions and properties for the translations; Appendices B, C and
D provide the proofs of translations of fork-join, async-finish and futures, respectively;
Appendix E provides the proof of the implementation of dag calculus.

A Auxiliary definitions
Here we recall the syntax and semantics of the dag calculus, which we denote in short
dag calculus. These constructs and rules are described in detail in Section 3 of the paper.

Note that while the syntax of the calculus is identical to the one presented in the
paper, the formulation of the reduction rules is slightly different: the dag-modification
constructs are assumed to always appear in the context of a let-binding or sequential
composition, and the reduction reduces them together with the binding/composition.
This approach is clearly equivalent to the presentation in the paper, but it significantly
reduces the number of otherwise not interesting intermediate steps that would be pos-
sible to encounter in the translations, thus shortening the translations and the proofs
significantly.

Definition 1. A computation dag is a pair (V, E), where the vertex-map V is a finite
map from threads to a pair consisting of expressions, and status and edges E is a edges

e ::= v | e ⊕ e | e ⊗ e | (e, e) | fst e | snd e | let x = e in e |

e e | alloc() | e := e | ! e | if e then e else e |

newTd e | release e | newEdge (e, e) | self() | yield()
v ::= x | ` | t | n | () | (v, v) | fun f x is e end

K ::= • | let x = K in e | K := e | v := K | ! K | release K

| newEdge (K, e) | newEdge (v,K) | . . .

Figure 1: Abstract syntax for DAG-Calculus.

1

σ, fst (v1, v2)→ v1, σ
Fst

σ, snd (v1, v2)→ v2, σ
Snd

l < dom(σ)

σ, alloc→ l, σ[l 7→ ()]
Alloc

σ(l) = v

σ, ! l→ v, σ
Deref

l ∈ dom(σ)

σ, (l := v)→ (), σ[l 7→ v]
Assign

σ, ((fun f x is e end) v)→ e[f 7→ fun f x is e end][x 7→ v], σ
Apply

σ, e→ e′, σ′

σ,K[e]→ K[e′], σ′
Context

V(t) = (e1,X) σ1, e1 → e2, σ2

V, E, σ1 � V[t 7→ (e2,X)], E, σ2
Step

V(t) = (v,X) E′ = E \ {(t, t′) | t′ ∈ dom(V)}

V, E, σ� V[t 7→ ((),F)], E′, σ
Stop

V(t) = (K[let x = newTd e in e′],X) t′ fresh

V, E, σ� V[t 7→ (K[e′[x 7→ t′]],X)][t′ 7→ (e,N)], E, σ
NewTd

V(t) = (e,R) {t′ | (t′, t) ∈ E} = ∅

V, E, σ� V[t 7→ (e,X)], E, σ
Start

V(t) = (K[release t′; e],X) V(t′) = (e′,N)

V, E, σ� V[t 7→ (K[e],X)][t′ 7→ (e′,R)], E, σ
Release

V(t) = (K[newEdge t1 t2; e],X) t1, t2 ∈ dom(V) (status(V(t2)) ∈ {N,R} ∨ t2 = t)
E′ = E] (if status(V(t1)) = F then ∅ else {(t1, t2)}) E′ cycle-free

V, E, σ� V[t 7→ (K[e],X)], E′, σ
NewEdge

V(t) = (K[self],X)

V, E, σ� V[t 7→ (K[t],X)], E, σ
Self

V(t) = (K[yield; e],X)

V, E, σ� V[t 7→ (K[e],R)], E, σ
Yield

Figure 2: Dynamic semantics for dag calculus. N stands for thread status new, R for
released, X for executing and F for finished. The operation status(V(t)) denotes the
status of thread t, i.e. the second component of V(t).

(edges) between threads, more precisely:

s ::= N | R | X | F
V : T ⇀fin (e × s)
E ⊆ dom(V) × dom(V).

Definition 2. The operational semantics of dag calculusis a relation� between states
made of a computation dag and a store mapping locations to values. It is given in
Figure 2. We take a subset of the transitions Start and Stop as scheduler transitions,
written�s.

Lemma 1. For any dag (V, E) and any state σ, V, E, σ 6�∞s .

Proof. Give weight to a dag by taking for each vertex weight according to its status:

w(s) =

0 if s = N or s = F
1 if s = X
2 if s = R

Take the weight of the dag as the sum of the weights of its vertices, then proceed by
induction on the weight of the dag. Observe that each scheduler transition decreases the
weight of the node it operates on, and hence the whole dag, which ends the proof. �

2

The proofs of translations to the dag calculus presented in the following appendices
involve one key difficulty, related to administrative reduction steps, i.e. to the fact that
one reduction step in the source language may correpond to several reduction steps in
the target language. Most compiler proofs deal with administrative reduction steps using
well-known proofs techniques, typically based on simulation diagrams. However, we
have found that these techniques were not directly applicable to the parallel semantics
of a language such as that the fork-join language considered here.

When the target program takes a reduction step, this step corresponds either to
an administrative step, or to a real step from the source program. Consider the latter
case. With a sequential semantics, when the target program takes a real step, the target
program then typically corresponds exactly to the translation of the source program.
However, with a parallel semantics, this might not be the case. For example, since the
two branches of a parallel pair may reduce independently, one branch may take a real
step while the other branch is in the middle of performing a sequence of administrative
steps. Although the target program takes a real step, it is not, at this point, the translation
of any source program. Thus, we cannot easily close a simulation diagram.

To address this challenge, we introduce an instrumented programming language,
similar to the source programming language, except that each parallel construct gets
annotated with information about identities associated with its representation in the
target language: number of administrative steps already performed, thread identifiers,
locations for the results, etc. We then set up a two-layer simulation diagram: the first
layer relates the source program with the instrumented program, while the second layer
relates the instrumented program with the target program. We are able to reason about
both layers independently, using conventional simulation diagrams, and then conclude
by relating the source and the target programs.

B Correctness of translations of fork-join

B.1 Syntax and Operational Semantics
The syntax and semantics in this section are precisely the same as in the paper, and
repeated here for convenience.

e ::= v | fst v | snd v | let x = e in e | v v | forkjoin (e, e)
v ::= x | n | (v, v) | fun f x is e end

K ::= • | let x = K in e | forkjoin (K, e) | forkjoin (e,K)

K[fst (v1, v2)]→ K[v1]
K[snd (v1, v2)]→ K[v2]

K[let x = v in e]→ K[e[x 7→ v]]
K[fun f x is e end v]→ K[e[x 7→ v, f 7→ fun f x is e end]]
K[forkjoin (v1, v2)]→ K[(v1, v2)]

3

B.2 Instrumented Syntax and Operational Semantics
The general pattern of the instrumentation, both for fork-join parallelism and for the
other constructs, is to annotate the parallel constructs, which need to be compiled in
the translation to dag calculus, with additional information. The crucial part of these
annotations is a number that describes how far the evaluation of the compiled code
has progressed. Intuitively, 0 always corresponds to an expression, whose translated
equivalent has not yet started execution, and each consecutive step of compiled execution
takes the number one step higher. If in the evaluation process new information is
obtained, such as identities of relevant threads, locations, etc., these are also included in
the annotation (cf. the grammar of ap, the annotations on parallel compositions, below)

Since in dag calculusthe program parts are stored in the vertices of the dag, parts
of the program that correspond to separate vertices also need to be annotated. In case
that values are passed through the store, like in the compiled version of fork-join, these
also need to be present in the annotation, and some additional steps may be possible
(cf. the grammar for at, the annotations of expressions that correspond to the dag
calculusthreads, below). In the particular case of fork-join, 0 means that the expression
has not yet had a thread allocated to it and released, (1, l, t) — that the expression is
running in thread t and will write its result to location l, and (2, l) — that the expression
has finished the evaluation, and the result has been written to l. The extra step required
to perform the write action is why we increment the number in the annotation here.

e ::= v | fst v | snd v | v v | let x = e in e | (forkjoin (eat , eat))ap

v ::= x | n | (v, v) | fun f x is e end

L ::= • | let x = L in e

K ::= • | Lat [(forkjoin (K, eat))ap] | Lat [(forkjoin (eat ,K))ap]
at ::= 0 | (1, l, t) | (2, l)
ap ::= 0 | (1, l) | (2, l, l) | (3, l, l, t) | (n, l, l, t, t) where 4 ≤ n ≤ 7

| (8, l, l, t) | (n, l, l) where 9 ≤ n ≤ 11

A surface expression is one where all annotations have value 0. Note that these
are isomorphic to the expressions of the source language. We define well-formed
expressions as follows:

wf(e) ≡

a1 = 0 ∧ a2 = 0 ∧ surf(e1) ∧ surf(e2) ∧ surf(L) if e = L[forkjoin (ea1

1 , ea2
2)a] and num(a) ≤ 7

loc(a1) = l1 ∧ a2 = 0 ∧ wf(e1) ∧ surf(e2) ∧ surf(L) if e = L[forkjoin (ea1
1 , ea2

2)(8,l1 ,l2 ,t2)]
loc(a1) = l1 ∧ loc(a2) = l2 ∧ wf(e1) ∧ wf(e2) ∧ surf(L) if e = L[forkjoin (ea1

1 , ea2
2)(n,l1 ,l2)] and n ∈ {9, 10}

a1 = (2, l1) ∧ a2 = (2, l2) ∧ surf(e1) ∧ surf(e2) ∧ surf(L) if e = L[forkjoin (ea1
1 , ea2

2)(11,l1 ,l2)]
surf(e) otherwise

We extend well-formedness to annotated expressions eat by setting wf(ea) ≡ a , 0, and
to parallel contexts, by setting wf(K) ≡ ∀e. wf(e)⇒ wf(K[e]).

Operational semantics is defined on annotated, well-formed expressions, eat . First,

4

we define some of the transitions between the parallel composition annotations.

0 p (1, l1) where l1 fresh (1, l1) p (2, l1, l2) where l2 fresh
(2, l1, l2) p (3, l1, l2, t1) where t1 fresh (3, l1, l2, t1) p (4, l1, l2, t1, t2) where t2 fresh

(n, l1, l2, t1, t2) p (n + 1, l1, l2, t1, t2) for n ∈ {4, 5, 6} (9, l1, l2) p (10, l1, l2)

These transitions can be used to make simple administrative reductions on the parallel
composition form, as seen in the operational semantics below. Since the transitions
through the remaining three steps are not entirely local, they are defined directly in the
rules.

fst (v1, v2)� v1 snd (v1, v2)� v2 let x = v in e� e[x 7→ v]
fun f x is e end v� e[x 7→ v, f 7→ fun f x is e end]

a p a′

(forkjoin (ea1
1 , e

a2
2))a � (forkjoin (ea1

1 , e
a2
2))a′

(forkjoin (e(0)
1 , e(0)

2))(7,l1,l2,t1,t2) � (forkjoin (e(1,l1,t1)
1 , e(0)

2))(8,l1,l2,t2)

(forkjoin (ea1
1 , e

(0)
2))(8,l1,l2,t2) � (forkjoin (ea1

1 , e
(1,l2,t2)
2))(9,l1,l2)

(forkjoin (v(2,l1)
1 , v(2,l2)

2))(10,l1,l2) � (forkjoin (v(2,l1)
1 , v(2,l2)

2))(11,l1,l2)

(forkjoin (v(2,l1)
1 , v(2,l2)

2))(11,l1,l2) � (v1, v2)

wf(K) e� e′

K[(L[e])(1,l,t)]→ K[(L[e′])(1,l,t)]

wf(K)

K[v(1,l,t)]→ K[v(2,l)]

B.3 Connecting the instrumented and source languages
We define a map b−c : EI → EO that removes annotations from the instrumented
expressions. We use it to connect the instrumented language to the source language.
Note that a map that adds an annotation 0 to parallel compositions is the right inverse of
b−c. For surface term, it is also the left inverse.

Lemma 2 (Instr-Step). For any two expressions e, e′ ∈ EI and annotations a, a′ ∈ At,
if ea →I e′a

′

, then either bec = be′c or bec →O be′c.

Proof. By cases on the reduction. If the reduction is one that changes the annotation
on a parallel pair or a thread, the erasure is trivially preserved. In the other cases, we
can simply pick the corresponding reduction rule to match the erasure of the right-hand
side. �

Definition 3. An administrative reduction in the instrumented language is a reduction
ea →I e′ such that bec = be′c. We write ea →a e′a

′

for administrative steps.

Lemma 3 (Admin-Fin). For well-formed annotated expressions ea, there are no infinite
sequence of administrative reductions, i.e., if wf ea then ea 6→∞a .

5

Proof. Assign a weight to the expression based on the count of its annotations in
evaluation positions. Take num(a) to be the natural number in the annotation. Then
define

w(e) =

15 − num(a) − num(a1) − num(a2) + w(e1) + w(e2) if e = (forkjoin ((e1)a1 , (e2)a2))
w(e1) if e = let x = e1 in e2
0 otherwise

and extend it to annotated threads as w(ea) ≡ 2 − num(a) + w(e). Observe that all
administrative reductions decrease the weight of the expression. Thus, by induction on
the weight we can conclude that the lemma holds. �

Lemma 4 (Instrument). For any expression e ∈ EI , value v ∈ VI annotation a ∈ At

and location l, if ea →∗I v(2,l) then bec →∗O bvc. Moreover, if ea →∞I , then bec →∞O .

Proof. First part, by induction on the reduction sequence and Lemma 2.
Similarly, for the second part we proceed by coinduction: since e→∞I , by Lemmas 3

and 2 there exists e′ such that e →∗I e′, bec →O be′c and e′ →∞I . Hence, be′c →∞O and
finally bec →∞O . �

B.4 Connecting instrumented language to dag calculus
Translation of surface expressions into dag calculus First, let us define the transla-
tion for surface expressions. We define a map ~−�S : EI → Edagcalculus, as follows.
Note that the map extends in a simple way to sequential evaluation contexts L that are
surface contexts. We write the latter one ~−�L : LI → Kdagcalculus.

~let x = e1 in e2�
S = let x = ~e1�

S in ~e2�
S

~fun f x is e end�S = fun f x is ~e�S end

~v1 v2�
S = ~v1�

S ~v2�
S

For the parallel pair, we have

1 ~(forkjoin (e(0)
1 , e(0)

2))0�S =

2 let l1 = alloc

3 l2 = alloc

4 t1 = newTd (l1 := ~e1�
S)

5 t2 = newTd (l2 := ~e2�
S)

6 t = self ()

7 in newEdge (t1, t); newEdge (t2, t);

8 release t1; release t2; yield ();

9 (!l1, !l2)

Translation of well-formed expressions into dag calculus Now we define the trans-
lation for well-formed expressions and annotated expressions. For well-formed, anno-
tated expressions we take an annotated expression and a set of its dependencies:

~e(1,l,t)�(T) = ~e�(l, t,T) ~v(2,l)�(T) = ∅, ∅, [l 7→ v]

6

For well-formed expressions we have ~−� : EI → L× TId × Pfin(TId)→ S, where

7

S denotes the dag states. We have:

~e�(l, t,T) =

[t 7→ (l :=~e�S ,R)], {(t, t′) | t′ ∈ T }, [l 7→ ()] if surf(e)

~L[(forkjoin ((e1)0, (e2)0))(1,l1)]�(l, t,T) =

[t 7→ (l :=~L�L[par1(~e1�
S , ~e2�

S , l1)],X)], {(t, t′) | t′ ∈ T }, [l 7→ (), l1 7→ ()]

~L[(forkjoin ((e1)0, (e2)0))(2,l1,l2)]�(l, t,T) =

[t 7→ (l :=~L�L[par2(~e1�
S , ~e2�

S , l1, l2)],X)],
{(t, t′) | t′ ∈ T }, [l 7→ (), l1 7→ (), l2 7→ ()]

~L[(forkjoin ((e1)0, (e2)0))(3,l1,l2,t1)]�(l, t,T) =

[t 7→ (l :=~L�L[par3(~e2�
S , l1, l2, t1)],X), t1 7→ (l1 :=~e1�

S ,N)],
{(t, t′) | t′ ∈ T }, [l 7→ (), l1 7→ (), l2 7→ ()]

~L[(forkjoin ((e1)0, (e2)0))(4,l1,l2,t1,t2)]�(l, t,T) =

[t 7→ (l :=~L�L[par4(l1, l2, t1, t2)],X), t1 7→ (l1 :=~e1�
S ,N), t2 7→ (l2 :=~e2�

S ,N)],
{(t, t′) | t′ ∈ T }, [l 7→ (), l1 7→ (), l2 7→ ()]

~L[(forkjoin ((e1)0, (e2)0))(5,l1,l2,t1,t2)]�(l, t,T) =

[t 7→ (l :=~L�L[par5(l1, l2, t1, t2, t)],X), t1 7→ (l1 :=~e1�
S ,N), t2 7→ (l2 :=~e2�

S ,N)],
{(t, t′) | t′ ∈ T }, [l 7→ (), l1 7→ (), l2 7→ ()]

~L[(forkjoin ((e1)0, (e2)0))(6,l1,l2,t1,t2)]�(l, t,T) =

[t 7→ (l :=~L�L[par6(l1, l2, t1, t2, t)],X), t1 7→ (l1 :=~e1�
S ,N), t2 7→ (l2 :=~e2�

S ,N)],
{(t, t′) | t′ ∈ T } ∪ {(t1, t)}, [l 7→ (), l1 7→ (), l2 7→ ()]

~L[(forkjoin ((e1)0, (e2)0))(7,l1,l2,t1,t2)]�(l, t,T) =

[t 7→ (l :=~L�L[par7(l1, l2, t1, t2)],X), t1 7→ (l1 :=~e1�
S ,N), t2 7→ (l2 :=~e2�

S ,N)],
{(t, t′) | t′ ∈ T } ∪ {(t1, t), (t2, t)}, [l 7→ (), l1 7→ (), l2 7→ ()]

~L[(forkjoin ((e1)a1 , (e2)0))(8,l1,l2,t2)]�(l, t,T) =

~(e1)a1�(l1, t1, {t})] ([t 7→ (l :=~L�L[par8(l1, l2, t2)],X), t2 7→ (l2 :=~e2�
S ,N)],

{(t, t′) | t′ ∈ T } ∪ {(t2, t)}, [l 7→ (), l2 7→ ()])

~L[(forkjoin ((e1)a1 , (e2)a2))(9,l1,l2)]�(l, t) =

~(e1)a1�(l1, t1, {t})] ~(e2)a2�(l2, t2, {t})]

([t 7→ (l :=~L�L[par9(l1, l2)],X)], {(t, t′) | t′ ∈ T }, [l 7→ ()])

~L[(forkjoin ((e1)a1 , (e2)a2))(10,l1,l2)]�(l, t) =

~(e1)a1�(l1, t1, {t})] ~(e2)a2�(l2, t2, {t})]

([t 7→ (l :=~L�L[(! l1, ! l2)],R)], {(t, t′) | t′ ∈ T }, [l 7→ ()])

~L[(forkjoin ((e1)a1 , (e2)a2))(11,l1,l2)]�(l, t) =

[t 7→ (l :=~L�L[(~v1�
S , ! l2)],X)], {(t, t′) | t′ ∈ T }, [l 7→ (), l1 7→ ~v1�

S , l2 7→ ~v2�
S]

8

The macrodefinitions are successive partial evaluations of the translation of the parallel
composition. These are as follows:

1 par1(e1, e2, l1) =

2 let l2 = alloc

3 t1 = newTd (l1 := e1)

4 t2 = newTd (l2 := e2)

5 t = self()

6 in newEdge (t1, t); newEdge (t2, t);

7 release t1; release t2; yield();

8 (!l1, !l2)

9

10 par2(e1, e2, l1, l2) =

11 let t1 = newTd (l1 := e1)

12 t2 = newTd (l2 := e2)

13 t = self()

14 in newEdge (t1, t); newEdge (t2, t);

15 release t1; release t2; yield();

16 (!l1, !l2)

17

18 par3(e2, l1, l2, t1) =

19 let t2 = newTd (l2 := e2)

20 t = self()

21 in newEdge (t1, t); newEdge (t2, t);

22 release t1; release t2; yield();

23 (!l1, !l2)

24

25 par4(l1, l2, t1, t2) =

26 let t = self()

27 in newEdge (t1, t); newEdge (t2, t);

28 release t1; release t2; yield();

29 (!l1, !l2)

30

31 par5(l1, l2, t1, t2, t) =

32 newEdge (t1, t); newEdge (t2, t);

33 release t1; release t2; yield();

34 (!l1, !l2)

35

36 par6(l1, l2, t1, t2, t) =

37 newEdge (t2, t);

38 release t1; release t2; yield();

39 (!l1, !l2)

40

41 par7(l1, l2, t1, t2) =

42 release t1; release t2; yield();

43 (!l1, !l2)

44

45 par8(l1, l2, t2) =

46 release t2; yield(); (!l1, !l2)

47

48 par9(l1, l2) =

49 yield (); (!l1, !l2)

Correctness With the translations defined, we can connect the annotated expressions
with the dag calculus states (through the definition of matching states ∝). Then, Lemma 5
allows us to locate any executing thread as a subterm of our computation. This is of

9

crucial importance, since this is what restricts the reduction steps that the dag calculus
can take in that thread: the code must come from the translation of that subcomputation.
Using this property, we can prove Lemma 6, which states that every step on the dag
calculus side is either a scheduler step, or can be matched on the side of the instrumented
expressions. Since we know the precise subexpression where the reduction happens,
we can generally restrict ourselves to ensuring that the administrative reductions on the
instrumented expression side match, step for step, the execution of the translation of
the parallel pair — which is how the translation was designed in the first place. Finally,
Lemma 7 gives us the backwards simulation of dag calculuswith the instrumented
semantics, and the Correctness Theorem composes it with the instrumentation lemma,
Lemma 4. The proof process is much the same for the other translations.

Definition 4. We say that a well-formed annotated instrumented expression ea such
that wf(ea) matches a dag calculusstate V, E, σ, written ea ∝ V, E, σ if there exists a dag
state V ′, E′, σ′ such that σ′ v σ and ~ea�(∅) = V ′, E, σ′, and a finite map of vertices
V ′′ such that ∀t ∈ dom(V ′′). V ′′(t) = ((),R), and that

V ′] V ′′, E′, σ�∗s V, E, σ.

Lemma 5. For any ea, V, E, σ, t if wf(ea), ea ∝ V, E, σ, t ∈ dom(V) and status(V(t)) =

X, then either

1. V(t) = ((),X),

2. there exist K, e′, l such that ea = K[e′(1,l,t)],

Lemma 6. For any ea, V, V ′, E, E′, σ, σ′ if wf(ea), ea ∝ V, E, σ and V, E, σ �
V ′, E′, σ′ then either ea ∝ V ′, E′, σ′ or there exists e′a

′

such that ea → e′a
′

and e′a
′

∝

V ′, E′, σ′.

Lemma 7. For any e, a, V, V ′, E,σ,σ′, if wf(ea), ea ∝ V, E, σ and ∀t ∈ dom(V ′). V ′(t) =

((),F), then the following simulation holds:

V, E, σ�∗ V ′, ∅, σ′ ⇒ ∃v. ea →∗ v(2,loc(a)) ∧ σ′(l) = ~v�S

V, E, σ�∞ ⇒ ea →∞

Proof. Follows from Lemmas 6 and 1 by the same inductive and coinductive argument
as used in the proof of Lemma 4. �

Theorem 1 (Correctness). Let t be the identifier of the main thread, e ∈ EO be the source
program stored in this thread, and l be a designated location in which to store the final
result. Let eI ∈ EI be e annotated with the 0 annotations on all parallel compositions.
For any integer result n, final state σ such that σ(l) = n, and final set of vertices V,
assuming that all threads t′ in V are finished (i.e. status (V(t′)) = F), we have:

[t 7→ (l :=~eI�
S ,R)], ∅, [l 7→ ()]�∗ V, ∅, σ ⇒ e→∗O n.

Furthermore, divergence in the dag calculus entails divergence in the source language:

[t 7→ (l :=~eI�
S ,R)], ∅, [l 7→ ()]�∞ ⇒ e→∞O .

10

Proof. This theorem follows from the composition of the two simulation diagrams,
given by Lemmas 4 and 7. Clearly, beIc = e. Moreover, since surf(eI), we also
have ~e(1,l,t)

I �(∅) = [t 7→ (l :=~eI�
S ,R)], ∅, [l 7→ ()], which gives us e(1,l,t)

I ∝ [t 7→
(l :=~eI�

S ,R)], ∅, [l 7→ ()].
For the termination case, by Lemma 7 we obtain that there exists a value v such that

e(1,l,t)
I →∗I v(2,l) and σ′(l) = ~v�S . However, since σ′(l) = n, we can conclude that v = n.

By Lemma 4 we can now conclude that e→∗O bnc, which ends the proof, as bnc = n.
For the nontermination case, from Lemma 7 conclude that e(1,l,t)

I →∞I , which, by
Lemma 4 implies that e→∞O . This ends the proof. �

C Correctness of the translation of async-finish

C.1 Syntax and Operational Semantics

e ::= v | fst v | snd v | let x = e in e | v v

| alloc | v := v | ! v | async(e) | finish(S)
v ::= x | n | l | (v, v) | fun f x is e end

S ≡ {e1, e2, . . . , en}

K ::= L | L[finish({K}] S)]
L ::= • | let x = L in e

The input programs are restricted to use the form finish({e}). The operational
semantics is given below. It operates on the storeH = L⇀fin V

h, fst (v1, v2)→ v1, h h, snd (v1, v2)]→ v2, h h, let x = v in e→ e[x 7→ v], h

h, fun f x is e end v→ e[x 7→ v, f 7→ fun f x is e end], h

l < dom(h)

h, alloc→ l, h[l 7→ ()]

h(l) = v

h, ! l→ v, h

l ∈ dom(h)

h, l := v→ (), h[l 7→ v]

h, finish({L[async(e)]}] S)→ finish({L[()], e}] S), h

∀e ∈ S . e = ()

h, finish(S)→ (), h

h, e→ e′, h′

h,K[e]→ K[e′], h′

Note the operational semantics is changed slightly wrt. the paper: the finished
async threads are not removed one by one, but rather stay as values associated with the
enclosing finish block, which finishes when all the async computations terminate. This is
done to facilitate the proof, since the removal of a single finished async would correspond
to a scheduler transition (Stop), and it is easier to keep the scheduler transitions separate
from the others. It is a simple exercise to show this presentation equivalent to the one
presented in the paper: since the removals of finished async threads are nondeterministic,

11

they can all happen right before the finish block should reduce. The other direction is
even simpler.

The following lemma allows us to only consider programs that write their final value
to a predetermined location in the state in the following, since these can simulate the
other programs.

Lemma 8. For any program e and location l and result state h, we have the following
properties:

[l 7→ ()], let x = e in l := x→∗ (), h ⇒ ∅, e→∗ h(l), h \ [l 7→ h(l)],

[l 7→ ()], let x = e in l := x→∞ ⇒ ∅, e→∞ .

Proof. Simple induction. �

C.2 Instrumented Syntax and Operational Semantics
When there is a chance of confusion between the instrumented and original language,
we annotate the constructs of the instrumented language with a subscript I, and the
constructs of original language with O. The instrumentations are aa for async and a f

for finish. Additionally, we annotate roots of expressions with thread identifiers.

e ::= v | fst v | snd v | let x = e in e | v v | alloc | v := v | ! v

| async(e)aa | finish(e)a f | finish(S)ag

v ::= x | n | l | (v, v) | fun f x is e end

S ≡ {et1
1 , e

t2
2 , . . . , e

tn
n }

L ::= • | let x = L in e

K ::= • | (L[finish({K}] S)a])t

aa ::= 0 | (1, t) | (2, t)
a f ::= 0 | 1 | (2, t) | (3, t)
ag ::= 1 | 2

We define the surface expressions, surf(e) as ones that only contain annotations
of 0 and do not contain subexpressions of the form finish(S). This notion extends
in a trivial way to the sequential contexts L. With this, we can proceed to define the
well-formed expressions, wf(e):

wf(e) =

surf(e′) ∧ surf L if e = L[async(e′)a]
surf(e′) ∧ surf L if e = L[finish(e′)a]
(∀e′, t. (e′t) ∈ S ⇒ wf(e′)) ∧ surf L if e = L[finish(S)a]
surf e otherwise

This notion simply extends to contexts K.
For operational semantics, let us first define the allowed transitions on annotations,

 a for the async annotations, and f and g for the finish ones. The essence is that

12

the associated number can increase by one, and if any new thread identifiers appear,
they must be globally fresh. Otherwise, thread ids are preserved.

0 a (1, t) where t is fresh (1, t) a (2, t)

0 f 1 1 f (2, t) where t is fresh
(2, t) f (3, t) 1 g 2

Next, we can define the operational semantics for the instrumented language. For the
most part, it is the same as the source language, with key differences being the reduction
for annotation steps and the separate preparatory finish construct.

h, fst (v1, v2)→ v1, h h, snd (v1, v2)→ v2, h h, let x = v in e→ e[x 7→ v], h

h, fun f x is e end v→ e[x 7→ v, f 7→ fun f x is e end], h

l < dom(h)

h, alloc→ l, h[l 7→ ()]

h(l) = v

h, ! l→ v, h

l ∈ dom(h)

h, l := v→ (), h[l 7→ v]

t is fresh

h, async(e)0 → async(e)(1,t) h, finish({(L[async(e)(1,t)])t′ }] S)→ finish({(L[async(e)(2,t)])t′ }] S), h

h, finish({(L[async(e)(2,t)])t′ }] S)→ finish({(L[()])t′ , et}] S), h

a f a′

h, finish(e)a → finish(e)a′ , h h, finish(e)(3,t) → finish({et})1, h

h, finish(S)1 → finish(S)2, h

∀e, t. et ∈ S ⇒ e = ()

h, finish(S)2 → (), h

h, e→ e′, h′

h,K[(L[e])t]→ K[(L[e′])t], h′

Lemma 9. Evaluation preserves well-formedness, i.e., for any e, e′, h, h′, if wf(e) and
h, e→ e′, h, then wf(e′).

C.3 Connecting instrumented language and source language
In order to connect the instrumented language expressions to the source language ones,
we introduce an erasure function: b−c : EI → EO, that removes annotations from terms
and maps finish(e)a to finish({bec}). Erasure function extends in the obvious way to
heaps and evaluation contexts.

Lemma 10 (Instr-Step). For any expressions e, e′ ∈ EI and heaps h, h′ ∈ HI , if
h, e→I e′, h′, then either bec = be′c and h = h′, or bhc, bec →O be′c, bh′c.

Proof. By induction on the reduction judgment. These split into three forms: the
administrative reductions of async and finish, which give the same erasure for both
the redex and the reduct, the reductions of sequential constructs, which can be trivially
matched, and the two rules that spawn an async thread and terminate the finish block —
which also can be easily matched. �

Definition 5. An administrative reduction in the instrumented language is a reduction
h, e→ e′, h′ such that bec = be′c and h = h′. We write h, e→a e′, h′ for administrative
steps.

13

Lemma 11 (Admin-Fin). There are no infinite sequences of administrative reductions,
i.e., for any e ∈ EI and h ∈ HI , if wf(e) then h, e 6→∞a .

Proof. Assign as a weight of the expression based on the number in each of its anno-
tations in evaluation positions. Take num(a) to denote the number associated with the
annotation a. Then define

w(e) =

2 − num(a) if e = L[async(e′)a]
3 − num(a) if e = L[future(e′)a]
2 − a +

∑
et∈S w(e) if e = L[future(S)a]

0 otherwise

.

Observe that each administrative reduction decreases the weight. The lemma then holds
by simple induction on the weight. �

Lemma 12 (Instrument). For any expression e ∈ EI and heaps h, h′ ∈ HI such that
h, e→∗I (), h

′, bhc, bec →∗O (), bh
′c. Moreover, if h, e→∞I then bhc, bec →∞O .

Proof. First part, by induction on the reduction sequence and Lemma 10.
Similarly, for the second part we proceed by coinduction: since h, e →∞I , by

Lemma 18 and 10 there exist e′ and h′ such that h, e →∗I e′, h′, bhc, bec →O be′c, bh′c
and h′, e′ →∞I . Hence, bh′c, be′c →∞O and finally bhc, bec →∞O . �

C.4 Connecting instrumented language and dag calculus
Translation of surface expressions into dag calculus Note that the translation triv-
ially extends to the evaluation contexts of the instrumented language. We define a
translation ~− | −�S : Vdagcalculus × EI → Edagcalculus, where the first argument keeps
track of the nearest enclosing finish clock. Note that this differes from the form presented
in the paper only in the order of the arguments. The bulk of the translation is a standard
destination-passing translation:

~t | let x = e1 in e2� = let x = ~t | e1� in ~t | e2�

~t | fun f x is e end� = fun f (x, t′) is ~t′ | e� end
~t | v1 v2� = ~t | v1� (~t | v2�, t)

The translation for parallel primitives is defined as follows:
1 ~t | async(e)0� =
2 let t’ = newTd (~t | e�)
3 in newEdge (t’, t); release t’; ()

4

5 ~t | finish(e)0� =
6 let t2 = self ()

7 t1 = newTd (~t2 | e�)
8 in newEdge (t1, t2); release t1; yield(); ()

Note that due to its destination-passing flavour, the translation for values does not
depend on the thread identifier. Thus, we can also extend this translation to work on
heaps: we denote it ~−�H : HI → Hdagcalculus.

14

Translation of the well-formed expressions into dag calculus The translation for
well-formed, thread-annotated expressions is as follows, defined mutually recursively
with the translation for expressions. The latter has the form ~−� : EI → TId×TId⊥ → D,
where D denotes computation dags of the form (V, E). The argument that tracks the
continuation vertex is ⊥ outside the topmost finish block. We define a helper function

mkEdge (t, t′) =

{
∅ if t′ = ⊥

{(t, t′)} otherwise

The definition for thread-annotated expressions is just shorthand: the thread-annotation
is passed as an argument to the main translation.

~et�(t′) = ~e�(t, t′)

~e�(t, t′) =

[t 7→ (~t′ | e�S ,R)],mkEdge (t, t′) if surf(e)

~L[async(e)(1,ta)]�(t, t′) =

[t 7→ (~t′ | L�L[async1(ta, t′)],X), ta 7→ (~t′ | e�S ,N)],mkEdge (t, t′)

~L[async(e)(2,ta)]�(t, t′) =

[t 7→ (~t′ | L�L[release ta],X), ta 7→ (~t′ | e�S ,N)],mkEdge (t, t′) ∪mkEdge (ta, t′)

~L[finish(e)1]�(t, t′) =

[t 7→ (~t′ | L�L[finish1(~t | e�S , t)],X)],mkEdge (t, t′)

~L[finish(e)(2,ta)]�(t, t′) =

[t 7→ (~t′ | L�L[finish2(ta, t)],X), ta 7→ (~t | e�S ,N)],mkEdge (t, t′)

~L[finish(e)(3,ta)]�(t, t′) =

[t 7→ (~t′ | L�L[finish3(ta, t)],X), ta 7→ (~t | e�S ,N)],mkEdge (t, t′) ∪ {(ta, t)}

~L[finish(S)1]�(t, t′) =

[t 7→ (~t′ | L�L[yield(); ()],X)],mkEdge (t, t′))]
⊎

ete∈S

~ete�(t)

~L[finish(S)2]�(t, t′) =

[t 7→ (~t′ | L�L[()],R)],mkEdge (t, t′))]
⊎

ete∈S

~ete�(t)

The macrodefinitions used above are as follows:

1 async1(t, t’) = newEdge (t, t’); release t; ()

2

3 finish1(e, t’) =

4 let t = newTd (e)

5 in newEdge (t, t’); release t; yield(); ()

6

15

7 finish2(t, t’) =

8 newEdge (t, t’); release t; yield(); ()

9

10 finish3(t) =

11 release t; yield(); ()

Correctness

Definition 6. We say that a configuration of annotated instrumented expression and
state et, h such that wf(et) and surf(h) matches a dag calculusstate V, E, σ, written
et, h ∝ V, E, σ if σ = ~h�H , and there exists a dag (V ′, E′) such that ~() | et� = V ′, E′

and a finite map of vertices V ′′ such that ∀t ∈ dom(V ′′). V ′′(t) = ((),R), and that

V ′] V ′′, E′, σ�∗s V, E, σ.

Lemma 13. For any et0 , h, V, E, σ, t if wf(e), et0 , h ∝ V, E, σ, t ∈ dom(V) and
status(V(t)) = X, then either V(t) = ((),X), or there exist K, e′ such that et0 = K[e′t].

Lemma 14. For any et0 , h, V, V ′, E, E′, σ, σ′ if wf(et0), et0 , h ∝ V, E, σ and V, E, σ�
V ′, E′, σ′ then either et0 , h ∝ V ′, E′, σ′ or there exist e′t

′
0 , h′ such that h, et0 → e′t

′
0 , h′

and e′t
′
0 , h′ ∝ V ′, E′, σ′.

Lemma 15. For any e, t, h, V, V ′, E, σ, σ′, if wf(et), et, h ∝ V, E, σ and ∀t′ ∈
dom(V ′). V ′(t′) = ((),F), then the following simulation holds:

V, E, σ�∗ V ′, ∅, σ′ ⇒ ∃v, t′, h′. h, et →∗ vt′ , h′ ∧ σ′ = ~h′�H

V, E, σ�∞ ⇒ h, et →∞

Proof. Follows from Lemmas 14 and 1 by the same inductive and coinductive argument
as used in the proof of Lemma 12. �

Theorem 2 (Correctness). Let t be the identifier of the main thread, e be the source
program stored in this thread, l be a designated location in which to store the final result,
and eI be the result of annotating e with 0 on all finish and async constructs. For any
integer result n, final state σ such that σ(l) = n, and final set of vertices V, assuming
that all threads t′ in V are finished (i.e. status (V(t′)) = F), we have:

[t 7→ (let x = ~() | eI�
S in l := x,R)], ∅, [l 7→ ()]�∗ V, ∅, σ ⇒ ∃h. ∅, e→∗O n, h

Furthermore, divergence in the dag calculus entails divergence in the source language:

[t 7→ (let x = ~() | eI�
S in l := x,R)], ∅, [l 7→ ()]�∞ ⇒ ∅, e→∞O .

Proof. This theorem follows from the composition of the two simulation diagrams,
given by Lemmas 12 and 15. Clearly, beIc = e. Moreover, since surf(eI), we also have
~(let x = eI in l := x)t�(⊥) = [t 7→ (let x = ~() | eI�

S in l := x,R)], ∅, which gives
us (let x = eI in l := x)t, [l 7→ ()] ∝ [t 7→ (let x = ~() | eI�

S in l := x,R)], ∅, [l 7→ ()].
For the termination case, by Lemma 15 we obtain that there exist v, t′ and h such

that [l 7→ ()], (let x = eI in l := x)t →∗I vt′ , h and σ′ = ~h�H (and hence h(l) = n).

16

Since the final command of the program is assignment, we can conclude that v = ().
By Lemma 12 we can now conclude that [l 7→ ()], let x = e in l := x →∗O (), bhc.
Since h(l) = n, by Lemma 8 this gives us that ∅, e→∗O n, bhc \ [l 7→ n], which ends the
proof.

For the nontermination case, from Lemma 15 conclude that [l 7→ ()], (let x =

eI in l := x)t →∞I , which, by Lemma 12 implies that [l 7→ ()], let x = e in l := x→∞O .
Finally, by Lemma 8 we obtain ∅, e→∞O which ends the proof. �

D Correctness of the translation of futures

D.1 Syntax and Operational Semantics
The syntax and semantics in this section are the same as in the paper and repeated here
for convenience.

e ::=x | n | f | (v, v) | fst v | snd v | let x = e in e | v v

| fun g x is e end | future(e) | force(v)
v ::=x | n | f | (v, v) | fun g x is e end

K ::=• | let x = K in e

We take the set of configurations M ≡ F ⇀fin E, where F is the set of future
identities and E— the set of expressions, and write M ∈ M for these configurations.
We also pick an identifier of the main program, f0: thus, the initial state is [f0 7→ e] for
some program e. The evaluation reaches a terminal state when all the futures in M have
values associated with them.

fst (v1, v2)� v1 snd (v1, v2)� v2 let x = v in e� e[x 7→ v]
fun g x is e end v� e[x 7→ v, g 7→ fun g x is e end]

M(f) = K[e] e� e′

M → M[t 7→ K[e′]]

M(f) = K[future(e)] f ′ fresh

M → M[f 7→ K[f ′], f ′ 7→ e]

M(f) = K[force(f ′)] M(f ′) = v

M → M[f 7→ K[v]]

D.2 Instrumented Syntax and Operational Semantics
The instrumented language is presented below. The input terms can only be annotated
with 0. When there is a chance of confusion between the instrumented and original

17

language, we annotate the constructs of the instrumented language with a subscript I,
and the constructs of original language with O. The instrumentations are as for future
creation, a f for future access, and aw for future evaluation.

e ::=x | n | t | (v, v) | fst v | snd v | let x = e in e | v v

| fun f x is e end | future(e)as | force(v)a f

v ::=x | n | t | (v, v) | fun f x is e end

as ::=0 | (1, l) | (2, l, t)
a f ::=nwhere 0 ≤ n ≤ 4
aw ::=0 | 1
K ::=• | let x = K in e

The annotations as and a f can progress, written a s a′ (and, respectively a f a′),
if the step of a′ is one greater than the step of a. All the other parts of a′ present in a
have to agree, while those absent in a are globally fresh, as follows:

0 s (1, l) where l is fresh (1, l) s (2, l, t) where t is fresh
n f n + 1 for 0 ≤ n ≤ 3

Sequential evaluation within a future proceeds as follows:

fst (v1, v2)� v1 snd (v1, v2)� v2 let x = v in e� e[x 7→ v]
fun f x is e end v� e[x 7→ v, f 7→ fun f x is e end]

a f a′

future(e)a � future(e)a′
a s a′

force(e)a � force(e)a′

The configurations are defined asM = F ⇀fin (L×TId×E× aw), and well-formed
configurations have all the locations and thread id’s disjoint. The special starting future,
f0 has a special first thread id, t0. The evaluation then proceeds as follows.

M(f) = (l, t,K[e], 0) K[e]� K[e′]

M → M[t 7→ (l, t,K[e′], 0)]

M(f) = (l, t,K[future(e)(3,l′,t′)], 0) f ′ fresh

M → M[f 7→ (l, t,K[f ′], 0), f ′ 7→ (l′, t′, e, 0)]

M(f) = (l, t,K[force(f ′)4], 0) M(f ′) = (l′, t′, v, 1)

M → M[f 7→ (l, t,K[v], 0)]

M(f) = (l, t, v, 0)

M → M[f 7→ (l, t, v, 1)]

An expression is a surface expression, written surf(e) if all its annotations are
0. Note that these are isomorphic to the terms of the original language. A term is

18

well-formed, written wf(e), if it has at most one non-zero annotation, in an evaluation
position, i.e.,

wf(e) ≡

wf(e1) ∧ surf(e2) if e = let x = e1 in e2
surf(e′) if e = future(e′)a

surf(v) if e = force(v)a

surf(e) otherwise

We write wf(M) to mean that each of the expressions associated with the futures is
well-formed.

Lemma 16. Evaluation preserves well-formedness, i.e., if wf(e) and e � e′ then
wf(e′). Similarly, if wf(M) and M → M′, then wf(M′).

Proof. The first part proceeds by simply checking the reductions. The second follows
by simple induction on the structure of the expression associated with the future that
reduces. �

D.3 Connecting the instrumented and source languages
We define a map b−c : EI → EO that removes annotations from the instrumented
expressions. This map extends to the configurations, by also removing the additional
information in the futures. We use it to connect the instrumented language to the source
language. Note that a map that adds an annotation 0 to future and force is a right
inverse of b−c. For surface term, it is also the left inverse.

Lemma 17 (Instr-Step). For any configurations M,M′ ∈ MI , if M →I M′, then either
bMc = bM′c or bMc →O bM′c.

Proof. By cases on the reduction. In cases of spawning a future, forcing a future of
finishing a future, trivially true, since bK[e]c = bKc[bec]. For the same reason, suffices
to check the same statement for any e� e′.

These split into two forms: the administrative reductions of future and force,
which give the same erasure for both the redex and the reduct, and the reductions of
sequential constructs, which can be trivially matched. �

Definition 7. An administrative reduction in the instrumented language is a reduction
M → M′ such that bMc = bM′c. We write M →a M′ for administrative steps.

Lemma 18 (Admin-Fin). For well-formed configurations M, there are no infinite
sequence of administrative reductions, i.e., for any M ∈ MI , if wf M then M 6→∞a .

Proof. Assign as a weight to each future based on the count of their annotations in
evaluation positions. Take the cnt(a) to be the natural number in the annotation. Then
define

w(e) =

3 − cnt(a) if e = future(e′)a

4 − a if e = force(e′)a

w(e1) if e = let x = e1 in e2
0 otherwise

,

19

w(l, t1, t2, e, n) = w(e) + 1− n, and w(M) =
∑

f∈dom(M) w(M(f)). From there, the proof is
analogous to the proof of Lemma 1: by simple induction, each administrative reduction
decreases the weight, and since the weight of a given configuration is finite, there is no
infinite chain of reductions administrative. �

Lemma 19 (Instrument). For any configurations M,M′ such that M′ is final and
M →∗I M′, bMc →∗O bM

′c and bM′c is final. Moreover, if M →∞I , then bMc →∞O .

Proof. First part, by induction on the reduction sequence and Lemma 17. Since final
configurations of the instrumented language map to final configurations of the source
language, this ends the proof.

Similarly, for the second part we proceed by coinduction: since M →∞I , by Lem-
mas 18 and 17 there exists an M′ such that M →∗I M′, bMc →O bM′c and M′ →∞I . By
coinduction, we obtain that bM′c →∞O , and so bMc →∞O . �

D.4 Connecting the instrumented language and dag calculus
Translation of surface expressions into dag calculus Note that the translation triv-
ially extends to the evaluation contexts of the instrumented language. We define a
translation ~−�S : EI →MI → Edagcalculus.

~let x = e1 in e2�
S (M) = let x = ~e1�

S (M) in ~e2�
S (M)

~fun f x is e end�S (M) = fun f x is ~e�S (M) end

~v1 v2�
S (M) = ~v1�

S (M) ~v2�
S (M)

The translations for the pairs, variables and numbers are analgous. For future id’s we
use the state M to map them to the thread-location pairs:

~ f �S (M) = (t, l) where M(f) = (l, t, ,).

For the other constructs, we have:
1 ~future(e)0�S =
2 let l = alloc

3 t = newTd (l := ~e�S)
4 in release t; (t, l)

5

6 ~force(v)0�S =

7 let (ft, fl) = ~v�S

8 in newEdge (ft, self()); yield(); !fl

As mentioned, since all expressions in the well-formed evaluation contexts are
surface expressions, we can extend this translation to contexts, giving us ~−�K : KI →

Kdagcalculus.

Translation of well-formed futures into dag calculus Here, we define a translation
~−� : EI → L × TId ×MI → S, where S are the states of dag calculus. In case the
expression is a surface expression, we simply use the surface translation and add the
dag structure:

~e�(l, t,M) = [t 7→ (l :=~e�S ,R)], ∅, [l 7→ ()].

20

This leaves us with non-surface cases: the creation and reading of futures. The transla-
tion of these constructs takes into account the partial evaluation of the code that their
annotations denote. For the future construct, we have as follows:

~K[future(e)(1,l)]�(l f , t f ,M) =

[t f 7→ (l f :=~K�K[ft1(~e�S , l)],R)], ∅, [l f 7→ (), l 7→ ()]

~K[future(e)(2,l,t)]�(l f , t f ,M) =

[t f 7→ (l f :=~K�K[ft2(l, t)],R); t 7→ (~e�S ,N)], ∅, [l f 7→ (), l 7→ ()]

In the above, the helper macros are defined as partial evaluation states of the surface
translation of future:

1 ft1(e, l) =

2 let t = newTd (l := e)

3 in release t; (t, l)

4

5 ft2(l, t) =

6 release t; (t, l)

We tackle the force operation in a similar manner, taking throughout the definition
(t, l) = ~v�S (M).

~K[force(v)1]�(l f , t f ,M) =

[t f 7→ (l f :=~K�K[fr1(t, l)],X)], ∅, [l f 7→ ()]

~K[force(v)2]�(l f , t f ,M) =

[t f 7→ (l f :=~K�K[fr2(t, l, t f)],X)], ∅, [l f 7→ ()]

~K[force(v)3]�(l f , t f ,M) =

[t f 7→ (l f :=~K�K[fr3(l)],X)], {(t, t f)}, [l f 7→ ()]

~K[force(v)4]�(l f , t f ,M) =

[t f 7→ (l f :=~K�K[! l],R)], {(t, t f)}, [l f 7→ ()]

Similar to before, we use helper macros that define partial evaluation of the surface
translation of force:

1 fr1(ft, fl) =

2 newEdge (ft, self()); yield(); !fl

3

4 fr2(ft, fl, t) =

5 newEdge (ft, t); yield(); !fl

6

7 fr3(fl) =

8 yield(); !fl

Finally we define the translation for a future — and then as a translation of the complete
state we take a disjoint union of the translation of the individual futures. We have:

~(l, t, e, 0)�(M) = ~e�(l, t,M)

~(l, t, v, 1)�(M) = ∅, ∅, [l 7→ ~v�S (M)]

21

Definition 8. We say that an instrumented configuration M matches a dag Calculus state
V , E, σ, written M ∝ V, E, σ if there exists a dag state V ′, E′ such that ~M� = V ′, E′, σ
and a finite map of threads V ′′ such that ∀t ∈ dom(V ′′). V ′′(t) = ((),R) and that

V ′] V ′′, E′, σ�∗s V, E, σ.

Lemma 20. For any M, V, E,σ, t if wf(M), M ∝ V, E, σ, t ∈ dom(V) and status(V(t)) =

X, then either V(t) = ((),X) or there exist f , l and e such that M(f) = (l, t, e, 0).

Lemma 21. For any M, V, V ′, E, E′, σ, σ′ if wf(M), M ∝ V, E, σ and V, E, σ �
V ′, E′, σ′ then either M ∝ V ′, E′, σ′ or there exists an M′ such that M → M′ and
M′ ∝ V ′, E′, σ′.

Proof. Consider the reduction V, E, σ � V ′, E′, σ′. It is either a Start reduction, in
which case it is an administrative reduction, and M ∝ V ′, E′, σ′, or it happens in some
thread t ∈ dom(V) such that status(V(t)) = X. Thus, by Lemma 20 we either have
V(t) = ((),X) or there exists a future f such that M(f) = (l, t, e, 0). In the first case, the
only applicable reduction rule is Stop, which is an administrative reduction. This leaves
us with the second case.

In this case we have M(f) = (l, t, e, 0) and a reduction in thread t. We can decompose
e uniquely into K and e′ such that e = K[e′] and e′ is not a let-binding. If e′ is neither
a value nor a parallel construct, then it’s at ~e′�S (M) that the reduction occurs on the
dag calculus side. Since the translation is entirely structural, we can match it by using
the corresponding rule. The case if e′ is a value is similar: the redex is the innermost
let-binding in K, and can be matched by the let-rule. Finally, for parallel primitives,
the location of the redex is based on the annotation: however, the translations of the
sequences of annotated primitives are specifically designed so that they correspond to
one step of reduction on the dag calculusside. Thus, we can locate the redex, obtain any
new threads or locations created on the dag calculus side, and use them in the matching
reduction. �

Lemma 22. For any M, V, V ′, E,σ,σ′ if wf(M), M ∝ V, E, σ and ∀t ∈ dom(V ′). V ′(t) =

((),F), then the following simulation holds:

V, E, σ�∗ V ′, ∅, σ′ ⇒ ∃M′. M →∗I M′ ∧ M′ ∝ V ′, ∅, σ′

V, E, σ�∞ ⇒ M →∞I

Proof. Follows from Lemmas D.4 and 1 by the same inductive and coinductive argument
as used in the proof of Lemma 19. �

Theorem 3 (Correctness). Let t be the identifier of the main thread, e be the source
program stored in this thread, and l be a designated location in which e stores its final
result. Let eI to be the result of annotating all instances of future and force in e
with 0. For any number n, final state σ such that σ(l) = n, and final set of vertices V,
assuming that all threads t′ in V are finished (i.e. status (V(t′)) = F), if

[t 7→ (l :=~eI�
S (∅),R)], ∅, [l 7→ ()]�∗ V, ∅, σ

22

then there is a final configuration M such that [f0 7→ e] →∗ M and M(f0) = n.
Furthermore, divergence is preserved:

[t 7→ (l :=~eI�
S (∅),R)], ∅, [l 7→ ()]�∞ ⇒ [f0 7→ e]→∞ .

Proof. This theorem follows from the composition of the two simulation diagrams,
given by Lemmas 19 and 22. Clearly, beIc = e. Moreover, since surf(eI), we also
have ~[f0 7→ (l, t0, t, eI , 0)]�(∅) = [t 7→ (l :=~eI�

S (∅),R)], ∅, [l 7→ ()], which gives us
[f0 7→ (l, t0, t, eI , 0)] ∝ [t 7→ (l :=~eI�

S (∅),R)], ∅, [l 7→ ()].
For the termination case, by Lemma 22 we obtain that there exists a configuration

M such that [f0 7→ (l, t0, t, eI , 0)] →∗I M and M ∝ V ′, ∅, σ′. Inspecting the translation,
we find that this requires that the annotations of all the futures in M are equal to 1, and
so M is a final configuration. Since this means that M(f0) = (l, t0, t′, v, 1) for some t′

and v, we learn that σ′(l) = ~v�S (M), and so, sine σ′(l) = n, that v = n. By Lemma 19
we can now conclude that [f0 7→ e]→∗O bMc, which ends the proof, since bMc(f0) = n.

For the nontermination case, from Lemma 22 conclude that [f0 7→ (l, t0, t, eI , 0)]→∞I ,
which, by Lemma 4 implies that [f0 7→ e]→∞O . This ends the proof. �

23

1 processor_local queue<vertex*> workQueue // bag of vertices

2 processor_local vertex* current // running vertex

3 processor_local cont* proc_cont // continuation of the scheduler

4

5 void schedulerLoop() // executed by each processor

6 while true // termination details omited

7 if workQueue.empty()

8 // implementation-dependent load balancing

9 acquireWork() // blocking call

10 current = workQueue.pop()

11 current->releaseHandle = increment(current->in)

12 if(current->cont == null) // initialize the continuation

13 current->cont = new_cont(&enter)

14 swap_cont(proc_cont, current->cont) // execute the vertex

15 if(current->cont == null) // vertex has finished

16 parallelNotify(current->out)

17 else // vertex has yielded

18 decrement(current->releaseHandle)

19

20 void enter() // execute the current vertex, assuming it has never yielded

21 current->run()

22 current->cont = null // mark vertex finished

23 jump_cont(proc_cont)

24

25 // ‘‘newTd e’’ is short for ‘‘createThread(fun () => e)’’

26 vertex* createThread(runMethod)

27 vertex* v = new vertex

28 v->run = runMethod

29 v->in = new_incounter(v)

30 v->out = new_outset()

31 v->releaseHandle = increment(v->in)

32 return v

33

34 void release(vertex* v)

35 decrement(v->releaseHandle)

36

37 void newEdge(vertex* v1, vertex* v2)

38 incounterHandle* h = increment(v2->in)

39 bool success = add(v1->out, h)

40 if not success // vertex v1 has already completed

41 decrement(h) // roll back on edge creation

42

43 void yield()

44 swap_cont(current->cont, proc_cont)

45

46 vertex* self()

47 return current

Figure 3: Realization of the scheduler loop and primitive operations. Details of load
balancing and termination detection are omited.

E Correctness of the implementation
Recall the code of the primitive dag operations from the paper, presented in Figure 3.

We continue with the definitions and theorem statement from Section 6 of the paper.

24

First, we provide the formal statements of the error rules for the semantics.

V(t) = (K[release t′],X) status(V(t′)) , N

V, E, σ� ⊥
Release-Err

V(t) = (K[newEdge (t1, t2)],X)
t1 < dom(V) ∨ t2 < dom(V) ∨ status(V(t2)) = F ∨

(status(V(t2)) = X ∧ t , t2) ∨ ({(t1, t2)} ∪ E) is cyclic

V, E, σ� ⊥
NewEdge-Err

To prove the theorem, we proceed in two steps. In the first step, we present a slightly
modified set of rules for the dag calculus, proved equivalent to the original one. This
allows for a tighter fit with the implementation, in particular accounting for the fact that
outgoing edges may be removed incrementally and not atomically. The second key step
is the statement of a global invariant, that binds the dag calculus configurations with
corresponding states of the machine. We prove that this invariant is preserved by each
evaluation step of the machine, some of those steps corresponding to transitions from
the (alternative presentation of the) dag calculus.

In the following paragraphs, we first discuss the necessary refinement of the dag
calculus, and then describe the invariants used in the second part of the proof and
the points of the program at which dag reductions happen. We elide some of the
technical details involved in relating the computations, particularly when it comes to the
compilation relation, and refer the interested reader to the appendix.

Refined semantics To refine the semantics, we introduce a reduction relation �′.
Most of the rules carry over directly from the original semantics; we only refine the
Stop rule, since the implementation removes edges, one-by-one, potentially in parallel—
whereas in the original semantics all the edges are removed in one step. Thus, to obtain
a less atomic semantics, we replace this rule with two rules: Stop’ and RemEdge’.
The first of these changes the thread’s status to F (finished), but does not remove any
outgoing edges, while the second one removes a single edge from a vertex with status F.

V(t) = (v,X)

V, E, σ�′ V[t 7→ ((),F)], E, σ
Stop

V(t) = ((),F)

V, (E] (t, t′)), σ�′ V, E, σ
RemEdge

With the refined semantics set up, we can prove that it is equivalent to the original
one. This means we gain a more fine-grained and less atomic way of talking about
programs that is still equivalent to the original formulation.

Lemma 23. For any dag calculus state V, E, σ, and a terminal state V ′, ∅, σ′ such that
status(V ′(t)) = F for any t ∈ dom(V ′), we have

V, E, σ�∗ V ′, ∅, σ′ ⇐⇒ V, E, σ�′∗ V ′, ∅, σ′.

Proof. The left-to-right direction of this lemma holds trivially, since we can encode
Stop in the refined calculus by using Stop’ and RemEdge’. For the right-to-left direction,
we have a derivation with edge removals scattered after it’s marked F. The informal
argument for why we can replace these with a bulk removal, is that it is always safe to
remove an edge earlier, rather than later, as long as the removal happens after the vertex
was marked as finished—which exactly matches the semantics of Stop. �

25

E.1 The invariant
In order to prove the statement of the correctness theorem, we must now relate the states
of the dag calculus (with refined semantics), to the machine states. This is done through
an invariant of the following shape, where each of the conjuncts represents a specific
sub-invariant defined further on, and where HI and HO are two finite maps that bind
vertex identifiers to sets of incounter handles. These two maps determine the handles
stored in the incounters and outsets of each of the vertices.

I((V, E, σ), (M, S)) ≡ wf(M) ∧ ∃HI ,HO.

IV (M,V, S ,HI ,HO) ∧ IQ(V, E, S) ∧ IS (M, σ) ∧
IE(M,V, E, S ,HI ,HO) ∧ IR(M,V, S)

Before we turn to discuss specific parts of the invariant, we briefly describe how
formalization of the machine state, and of the continuation, incounter and outset data
structures.

Description of the machine state This consists of two parts, the memory, M, which
maps addresses to values (C-like records, integers, pointers, etc.), and the per-thread state
S . The invariant ensures that the memory is well-formed, i.e., we can split it into five
disjoint sections, denoted MV , MI , MO, MK and MS . These sections represent the parts
of storage used to represent, respectively, vertices, incounters, outsets, continuations and
the mutable state of the dag calculus. The state of a processor p is modeled as the tuple
(Lp,Qp,Cp,Kp,Γp), where Lp denotes the line of program currently evaluated by the
processor, Qp denotes its work-queue, Cp denotes the current vertex, Kp denotes the
stored continuation proc cont, and Γp denotes the environment that maps variables to
values. The evaluation proceeds by progressing the Lp counter according to the control-
flow, updating the environment Γp and other variables as necessary. By convention,
we thread the call-stack in the environment, by associating the return address and
environment with a ret variable in the environment of the callee.

Specification of auxiliary data structures We need to assume specifications of the
data structures that the scheduler uses: work queues, continuations, incounters, and
outsets. Work queues are simply modeled as sets of vertices. For continuations, we
assume a representation predicate Cont(K, L,Γ), which relates a representation of the
continuation in memory, K to the pair (L,Γ) of a line number in the program and an
environment. The incounter is represented by the predicate InCounter(I,H, v), which
states that the incountered represented in the memory by I has a set of handles H
attached to itself and is itself attached to node v (which it will wake when the count
is decremented to 0). Finally, the outset is represented by the predicate OutSet(O,H),
which matches the memory representation O with the set of the added elements, H. The
functions that operate on these objects use the predicates to specify their effect; we
provide these specifications in the technical appendix.

26

Definition of the sub-invariant IV The predicate IV ensures that the dag vertices
are properly represented as records with appropriate values, according to the status of
the vertex. We call r, i, o, h, k the contents of the fields of a vertex record.

IV (M,V, S ,HI ,HO) ≡
∀t, e, s. V(t) = (e, s). ∃r, i, o, h, k. MV (t) = {r, i, o, h, k} ∧

InHandles(MI(i),HI(t), t) ∧ OutHandles(MO(o),HO(t)) ∧
s = N⇒ (Compile(e, r) ∧ k = null ∧ h ∈ HI(t)) ∧
s = R⇒ (if k = null then Compile(e, r)

else EvalCont(e,MK(k)) ∧
(h ∈ HI(t) ⇐⇒ ∃p. Lp ∈ {11 . . . 15} ∪ {18} ∧Cp = t)) ∧

s = X⇒ (∃p.Cp = t ∧ EvalEnter(e, Lp,Γp) ∧
h ∈ HI(t) ∧ (Lp = 21⇒ k = null)) ∧

s = F⇒ k = null ∧ (∃p. Cp = t ∧ Lp ∈ {15, 16} ∨ HO(t) = ∅)

Above, we ensure the correct representation of the incounters and outsets using
the InHandles and OutHandles predicates. The invariant then describes the state of the
memory based on what is the status of a given vertex. If the status is N (new), the run
field, represented by r, should point to a line number where the compiled version of e is
stored. The same should be true of a R (released) vertex, if its continuation is not yet set
up. If the continuation is set up, on the other hand, it is the continuation that represents
the computation e. This is achieved through the EvalCont predicate, which states that
the continuation stored at k corresponds to some program state, and that state is in
process of evaluating the enter function with computation e. Formally, it is defined
as shown below, where Eval(e, L,Γ) is a predicate that relates a partially executed dag
computation e with a program state (L, Γ). Note that this predicate is related to Compile.
(We keep both predicates abstract and reason about them axiomatically.)

EvalCont(e,K) ≡ ∃L,Γ. EvalEnter(e, L,Γ) ∧ Cont(K, L,Γ)
EvalEnter(e, Lp,Γp) ≡

(Lp = 21 ∧ ∃L. Compile(e, L)) ∨
(Lp ∈ {22, 23} ∧ e = v) ∨
(Eval(e, Lp,Γp) ∧ Γp(ret) = (22, [v 7→ Cp]))

We also use EvalEnter if the status of the vertex is X (executing); the only difference
is that we relate the program state of a processor p, rather than a stored continuation—
which matches the intuition about vertices under execution. Finally, if the status of
the vertex is F (finished), it can only have outgoing edges if the outset is about to be
processed.

Definition of the sub-invariant IQ We now turn to the next invariant, IQ, which
together with IV contains most of the important properties. IQ describes the state of
the work queues, namely it states that the work queues and the vertices just popped

27

from them always contain exactly those released nodes that have no incoming edges,
discounting the vertices that have just yielded and still need to have the artificial in-edge
removed.

IQ(V, E, S) ≡⊎
p∈{1...P}

(Qp] if Lp ∈ {11 . . . 14} then {Cp} else ∅) =

{t ∈ dom(V) | status(V(t)) = R ∧ ¬JustYielded(t, S) ∧
∀t′. (t′, t) < E}

JustYielded(t, S) ≡ ∃p ∈ {1 . . . P}. Cp = t ∧ Lp ∈ {15, 18}

The next part of the invariant, IS , states that the values found in the part of memory
that models the store, MS , match the values stored in σ. We use the same relation of
compilation for values as in the theorem statement, CompileVal, which ensures that part
of the conclusion holds. As with the other compilation relations, we leave this abstract.

IS (σ,M) ≡ dom(σ) = dom(M) ∧ ∀l ∈ dom(σ). CompileVal(σ(l),MS (l))

Definition of the sub-invariant IE The second-to-last part of the invariant, IE , en-
forces the properties of edges: each edge, as well as each artificial in-edge is uniquely
represented by an incounter handle, and the appropriate handles match the represen-
tation of incounters and outsets, HI and HO. Since this mostly focuses on necessary
separation properties, it is less important to the understanding of the relationship. From
the technical standpoint, we define this invariant by quantifying over an extension of E
that also contains the matching handle for each of the edges and artificial in-edges, and
stating the properties with respect to that relation.

IE(M,V, E, S ,HI ,HO) ≡ ∃Ē ⊆ TId2 × Handle.
(∀(t1, t2, h) ∈ Ē, (t′1, t

′
2, h
′) ∈ Ē.

if h = h′ then (t1 = t′1 ∧ t2 = t′2) else (t1 , t′1 ∨ t2 , t′2)) ∧
(∀t, t′. t , t′ ⇒ (t, t′) ∈ E ⇐⇒ ∃h. (t, t′, h) ∈ Ē) ∧
(∀(t1, t2, h) ∈ Ē. t1 , t2 ⇒ h ∈ HI(t2) ∧ h ∈ HO(t1)) ∧
(∀(t, t, h) ∈ Ē. h ∈ HI(t) ∧ MV (t).h = h) ∧
(∀h, t. h ∈ HO(t)⇒ ∃t′ , t. (t, t′, h) ∈ Ē) ∧
(∀h, t. h ∈ HI(t)⇒ (∃t′. (t′, t, h) ∈ Ē∨

∃p. Lp ∈ {40 . . . 42} ∧ h = Γp(h) ∧ Γp(v2) = t))

Definition of the sub-invariant IR The final component of the invariant, IR, de-
scribes additional properties of the per-processor state, i.e., the stored continuation Kp,
and the information that lets us distinguish between threads that return to the scheduler
because they yielded from the ones whose termination finished. The invariant on Kp

states that any processor that evaluates the enter function has a stored continuation
that represents the schedulerLoop function suspended at line 15, while the final lines

28

state that the status of the thread can be checked by checking if its continuation is set to
null.

IR(M,V, S) ≡ ∀p ∈ {1 . . . P}.
(enter ∈ CallStack(p)⇒ Cont(MK(Kp), 15, ∅)) ∧
Lp = 15⇒ (if MV (Cp).k = null then status(V(Cp)) = F

else status(V(Cp)) = R)

E.2 Structure of the proof
The proof proceeds by three lemmas that can be combined using induction over the
evaluation of the machine state. The first, Lemma 24 relates the initial states of the
dag calculus and the machine through an invariant. The second, Lemma 25 provides
properties of the final state. Finally, Lemma 26 ensures that the invariant is preserved
through the evaluation of the machine.

Lemma 24. Assume the initial state of the theorem:

• e0 to be a dag calculus expression,

• t0 to be a thread identifier,

• l0 a location for the final result,

• r0 the code pointer to the compiled code for e0, i.e. in the sense that Compile(e0, r0)
holds (we describe Compile later),

• V0 = [t 7→ (e0,R)], which describes the initial vertex with body e0 and released
status,

• E0 = ∅, which describes the initial set of edges,

• σ0 = [l0 7→ ()], which describes the initial heap,

• M0 = [l0 7→ (), t0 7→ InitVertex(r0)], which describes the initial memory state,
with a memory cell at location l0, and a representation of the initial vertex with run
method r0, fresh incounter and outset, and null continuation and releaseHandle
(as described by the auxiliary InitVertex operator),

• S 0, which describes the initial state of the processors, by asserting that they are
entering schedulerLoop (i.e., ∀p ∈ {1 . . . P}. Lp = 6, where Lp denotes the line
of processor p), and asserting that all work queues are empty except one that
contains exactly t0 (i.e., ∃p ∈ {1 . . . P}. Qp = {t0} ∧ (∀p′ ∈ {1 . . . P}. p , p′ ⇒
Qp′ = ∅), where Qp denotes the work queue of processor p).

Then, I((V0, E0, σ0), (M0, S 0)) holds.

Proof. By definition of the invariant: the configurations match each other directly. �

Lemma 25. For any M, S , V, E, σ such that I((V, E, σ), (M, S)), if S is a terminal
state (i.e., Lp = 9 ∧ Qp = ∅ for any processor p), then IS (σ,MS) and (V, E, σ) is a
terminal configuration (i.e., status(V(t)) = F for any t ∈ dom(V) and E = ∅).

29

Proof. By definition of the invariant. �

Lemma 26. For any two machine states (M, S) and (M′, S ′) such that (M, S) →
(M′, S ′) and for any configuration (V, E, σ) such thatI((V, E, σ), (M, S), if¬ ((V, E, σ)�∗

⊥) then there exists a dag configuration (V ′, E′, σ′) such that (V, E, σ)�∗ (V ′, E′, σ′)
and I((V ′, E′, σ′), (M′, S ′)).

Proof. We need to check that every possible reduction in our program preserves the
invariant. Reductions within the body of one of the run methods, including ones where
Step should apply, are governed by the Eval predicate. However, this still leaves us with
checking all the lines of our code. Among these, most evaluation steps do not require a
change of the dag calculus state and the concomitant reduction in the dag calculus; the
interesting steps are the ones in which we do need to perform a reduction. We consider
these below, and explain in which line of code we perform the matching reduction in
the dag calculus.

The high-level justifications of why each of the lines of our code preserves the
invariants follow below:

• Lp = 7: ensures we only pop from non-empty queues

• Lp = 9: by specification of acquireWork, ensures queue non-empty

• Lp = 10: by specification of workQueue.pop(); preserves IQ

• Lp = 11: by specification of increment; note the handle obtained is fresh, so
invariant IE is preserved

• Lp = 12: ensures we only restore non-null continuations; invariant IV is preserved

• Lp = 13: by specification of new cont and enter; invariant IV is preserved

• Lp = 14: by specification of swap cont; apply the Start rule, changing status
from R to X; preserves the IV invariant

• Lp = 15: status has changed from X; checks whether returning vertex has status
R or F; exploits IR to deduce information

• Lp = 16: by specification of parallelNotify; ensures that the outset of the
current vertex is empty; apply RemEdge’ rule for each outgoing edge of the current
vertex, noting that these might execute concurrently to other steps.

• Lp = 18: by specification of decrement; reestablishes the normal state of a
released node (i.e., without an artificial in-edge); note status is already R.

• Lp = 21: by the relationship of Compile and Eval predicates: Compile(e, r) ⇒
Eval(e, r, ∅)

• Lp = 22: establishes that the continuation is null in preparation for switching
status to F

• Lp = 23: by specification of jump cont; the R-F distinction enforced by the
invariant established in the previous line; apply the Stop’ rule, changing status

30

from X to F.

• Lp = 27: creates a vertex in MV ; since the vertex is not yet in V , it does not
violate the invariants

• Lp = 28: set up the run field; from this point the Compile(e, r) holds

• Lp = 29: set up the incounter; from this point on the InHandles predicate holds
for the vertex

• Lp = 30: set up the outset; from this point on the OutHandles predicate holds

• Lp = 31: set up the release handle by specification of increment; note the
disjointness preserved since the handle is fresh

• Lp = 32: by a property of Eval; apply the NewTd rule; invariant IV holds for this
vertex with status N

• Lp = 35: performs a Release reduction; the released vertex satisfies the invariant,
since its cont field still contains null; preserves invariant IV , status changes from
N to R

• Lp = 38: by specification of increment; the handle h is fresh; at this point enter
the special branch of IE

• Lp = 39: by specification of add; performs a NewEdge transition; if addition
successful, the edge was added, if not — the vertex has state F, so transition is
allowed

• Lp = 40: ensures we do not decrement if addition was successful

• Lp = 41: by specification of decrement; leaves the special branch of IE

• Lp = 44: by specification of swap cont; the R-F distinction enforced by
swap cont itself; applies the Yield rule, status changes from X to R; preserves IV

• Lp = 47: by a property of Eval and IV ; performs a Self reduction

�

Theorem 4 (Correctness). As stated in the paper.

Proof. First, we deduce from Lemma 24 that the invariant holds. Then, proceed by
induction on the execution of the machine. If the derivation is empty, then the configura-
tion of the machine is terminal, and the conclusion follows easily from Lemma 25.

In the inductive case, we can use Lemma 26 on the first step of the derivation. Thus,
we establish that the invariant is preserved. Since the correctness of the program is also
preserved by the evaluation, we can use the induction hypothesis to end the proof. �

31

	Auxiliary definitions
	Correctness of translations of fork-join
	Syntax and Operational Semantics
	Instrumented Syntax and Operational Semantics
	Connecting the instrumented and source languages
	Connecting instrumented language to dag calculus

	Correctness of the translation of async-finish
	Syntax and Operational Semantics
	Instrumented Syntax and Operational Semantics
	Connecting instrumented language and source language
	Connecting instrumented language and dag calculus

	Correctness of the translation of futures
	Syntax and Operational Semantics
	Instrumented Syntax and Operational Semantics
	Connecting the instrumented and source languages
	Connecting the instrumented language and dag calculus

	Correctness of the implementation
	The invariant
	Structure of the proof

