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ABSTRACT

Advances in processing power and memory technology have made
multicore computers an important platform for high-performance
graph-search (or graph-traversal) algorithms. Since the introduc-
tion of multicore, much progress has been made to improve paral-
lel breadth-first search. However, less attention has been given to
algorithms for unordered or loosely ordered traversals.

We present a parallel algorithm for unordered depth-first-search
on graphs. We prove that the algorithm is work efficient in a re-
alistic algorithmic model that accounts for important scheduling
costs. This work-efficiency result applies to all graphs, including
those with high diameter and high out-degree vertices. The algo-
rithmic techniques behind this result include a new data structure
for representing the frontier of vertices in depth-first search, a new
amortization technique for controlling excess parallelism, and an
adaptation of the lazy-splitting technique to depth first search.

We validate the theoretical results with an implementation and
experiments. The experiments show that the algorithm performs
well on a range of graphs and that it can lead to significant im-
provements over comparable algorithms.

1 Introduction

High-performance graph-search algorithms have become increas-
ingly important in a variety of areas, such as social networks [31,
33, 49], physical sciences [2], and parallel garbage collection [22,
23, 47, 13]. Although there has been much research on parallel
breadth-first search on directed graphs [39, 37, 10, 34] [8, 32, 44,

45,50, 12, 19], and connectivity algorithms on undirected graphs [46,

36], other graph-search algorithms, such as parallel depth-first search
on directed graphs, have received less attention.

One reason may be the difficulty of providing a parallel solution
to the classic depth-first-search problem. For example, Reif [41],
has shown that DFS is P-complete, suggesting that DFS is difficult
to parallelize. There are solutions for certain special instances of
the problem, for example, in planar graphs [24], but in the general
case, DFS continues to be challenging: the best known algorithm is
randomized and requires O (log” (1)) parallel time using O(n?-*7%)
processors, which is far from work efficient [9].
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The primary difficulty in parallelizing DFS is the lexicographi-
cal ordering property that requires visiting the out-edges of a vertex
in order. In many applications, such as reachability, graph search,
and garbage collection [29], lexicographical ordering is not neces-
sary. Prior work therefore considered parallel unordered DFS al-
gorithms, which are sometimes called Pseudo Parallel Depth First
Search or PDFS [20, 40, 38, 30]. For brevity, we refer to parallel
unordered DFS or pseudo DFS as PDFS. Since they do not have
to observe the edge ordering, PDFS algorithms can be asymptoti-
cally work efficient, performing O(n + m) work, where n and m
are the number of vertices and edges respectively, when ignoring
load balancing and scheduling costs. However, when the cost of
scheduling operations are included in the analysis, all known al-
gorithms can incur large overheads. Our goal in this paper is to
present a PDFS algorithm that operates with small overheads in-
cluding the overheads of scheduling. We refer to such algorithms
as strongly work efficient.

Including scheduling overheads as part of the work efficiency
is important because such overheads are critical for performance.
Cong et al [20] presented a PDFS algorithm whose purpose is to
improve work efficiency on modern multicore computers. Their
PDEFS algorithm improves work efficiency by the application of a
heuristic for adaptively batching edges. The idea behind the heuris-
tic is to use the number of vertices owned by a processor as an es-
timate of total load in the system. They show empirically that their
PDFS algorithm performs well on certain graphs, but do not show
the algorithm to be strongly work-efficient.

In this paper, we present a strongly work-efficient PDES algo-
rithm. We prove that our algorithm achieves strong work efficiency
by bounding important scheduling overheads, is implementable on
modern CMPs, such as multicores, and performs well on a range of
graphs, including graphs with high diameter and small amounts of
parallelism. Our specific contributions include the following.

o A frontier data structure for representing the “frontier” in
graph search. The data structure supports balanced splitting
operations needed for effective parallel execution.

e A parallel thread-creation strategy that delivers a high degree
of parallelism, while ensuring small overheads.

e A proof of strong work efficiency that is with respect to a
careful specification of the algorithm in a realistic parallel
model.

o Implementation and experimental evaluation that field-tests
the algorithm and the theory, while evaluating the constant
factors involved in the implementation and comparing with
the state of the art.

e A modest additional empirical study of the locality of PDFS
algorithm.



2 Overview

We present a high-level overview of our parallel unordered DFS
(PDFS) algorithm in the context of the related work.

In a PDFS algorithm, each processor maintains a frontier of ver-
tices. As in sequential DFS, a frontier stores the subset of visited
vertices, whose outgoing edges have not yet been explored. Each
processor works locally on its own frontier by repeatedly popping a
vertex from its frontier and exploring its outgoing edges to discover
new, unvisited vertices. When a processor discovers a new vertex,
it attempts to visit the vertex by using an atomic read-modify-write
operation (such as compare-and-swap) and, if it succeeds, adds the
vertex to its frontier. By using an atomic operation, the algorithm
ensures that each vertex is visited at most once.

To minimize the run time on a parallel machine, a PDFS algo-
rithm needs to generate parallelism and perform load balancing to
keep all the processors busy. A naive approach to this end would be
to generate one thread for each vertex in the frontier. The threads
can then be distributed over the processors by using a load bal-
ancing algorithm, such as work stealing [15], where an idle pro-
cessor steals a thread (usually the “oldest” thread) from a (usually
randomly chosen) busy processor, effectively redistributing work
lazily and as needed.

The naive approach has two important limitations, which stem
from the very fine granularity of work assigned to each thread.
First, the cost of creating a thread for each vertex does not outweigh
the benefits of parallelism. Second, since a thread contains only
a single vertex, it may not generate significant work (the amount
of work is proportional to the total number of vertices reachable
from the vertex), causing large number of expensive load balanc-
ing (work-stealing) operations.

Cong et al [20] proposed a batching technique to ameliorate
these problems. In their approach, each thread corresponds to a
batch of vertices instead of a single vertex. Each batch is repre-
sented as a fixed-capacity buffer of vertices, (e.g. 128 vertices in
a batch). Processors perform load balancing by stealing the oldest
thread, and as such, are able to migrate a batch of work to another
processor at each steal. The effect of this technique is to amor-
tize thread creation and migration over the vertices contained in the
batch.

By batching vertices into a single vertex, Cong et al’s technique
controls the overheads of parallelism by reducing the amount of
parallelism. Since graphs can be highly irregular, however, such
reductions in parallelism are not always desirable. Cong et al there-
fore propose a heuristic for controlling more carefully the number
of vertices in a batch. The basic idea of the heuristic is to create
full batches when the processors are busy (there is much work) and
create small, partially-filled batches when the processors are idling
(there is little work). It is not known whether the heuristic can
provably control the overheads without overly limiting parallelism.
Indeed, it might not; for example, our experiments show that the
heuristic can lead to suboptimal performance (Section 6).

In this paper, we present a provably work-efficient and highly
parallel algorithm for performing PDFS. The three key techniques
behind the algorithm are a novel data structure called splittable
weighted frontier data structure for representing the frontiers, a
novel amortization technique for controlling granularity of paral-
lelism, and an adaption lazy splitting to the unordered parallel DFS
problem.

Splittable Weighted Frontier. The splittable weighted frontier
data structure allows operating on the frontiers by using, for exam-
ple, push and pull operations that act on vertices and edges. These
operations are efficient both in theory and in practice (Section 3).
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Figure 1: The edge-balanced split operation on the frontier.
The frontier F' consists of the vertices a and b and implicitly
their out-edges, c through k. Performing a split operation di-
vides the frontier into two frontiers, with equal number of out-
going edges (within a margin of 1), by dividing the edges of the
vertices as necessary.

By taking advantage of the splittable weighted frontier data struc-
ture, our PDFS algorithm incurs relatively small overheads com-
pared to a serial DFS algorithm that uses a simple stack data struc-
ture to represent the frontier. Furthermore, the splittable weighted
frontier data structure supports an efficient balanced-split opera-
tion that splits the frontier into two halves based on the weights—
the outdegrees—of the frontier vertices. Our PDFS algorithm dis-
tributes work using the balanced split operation: when an idle pro-
cessor steals from another target processor, the target processor
splits its frontier and sends one of the resulting halves to the idle
processor. Such split operations allow sharing work at the granu-
larity that is essentially optimal based on local information.

The design and the implementation of the splittable weighted
frontier builds on a chunked sequence data structure we introduced
in prior work [7]. One key idea behind the data structure is to use
a hierarchical representation that allows operating at the level of
vertices as well as edges. For example, a vertex can be inserted
into the frontier along with all of its edges and a frontier can be
split into two halves based on the total number of edges (the degree
of the vertices in the frontier). Figure 1 illustrates an example edge-
balanced split operation. Each resulting half contains a single non-
empty carry consisting of a half of the edges of vertex b. Prior work
showed that it can be important to control the degree of vertices
and proposed vertex-virtualization techniques [43]. The splittable
weighted frontier data structure can be viewed as performing on-
demand vertex-virtualization; it thus combines the best of vertex-
based and edge-based parallelization techniques.

Granularity control. InPDFS, as in all parallel algorithms, there
is an inherent tradeoff between two quantities: (1) the cost of mi-
grating a piece of work from one processor to another; and (2) the
benefit of parallelism that can be gained by such work migration.
In divide-and-conquer and similar parallel algorithms, this trade-
off can be solved by a technique that parallelizes or sequentializes
tasks based on well-informed estimates of how long pending tasks
may take to complete. In this regime, a task may be migrated only if
the granularity-control algorithm chooses to parallelize the task [5].
In PDFS, this approach does not apply because there is no efficient
way to estimate (a priori) the amount of work, specifically the work
that would be performed by visiting a vertex.

To see this problem more concretely, we will use two simple ex-
ample graphs; it is not difficult to generalize the examples to more
interesting examples that exhibit essentially the same problem at a
larger scale. Consider the graph shown in Figure 2. Two processors
can traverse the two long chains in the graph in parallel, leading to
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Figure 2: Example for aggressive work sharing.

Figure 3: Example against aggressive work sharing.

a 2x speedup. To take advantage of the parallelism offered by this
input graph, the algorithm must split a frontier consisting of two
edges and migrate one of the vertices to another processor. The
trouble is that splitting such small frontiers can lead to significant
overheads in other graphs. To see why, consider as an example
the graph shown in Figure 3. Assume processor 1 begins execu-
tion with the source s, sends vertex b to processor 2, and continues
working on vertex a. Soon enough processor 1 runs out of work,
because a has no outgoing edges. By this time, processor 2 has
processed b and has a frontier that consisting of ¢ and d, so it sends
d to processor 1. Soon enough, processor 2 runs out of work and
we are back to the same situation as in the beginning, but this time
with d as the new source. This second example shows that sys-
tematically splitting small frontiers can lead to a large number of
communication operations. In summary, splitting small frontiers
is essential for parallelism in some graphs, but leads to high over-
heads in others.

To solve this granularity-control problem in PDFS, we propose a
technique based on amortization: each processor shares work only
if either (1) it has a large frontier, or (2) the processor has already
performed some predetermined amount of work locally since the
last time it shared work. This technique enables our PDFS algo-
rithm to share even as little as a single edge, while amortizing the
cost of task migration against either the amount of work that will
be performed in the future (by traversing the vertices in the frontier,
i.e., case 1) or the amount of work that has been performed in the
past locally by the processor (case 2). Our algorithm is thus able to
achieve high parallelism and work efficiency at the same time.

Lazy Splitting. By using the splittable weighted frontier data struc-

ture and the granularity-control techniques proposed here, it is pos-
sible to present a PDFS algorithm that generates parallelism by ea-
gerly splitting the frontiers and sharing the resulting pieces with
other processors via work stealing. Such an eager approach suf-
fers from overheads that come from splitting and exposing pieces
of parallel work that are not necessarily ever shared. In order to
reduce overheads further and to reach tight running-time bounds,
we instead solve this problem by using lazy spitting [48]. In lazy
splitting, instead of creating parallelism eagerly, processors create
parallelism only if there is a demand for parallelism. Specifically,
our PDFS algorithm splits a frontier only if another processor re-
quests work from it.

Analysis. Based on these techniques, we establish two theorems.
The first theorem establishes a responsiveness property by showing
that, when it is queried for work, a processor responds quickly, ei-
ther by rejecting the query (when it has no work to share, or when
it refuses to share work in order to control communication over-
heads), or by sharing half of the work load in its frontier. This prop-
erty establishes that the algorithm generates parallelism quickly
and as needed. Our second theorem establishes strong work effi-
ciency: we prove that, when we explicitly account for the schedul-
ing overheads (including the cost of polling for queries, the cost of

answering to queries, and the cost of splitting frontiers), the asymp-
totic complexity of PDFS remains O(n + m), i.e., same as that of
sequential DFS.

3 Splittable Weighted Frontier

We present the implementation of our splittable weighted frontier
data structure. Our PDFS algorithm uses the splittable weighted
frontier data structure to represent the most recently visited vertices
in depth-first traversal. The data structure supports the following
operations:

e empty returns a boolean indicating whether the data struc-
ture is empty;

e nb_edges returns the cardinality of the frontier;

e push_edges_of pushes all the out-edges of the given ver-
tex into the frontier;

e iter_ pop_nb iterates a given operation over nb edges (or
fewer, depending on the availability) and removes from the
frontier each edge considered;

e split carves out half of the edges into an independent fron-
tier data structure.

To support these operations efficiently, we use a recently pro-
posed weighted-sequence data structure. We describe this data
structure next.

Splittable weighted sequences. A splittable weighted-sequence
data structure supports pushing items into and popping items from
the two ends of the sequence, allows assigning a weight to each
item, and splitting sequences at a specified weight.

Recent work [7] gives an asymptotically efficient and practically
fast splittable weighted-sequence data structure by using a chunk-
ing and a bootstrapping technique that allows representing the se-
quence data structure as a shallow tree. The data structure, called
bootstrapped chunked sequence, stores a sequence of weighted items.
Perhaps the most interesting operation for our purposes is the op-
eration split_at, which takes a weight w and a sequence S and
partitions S into three parts: S1, {z}, and Sz, in such a way that
the total weight of St is less than w and that the weight of S1 U {x}
is greater than or equal to w.

Bootstrapped chunked sequences ensure practical efficiency by
storing items in fixed-capacity chunks (represented as arrays). A
chunk size parameter, called B, controls the size of the chunks.
For a given B > 2, the cost of split operations is bounded by
O(B - log n). Besides, the worst-case asymptotic space usage of
chunked sequences is (1 + %) * n, which, for any sufficiently-
large value of B, is close to optimal.

Implementation of splittable edge-weighted frontiers. We im-
plement splittable edge-weighted frontiers on top of bootstrapped
chunked sequence. The basic idea is to represent a frontier as a
triple consisting of vertex-sequence and two ranges of edges. A
vertex sequence is represented as a bootstrapped chunked sequence
of vertices, where each vertex has a weight that matches its out-
degree. A range of edges corresponds to a contiguous subset (sub-
sequence) of the outgoing edges of a given vertex. A range is rep-
resented as a vertex and a pair of indices marking the start and the
stop of the range.

Figure 4 shows the implementation of the range data structure,
which admits a straightforward implementation, and that of the
frontier data structure, which we describe next. In the following
discussion, we treat the adjacency list, called neighbors in the
pseudocode, as a global variable; in the actual implementation the
definitions are parameterized by the adjacency list structure.



bag<int> neighbors[nb_vertices] // adjacency lists

class range
int vertex; int low; int hi;

range () { vertex = 0; low = 0; hi = 0 }
weight () { return hi-low }

void split_at (int w, range& other)
other.vertex = vertex
other.low = low + w
other.hi = hi
hi = low + w

int iter_pop_nb (int nb, body_type body)
where body_type = void body (int src, int dst)
if nb == 0 then return 0
nb = min(nb, hi-low)
int stop = low + nb
for k = low to stop-1
body (vertex, neighbors([vertex] [k])
low = stop
return nb

class frontier
weighted_seqg<int> vs; range rl; range r2;

frontier()
vs = weighted_seqg<int> (fun v — degree(v))
rl = range ()
r2 = range()

int degree (int vertex)
return neighbors|[vertex].size ()

range full_range (int vertex)
return range (vertex, 0, degree(vertex))

int nb_edges ()
return vs.weight () + rl.weight() + r2.weight ()

bool empty ()
return nb_edges () == 0

void push_edges_of (int vertex)
if degree (vertex) > 0
vs.push (vertex)

void split (frontier& other)
int w = (nb_edges()+1) / 2
if w <= rl.weight ()
rl.split_at (w, other.rl)
else if w <= r2.weight ()
r2.split_at (w, other.rl)

else
w —= rl.weight ()
other.r2 = r2
int v;
vs.split_at (w, v, other.vs)
r2 = full_range (v)
r2.split_at(w - vs.nb_edges (), other.rl)

int iter_pop_nb (int nb, body_type body)
nb -= rl.iter_pop_nb(nb, body)
while nb > 0 && not vs.empty ()
int vertex = vs.pop()
int deg = degree (vertex)
if deg <= nb
range r = full_range (vertex)
nb -= r.iter_pop_nb (nb, body)
else
rl = full_range (vertex)
nb -= rl.iter_pop_nb (nb, body)
return nb
nb -= r2.iter_pop_nb (nb, body)
return nb

Figure 4: Implementation of the frontier data structure.

const int D // controls the frequency of polling
const int K // controls the eagerness of work sharing

// global shared array for marking visited vertices
bool visited[nb_vertices] = { false, false, ... }

void parallel_dfs_thread()
frontier fr = frontier()
int nb = 0
while true do
if fr.empty ()
if traversal_completed(

return
nb = 0
acquire (&fr)
else
if has_incoming_gquery ()
int sz = fr.nb_edges|()
if (sz > K) || (nb > K && sz > 1)

reply (fun (frontierx other_fr) —
fr.split (xother_fr))

nb = 0
else
reject_query ()
nb +=

fr.iter_pop_nb (D, fun(v,target)—
if (not visited[target]
&& cas(&visited[target], false, true)
fr.push_edges_of (target))

Figure 5: PDFS code executed by each processor.

The operation frontier constructs an empty frontier. The
operation nb_edges returns the number of edges in the frontier,
computed as the total weight of the vertex-sequence plus the sum of
the width of the two ranges. The operation empty returns whether
the number of edges in the frontier is nonzero. The operation
push_edges_of pushes the vertex given to the vertex-sequence
if it has outgoing edges associated with it.

The operation split transfers half—the smaller half in case the
cardinality is not even— of the edges to another frontier data struc-
ture, which is assumed to be initially empty; it leaves the other half
in place. The operation is implemented as follows. If the first range
contains at least half of the edges, we simply split this range and
transfer a subrange to the other frontier. Else, if the second range
contains at least half of the edges, we tranfer the appropriate sub-
range from it. Otherwise, we need to split the sequence of vertices.
First, we transfer all of the second range to the other frontier. Then,
we split the sequence of vertices in three parts: vertices that remain
in the vertex-sequence, vertices that go into the vertex-sequence of
the other frontier, and one vertex which contains the median edge.
We consider the full range of edges associated with this vertex and
split this range at the appropriate position, storing the left subrange
into the second range of the current frontier and storing the right
subrange into the first range of the other frontier.

The function iter_pop_nb iterates over at most nb edges,
popping them from the frontier as it processes them. It returns the
number of edges effectively processed. The edges considered are
first picked from the first range, then from the edges associated
with the vertices stored in the vertex sequence, and finally from
the second range. Note that if a vertex has a large arity, it is pos-
sible that only a fraction of its edges are processed; in such case,
the remaining edges are placed into the first range, which must be
empty in this case. The challenge in implementing this function is
that efficiency is critical in the loop over the edges—we are care-
ful to limit the number of operations performed compared with the
corresponding loop in the sequential DFS algorithm.



4 Parallel Depth-First Search

Our PDFS algorithm uses the splittable weighted frontier data struc-
ture to represent the most recently visited vertices in depth-first-
search or the frontier. The basic idea behind our algorithm is to dis-
tribute the most recently visited vertices, i.e., the frontier, across the
processors, each of which holds its portion of the frontier in a local
splittable weighted frontier data structure and explores the graph in
a depth-first manner starting from the frontier. In order to perform
effective load balancing and granularity control, each processor al-
ternates between two phases: working and a load-balancing. In
the working phase, the processor removes some number of vertices
from its frontier, visits them, and adds their neighbors to its fron-
tier. The number of vertices removed is determined by the polling
parameter, written as D. In the load-balancing phase, the processor
performs either one of two actions based on whether the frontier is
empty or not.

e Case 1: the frontier is empty. If the traversal is not com-
plete, the processor requests work from another processor by
sending that processor a work-request message.

e Case 2: the frontier is nonempty. If it has an incoming
work-request message, the processor responds to the request
by either sending work or rejecting the request.

The processor responds positively to a work request from another
processor only if the processor has done sufficiently large amount
of work or if the processor has sufficiently many vertices in its fron-
tier to make sharing worthwhile. The “sufficiency” condition is
guided by a granularity parameter, written as K.

Crucial to the effectiveness of the algorithm is the choice of the
polling and granularity parameters, D and K respectively. To en-
sure effective load balancing, the polling parameter D should be
just large enough to amortize the cost of polling for queries. The
granularity parameter K should be just large enough to amortize
the cost of splitting and communicating work.

Figure 5 shows the pseudo-code for the algorithm being executed
by each of the processors taking part in a run of our PDFS. We as-
sume the graph to be represented by an adjacency list and use an ar-
ray of booleans, which we call visited, to mark the vertices that
have been visited. Each processor maintains the portion of the fron-
tier that it is working on and keeps track in a variable named nb of
the number of edges the processor has processed since the previous
load balancing operation. When the local frontier is empty, termi-
nation is tested by calling the function t raversal_completed.
Until the traversal is complete, each processor is busy performing
one of three actions: (1) it is working on its own frontier, or (2)
it is requesting work from another processor by calling a function
named acquire in order to make queries to busy processors, or
(3) it is responding to a work query.

A processor with an empty frontier calls the blocking function
acquire, passing it the address of its frontier so that target pro-
cessor may directly transfer data into the frontier. In the load bal-
ancing scheme that we consider, the acquire function targets a
single processor at a time, blocks until an answer is received, and
repeats until obtaining work. While acquiring work, the processor
rejects any incoming query from other processors —this behavior
can be implemented, e.g. by writing a dummy value into the query
cell, so as to prevent any query to be made.

To work on its frontier, the processor visits the edges in its fron-
tier and adds the outgoing edges of each visited vertex to its fron-
tier. To test whether a vertex is visited, the processor first executes
a conventional read. If the vertex appears to be previsouly unvis-
ited, it performs an atomic compare-and-swap (CAS) operation to
mark the vertex visited.

In order to perform load balancing actions, each processor calls
the function has_incoming_query after visiting D edges. If
it finds an incoming query from an idle processor, the processor
needs to reply to the query either by rejecting it, using the func-
tion reject_query, or by transfering work, using the function
reply. The latter is presented using a callback argument, which
allows the processor to obtain the address of the empty frontier data
structure where it should migrate edges.

A processor that finds an incoming query from an idle processor
accepts to share its frontier only if either of the following conditions
hold: (1) its frontier contains more than K edges, or (2) it has lo-
cally processed more than K edges since the last work transfer (and
it has at least one edge to send). The first condition corresponds
to the classical granularity-based approaches to amortizing cost of
thread creation by charging to the amount of work that will be per-
formed by the DFS algorithm on that frontier. As we described
earlier, however, the first condition alone does not successfully ex-
pose the parallelism available in the graph. The second condition
solves this problem by amortizing the cost of thread creation to the
work that has already been performed locally by checking that it
has processed at least K many edges. This bi-directional (future
and past) amortization technique thus allows us to create threads
for work that may be tiny, yet still amortize the cost of thread cre-
ation.

The PDFS traversal terminates when the frontiers of all proces-
sors become empty. The termination-detection problem is essen-
tially orthogonal to our discussion, so we only describe it briefly. A
naive approach is to rely on a global atomic counter, keeping track
of the number of processors with a nonempty frontier (for details,
see [20], Section 2.2). While this approach may work well on small
machines with a few dozen processors, we expect that scaling up to
a larger number of processors would require a more advanced ter-
mination detection strategy, for example one based on hypercube
or lifeline network graphs [42], in order to distribute among several
processors the effort of checking whether all processors have run
out of work. In our implementation, we use a refinement of the
naive approach.

5 Analysis

We next present an analysis of our PDFS algorithm that takes into
account important scheduling costs, such as the time to create paral-
lel threads (splitting frontiers and forking jobs) and the time to com-
municate (polling on queries). We prove that our algorithm, while
also ensuring good load balance by splitting the work of a busy pro-
cessor equally when demanded by another, is able to achieve work
efficiency by amortizing those potentially large costs.

We consider the usual RAM model, where each instruction takes
constant time to execute, except for scheduling-related instructions,
for which we introduce two specific parameters, called Cior and
Chpoll, as described next.

Definition 5.1 Our analysis uses the following parameters:

e n and m denote the number of vertices and edges in the
graph.
e P denotes the number of processors (cores).

o Chor is an upper bound on the cost of transfering a frontier
(but excluding the cost of splitting the frontier).

o Cpon is an uppert bound on the cost of polling and responding
to a query (but excluding the cost of splitting and transfering
the frontier).

o B denotes the size of a chunk in vertex-sequences (B > 2).

D is a positive integer controlling the frequency of polling.



e K is a positive integer controlling the eagerness of work
sharing.

Below, we call size of a frontier (and write f) for the number of
edges stored in the frontier considered.

We begin with results on the frontier data structure. Based on
the known bounds of the vertex-sequence data structure, and since
basic operations on ranges are constant time, it is straightforward
to prove the following theorem.

Theorem 5.1 (Efficiency of the frontier data structure) Our fron-
tier data structure admits the following bounds:

The allocation of an empty frontier is O(B).
nb_edges is O(1).
push_edges_ofis O(1).

split is O(Bloggv), where v is the number of vertices
stored.

e splitisalso O(Blogg f), where f is the size of the fron-
tier, i.e. the number of edges it contains, because the frontier
only stores vertices with positive outdegree.

e iter_pop_nb costs O(1) per edge enumerated (plus the
cost of the function processing the edges).

e The asymptotic space usage is (1 + %) x f, close to opti-

mal.

For PDFS, we first establish a responsiveness property of our
load balancing scheme. This property ensures that parallelism is
generated quickly, when needed (as requested by idle processors).

Theorem 5.2 (Responsiveness) If a processor receives a query,
then it either rejects it within a delay D + O(1), or it responds
by sharing work within a delay D + O(Blogg n).

PROOF. If the processor receiving the query is running the func-
tion acquire, then it rejects the query in O(1). If it is already
serving a query (possibly performing a split operation), then its
query cell is occupied and it cannot receive a new query. If a
processor is working on its frontier, then it processes at most D
edges before it polls. When a processor polls and finds an incom-
ing query, it either rejects it, after a delay O(1); or it splits its fron-
tier, and does so in time O(B * log v) with v < n, according to
Theorem 5.1. [

We next establish two key lemmas to bound the number of split
operations and to bound the total cost of the split operations in-
volved in a PDFS execution.

Lemma 5.3 (Maximal number of frontier split operations) Our

PDEFS algorithm performs at most 3% split operations.

PROOF. For this proof, we introduce a per-processor potential
function satisfying the following properties: (1) the potential is al-
ways nonnegative; (2) when inserting an edge into the frontier, the
potential increases by at most % units; (3) when removing an edge
from the frontier, the potential does not increase; (4) when splitting
a frontier to share work with another processor, the total poten-
tial decreases by at least one unit. Overall, since at most m edges
can be inserted into the frontiers in any PDFS execution, the total
increase in potential is at most ‘7’” Since every split operation de-
creases the total potential by at least one unit, there can be at most
3 splits.

Consider a processor having a frontier storing f edges and a local
variable nb. We define its potential, written ¢( f, nb), as the value

L(f+nb+2-(f—E)T), where (z)* denotes max(0, z). We
next prove the desired properties.

(1) The potential is always nonnegative, because f > 0 and
nb > 0. (2) When inserting an edge into the frontier, f increases
by one; the increase in potential is ¢(f + 1,nb) — ¢(f,nb) < 2.
(3) When removing an edge from the frontier, nb increases by one
and f decreases by one; the potential does not increase because
¢(f — 1,nb+ 1) — ¢(f,nb) < 0. (4) It remains to consider
the case of a split, for which we wish to prove that the total po-
tential decreases by at least one unit. Considering the potential of
the sender and that of the receiver, the goal is to prove: ¢(f, nb) +
$(0,0) > 1+¢([£],0)+¢(| £ ],0). This inequality is equivalent

. nb
o 524 2 ((f = 5)F (5] = 5)* = (1] - 5)") = 1.
There are two conditions under which a split operation may be trig-
gered: f > K or nb > K. We consider each case separately.
First, assume f > K. In this case, we have f > [%1 > LgJ >

. The desired inequality is equivalent to: % +2-(f- [é] —

ng + &) > 1, which is true since f = [%] + LéJ and % > 0.

Second, assume nb > K. We have nb > 1. Thus, to es-

K
tablish the desired inequality, it suffices to show: (f — &£)*

((%] -t - (L%j — )" > 0. To see why this inequality
holds, we distinguish two cases. If ng > %, then the inequality

simplifies to £ > 0. Otherwise, we have [ £ ] < £, in which case

K
2

(ng — &)* =0, and we are able to conclude by observing that:

K K
-5 >T051-5T
In summary, both conditions that may trigger a split operations
ensure that the total potential decreases by at least one unit. []

Lemma 5.4 (Maximal cost of the split operations) The total cost
mBlogg(4K) )

of all split operations in a PDFS execution is O( +

PROOF. Due to space limitation, the details of the proof are not
included here; they may be found in the technical appendix'. The
proof follows a potential analysis similar to that of the previous
lemma. The potential function, written ®(nb, f), is defined as:

rBE D) Jog . K 4 if f < K thenOelse rB(2 f — logy f — b)

where a = 2logp K + 6logg 2 and b = 4logp 2, and where r
is such that the cost of the split of a frontier of size f is bounded
by rBlogg f. We prove, in particular, that each edge insertion
increments the potential by no more than SE(B log gz (4K) units. [

We are now ready to establish our work-efficiency theorem. The
theorem shows that our algorithm is asymptotically work efficient
with respect to serial DFS and that the potentially expensive costs
(in particular, Cionc and B log ; 4K) are amortized by the parame-
ters K and D, which can be set to sufficiently-large values to ensure
limited load balancing overheads.

Theorem 5.5 (Work efficiency) The total work performed by PDFS

is bounded by:
o (n+ (1+ Chork + Choli + BlOgB(4K)) m+BP) .

K min(D, K) K

When all parameters are fixed, the total work is O(n + m).

PROOF. Consider the pseudo-code in Figure 5. The operations
that contribute to the total work are: (0) the allocation of the frontier
data structures; (1) the calls to acquire; (2) the polling operation
and possibly its subsequent rejection of the incoming query; (3)
the splitting of the frontier; (4) the delivery of the splitting frontier;

"Proof appendix available from: http://deepsea.inria.fr/pdfs-sc15 .



(5) the popping of edges from the frontier and read of the status of
the target vertex; (6) the addition of new vertices into the frontier.
To analyse the cost of each of these contributions, keep in mind
the result of Lemma 5.3, which bounds the number of split opera-
tions by 377” In particular, the total number of calls to acquire is
bounded by 27 4+ O(P), because there is one initial call per pro-
cessor, and then each call to acquire many only return as a result of
a split operation.

For contribution (0), the initialization of each frontier costs O (B),
so the total cost is O(BP). For (1), since each call to acquire
costs O(1) work, and since there are at most 37’" + P such calls,
the total work associated with acquire is thus O(32 + P). For
(2), observe that a polling operation, of cost Cpoi, takes place either
after D edges have been processed, or immediately after receiving
a frontier. Thus, the total work induced is O(%5 Cpon + ‘%”C’pou),

which is, O(mﬁ

shows that the total cost of split operations is O . For
(4), we multiply the cost Ciorx With the maximal number of split-
ting operations; thus, the total cost of forks is O(%"Cfork). For (5),
extracting each edge from the frontier costs O(1) by Theorem 5.1,
and checking the target vertex of each edge also costs O(1), so the
total cost is O(m). For (6), adding each vertex to the frontier costs
O(1), also by Theorem 5.1, so the total cost is O(n). Summing up
all costs involved gives the bound stated in the theorem. [

. For (3), we exploit Lemma 5.4, which
p
(%BMK))
K

6 Implementation and Experiments

6.1 Implementation and Experimental Setup

We implemented our benchmarking program in C++, using Pthreads
to realize parallelism. At runtime, our benchmarking program first
loads the input graph and then spawns one Pthread for each pro-
cessor in the machine. For the implementation of our PDFS al-
gorithm, we start each of the Pthreads running an instance of the
parallel_dfs_thread function (shown in Figure 5). To be-
gin the graph traversal, we populate the frontier of one arbitrary
processor with the source vertex. We implemented the load balanc-
ing functions has_incoming_query, reply, acquire, and
reject_query using a simple protocol that bears close resem-
blance to the one that is used by the private-deques work-stealing
algorithm [6]. In the protocol, work-request and acknowledgement
messages are sent and received via the atomic-cell structures pro-
vided by the std: : atomic library of C++11.

Recall that our spilttable weighted frontier data structure de-
pends on an underlying bootstrapped chunked sequence data struc-
ture. For this underlying structure, we used the same C++ implen-
tation that we used in the experimental evaluation of our own boot-
strapped chunked sequence [7].

The implementation represents graphs using the “compressed
adjacency list”, in which vertices are labeled with natural numbers
in the range [0, . . ., n — 1], where n is the number of vertices in the
input graph. In this representation a graph is represented as a sin-
gle array of 32-bit or 64-bit cells (depending on the size of graph).
The array starts with a sequence of offsets, with one offset per ver-
tex, followed by a sequence of vertex ids. The offset entry in the
first sequence for vertex v marks the starting position in the second
sequence for the list of outgoing edges of v.

For the experiments, we use a few parameters that are specific to
the target system architecture (but not specific to the input). The
constant D is used to amortize the cost of a single read and there-
fore essentially any moderately large constant (in the hundreds) re-
duces the overhead to less that 1%. In our implementation, D is set
to 256. The constant K is used to amortize the cost of coordination

with the scheduler and communication between threads, which in-
volves several reads and writes. Therefore a constant slightly larger
than D suffices to reduce the overheads approximately to less than
1%. In our implementation K is set to 1024. In chunked sequences,
we use chunks of size B = 32, except for the first layer of the
data structure which, as an optimization, uses chunks of size 1024.
With these parameters, the cost of a split on a frontier of size f is
of the form O(1024 + 321logs, f). The constant factors involved
are relatively small thanks to the use of highly-optimized memcpy
operations for manipulating the chunks.

Our experience with modern multicore machines, which are equi-
pped with non-uniform memory architecture (NUMA), show that
allocation policy can have a significant impact on performance. We
therefore control allocation by determining the memory bank (in
NUMA machines, there is typically one memory bank per chip) at
which objects are allocated. For sequential programs, we allocate
all pages on the memory bank closest to the chip, which runs the
program. This policy gives the best performance by placing the
objects at the closest possible location in memory. For parallel pro-
grams, we allocate pages across memory banks in a round-robin
fashion, thereby balancing memory traffic across chips; this policy
appears to give the best performance for parallel runs.

We compiled all programs with GCC version 4.9.1, using op-
timizations —02 -march=native. For the measurements, we
considered an Ubuntu Linux machine with kernel v3.2.0-58-generic.
For scalable heap allocation, we used tcmalloc from gperftools
version 2.4. Our benchmark machine has four Intel E7-4870 chips
and 1Tb of RAM. Each chip has ten cores and shares a 30Mb L3
cache. The main main memory of the machine is distributed across
four banks: one per chip. Each core runs at 2.4Ghz and has 256Kb
of L2 cache and 32Kb of L1 cache. Additionally, each core hosts
two SMT threads, giving a total of eighty hardware threads. How-
ever, to avoid complications with hyperthreading, we did not use
more than forty threads.

In order to reduce the impact of noise on our results, we average
our measurements over 10 runs. In a few cases, the noise in a single
run was as high as 10%, but in other cases, noise was below 5%.
Sequential runs showed negligible variance.

6.2 Input Graphs

Table 1 summarizes graph inputs.

We considered the following large publicly available graphs that
come from data that was sampled from the real world. The orkut,
livejournal, twitter and friendster graphs describe social networks
[31, 1]. The wikipedia (as of 6 February 2007), Freescalel, and
cagel5 graphs are taken from the University of Florida sparse-
matrix collection [21]. The rgg (n = 23), delaunay (n = 24), usa
(full), and europe (full) graphs are taken from DIMACS challenge
problems [2, 3].

We also consider a set of synthetic graphs that we selected to
range from moderately to highly parallelizeable. For these graphs,
we assign each vertex a unique, randomly chosen number in the
range [0, ...,n — 1]. This random assignment prevents accidental
effects of alignment from our measurements.

The square-grid and cube-grid graphs are directed grids in two-
and three-dimensional space in which each vertex has 2 and 3 out-
going edges, respectively. The random-arity-100 graph is a uni-
form random graph, with average arity 100 on every vertex. The
complete-bin-tree graph is a perfect binary tree. The rmat24 and
rmat27 graphs are synthetic graphs with power-law distribution de-
grees [16]. The former was generated using settings a = 0.5, b =
¢ = 0.1, and d = 0.3, and the latter with @ = 0.57, b = ¢ = 0.19
and d = 0.05.



graph vertices | edges | vertices | edges max seq.DFS | PDFS | PDFS | PDFS | seq.DFS | PDFS
(m) (m) seen seen dist. (s) 1-core (s) vs seq. |(mEdge/s)|(mEdge/s)

orkut 3.1 117 >99% 100% 7 0.97s +34% | 0.06s 15.7x 121 1902
livejournal 4.8 69 91% 99% 14 1.13s +49% | 0.06s 18.2x 60 1093
twitter 42 1468 84% 96% 15 24.29s | +68% | 1.19s 20.4x 58 1191
friendster 125 1806 52% >99% 28 55.91s +29% | 2.16s 25.8x 32 831
cagel5 5.2 99 100% 100% 49 1.25s +42% | 0.07s 17.4x 79 1378
Freescalel 3.4 19 99% >99% 122 0.24s +73% | 0.03s 8.4x 77 642
wikipedia-2007 3.6 45 67% 93% 459 0.73s +42% | 0.05s 15.6x 58 902
rgg 8.4 127 >99% | >99% 1.5k 1.24s +42% | 0.16s 7.7x 103 795
delaunay 17 101 100% 100% 1.6k 1.30s +50% | 0.09s 15.0x 77 1163
usa 24 58 >99% 100% 6.3k 1.31s +52% | 0.09s 14.5x 44 646
europe 51 108 100% 100% 17k 2.62s +50% | 0.16s 16.1x 41 667
trees-10k-10k 100 100 100% 100% 2 7.08s +60% | 0.43s 16.6x 14 234
random-arity-100 1.0 100 100% 100% 4 0.89s +29% | 0.05s 19.2x 112 2158
rmat27 17 119 34% 98% 6 3.31s +45% | 0.15s 21.7x 35 767
phases-10-d-2 33 93 100% 100% 10 13.24s +6% 0.41s 32.6x 7.0 230
rmat24 17 120 90% 98% 13 6.44s +56% | 0.29s 22.1x 18 403
phases-20-d-100 5.0 475 100% 100% 20 6.42s +26% | 0.23s 28.2x 74 2089
complete-bin-tree 134 134 >99% | 100% 26 33.10s | +12% | 2.12s 15.6x 4.1 63
cube-grid 33 99 100% 100% 960 10.37s | +50% | 0.44s 23.7x 9.6 226
trees-524k 200 200 100% 100% 381 15.49s | +49% | 0.89s 17.4x 13 224
square-grid 50 100 100% 100% 14k 13.36s | +53% | 0.58s 23.0x 7.5 172
par-chains-100 50 50 100% 100% | 500k 17.95s | 4+29% | 0.73s 24.6x 2.8 69
trunk-first 10 10 >99% 100% | 10.0m 3.15s +30% | 4.13s 0.8x 32 2.4
par-chains-2 50 50 100% 100% 25m 17.62s | +28% | 11.35s 1.6x 2.8 4.4
chain 50 50 100% 100% 50m 17.45s | 429% | 22.79s | 0.8x 2.9 2.2

Table 1: Input graphs description, raw execution times for the baseline algorithms and for our parallel algorithms, and throughput.

Figure 7: Example synthetic graph: phases-4-d-4.

The chain graph is a single, long path. The par-chains-x graphs
are different instantiations of the pattern shown in Figure 2, where
z denotes the number of independent maximal chains originating
from the root. The trunk-first graph is an instance of the challenge
graph shown in Figure 3. The graph trees-524k is a generalization
of the former: it consists of a main chain of length 381, where each
vertex has 524,288 outedges.

The trees-10k-10k graph is a tree with two levels, in which the
root node is connected to 10k children and each of these child nodes
connects to 10k leaf nodes. This graph tests the ability of the al-
gorithms to exploit parallelism in the lists of neighbors of the ver-
tices. The phases-z-d-y graphs are instances of the structure shown
in Figure 7. These graphs generalize the idea of the grids, thus al-
lowing us to have an even smaller number of frontiers (e.g., 10, or
20), and control the arity of the vertices (e.g., 2, or 100). In the
graph, phases-10-d-2, each of the 10 frontiers contains 3.3 million
vertices and each vertex has arity 2, except one particular vertex in
each frontier, which is linked to all the vertices in the next frontier
(and thus has arity 3.3 million). The goal of these graphs is to stress
the need for splitting the frontier according to the number of edges
and not just the number of vertices.

6.3 Comparison with Baseline Sequential DFS

We first compare our algorithm to an implementation of the sequen-
tial DFS algorithm, which serves as the baseline throughout the
paper. We carefully optimized our implementation of the sequen-
tial DFS, for example, by using a fixed-capacity array for storing
vertices. Using a fixed-capacity array enables excluding overheads
associated with array-resize operations; realistic implementations
of DES often rely on resizable stacks in order to limit the space
usage.

The left half of the graph reports, for each graph traversal from
the source vertex, the number of reachable vertices and edges, and
the maximal distance from the source over all reachable vertices.
The right half of the table reports results on sequential DFS and
our PDFS.

An important property of our algorithm, as proved in Section 5,
is that it controls scheduling overheads by using a novel frontier
data structure and by using amortization techniques. To validate the
theory, we measured our PDFS algorithm on a single core, which
allows measuring some part of the total work that our parallel algo-
rithm performs during parallel runs. This measure does not include
the cost of splitting and migrating frontiers, but includes the cost
of using the frontier data structure, the cost of regularly polling on
queries, and the cost due to the NUMA allocation policy employed
in non-sequential runs. The single-core run thus gives us a lower
bound to the work overheads of our PDFS algorithm. The data re-
ported in the column labeled “PDFS 1-core” in Table 1 shows that
the overheads compared with the baseline are 40% on average. We
separately verified that half of this overhead is due to the NUMA
round-robin allocation policy. Thus, the overhead due to the use
of the frontier data structure and polling is approximately 20% on
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Figure 6: Speedup relative to sequential DFS. Parallel runs use 40 cores. Each graph is annotated by its diameter D.

average, which we consider to be acceptable.

The speedups achieved by our PDFS are good, overall, consider-
ing the effect of the overheads imposed by the frontier and NUMA
allocation. On the real-world graphs, the speedups range from 7.7x
to 25.8x and, on synthetic graphs, from 0.8x to 32.6x. Our PDFS
achieves good speedups on challenge graphs, such as par-chains-
x, where parallelism is so scarce that most other algorithms achieve
no speedup at all. Moreover, our PDES achieves excellent speedups
on the grid graphs, given that the grid graphs have comparatively
high diameter and expose a comparatively moderate amount of par-
allelism when compared to small-world graphs with a similar foot-
print in memory.

The throughput (expressed in million of edges processed per
second) in sequential DFS varies significantly between graphs, as
shown in the column labeled “seq.DFS (mEdge/s)” in Table 1. This
variance has at least three explanations: (1) the measure mEdge/s
does not take into account the number of vertices, although they ac-
count for work, (2) graphs with higher density benefit from better
locality in the processing of the adjacency lists, and (3) graph with
fewer vertices have a smaller visited array and hence benefit from
fewer cache misses when accessing its cells.

6.4 Comparison with Other Parallel Algorithms

In addition to an optimized implementation of the serial DFS algo-
rithm, which serves as our baseline, we compare our algorithm to
existing state of art in parallel unordered DFS, and in parallel BFS
algorithms. The comparison with the BFS algorithms is not quite
an “apples-and-apples” comparison, because there are substantial
differences between parallel BFS and DFES algorithms. For exam-
ple, depending on the application, one algorithm may be used when
the other may not be applicable. The comparison, nevertheless,
gives us another data point, and can be important in applications
where either an ordered DFS or BFS can be used. We describe
below the algorithms compared and the implementations used.

e Cong et al’s algorithm [20]. Since there is no publicly
available implementation of this algorithm, we implemented
it ourselves and thoroughly optimized the implementation.
We implemented batches of vertices by fast, fixed-capacity
stacks, each storing 32 vertex ids (other capacities lead to
worse performance). For load balancing we used the state-
of-the-art concurrent-deque algorithm proposed by Chase and
Lev [17].

o The parallel breadth-first search (PBFS) algorithm of the
Problem Based Benchmark Suite (PBBS) [14]. We used
publicly-available sources and the Cilk Plus scheduler pro-
vided with GCC [28].

e Ligra’s direction-optimizing parallel BFS algorithm [45].
This algorithm was first proposed by Beamer [11]. We used
the publicly-available Ligra sources and the Cilk Plus sched-
uler provided with GCC. Ligra optimizes performance for
small-world graphs (e.g., social-network graphs) by switch-
ing between traversal of the out-edges of the frontier and
traversal of the out-edges of the unvisited vertices depend-
ing on the relative size of the frontier. It has been shown
that this technique can improve performance dramatically in
small-world graphs; it can, however, lead to slowdowns in
other graphs.

Figure 6 shows speedup results for our PDFS, Cong’s PDFS,
PBBFS PBFS, and Ligra with respect to the baseline (sequential
DFS). We next discuss the most important aspects of these results.

Comparison with Cong’s PDFS. Considering PDFS results (Fig-
ure 6), we observe that our algorithms outperforms Cong et al’s al-
gorithm on all graphs, except for one (complete-binary-tree), which
is balanced and regular. On a few graphs, our PDFS slightly out-
performs Cong et al’s algorithm: on twitter (+6.5%) and friendster
(+6.6%), and on cube-grid (+5.7%). On other graphs, our PDFS
significantly outperforms Cong et al’s algorithm by more than 15%,
and by as much as a 9.8x on Freescalel, and a 32x on the trees-
524k graph. We also observe that Cong et al’s batching strategy
induces noticeable overheads in certain graphs, such as parallel
chains. Overall, we attribute our higher speedups (1) to our abil-
ity to exploit parallelism at the edge level, where Cong et al do not,
and (2) to our load balancing operations that can transfer half of
the frontier—not just a small constant number of vertices, and (3)
to our algorithm’s ability to limit scheduling overheads by using
our amortization techniques.

Comparison with PBFS. Comparing the speedups of PDFS vs
PBFS, we observe that our algorithm is faster in all but one case.
The only case where PBFS performs better is for the perfect binary
tree graph, for which synchronizing all the processors at each of the
log n phases actually helps PBFS achieve a close-to-optimal load
balancing in this specific situation. At the other end of the spec-
trum, on the par-chains-100 graph, in which every BFS frontier



stores exactly 100 vertices (not enough to take advantage of paral-
lelization), PBFS runs in 67s, slower than the DFS baseline which
runs in 17.95s, whereas our PDFS runs in 0.73s, thus exhibiting a
speedup of 24.6x. Overall, our PDFS algorithm runs 91x faster than
PBFS on this worst-case graph. In general, even though results are
not always as extreme, our results confirm that, as expected, PDFS
typically outperforms PBFS significantly on large diameter graphs.

Comparison with Ligra. Our PDFS delivers performance that is
either comparable to or better than Ligra’s in all but three graphs.
The benefits of PDFS are most clearly visible on large diameter
graphs, e.g., in road-network graphs PDFS is 22x faster that Ligra.
On the twitter and friendster graphs, Ligra achieves superlinear
speedups (above 40x) with respect to the sequential DFS baseline.
On these graphs, Ligra is able to avoid processing all the edges,
whereas the DFS baseline and our PDFS algorithm process every
edge. Ligra also outperforms our algorithm on the rmat graphs.
On these three graphs, which Ligra specifically targets, Ligra has
a 2x advantage over our PDFS. This comparison shows that our
PDFS significantly outperforms Ligra in large-diameter graphs and
remains competitive with Ligra in most other cases. The only ex-
ceptions are a few graphs with very small diameter, where Ligra
holds the advantage. (Remark: the Ligra paper [45] reports re-
sults on the twitter, rmat24, and rmat27 graphs; the speedups re-
ported there differ from our results because the Ligra paper uses a
direction-optimizing BFS as baseline, whereas we use sequential
DFS.)

6.5 Exploiting locality

Graph-search algorithms are broadly used in garbage collectors to
identify reachable memory objects. Research on garbage collec-
tion shows that DFS outperforms BFS (e.g., [29, 27]), partly be-
cause allocators typically allocate parent and child objects side by
side in the heap, which gives DFS better locality. Some parallel
scheduling techniques, such as the work-stealing technique used
by our PDFS algorithm, have been shown to approximate the lo-
cality of sequential algorithms well partly because they minimize
the number of computation migrations [4]. To determine whether
our PDFS algorithm can take advantage of the locality exhibited
by the serial DFS algorithm, we perform the following experiment:
for each graph, we relabel (offline) the out-edges of each vertex to
occur in the same order in which they are visited by our sequential
DFS. We then measure the improvement in performance due to this
relabeling, both for sequential and parallel DFS. Figure 8 shows the
results in terms of speedup with respect to the original layout. This
relabeling always improves performance, sometimes dramatically.
For the real-world graphs, performance increase from 20% to 3.6x.
For synthetic graphs, we even observe improvements that are as
high as 45x. The self-relative improvement is, for all real-world
graphs but one (Freescalel), relatively similar for parallel DFS and
for sequential DFS. This shows that the parallelization of DFS es-
sentially preserves the benefits of locality. These result suggests
that our PDFS algorithm may indeed benefit, like sequential DFS,
from better intra-graph locality.

7 Related Work

We discussed the most closely related work earlier in the paper. In
this section, we discuss a number of other related work.

Work-efficient BFS. Leiserson and Shardl present a work-efficient
algorithm for parallel BFS [32]. Their approach is based on a split-
table bag data structure that can be used to represent the vertices
in the frontier. In terms of operations supported, the main differ-
ence between our data structure and the bag data structure is that
our frontier data structure supports edge-weighted balanced split

operations, whereas the bag data structure supports approximately
balanced splits in terms of the number of vertices. In terms of the
internal structure, the data structures are quite different: we rely
on a bootstrapping techniques whereas the bag data structure is
more like a binomial tree. As part of our evaluation, we consid-
ered the Leiserson and Schardl implementation [32] but decided
not to present these results here, because, for the graphs considered
here, it was slower than the PBFS algorithm used in our evaluation;
this finding is consistent with earlier ones [45].

Concurrent steal-half work queues. Hendler and Shavit pro-
pose a concurrent data structure that supports constant-time push
and pop along with logarithmic-time split [26]. Our work shows
that steal half using private work queues is also a viable approach.
Moreover, by relying on private rather than concurrent access, we
are free to use a queue structure, such as the one described in prior
work [7], that offers low constant factors and asymptotically effi-
cient operations, both in time and space. Moreover, the concur-
rent steal-half algorithm does not ensure that splits are amortized
over sufficient work, and, as such, concurrent steal half faces the
granularity-control challenges that were described in Section 2.

Hybrid algorithms. Recent work has shown benefits of using
combinations of different traversal strategies. The KLA graph-
processing system features a traversal algorithm that switches adap-
tively between PBES (level synchronous) and PDFS (asynchronous)
traversals to accelerate certain graph algorithms, such as PageR-
ank and k-core decomposition [25]. Beamer et al [11] and subse-
quently Shun and Blelloch [45] propose using direction-optimizing
BFS for applications, such as graph search, PageRank, connected
components, radii estimation, etc.

Parallel garbage collection. In Chapter 14 of their book, Jones
et al survey a number of studies of parallel garbage collection [29].
The survey identifies three mark-sweep collectors that use PDFS
during the mark phase. To tame overheads, the algorithms proposed
by Endo et al [22] and Siebert [47] rely on batching schemes that
bear resemblance to the batching scheme proposed by Cong et al.
The algorithm proposed by Flood et al [23] uses concurrent per-
worker deques. Each of these algorithms relies on sharing work at
the level of vertices rather than at the level of edges. In particular,
Flood’s algorithm relies on sharing vertices one at a time, whereas
the others share half of what is locally available at a time. However,
unlike our PDFS, the ones that share half do not ensure that splits
are amortized over enough work. As such, these algorithms face
the granularity-control challenges that were described in Section 2.

Architecture-specific optimizations. Recent research proposes
certain optimizations for improving performance of graph traver-
sals on multicore platforms. The first class of optimizations seek to
hide some of the latency of cache misses: Cher et al [18] present
a prefetching technique for accelerating the mark phase of a par-
allel mark-sweep garbage collector, and Chhugani et al [19] use
prefetching to accelerate their parallel BFS. The second class of op-
timizations concerns the efficiency of tracking which vertices have
been visited already: Chhugani et al [19] exploit certain properties
of the Nehalem architecture to eliminate the need for atomic oper-
ations. The third class of optimizations use locality-aware schedul-
ing to accelerate PBFS traversals on machines with non-uniform
memory [19, 35]. These architecture-specific optimizations are
largely orthogonal to our frontier representation and amortization
techniques. On the one hand, each such optimization can be viewed
as a particular improvement on our algorithms. On the other hand,
none of these optimizations address the main algorithmic challenges
identified in Section 2.
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Figure 8: Speedup obtained when considering graphs with vertices relabeled in DFS order, compared with the performance of the
same algorithm on the original graph. Parallel runs use 40 cores. Each graph is annotated by its diameter D.

8 Conclusion

We presented a provably work-efficient parallel algorithm for un-
ordered DFS that delivers good practical performance. The tech-
niques behind the algorithm include bounding the overheads of
scheduling, such as thread-creation and load balancing, by amorti-
zation and by using a novel data structure for representing frontier
sets. The data structure enables fast operations at both the level of
vertices and edges by using a hierarchical representation and sup-
ports balanced split operations to create parallelism as needed. Our
empirical evaluation shows that the algorithm performs well for
a wide range of graphs including graphs with high diameter, and
graphs with relatively little parallelism. The algorithm is also able
to take advantage of the natural locality in certain graph layouts.

9 Acknowledgments

We thank Julian Shun for his help in using Ligra sources and pro-
ducing Ligra results reported in our experimental evaluation. This
research is partially supported by the European Research Council
under grant number ERC-2012-StG-308246 , and by the National
Science Foundation under grant numbers CCF-1320563 and CCF-
1408940.

10 References

[1] Stanford large network dataset collection.
http://snap.stanford.edu/.

The 9" dimacs implementation challenge, 2013.
http://www.dis.uniromal.it/challenge9/.

The 10" dimacs implementation challenge, 2014.
http://www.cc.gatech.edu/dimacs10/.

U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data
locality of work stealing. Theory of Computing Systems
(TOCS), 35(3):321-347, 2002.

U. A. Acar, A. Charguéraud, and M. Rainey. Oracle
scheduling: Controlling granularity in implicitly parallel
languages. In ACM SIGPLAN Conference on

(2]
(3]

(4]

(5]

Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2011.

[6] U. A. Acar, A. Charguéraud, and M. Rainey. Scheduling
parallel programs by work stealing with private deques. In
PPoPP ’13,2013.

[7]1 U. A. Acar, A. Charguéraud, and M. Rainey. Theory and

practice of chunked sequences. In ESA 2014, volume 8737 of

LNCS, pages 25-36. Springer Berlin Heidelberg, 2014.

V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader. Scalable

graph exploration on multicore processors. In Conference on

High Performance Computing Networking, Storage and

Analysis, SC 2010, New Orleans, LA, USA, November 13-19,

2010, pages 1-11, 2010.

A. Aggarwal, R. J. Anderson, and M. Kao. Parallel

depth-first search in general directed graphs. SIAM J.

Comput., 19(2):397-409, 1990.

D. A. Bader and K. Madduri. Designing multithreaded

algorithms for breadth-first search and st-connectivity on the

cray MTA-2. In 2006 International Conference on Parallel

Processing (ICPP 2006), 14-18 August 2006, Columbus,

Ohio, USA, pages 523-530, 2006.

S. Beamer, K. Asanovi¢, and D. Patterson.

Direction-optimizing breadth-first search. In SC ’12, pages

12:1-12:10, Los Alamitos, CA, USA, 2012. IEEE.

R. Berrendorf and M. Makulla. Level-synchronous parallel

breadth-first search algorithms for multicore and

multiprocessor systems. In FC ’14, pages 26-31, 2014.

G. E. Blelloch, P. Cheng, and P. B. Gibbons. Room

synchronizations. In SPAA ’01, pages 122-133. ACM, 2001.

G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun.

Internally deterministic parallel algorithms can be fast. In

PPoPP ’12, pages 181-192, New York, NY, USA, 2012.

ACM.

R. D. Blumofe and C. E. Leiserson. Scheduling

multithreaded computations by work stealing. J. ACM,

[8

—

[9

[

(10]

(11]

(12]

[13]

[14]

[15]



46:720-748, Sept. 1999.

[16] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A
recursive model for graph mining. In SIAM SDM, 2004.

[17] D. Chase and Y. Lev. Dynamic circular work-stealing deque.
In SPAA "05, pages 21-28, 2005.

[18] C.-Y. Cher, A. L. Hosking, and T. Vijaykumar. Software
prefetching for mark-sweep garbage collection: hardware
analysis and software redesign. In ASPLOS ’04, volume 38,
pages 199-210. ACM, 2004.

[19] J. Chhugani, N. Satish, C. Kim, J. Sewall, and P. Dubey. Fast
and efficient graph traversal algorithm for cpus: Maximizing
single-node efficiency. In IPDPS ’12, pages 378-389. IEEE,
2012.

[20] G. Cong, S. B. Kodali, S. Krishnamoorthy, D. Lea, V. A.
Saraswat, and T. Wen. Solving large, irregular graph
problems using adaptive work-stealing. In ICPP, pages
536-545, 2008.

[21] T. A. Davis. University of florida sparse matrix collection,
2010. Available at
http://www.cise.ufl.edu/research/sparse/matrices/.

[22] T. Endo, K. Taura, and A. Yonezawa. A scalable mark-sweep
garbage collector on large-scale shared-memory machines.
In SC 97, pages 48—-48. IEEE, 1997.

[23] C. H. Flood, D. Detlefs, N. Shavit, and X. Zhang. Parallel
garbage collection for shared memory multiprocessors. In
JVM °01,2001.

[24] T. Hagerup. Planar depth-first search in o(log n) parallel
time. SIAM J. Comput., 19(4):678-704, 1990.

[25] Harshvardhan, A. Fidel, N. M. Amato, and L. Rauchwerger.
KLA: A new algorithmic paradigm for parallel graph
computations. In PACT ’14, pages 27-38, New York, NY,
USA, 2014. ACM.

[26] D. Hendler and N. Shavit. Non-blocking steal-half work
queues. In PODC 02, pages 280-289, 2002.

[27] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss,
Z. Wang, and P. Cheng. The garbage collection advantage:
improving program locality. In Proceedings of the 19th
Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
OOPSLA 2004, October 24-28, 2004, Vancouver, BC,
Canada, pages 69-80, 2004.

[28] Intel. Cilk Plus. http://www.cilkplus.org/.

[29] R. Jones, A. Hosking, and E. Moss. The garbage collection
handbook: the art of automatic memory management.
Chapman & Hall/CRC, 2011.

[30] V. Kumar and V. Rao. Parallel depth first search. part ii.
analysis. International Journal of Parallel Programming,
16(6):501-519, 1987.

[31] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a
social network or a news media? In WWW 10, pages
591-600. ACM, 2010.

[32] C.E. Leiserson and T. B. Schardl. A work-efficient parallel
breadth-first search algorithm. SPAA 10, pages 303-314,
New York, NY, USA, 2010. ACM.

[33] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and analysis of online social
networks. In SIGCOMM 07, pages 29-42. ACM, 2007.

[34] D. Mizell and K. J. Maschhoft. Early experiences with
large-scale cray XMT systems. In 23rd IEEE International
Symposium on Parallel and Distributed Processing, IPDPS
2009, Rome, Italy, May 23-29, 2009, pages 1-9, 2009.

[35] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight
infrastructure for graph analytics. In SOSP ’13, pages
456-471. ACM, 2013.

[36] M. Patwary, P. Refsnes, and F. Manne. Multi-core spanning
forest algorithms using the disjoint-set data structure. In
Parallel Distributed Processing Symposium (IPDPS), 2012
IEEE 26th International, pages 827-835, May 2012.

[37] M. J. Quinn and N. Deo. Parallel graph algorithms. ACM
Comput. Surv., 16(3):319-348, 1984.

[38] V.Rao and V. Kumar. Parallel depth first search. part i.
implementation. IJPP, 16(6):479-499, 1987.

[39] E. Reghbati and D. G. Corneil. Parallel computations in
graph theory. SIAM J. Comput., 7(2):230-237, 1978.

[40] E. Reghbati (Arjomandi) and D. Corneil. Parallel
computations in graph theory. SIAM JoC, 7(2):230-237,
1978.

[41] J. H. Reif. Depth-first search is inherently sequential. Inf.
Process. Lett., 20(5):229-234, 1985.

[42] V. A. Saraswat, P. Kambadur, S. B. Kodali, D. Grove, and
S. Krishnamoorthy. Lifeline-based global load balancing. In
C. Cascaval and P.-C. Yew, editors, PPOPP, pages 201-212.
ACM, 2011.

[43] A.E. Sariyiice, K. Kaya, E. Saule, and U. V. Catalytirek.
Betweenness centrality on gpus and heterogeneous
architectures. In Proceedings of the 6th Workshop on General
Purpose Processor Using Graphics Processing Units,
GPGPU-6, pages 76-85, New York, NY, USA, 2013. ACM.

[44] E. Saule and U. V. Catalyiirek. An early evaluation of the
scalability of graph algorithms on the intel MIC architecture.
In 26th IEEE International Parallel and Distributed
Processing Symposium Workshops & PhD Forum, IPDPS
2012, Shanghai, China, May 21-25, 2012, pages 1629-1639,
2012.

[45] J. Shun and G. E. Blelloch. Ligra: a lightweight graph
processing framework for shared memory. In PPOPP ’13,
pages 135-146, New York, NY, USA, 2013. ACM.

[46] J. Shun, L. Dhulipala, and G. Blelloch. A simple and
practical linear-work parallel algorithm for connectivity. In
Proceedings of the 26th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA 14, pages 143-153,
2014.

[47] F. Siebert. Concurrent, parallel, real-time garbage-collection.
In ACM Sigplan Notices, volume 45, pages 11-20. ACM,
2010.

[48] A. Tzannes, G. C. Caragea, U. Vishkin, and R. Barua. Lazy
scheduling: A runtime adaptive scheduler for declarative
parallelism. TOPLAS, 36(3):10:1-10:51, Sept. 2014.

[49] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y.
Zhao. User interactions in social networks and their
implications. In EUROSYS 09, pages 205-218. Acm, 2009.

[50] Y. Xia and V. K. Prasanna. Topologically adaptive parallel
breadth-first search on multicore processors. In JASTED ’09,
volume 668, page 91, 2009.



APPENDIX
A Proof of Splitting Lemma

We present the proof for the lemma 5.4, which bounds the total cost
of the split operations.

Lemma (Maximal cost of the split operations) The rotal cost of

all split operations in a PDFS execution is O(%B(“{)).

PROOF. The cost of splitting a frontier of size f is O(Blogg f).
Thus, there exists a constant r such that the cost of a split is bounded
by “r Blogg f”. (We here rely on the fact logz f > 0, which we
know because f > 1 when a split is executed.) For the purpose of
the proof, we introduce three constants: a = 2logz K + 6logp 2,
and b = 4log; 2, and ¢ = 22 logy(4K). In what follows, we
associate c units of potential with every edge. The potential as-
sociated with an edge is gained by the processor that discovers the
source vertex associated with this edge. We show that, globally, the
potential gained by all processors suffices to pay for all the split op-
erations that they perform. Note that the total potential is thus equal
to ¢cm, which is O(%’M), matching the bound claimed.

To keep track of the potential gained but not yet spent, we intro-
duce a potential function, defined as the sum of the potential of all
processors. We write ®(nb, f) the potential of a processor with a
frontier of size f and with nb denoting the number of edges pro-
cessed since the last split. We define the potential as follows:

@(nb,f) = Pi(nb, f) + P2(f)
Dq(nb, f) = %logBK- (nb+ f)
Dy (f) = iff < KthenOelse rB(% f —logy f —b).

Note that the constant a has been defined in such a way as to
make P, continuous: for f = % the value of & f —logp f — b
is zero. Indeed, 25 —logy & — b = (logy K + 3logp 2) —
(logg K — logg 2) — 4logy 2 = 0. Note also that ®; and @,
are nondecreasing with f. For, ®1, this property is trivial. For
®2, we prove that the derivative of % f — logp f is nonnegative
when f > X This derivative is equal to: & — flﬁ, which
is an increasing function of f. To prove its value nonnegative on
f > & itsuffices to show that its value is nonnegative for f = %
Indeed, we have:  — & l2n B~ . lnz?li%ln - K 12n B
6ln2 > 2.

It remains to prove that the potential evolves as expected on ev-
ery possible transition. <> First, we need to prove that the initial
potential is zero. It is immediate to check that ®(0,0) = 0. ¢
Second, we consider the increase in potential when a processor dis-
covers a vertex. For each edge outgoing from the new vertex, we
prove that the ¢ units of potential associated with the edge exceed
the increase in potential, that is: ®(nb, f) + ¢ > ®(nb, f + 1).
We have @1 (nb, f + 1) — ®1(nb, f) = "2 log K. Besides, we
have ®(f 4+ 1) — ®2(f) < 2B using the fact that ®; is con-
tinuous at % and that —log f decreases with f. It follows that
®(nb, f +1) — ®(nb, f) < B logy K + 2 = B(logy K +
2logp K 4 6logy 2) = 22 (logz K + log 4) = c, as required.
{ Third, we prove that when a processor treats an edge, the po-
tential does not increase, that is: ®(nb, f) > ®(nb + 1, f — 1).
This result follows from ®1(nb + 1, f — 1) = ®1(nb, f) and D2
nondecreasing with f. ¢ Fourth and last, we consider the case of
a split, which involves two processors: one with a frontier of size
f, and another with an empty frontier. We need to show that the
total potential after the operation is no more than the potential be-
fore the operation minus the cost of the split, which is bounded
by rBlogy f. Technically, we need to prove: ®(nb, f) +0 >
rBlogg f+ ®(0, [é]) + @(0, L%J ). (Recall that the values of nb

> 0, because

are reset to zero after a split, both for the sender and the receiver.)
According to the boolean test in Figure 5, there are two cases to
consider: either f > K,ornb > Kand1 < f < K.

Consider the first case: assume f > K. On the one hand, we
have @ (nb, f) > ®1(0, (g'\) + ®4(0, LéJ) This result follows
from f = [£] + [£] and the fact that nb is always nonegative.
On the other hand, we are able to prove: ®2(f) > rBlogg f +
22((£W)+¢>2(L£J) Ind‘eed., smc?f > K, we have [%] > LéJ >
5> and thus the inequality is equivalent to: B(3 f — logp f —
b) > rBlogp f + rB( 5] —logp[4] = b) +rB(§ 4] —
log| £ | — b), which, exploiting again the equality f = [{] +
L%j, dividing by rB and unfolding the definition of b, simplifies
to: logg[£] + logg| L] > 2logy f — 4logy 2. To justify this
inequality, we observe that log 5 [£] > log [ £] > log; £ when
f > 2 (which holds since f > K and K > 1). Thus, logg [%] +

logp|L] > 2logz & = 2logy f — 4logp 2, as required. In

conclusion, the inequality ®(nb, f) > rBlogy f + (0, [1]) +
(0, Léj) holds under the first split condition.

Consider the second case: assume 1 < f < K and nb > K.
On the one hand, we can prove ®2(f) > ég(fg]) —+ (I)g(ng)
Indeed, since ng < %, we have <I>2([%j) = 0, and since ®»
is nondecreasing and f > (%], we have ®o(f) > fbg(%])
On the other hand, we can prove: ®i(nb, f) > rBlogg f +
@4 (0, [é}) + ®,(0, L%J ). Indeed, this inequality is equivalent to
TBI(EB K(nb—l—f) Z TBlong+TBlc;§BK|—£~|+rBlc;§BK ng’
which simplifies to: % logp K > logg f. The latter follows from
the assumptions nb > K and K > f. In conclusion, the inequality
®(nb, f) > rBlogy f+®(0,[£]) + @(0, [ £]) also holds under
the second split condition. []




