
Machine-Checked Verification
of the Correctness and Amortized Complexity

of an Efficient Union-Find Implementation

Arthur Charguéraud1 and François Pottier2

1 Inria & LRI, Université Paris Sud, CNRS
2 Inria

Abstract. Union-Find is a famous example of a simple data structure
whose amortized asymptotic time complexity analysis is non-trivial. We
present a Coq formalization of this analysis. Moreover, we implement
Union-Find as an OCaml library and formally endow it with a modular
specification that offers a full functional correctness guarantee as well
as an amortized complexity bound. Reasoning in Coq about imperative
OCaml code relies on the CFML tool, which is based on characteristic
formulae and Separation Logic, and which we extend with time credits.
Although it was known in principle that amortized analysis can be ex-
plained in terms of time credits and that time credits can be viewed as
resources in Separation Logic, we believe our work is the first practical
demonstration of this approach.

1 Introduction

The Union-Find data structure, also known as a disjoint set forest [12], is widely
used in the areas of graph algorithms and symbolic computation. It maintains a
collection of disjoint sets and keeps track in each set of a distinguished element,
known as the representative of this set. It supports the following operations:
make creates a new element, which forms a new singleton set; find maps an
element to the representative of its set; union merges the sets associated with
two elements (and returns the representative of the new set); equiv tests whether
two elements belong to the same set. In OCaml syntax, this data structure offers
the following signature, where the abstract type elem is the type of elements:

type elem
val make : unit -> elem
val find : elem -> elem
val union : elem -> elem -> elem
val equiv : elem -> elem -> bool

One could generalize the above signature by attaching a datum of type ’a to
every set, yielding a type ’a elem. We have not done so for the moment.

Disjoint set forests were invented by Galler and Fischer [15]. In such a forest,
an element either points to another element or points to no element (i.e., is a

2

type rank = int

type elem = content ref

and content = Link of elem | Root of rank

let make () = ref (Root 0)

let rec find x =
match !x with
| Root _ -> x
| Link y ->

let z = find y in
x := Link z;
z

let link x y =
if x == y then x else
match !x, !y with
| Root rx, Root ry ->

if rx < ry then begin
x := Link y; y

end else if rx > ry then begin
y := Link x; x

end else begin
y := Link x; x := Root (rx+1); x

end
| _, _ -> assert false

let union x y = link (find x) (find y)
let equiv x y = (find x) == (find y)

Fig. 1. OCaml implementation of Union-Find

root). These pointers form a forest, where each tree represents a set, and where
the root of the tree is the representative of the set. There is a unique path from
every node in a tree to the root of this tree.

The find operation follows this unique path. For efficiency, it performs path
compression: every node along the path is updated so as to point directly to the
root of the tree. This idea is attributed by Aho et al. [1] to McIlroy and Morris.

The union operation updates the root of one tree so as to point to the root
of the other tree. To decide which of the two roots should become a child of the
other, we apply linking-by-rank [29,28]. A natural number, the rank, is associated
with every root. The rank of a newly created node is zero. When performing a
union, the root of lower rank becomes a child of the root of higher rank. In case
of equality, the new root is chosen arbitrarily, and its rank is increased by one.

A complete OCaml implementation appears in Figure 1.
Union-Find is among the simplest of the classic data structures, yet requires

one of the most complicated complexity analyses. Tarjan [29] and Tarjan and
van Leeuwen [28] established that the worst-case time required for performing
𝑚 operations involving 𝑛 elements is 𝑂p𝑚 ¨ 𝛼p𝑛qq. The function 𝛼, an inverse of
Ackermann’s function, grows so slowly that 𝛼p𝑛q does not exceed 5 in practice.
The original analysis was significantly simplified over the years [21], ultimately
resulting in a 2.5 page proof that appears in a set of course notes by Tarjan [27]
and in the textbook Introduction to Algorithms [12].

In this paper, we present a machine-checked version of this mathematical
result. In addition, we establish a machine-checked connection between this result
and the code shown in Figure 1. Our proofs are available online [8].

To assess the asymptotic time complexity of an OCaml program, we rely on
the assumption that “it suffices to count the function calls”. More precisely, if one
ignores the cost of garbage collection and if one encodes loops as tail-recursive
functions, then the number of function calls performed by the source program
is an accurate measure of the number of machine instructions executed by the
compiled program, up to a constant factor, which may depend (linearly) on the
size of the program. Relying on this assumption is an old idea. For example, in the
setting of a first-order functional programming language, Le Métayer [22] notes

3

that “the asymptotic complexity and the number of recursive calls necessary
for the evaluation of the program are of the same order-of-magnitude”. In our
higher-order setting, every function call is potentially a “recursive” call, so must
be counted. Danielsson [13] does this. The cost of constructing and looking up the
environment of a closure is not a problem: as noted by Blelloch and Greiner [5],
it is a constant, which depends on the number of variables in the program.

We do not prove that the OCaml compiler respects our assumption. It is
very likely that it does. If it did not, that would be a bug, which should and
very likely could be fixed. On a related theme, the CerCo project [3] has built
compilers that not only produce machine code, but also determine the actual
cost (according to a concrete machine model) of every basic block in the source
program. This allows carrying out concrete worst-case-execution-time analysis
at the source level.

In order to formally verify the correctness and complexity of a program, we
rely on an extension of Separation Logic with time credits. Separation Logic [26]
offers a natural framework for reasoning about imperative programs that ma-
nipulate the heap. A time credit is a resource that represents a right to perform
one step of computation. In our setting, every function call consumes one credit.
A number of credits can be explicitly requested as part of the precondition of
a function 𝑓 , and can be used to justify the function calls performed by 𝑓 and
by its callees. A time credit can be stored in the heap for later retrieval and
consumption: that is, amortization is permitted.

In short, the combination of Separation Logic and time credits is particularly
attractive because it allows (1) reasoning about correctness and complexity at
the same time, (2) dealing with dynamic memory allocation and mutation, and
(3) carrying out amortized complexity analyses.

Time credits, under various forms, have been used previously in several type
systems [13,17,25]. Atkey [4] has argued in favor of viewing credits as predicates
in Separation Logic. However, Atkey’s work did not go as far as using time
credits in a general-purpose program verification framework.

We express the specification of every operation (make, find , union, etc.) in
terms of an abstract predicate UF𝑁 𝐷𝑅, where 𝑁 is an upper bound on the
number of elements, 𝐷 is the set of all elements, and 𝑅 is a mapping of every
element to its representative. The predicate UF captures: (1) the existence (and
ownership) in the heap of a collection of reference cells; (2) the fact that the graph
formed by these cells is a disjoint set forest; (3) the connection between this graph
and the parameters 𝑁 , 𝐷, and 𝑅, which the client uses in her reasoning; and
(4) the ownership of a number of time credits that corresponds to the current
“total potential”, in Tarjan’s terminology, of the data structure.

The precondition of an operation tells how many credits this operation re-
quires. This is its amortized cost. Its actual cost may be lower or higher, as the
operation is free to store credits in the heap, or retrieve credits from the heap,
as long as it maintains the invariant encoded in the predicate UF. For instance,
the precondition of find contains $p𝛼p𝑁q ` 2q, which means “𝛼p𝑁q ` 2 credits”.
We note that it might be preferable to state that find requires 𝑂p𝛼p𝑁qq credits.

4

However, we have not yet developed an infrastructure for formalizing the use of
the big-𝑂 notation in our specifications.

To prove that the implementation of an operation satisfies its specification,
we rely on the tool CFML [7,6], which is based on Separation Logic and on
characteristic formulae. The characteristic formula of an OCaml term 𝑡 is a
higher-order logic formula J𝑡K which describes the semantics of 𝑡. (This obviates
the need for embedding the syntax of 𝑡 in the logic.) More precisely, J𝑡K denotes
the set of all valid specifications of 𝑡, in the following sense: for any precondi-
tion 𝐻 and postcondition 𝑄, if the proposition J𝑡K𝐻 𝑄 can be proved, then the
Separation Logic triple t𝐻u 𝑡 t𝑄u holds. The characteristic formula J𝑡K is built
automatically from the term 𝑡 by the CFML tool. It can then be used, in Coq,
to formally establish that the term 𝑡 satisfies a particular specification.

Our proofs are carried out in the Coq proof assistant. This allows us to
perform in a unified framework a mathematical analysis of the Union-Find data
structure and a step-by-step analysis of its OCaml implementation.

In addition to Coq, our trusted foundation includes the meta-theory and im-
plementation of CFML. Indeed, the characteristic formulae produced by CFML
are accepted as axioms in our Coq proofs. We trust these formulae because they
are generated in a systematic way by a tool whose soundness has been proved
on paper [7,6]. For convenience, we also rely on a number of standard logical
axioms, including functional extensionality, predicate extensionality, the law of
excluded middle, and Hilbert’s 𝜖 operator. The latter allows, e.g., defining “the
minimum element” of a subset of N before this subset has been proved nonempty
(§4.4), or referring to “the parent” of a node before it has been established that
this node has a parent (§4.5).

In summary, our contribution is to present:

– the first practical verification framework with support for heap allocation,
mutation, and amortized complexity analysis;

– the first formalization of the potential-based analysis of Union-Find;
– the first integrated verification of correctness and time complexity for a

Union-Find implementation.

The paper is organized as follows. We describe the addition of time credits to
Separation Logic and to CFML (§2). We present a formal specification of Union-
Find, which mentions time credits (§3). We present a mathematical analysis of
the operations on disjoint set forests and of their complexity (§4). We define the
predicate UF, which relates our mathematical view of forests with their concrete
layout in memory, and we verify our implementation (§5). Finally, we discuss
related work (§6) and future work (§7).

2 Time Credits, Separation, and Characteristic Formulae

2.1 Time Credits in Separation Logic

In Separation Logic, a heap predicate has type Heap Ñ Prop and characterizes
a portion of the heap. The fundamental heap predicates are defined as follows,

5

where ℎ is a heap, 𝐻 is a heap predicate, and 𝑃 is a Coq proposition.

r𝑃 s ” 𝜆ℎ. ℎ “ H ^ 𝑃

𝐻1 ‹𝐻2 ” 𝜆ℎ. Dℎ1ℎ2. ℎ1 K ℎ2 ^ ℎ “ ℎ1 Z ℎ2 ^ 𝐻1 ℎ1 ^ 𝐻2 ℎ2

DD𝑥.𝐻 ” 𝜆ℎ. D𝑥. 𝐻 ℎ

The pure heap predicate r𝑃 s characterizes an empty heap and at the same
time asserts that 𝑃 holds. The empty heap predicate r s is sugar for rTrues. The
separating conjunction of two heap predicates takes the form 𝐻1‹𝐻2 and asserts
that the heap can be partitioned in two disjoint parts, of which one satisfies 𝐻1

and the other satisfies 𝐻2. Its definition involves two auxiliary notions: ℎ1 K ℎ2

asserts that the heaps ℎ1 and ℎ2 have disjoint domains; ℎ1 Z ℎ2 denotes the
union of two disjoint heaps. Existential quantification is also lifted to the level
of heap predicates, taking the form DD𝑥.𝐻.

Logical entailment between two heap predicates, written 𝐻1Ź𝐻2, is defined
by @ℎ. 𝐻1 ℎ ñ 𝐻2 ℎ. This relation is used in the construction of characteristic
formulae (§2.2) and also appears in specifications (§3).

To assert the existence (and ownership) of a memory cell and to describe
its content, Separation Logic introduces a heap predicate of the form 𝑙 ãÑ 𝑣,
which asserts that the cell at location 𝑙 contains the value 𝑣. Assuming the heap
is a store, i.e., a map of locations to values, the predicate 𝑙 ãÑ 𝑣 is defined as
𝜆ℎ. ℎ “ p𝑙 ÞÑ 𝑣q, where p𝑙 ÞÑ 𝑣q denotes the singleton map of 𝑙 to 𝑣. More details
on these definitions are given in the first author’s description of CFML [6].

To accommodate time credits, we give a new interpretation of the type Heap.
In traditional Separation Logic, a heap is a store, i.e., a map from location to
values: Heap ” Store. We reinterpret a heap ℎ as a pair p𝑚, 𝑐q of a store and of a
natural number: Heap ” StoreˆN. The second component represents a number
of time credits that are available for consumption.

This new interpretation of Heap allows us to define the heap predicate $𝑛,
which asserts the ownership of 𝑛 time credits. Furthermore, the definitions of Z,
K, H, and 𝑙 ãÑ 𝑣, are lifted as shown below.

$𝑛 ” 𝜆p𝑚, 𝑐q. 𝑚 “ H ^ 𝑐 “ 𝑛

𝑙 ãÑ 𝑣 ” 𝜆p𝑚, 𝑐q. 𝑚 “ p𝑙 ÞÑ 𝑣q ^ 𝑐 “ 0

p𝑚1, 𝑐1q K p𝑚2, 𝑐2q ” 𝑚1 K 𝑚2

p𝑚1, 𝑐1q Z p𝑚2, 𝑐2q ” p𝑚1 Z𝑚2, 𝑐1 ` 𝑐2q

H:Heap ” pH:Store, 0q

In short, we view Heap as the product of the monoids Store and pN,`q. The
definitions of the fundamental heap predicates, namely r𝑃 s, 𝐻1 ‹𝐻2 and DD𝑥.𝐻,
are unchanged.

Two provable equalities are essential when reasoning about credits:

$p𝑛` 𝑛1q “ $𝑛 ‹ $𝑛1 and $ 0 “ r s.

The left-hand equation, combined with the fact that the logic is affine, allows
weakening $𝑛 to $𝑛1 when 𝑛 ě 𝑛1 holds. Technically, this exploits CFML’s
“garbage collection” rule [6], and can be largely automated using tactics.

6

2.2 Characteristic Formulae

Let 𝑡 be an OCaml term. Its characteristic formula J𝑡K is a higher-order predicate
such that, for every precondition 𝐻 and postcondition 𝑄, if J𝑡K𝐻 𝑄 can be proved
(in Coq), then the Separation Logic triple t𝐻u 𝑡 t𝑄u holds. This implies that,
starting in any state that satisfies 𝐻, the execution of 𝑡 terminates and produces
a value 𝑣 such that the final state satisfies the heap predicate 𝑄𝑣. This informal
sentence assumes that an OCaml value can be reflected as a Coq value; for the
sake of simplicity, we omit the details of this translation. In the following, we also
omit the use of a predicate transformer, called local [6], which allows applying the
structural rules of Separation Logic. Up to these simplifications, characteristic
formulae for a core subset of ML are constructed as follows:

J𝑣K ” 𝜆𝐻𝑄. 𝐻 Ź𝑄𝑣 (1)
Jlet𝑥 “ 𝑡1 in 𝑡2K ” 𝜆𝐻𝑄. D𝑄1. J𝑡1K𝐻 𝑄1 ^ @𝑥. J𝑡2K p𝑄1 𝑥q𝑄 (2)

J𝑓 𝑣K ” 𝜆𝐻𝑄. App 𝑓 𝑣 𝐻 𝑄 (3)
Jlet 𝑓 “ 𝜆𝑥. 𝑡1 in 𝑡2K ” 𝜆𝐻𝑄. @𝑓. 𝑃 ñ J𝑡2K𝐻 𝑄 (4)

where 𝑃 ”
`

@𝑥𝐻 1𝑄1. J𝑡1K𝐻 1𝑄1 ñ App 𝑓 𝑥𝐻 1𝑄1
˘

In order to read equations (3) and (4), one must know that an OCaml function
is reflected in the logic as a value of abstract type func. Such a value is opaque:
nothing is known a priori about it. The abstract predicate App is used to assert
that a function satisfies a certain specification. Intuitively, App 𝑓 𝑣 𝐻 𝑄 stands
for the triple t𝐻u 𝑓 𝑣 t𝑄u. When a function is defined, an App assumption is
introduced (4); when a function is called, an App assumption is exploited (3).
In short, equation (4) states that if the body 𝑡1 of the function 𝑓 satisfies a
specification t𝐻 1u ¨ t𝑄1u, then one can assume that a call 𝑓 𝑥 satisfies the same
specification. Equation (3) states that the only way of reasoning about a function
call is to exploit such an assumption.

2.3 Combining Time Credits and Characteristic Formulae

To ensure that a time credit effectively represents “a right to perform one function
call”, we must enforce spending one credit at every function call. In principle,
this can be achieved without any modification of the reasoning rules. All we need
to do is transform the program before constructing its characteristic formula. We
insert a call to an abstract function, pay, at the beginning of every function body
(and loop body). This is analogous to Danielsson’s “tick” [13]. We equip pay with
a specification that causes one credit to be consumed when pay is invoked:

App pay tt p$ 1q p𝜆tt . r sq

Here, tt denotes the unit argument and unit result of pay. The precondition $ 1
requests one time credit, while the postcondition r s is empty. When reasoning
about a call to pay, the user has no choice but to exploit the above specification
and give away one time credit.

7

In practice, in order to reduce clutter, we simplify the characteristic formula
for a sequence that begins with a call to pay. The simplified formula is as follows:

Jpaypq ; 𝑡K ” 𝜆𝐻𝑄. D𝐻 1. 𝐻 Ź $ 1‹𝐻 1 ^ J𝑡K𝐻 1𝑄

If desired, instead of performing a program transformation followed with the
generation of a characteristic formula, one can alter equation (4) above to impose
the consumption of one credit at the beginning of every function body:

Jlet 𝑓 “ 𝜆𝑥. 𝑡1 in 𝑡2K ” 𝜆𝐻𝑄. @𝑓. 𝑃 ñ J𝑡2K𝐻 𝑄

where 𝑃 ” p@𝑥𝐻 1𝐻2𝑄1. 𝐻 1 Ź $ 1‹𝐻2 ^ J𝑡1K𝐻2𝑄1 ñ App 𝑓 𝑥𝐻 1𝑄1q .

2.4 Meta-Theory

We revisit the informal soundness theorem for characteristic formulae [7] so as to
account for time credits. The new theorem relies on a cost-annotated semantics
of the programming language (a subset of OCaml). The judgment 𝑡{𝑚 ó𝑛 𝑣{𝑚1

means that the term 𝑡, executed in the initial store 𝑚, terminates after 𝑛 function
calls and produces a value 𝑣 and a final store 𝑚1. Our theorem is as follows.

Theorem 1 (Soundness of characteristic formulae with time credits).

@𝑚𝑐.

"

J𝑡K𝐻 𝑄

𝐻 p𝑚, 𝑐q
ñ D𝑛𝑣𝑚1𝑚2𝑐1𝑐2.

$

’

’

&

’

’

%

𝑡{𝑚 ó
𝑛 𝑣{𝑚1Z𝑚2 p1q

𝑚1 K 𝑚2 p2q

𝑄𝑣 p𝑚1, 𝑐1q p3q

𝑐 “ 𝑛` 𝑐1 ` 𝑐2 p4q

Suppose we have proved J𝑡K𝐻 𝑄. Pick an initial heap p𝑚, 𝑐q that satisfies the
precondition 𝐻. Here, 𝑚 is an initial store, while 𝑐 is an initial number of time
credits. (Time credits are never created out of thin air, so one must assume that
they are given at the beginning.) Then, the theorem guarantees, the program 𝑡
runs without error and terminates (1). The final heap can be decomposed into
p𝑚1, 𝑐1q and p𝑚2, 𝑐2q (2), where p𝑚1, 𝑐1q satisfies the postcondition 𝑄𝑣 (3) and
p𝑚2, 𝑐2q represents resources (memory and credits) that have been abandoned
during reasoning by applying the “garbage collection” rule [7]. Our accounting
of time is exact: the initial number of credits 𝑐 is the sum of 𝑛, the number
of function calls that have been performed by the program, and 𝑐1 ` 𝑐2, the
number of credits that remain in the final heap (4). In other words, every credit
either is spent to justify a function call, or is still there at the end. In particular,
equation (4) implies 𝑐 ě 𝑛: the number of time credits that are initially supplied
is an upper bound on the number of function calls performed by the program.

The proof of Theorem 1 follows the exact same structure as that of the
original soundness theorem for characteristic formulae [7]. We have carried out
the extended proof on paper [8]. As expected, only minor additions are required.

8

3 Specification of Union-Find

Our specification of the library is expressed in Coq. It relies on an abstract type
elem and an abstract representation predicate UF. Their definitions, which we
present later on (§5), are not publicly known. As far as a client is concerned,
elem is the type of elements, and UF𝑁 𝐷𝑅 is a heap predicate which asserts the
existence (and ownership) of a Union-Find data structure, whose current state
is summed up by the parameters 𝑁 , 𝐷 and 𝑅. The parameter 𝐷, whose type is
elemÑ Prop, is the domain of the data structure, that is, the set of all elements.
The parameter 𝑁 is an upper bound on the cardinality of 𝐷. The parameter 𝑅,
whose type is elemÑ elem, maps every element to its representative.

Because 𝑅 maps every element to its representative, we expect it to be an
idempotent function of the set 𝐷 into itself. Furthermore, although this is in no
way essential, we decide that 𝑅 should be the identity outside 𝐷. We advertise
this to the client via the first theorem in Figure 2. Recall that Ź is entailment
of heap predicates. Thus, UF_properties states that, if one possesses UF𝑁 𝐷𝑅,
then certain logical properties of 𝑁 , 𝐷 and 𝑅 hold.

The next theorem, UF_create, asserts that out of nothing one can create an
empty Union-Find data structure. UF_create is a “ghost” operation: it does not
exist in the OCaml code. Yet, it is essential: without it, the library would be
unusable, because UF appears in the pre-condition of every operation. When
one applies this theorem, one commits to an upper bound 𝑁 on the number of
elements. 𝑁 remains fixed thereafter.

The need for 𝑁 is inherited from the proof that we follow [27,12]. Kaplan et
al. [20] and Alstrup et al. [2] have carried out more precise complexity analyses,
which lead to an amortized complexity bound of 𝛼p𝑛q, as opposed to 𝛼p𝑁q,
where 𝑛 is the cardinality of 𝐷. In the future, we would like to formalize Alstrup
et al.’s argument, as it seems to require relatively minor adjustments to the proof
that we have followed. This would remove the need for fixing 𝑁 in advance and
would thus make our specification easier to use for a client.

Next comes the specification of the OCaml function make. The theorem
make_spec refers to UnionFind_ml.make, which is defined for us by CFML and
has type func (recall §2.2). It states that UnionFind_ml.make satisfies a certain
specification, thereby describing the behavior of make. The condition card D < N
indicates that new elements can be created only as long as the number of ele-
ments remains under the limit 𝑁 . Then comes an application of the predicate
App to the value UnionFind_ml.make, to the unit value tt, and to a pre- and
postcondition. The precondition is the conjunction of UF𝑁 𝐷𝑅, which describes
the pre-state, and of $ 1, which indicates that make works in constant time. (We
view the OCaml function ref, which appears in the implementation of make, as
a primitive operation, so its use does not count as a function call.) In the post-
condition, 𝑥 denotes the element returned by make. The postcondition describes
the post-state via the heap predicate UF𝑁 p𝐷 Y t𝑥uq𝑅. It also asserts that 𝑥 is
new, that is, distinct from all previous elements.

The next theorem provides a specification for find. The argument 𝑥 must
be a member of 𝐷. In addition to UF𝑁 𝐷𝑅, the precondition requires 𝛼p𝑁q ` 2

9

(* UF : nat Ñ (elem Ñ Prop) Ñ (elem Ñ elem) Ñ heap Ñ Prop *)

Theorem UF_properties : @N D R, UF N D R Ź UF N D R ‹
[(card D ď N) ^ @x, (R (R x) = R x) ^ (x P D Ñ R x P D) ^ (x R D Ñ R x = x)].

Theorem UF_create : @N, [] Ź UF N H id.

Theorem make_spec : @N D R, card D < N Ñ
App UnionFind_ml.make tt

(UF N D R ‹ $1)
(fun x ñ UF N (D Ytxu) R ‹ [x R D] ‹ [R x = x]).

Theorem find_spec : @N D R x, x P D Ñ
App UnionFind_ml.find x

(UF N D R ‹ $(alpha N + 2))
(fun y ñ UF N D R ‹ [R x = y]).

Theorem union_spec : @N D R x y, x P D Ñ y P D Ñ
App UnionFind_ml.union x y

(UF N D R ‹ $(3*(alpha N)+6))
(fun z ñ UF N D (fun w ñ If R w = R x _R w = R y then z else R w)

‹ [z = R x _z = R y]).

Theorem equiv_spec : @N D R x y, x P D Ñ y P D Ñ
App UnionFind_ml.equiv x y

(UF N D R ‹ $(2*(alpha N) + 5))
(fun b ñ UF N D R ‹ [b = true Ø R x = R y]).

Fig. 2. Complete specification of Union-Find

credits. This reflects the amortized cost of find. The postcondition asserts that
find returns an element 𝑦 such that 𝑅𝑥 “ 𝑦. In other words, find returns the
representative of 𝑥. Furthermore, the postcondition asserts that UF𝑁 𝐷𝑅 still
holds. Even though path compression may update internal pointers, the mapping
of elements to representatives, which is all the client knows about, is preserved.

The precondition of union requires UF𝑁 𝐷𝑅 together with 3ˆ𝛼p𝑁q`6 time
credits. The postcondition indicates that union returns an element 𝑧, which is
either 𝑥 or 𝑦, and updates the data structure to UF𝑁 𝐷𝑅1, where 𝑅1 updates 𝑅
by mapping to 𝑧 every element that was equivalent to 𝑥 or 𝑦. The construct
If P then e1 else e2, where P is in Prop, is a non-constructive conditional. It is
defined using the law of excluded middle and Hilbert’s 𝜖 operator.

The postcondition of equiv indicates that equiv returns a Boolean result,
which tells whether the elements 𝑥 and 𝑦 have a common representative.

The function link is internal, so its specification (given in §5) is not public.

10

4 Mathematical Analysis of Disjoint Set Forests

We carry out a mathematical analysis of disjoint set forests. This is a Coq
formalization of textbook material [27,12]. It is independent of the OCaml code
(Figure 1) and of the content of the previous sections (§2, §3). For brevity, we
elide many details; we focus on the main definitions and highlight a few lemmas.

4.1 Disjoint Set Forests as Graphs

We model a disjoint set forest as a graph. The nodes of the graph inhabit a
type 𝑉 which is an implicit parameter throughout this section (§4). As in §3,
the domain of the graph is represented by a set 𝐷 of nodes. The edges of the
graph are represented by a relation 𝐹 between nodes. Thus, 𝐹 𝑥 𝑦 indicates that
there is an edge from node 𝑥 to node 𝑦.

The predicate path𝐹 is the reflexive, transitive closure of 𝐹 . Thus, path𝐹 𝑥 𝑦
indicates the existence of a path from 𝑥 to 𝑦. A node 𝑥 is a root iff it has no
successor. A node 𝑥 is represented by a node 𝑟 iff there is a path from 𝑥 to 𝑟 and
𝑟 is a root.

Definition is_root F x := @y, F x y.
Definition is_repr F x r := path F x r ^ is_root F r.

Several properties express the fact that the graph represents a disjoint set
forest. First, the relation 𝐹 is confined to 𝐷: whenever there is an edge from 𝑥
to 𝑦, the nodes 𝑥 and 𝑦 are members of 𝐷. Second, the relation 𝐹 is functional:
every node has at most one parent. Finally, the relation is_repr𝐹 is defined :
every node 𝑥 is represented by some node 𝑟. This ensures that the graph is
acyclic. The predicate is_dsf is the conjunction of these three properties:

Definition is_dsf D F :=
confined D F ^ functional F ^ defined (is_repr F).

4.2 Correctness of Path Compression

The first part of our mathematical analysis is concerned mostly with the func-
tional correctness of linking and path compression. Here, we highlight a few
results on compression. Compression assumes that there is an edge between 𝑥
and 𝑦 and a path from 𝑦 to a root 𝑧. It replaces this edge with a direct edge
from 𝑥 to 𝑧. We write compress𝐹 𝑥 𝑧 for the relation that describes the edges
after this operation: it is defined as 𝐹 z tp𝑥,_qu Y tp𝑥, 𝑧qu.

We prove that, although compression destroys some paths in the graph
(namely, those that used to go through 𝑥), it preserves the relationship between
nodes and roots. More precisely, if 𝑣 has representative 𝑟 in 𝐹 , then this still
holds in the updated graph compress𝐹 𝑥 𝑧.

Lemma compress_preserves_is_repr : @D F x y z v r,
is_dsf D F Ñ F x y Ñ is_repr F y z Ñ
is_repr F v r Ñ is_repr (compress F x z) v r.

It is then easy to check that compression preserves is_dsf.

11

4.3 Ranks

In order to perform linking-by-rank and to reason about it, we attach a rank to
every node in the graph. To do so, we introduce a function 𝐾 of type 𝑉 Ñ N.
This function satisfies a number of interesting properties. First, because linking
makes the node of lower rank a child of the node of higher rank, and because
the rank of a node can increase only when this node is a root, ranks increase
along graph edges. Furthermore, a rank never exceeds log |𝐷|. Indeed, if a root
has rank 𝑝, then its tree has at least 2𝑝 elements. We record these properties
using a new predicate, called is_rdsf, which extends is_dsf. This predicate also
records the fact that 𝐷 is finite. Finally, we find it convenient to impose that
the function 𝐾 be uniformly zero outside of the domain 𝐷.

Definition is_rdsf D F K :=
is_dsf D F ^
(@ x y, F x y Ñ K x < K y) ^
(@ r, is_root F r Ñ 2^(K r) ď card (descendants F r)) ^
finite D ^
(@ x, x R D Ñ K x = 0).

It may be worth noting that, even though at runtime only roots carry a rank
(Figure 1), in the mathematical analysis, the function 𝐾 maps every node to a
rank. The value of 𝐾 at non-root nodes can be thought of as “ghost state”.

4.4 Ackermann’s Function and its Inverse

For the amortized complexity analysis, we need to introduce Ackermann’s func-
tion, written 𝐴𝑘p𝑥q. According to Tarjan [27], it is defined as follows:

𝐴0p𝑥q “ 𝑥` 1 𝐴𝑘`1p𝑥q “ 𝐴
p𝑥`1q
𝑘 p𝑥q

We write 𝑓 p𝑖q for the 𝑖-th iterate of the function 𝑓 . In Coq, we write iter 𝑖 𝑓 .
The above definition is transcribed very compactly:

Definition A k := iter k (fun f x ñ iter (x+1) f x) (fun x ñ x+1).

That is, 𝐴𝑘 is the 𝑘-th iterate of 𝜆𝑓. 𝜆𝑥. 𝑓 p𝑥`1qp𝑥q, applied to 𝐴0.
The inverse of Ackermann’s function, written 𝛼p𝑛q, maps 𝑛 to the smallest

value of 𝑘 such that 𝐴𝑘p1q ě 𝑛. Below, min_of le denotes the minimum element
of a nonempty subset of N.

Definition alpha n := min_of le (fun k ñ A k 1 ě n).

4.5 Potential

The definition of the potential function relies on a few auxiliary definitions. First,
for every node 𝑥, Tarjan [27] writes 𝑝p𝑥q for the parent of 𝑥 in the forest. If 𝑥 is
not a root, 𝑝p𝑥q is uniquely defined. We define 𝑝p𝑥q using Hilbert’s 𝜖 operator:

12

Definition p F x := epsilon (fun y ñ F x y).

Thus, p F x is formally defined for every node x, but the characteristic property
F x (p F x) can be exploited only if one can prove that x has a parent.

Then, Tarjan [27] introduces the level and the index of a non-root node 𝑥.
These definitions involve the rank of 𝑥 and the rank of its parent. The level of 𝑥,
written 𝑘p𝑥q, is the largest 𝑘 for which 𝐾p𝑝p𝑥qq ě 𝐴𝑘p𝐾p𝑥qq holds. It lies in the
interval r0, 𝛼p𝑁qq, if 𝑁 is an upper bound on the number of nodes. The index
of 𝑥, written 𝑖p𝑥q, is the largest 𝑖 for which 𝐾p𝑝p𝑥qq ě 𝐴

p𝑖q
𝑘p𝑥qp𝐾p𝑥qq holds. It

lies in the interval r1,𝐾p𝑥qs. The formal definitions, shown below, rely on the
function max_of, which is the dual of min_of (§4.4).

Definition k F K x :=
max_of le (fun k ñ K (p F x) ě A k (K x)).

Definition i F K x :=
max_of le (fun i ñ K (p F x) ě iter i (A (k F K x)) (K x)).

The potential of a node, written 𝜑p𝑥q, depends on the parameter 𝑁 , which
is a pre-agreed upper bound on the number of nodes. (See the discussion of
UF_create in §3.) Following Tarjan [27], if 𝑥 is a root or has rank 0, then 𝜑p𝑥q is
𝛼p𝑁q ¨𝐾p𝑥q. Otherwise, 𝜑p𝑥q is p𝛼p𝑁q ´ 𝑘p𝑥qq ¨𝐾p𝑥q ´ 𝑖p𝑥q.

Definition phi F K N x :=
If (is_root F x) _(K x = 0)
then (alpha N) * (K x)
else (alpha N ´ k F K x) * (K x) ´ (i F K x).

The total potential 𝛷 is obtained by summing 𝜑 over all nodes in the domain 𝐷.

Definition Phi D F K N := fold (monoid_ plus 0) phi D.

4.6 Rank Analysis

The definition of the representation predicate UF, which we present later on (§5),
explicitly mentions 𝛷. It states that, between two operations, we have 𝛷 time
credits at hand. Thus, when we try to prove that every operation preserves UF,
as claimed earlier (§3), we are naturally faced with the obligation to prove that
the initial potential 𝛷, plus the number of credits brought by the caller, covers
the new potential 𝛷1, plus the number of credits consumed during the operation:

𝛷` advertised cost of operation ě 𝛷1 ` actual cost of operation

We check that this property holds for all operations. The two key operations
are linking and path compression. In the latter case, we consider not just one
step of compression (i.e., updating one graph edge, as in §4.2), but “iterated
path compression”, i.e., updating the parent of every node along a path, as
performed by find in Figure 1. To model iterated path compression, we introduce
the predicate ipc𝐹 𝑥𝑑𝐹 1, which means that, if the initial graph is 𝐹 and if

13

one performs iterated path compression starting at node 𝑥, then one performs
𝑑 individual compression steps and the final graph is 𝐹 1.

is_root𝐹 𝑥

ipc𝐹 𝑥 0𝐹

𝐹 𝑥 𝑦 is_repr𝐹 𝑦 𝑧 ipc𝐹 𝑦 𝑑𝐹 1 𝐹 2 “ compress𝐹 1 𝑥 𝑧
ipc𝐹 𝑥 p𝑑` 1q𝐹 2

On the one hand, the predicate ipc is a paraphrase, in mathematical language,
of the recursive definition of find in Figure 1, so it is easy to argue that “find
implements ipc”. This is done as part of the verification of find (§5). On the other
hand, by following Tarjan’s proof [27], we establish the following key lemma,
which sums up the amortized complexity analysis of iterated path compression:

Lemma amortized_cost_of_iterated_path_compression : @D F K x N,
is_rdsf D F K Ñ x P D Ñ card D ď N Ñ
Dd F’, ipc F x d F’ ^ (Phi D F K N + alpha N + 2 ě Phi D F’ K N + d + 1).

This lemma guarantees that, in any initial state described by 𝐷,𝐹,𝐾 and for
any node 𝑥, (1) iterated path compression is possible, requiring a certain number
of steps 𝑑 and taking us to a certain final state 𝐹 1, and (2) more interestingly,
the inequality “𝛷` advertised cost ě 𝛷1 ` actual cost” holds. Indeed, 𝛼p𝑁q ` 2
is the advertised cost of find (Figure 2), whereas 𝑑`1 is its actual cost, because
iterated path compression along a path of length 𝑑 involves 𝑑` 1 calls to find.

5 Verification of the Code

To prove that the OCaml code in Figure 1 satisfies the specification in Figure 2,
we first define the predicate UF, then establish each of the theorems in Figure 2.

5.1 Definition of the representation predicate

In our OCaml code (Figure 1), we have defined elem as content ref, and defined
content as Link of elem | Root of rank. CFML automatically mirrors these
type definitions in Coq. It defines elem as loc (an abstract type of memory
locations, provided by CFML’s library) and content as an inductive data type:

Definition elem := loc.
Inductive content := Link of elem | Root of rank.

To define the heap predicate UF𝑁 𝐷𝑅, we need two auxiliary predicates.
The auxiliary predicate Inv N D R F K includes the invariant is_rdsf D F K,

which describes a ranked disjoint set forest (§4.3), adds the condition card D ď N
(which appears in the complexity analysis, §4.6), and adds the requirement that
the function 𝑅 and the relation is_repr𝐹 agree, in the sense that 𝑅𝑥 “ 𝑟 implies
is_repr𝐹 𝑥 𝑟. The last conjunct is needed because our specification exposes 𝑅,
which describes only the mapping from nodes to representatives, whereas our
mathematical analysis is in terms of 𝐹 , which describes the whole graph.

Definition Inv N D F K R :=
(is_rdsf D F K) ^ (card D ď N) ^ (rel_of_func R Ă is_repr F).

14

Theorem link_spec : @D R x y, x P D Ñ y P D Ñ R x = x Ñ R y = y Ñ
App UnionFind_ml.link x y

(UF D R ‹ $(alpha N+1))
(fun z ñ UF D (fun w ñ If R w = R x _R w = R y then z else R w) ‹ [z = x _z = y]).

Proof.
xcf. introv Dx Dy Rx Ry. credits_split. xpay. xapps. xif.
{ xret. rewritẽ root_after_union_same. hsimpl̃ . }
{ unfold UF at 1. xextract as F K M HI HM. lets HMD: (Mem_dom HM). xapps̃ . xapps̃ . xmatch.

{ forwards* (HRx&Kx): Mem_root_inv x HM.
forwards* (HRy&Ky): Mem_root_inv y HM. xif.
{ forwards* (F’&EF’&HI’&n&EQ): (>> Inv_link_lt D R F K x y). splits*. math.
xchange (credits_eq EQ). chsimpl. xapp*. xret. unfold UF. chsimpl*. applys* Mem_link. }

{ xif.
{ forwards* (F’&EF’&HI’&n&EQ): (>> Inv_link_gt D R F K x y). splits*. math.
xchange (credits_eq EQ). chsimpl. xapp*. xret. unfold UF. chsimpl*. applys* Mem_link. }

{ asserts: (rx = ry). math. asserts: (K x = K y). math.
forwards* (F’&K’&EF’&EK’&HI’&n&EQ): (>> Inv_link_eq D R F K x y). splits*.
xchange (credits_eq EQ). chsimpl. xapp̃ . xapp̃ . applỹ map_indom_update_already.
xret. rewrite H2 in EK’. unfold UF. chsimpl*. applys* Mem_link_incr HM. } } }

{ xfail ((rm C0) (K x) (K y)). fequals; applys* Mem_root. }
Qed.

Fig. 3. Verification script for the link function

The auxiliary predicate Mem D F K M relates a model of a disjoint set forest,
represented by 𝐷, 𝐹 , 𝐾, and a model of the memory, represented by a finite
map 𝑀 of memory locations to values of type content. (This view of memory is
imposed by CFML.) 𝑀 maps a location 𝑥 to either Link 𝑦 for some location 𝑦
or Root 𝑘 for some natural number 𝑘. The predicate Mem D F K M explains how to
interpret the contents of memory as a disjoint set forest. It asserts that 𝑀 has
domain 𝐷, that 𝑀p𝑥q “ Link 𝑦 implies the existence of an edge of 𝑥 to 𝑦, and
that 𝑀p𝑥q “ Root 𝑘 implies that 𝑥 is a root and has rank 𝑘.

Definition Mem D F K M := (dom M = D) ^ (@ x, x P D Ñ
match M\(x) with Link y ñ F x y | Root k ñ is_root F x ^ k = K x end).

At last, we are ready to define the heap predicate UF𝑁 𝐷𝑅:

Definition UF N D R := DDF K M,
Group (Ref Id) M ‹ [Inv N D F K R] ‹ [Mem D F K M] ‹ $(Phi D F K N).

The first conjunct asserts the existence in the heap of a group of reference cells,
collectively described by the map 𝑀 . (The predicates Group, Ref and Id are pro-
vided by CFML’s library.) The second conjunct constrains the graph (𝐷,𝐹,𝐾)
to represent a valid disjoint set forest whose roots are described by 𝑅, while the
third conjunct relates the graph (𝐷,𝐹,𝐾) with the contents of memory (𝑀).
Recall that the brackets lift an ordinary proposition as a heap predicate (§2).
The last conjunct asserts that we have 𝛷 time credits at hand. The definition is
existentially quantified over 𝐹 , 𝐾, and 𝑀 , which are not exposed to the client.

5.2 Verification through characteristic formulae

Our workflow is as follows. Out of the file UnionFind.ml, which contains the
OCaml source code, the CFML tool produces the Coq file UnionFind_ml.v, which

15

contains characteristic formulae. Consider, for example, the OCaml function
link. The tool produces two Coq axioms for it. The first axiom asserts the
existence of a value link of type func (§2.2). The second axiom, link_cf, is a
characteristic formula for link. It can be exploited to establish that link satisfies
a particular specification. For instance, in Figure 3, we state and prove a spec-
ification for link. The proof involves a mix of standard Coq tactics and tactics
provided by CFML for manipulating characteristic formulae. It is quite short,
because all we need to do at this point is to establish a correspondence between
the operations performed by the imperative code and the mathematical analysis
that we have already carried out.

The CFML library is about 5Kloc. The analysis of Union-Find (§4) is 3Kloc.
The specification of Union-Find (Figure 2) and the verification of the code (§5),
together, take up only 0.4Kloc. Both CFML and our proofs about Union-Find
rely on Charguéraud’s TLC library, a complement to Coq’s standard library.
Everything is available online [8].

6 Related Work

Disjoint set forests as well as linking-by-size are due to Galler and Fischer [15].
Path compression is attributed by Aho et al. [1] to McIlroy and Morris. Hopcroft
and Ullman [19] study linking-by-size and path compression and establish an
amortized bound of 𝑂p𝑙𝑜𝑔˚𝑁q per operation. Tarjan [29] studies linking-by-rank
and path compression and establishes the first amortized bound in 𝑂p𝛼p𝑁qq.
After several simplifications [28,21], this leads to the proof that we follow [27,12].
Kaplan et al. [20] and Alstrup et al. [2] establish a “local” bound: they bound
the amortized cost of findp𝑥q by 𝑂p𝛼p𝑛qq, where 𝑛 is the size of 𝑥’s set.

We know of only one machine-checked proof of the functional correctness of
Union-Find, due to Conchon and Filliâtre [11]. They reformulate the imperative
algorithm in a purely functional style, where the store is explicit. They represent
the store as a persistent array and obtain an efficient persistent Union-Find. We
note that Union-Find is part of the VACID-0 suite of benchmark verification
problems [23]. We did not find any solution to this particular benchmark problem
online. We know of no machine-checked proof of the complexity of Union-Find.

The idea of using a machine to assist in the complexity analysis of a program
goes back at least as far back as Wegbreit [30]. He extracts recurrence equations
from the program and bounds their solution. More recent work along these lines
includes Le Métayer’s [22] and Danner et al.’s [14]. Although Wegbreit aims for
complete automation, he notes that one could “allow the addition to the program
of performance specifications by the programmer, which the system then checks
for consistency”. We follow this route.

There is a huge body of work on program verification using Separation Logic.
We are particularly interested in embedding Separation Logic into an interactive
proof assistant, such as Coq, where it is possible to express arbitrarily complex
specifications and to perform arbitrarily complex proofs. Such an approach has
been explored in several projects, such as Ynot [10], Bedrock [9], and CFML [7,6].

16

This approach allows verifying not only the implementation of a data structure
but also its clients. In particular, when a data structure comes with an amortized
complexity bound, we verify that it is used in a single-threaded manner.

Nipkow [24] carries out machine-checked amortized analyses of several data
structures, including skew heaps, splay trees and splay heaps. As he seems to be
mainly interested in the mathematical analysis of a data structure, as opposed to
the verification of an actual implementation, he manually derives from the code
a “timing function”, which represents the actual time consumed by an operation.

The idea of extending a type system or program logic with time or space cred-
its, viewed as affine resources, has been put forth by several authors [18,4,25].
The extension is very modest; in fact, if the source program is explicitly instru-
mented by inserting calls to pay, no extension at all is required. We believe that
we are the first to follow this approach in practice to perform a modular verifi-
cation of functional correctness and complexity for a nontrivial data structure.

A line of work by Hofmann et al. [18,17,16] aims to infer amortized time and
space bounds. Because emphasis is on automation, these systems are limited in
the bounds that they can infer (e.g., polynomial bounds) and/or in the programs
that they can analyze (e.g., without side effects; without higher-order functions).

7 Future Work

We have demonstrated that the state of the art has advanced to a point where
one can (and, arguably, one should) prove not only that a library is correct but
also (and at the same time) that it meets a certain complexity bound.

There are many directions for future work. Concerning Union-Find, we would
like to formalize Alstrup et al.’s proof [2] that the amortized cost can be expressed
in terms of the current number 𝑛 of nodes, as opposed to a fixed upper bound 𝑁 .
Concerning our verification methodology, we wish to use the big-𝑂 notation in
our specifications, so as to make them more modular.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley (1974)

2. Alstrup, S., Thorup, M., Gørtz, I.L., Rauhe, T., Zwick, U.: Union-find with con-
stant time deletions. ACM Transactions on Algorithms 11(1) (2014)

3. Amadio, R.M., Ayache, N., Bobot, F., Boender, J., Campbell, B., Garnier, I.,
Madet, A., McKinna, J., Mulligan, D.P., Piccolo, M., Pollack, R., Régis-Gianas, Y.,
Coen, C.S., Stark, I., Tranquilli, P.: Certified complexity (CerCo). In: Foundational
and Practical Aspects of Resource Analysis. Lecture Notes in Computer Science,
vol. 8552. Springer (2014)

4. Atkey, R.: Amortised resource analysis with separation logic. Logical Methods in
Computer Science 7(2:17) (2011)

5. Blelloch, G.E., Greiner, J.: Parallelism in sequential functional languages. In: Func-
tional Programming Languages and Computer Architecture (FPCA) (1995)

http://doi.acm.org/10.1145/2636922
http://doi.acm.org/10.1145/2636922
http://dx.doi.org/10.1007/978-3-319-12466-7_1
http://bentnib.org/amortised-sep-logic-journal.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/fpca-pal.ps.gz

17

6. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams (2012), to appear in HOSC

7. Charguéraud, A.: Characteristic Formulae for Mechanized Program Verification.
Ph.D. thesis, Université Paris 7 (2010)

8. Charguéraud, A., Pottier, F.: Self-contained archive. http://gallium.inria.fr/
~fpottier/dev/uf/ (2015)

9. Chlipala, A.: The Bedrock structured programming system: combining generative
metaprogramming and Hoare logic in an extensible program verifier. In: Interna-
tional Conference on Functional Programming (ICFP) (2013)

10. Chlipala, A., Malecha, G., Morrisett, G., Shinnar, A., Wisnesky, R.: Effective in-
teractive proofs for higher-order imperative programs. In: International Conference
on Functional Programming (ICFP) (2009)

11. Conchon, S., Filliâtre, J.: A persistent union-find data structure. In: ACM Work-
shop on ML (2007)

12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms
(Third Edition). MIT Press (2009)

13. Danielsson, N.A.: Lightweight semiformal time complexity analysis for purely func-
tional data structures. In: Principles of Programming Languages (POPL) (2008)

14. Danner, N., Paykin, J., Royer, J.S.: A static cost analysis for a higher-order lan-
guage. In: Programming Languages Meets Program Verification (PLPV) (2013)

15. Galler, B.A., Fischer, M.J.: An improved equivalence algorithm. Communications
of the ACM 7(5) (1964)

16. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM Transactions on Programming Languages and Systems 34(3) (2012)

17. Hoffmann, J., Hofmann, M.: Amortized resource analysis with polynomial poten-
tial. In: European Symposium on Programming (ESOP). Lecture Notes in Com-
puter Science, vol. 6012. Springer (2010)

18. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. In: Principles of Programming Languages (POPL) (2003)

19. Hopcroft, J.E., Ullman, J.D.: Set merging algorithms. SIAM Journal on Computing
2(4) (1973)

20. Kaplan, H., Shafrir, N., Tarjan, R.E.: Union-find with deletions. In: Symposium
on Discrete Algorithms (SODA) (2002)

21. Kozen, D.C.: The design and analysis of algorithms. Texts and Monographs in
Computer Science, Springer (1992)

22. Le Métayer, D.: ACE: an automatic complexity evaluator. ACM Transactions on
Programming Languages and Systems 10(2) (1988)

23. Leino, K.R.M., Moskal, M.: VACID-0: Verification of ample correctness of invari-
ants of data-structures, edition 0 (2010), manuscript KRML 209

24. Nipkow, T.: Amortized complexity verified. In: Interactive Theorem Proving (2015)
25. Pilkiewicz, A., Pottier, F.: The essence of monotonic state. In: Types in Language

Design and Implementation (TLDI) (2011)
26. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:

Logic in Computer Science (LICS) (2002)
27. Tarjan, R.E.: Class notes: Disjoint set union (1999)
28. Tarjan, R.E., van Leeuwen, J.: Worst-case analysis of set union algorithms. Journal

of the ACM 31(2) (1984)
29. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of

the ACM 22(2) (1975)
30. Wegbreit, B.: Mechanical program analysis. Communications of the ACM 18(9)

(1975)

http://www.chargueraud.org/research/2013/cf/cf.pdf
http://www.chargueraud.org/research/2013/cf/cf.pdf
http://www.chargueraud.org/research/2010/thesis/thesis_final.pdf
http://gallium.inria.fr/~fpottier/dev/uf/
http://gallium.inria.fr/~fpottier/dev/uf/
http://adam.chlipala.net/papers/BedrockICFP13/BedrockICFP13.pdf
http://adam.chlipala.net/papers/BedrockICFP13/BedrockICFP13.pdf
http://ynot.cs.harvard.edu/papers/icfp09.pdf
http://ynot.cs.harvard.edu/papers/icfp09.pdf
https://www.lri.fr/~filliatr/puf/
http://mitpress.mit.edu/catalog/item/ default.asp?ttype=2&tid=11866
http://mitpress.mit.edu/catalog/item/ default.asp?ttype=2&tid=11866
http://www.cse.chalmers.se/~nad/publications/danielsson-popl2008.pdf
http://www.cse.chalmers.se/~nad/publications/danielsson-popl2008.pdf
http://cis.upenn.edu/~jpaykin/papers/danner_PLPV_2013.pdf
http://cis.upenn.edu/~jpaykin/papers/danner_PLPV_2013.pdf
http://doi.acm.org/10.1145/364099.364331
http://doi.acm.org/10.1145/2362389.2362393
http://www.cs.yale.edu/homes/hoffmann/papers/aapoly_conference.pdf
http://www.cs.yale.edu/homes/hoffmann/papers/aapoly_conference.pdf
http://www2.tcs.ifi.lmu.de/~jost/research/POPL_2003_Jost_Hofmann.pdf
http://www2.tcs.ifi.lmu.de/~jost/research/POPL_2003_Jost_Hofmann.pdf
http://dx.doi.org/10.1137/0202024
http://dl.acm.org/citation.cfm?id=545381.545384
http://www.cs.cornell.edu/~kozen/papers/daa.pdf
http://doi.acm.org/10.1145/42190.42347
http://research.microsoft.com/en-us/um/people/moskal/pdf/vacid0.pdf
http://research.microsoft.com/en-us/um/people/moskal/pdf/vacid0.pdf
http://www21.in.tum.de/~nipkow/pubs/itp15.pdf
http://gallium.inria.fr/~fpottier/publis/pilkiewicz-pottier-monotonicity.pdf
http://www.cs.cmu.edu/~jcr/seplogic.pdf
http://www.cs.princeton.edu/courses/archive/spr00/cs423/handout3.pdf
http://dx.doi.org/10.1145/62.2160
http://www.csd.uwo.ca/~eschost/Teaching/07-08/CS445a/p215-tarjan.pdf
http://doi.acm.org/10.1145/361002.361016

	Machine-Checked Verificationof the Correctness and Amortized Complexityof an Efficient Union-Find Implementation

