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Abstract
Graph traversal based on algorithms such as depth-first search and
breadth-first-search is a critical part of many applications. With
the advent of multicore computers and the ability to furnish them
with large shared random-access-memory, it has become possible
to process large-scale graphs in parallel. For such parallel algo-
rithms to be effective in general, they should be highly parallel,
exposing as much parallelism as possible and remain work-efficient
with respect to optimal serial graph-traversal algorithms. Since the
topology of graphs can vary dramatically, simultaneously achieving
these two properties is challenging.

In this paper, we present two highly parallel and work-efficient
algorithms for performing graph traversals on directed (and undi-
rected) graphs. Our first algorithm is a Parallel Breadth-First Search
(PBFS) that improves over the state of the art by exposing more par-
allelism without detrimentally effecting work efficiency. Our sec-
ond algorithm is a Parallel Depth-First Search (PDFS) algorithm
that improves over the state of the art by guaranteeing work ef-
ficiency while remaining highly parallel. Both of our algorithms
take advantage of our novel frontier data structure that supports
very efficiently several key operations on the set of outgoing edges
of visited vertices (the frontier), including push, iteration, split in
half, and merge. Also based on this data structure, we present tech-
niques for controlling granularity for improved practical efficiency.

We implement our algorithms and evaluate them carefully by
considering both synthetic and real-world graphs and by comparing
with the state of the art. The experiments show that, for the graphs
considered, our algorithms remain robust, outperforming the state
of the art except in a few cases, and dramatically outperforming
them in certain cases.

1. Introduction
With the increasing use of parallel and multicore computers, high-
performance parallel graph-search (or graph-traversal) algorithms
have become increasingly important to a variety of areas, such
as social networks [19, 21, 29], physical sciences [2], and even
parallel garbage collection [17]. To be effective in such a broad
range of application domains, parallel graph algorithms need to
be work-efficient, that is, comparing favorably to optimized serial
algorithms, not just in theory, but also in practice. Parallel graph
algorithms that are not work efficient often yield poor speedups,
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especially with small to moderate numbers of cores, are wasteful in
terms of resources such as hardware and energy, and might impose
high overheads when given inputs with high diameter, such as
long paths. Parallel graph algorithms must also be highly parallel,
exposing as much parallelism as feasibly available so that speedups
can be scaled to larger numbers of processors or cores. Last but not
least, matching the diversity of the areas and the many shapes of
topologies graph may possess, parallel graph algorithms should be
robust. Robust algorithms are work efficient and highly parallel, for
not just a specific class of graphs, but ideally for all graphs.

Despite having received a great deal of attention over many
years [6, 18, 20, 23–25], designing and implementing work-
efficient, highly parallel, and robust graph search algorithms re-
mains a major challenge. In this paper, we present algorithmic
and scheduling techniques to overcome this challenge. We then
use these techniques to design and implement parallel depth-first-
search (PDFS) and parallel breadth-first-search (PBFS) algorithms,
and evaluate their effectiveness.

BFS and DFS algorithms both can be viewed as operating on a
frontier data structure that contains the set of vertices to be visited
next. In the serial versions of these algorithms, the frontier data
structure can be implemented using off-the-shelf data structures
such as stacks and queues. The parallel versions, however, require
frontier data structures that can also be used to generate parallelism.

We present an edge-weighted frontier data structure for parallel
graph search. Our frontier data structure allows assigning to each
vertex in the frontier a weight and supports a weighted-split opera-
tion that partitions the frontier in a way to balance the total weight
between the two halves. By using the out-degrees of the vertices
as weight, we are able to generate work-balanced parallel tasks
and precisely control their granularity, both of which are key to
efficiency. We also present an asymptotically efficient implemen-
tation of our weighted-frontier data structure that remains compet-
itive with the highly-optimized container data structures used in
sequential graph-search algorithms.

To be work-efficient, essentially any parallel algorithm must be
implemented with care to avoid creating an excessive amount of
tiny parallel threads. This problem, also known as the granularity-
control problem, can sometimes be solved by serializing loops that
contain fewer iterations than some threshold value that is chosen to
amortize the cost of creating parallel tasks. Since, however, graphs
can be highly irregular, this approach does not work robustly in
parallel graph algorithms because the cost of scheduling (load-
balancing) parallel tasks can far outweigh their creation cost de-
pending on the topology of the graph, making it impossible to find
a threshold that works well for all graphs.

To overcome the granularity challenge, we present a technique
for creating parallel tasks on demand based on the load of the
system. The basic idea behind this approach is lazy splitting [14,
22, 27], which enables creating parallel tasks only when there is
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a demand for them. Lazy splitting has been applied in the context
graph-search algorithms before [27]. What makes our approach dif-
ferent is that, by combining lazy splitting with our weighted frontier
data structure, our algorithm is able to share, on demand, exactly
half of the total instantaneous work, potentially expressed across
nested parallel loops, by using out-degrees of vertices as weights.
As our experiments show, these techniques lead to significant in-
creases in performance compared to state-of-the-art algorithms.

Graph-search algorithms differ in the order they visit the ver-
tices and edges of a given graph. Depending on the application, we
may prefer one of the algorithm over another. For example, certain
algorithms such as Bulk-Synchronous Parallel algorithms [28] can
be naturally expressed on top of PBFS, which computes the dis-
tance of every vertex to a source vertex, processing the graph layer
by layer. Other algorithms such as those used by garbage collectors
are more naturally expressed as a PDFS [17], which enumerates the
set of vertices reachable from a source vertex. We note that PDFS
is not a faithful parallelization of the sequential DFS algorithm, be-
cause PDFS is not able to guarantee the same visit order as sequen-
tial DFS [24, 25]. Nevertheless, PDFS can be more work efficient
and can expose more useful parallelism [12]. Moreover, PDFS can
achieve better data locality in certain circumstances, making is cru-
cial in applications such as parallel garbage collection [17].

Recent work on PBFS and PDFS which target multicore plat-
forms has produced several major advances. Beamer et al. pro-
pose a direction-optimizing PBFS that accelerates certain graph
traversals by exploiting characteristics of low-diameter graphs [4].
There is a growing literature on hardware-specific techniques, such
as prefetching, compression, and lightweight synchronization, to
accelerate PBFS [5] and PDFS [8]. Such graph- and hardware-
specific techniques are largely orthogonal to ours in the sense that,
in many cases, the specific optimizations can be applied in combi-
nation with traditional PBFS and PDFS techniques, with the excep-
tion of load balancing techniques that abandon dynamic for static
load balancing. Of the recent work, however, we are aware of only
two studies which propose algorithmic, hardware-independent so-
lutions that are applicable to all graphs.

The first study, which is presented by Leiserson and Schardl,
approaches the problem of making a scalable, work efficient im-
plementation of PBFS [20]. Our work improves on their results
by contributing a PBFS that exposes, in a robust fashion, all ex-
ploitable parallelism in the input graph, without sacrificing work
efficiency. The second study, which is presented by Cong et al., uses
an adaptive batching technique to determine the size of the parallel
tasks to create based on the load of the system [9]. Relative to their
work, we contribute a PDFS algorithm that is 1) work efficient in
a robust fashion, 2) that eliminates the need for batching schemes,
and 3) that adds the ability to exploit edge-level parallelism.

We present a C++ implementation and evaluation of our tech-
niques. For our evaluation, we consider a range of real-world and
synthetic graphs testing difficult cases, and compare our algorithms
to the state of the art PBFS and PDFS algorithms. Our contributions
include the frontier data structure, an adaptation of lazy splitting for
parallel graph-search algorithms based on this structure, and the de-
sign, implementation, and evaluation of PBFS and PDFS.

2. Challenges and Ideas

We illustrate the challenges in developing robust, highly parallel,
and strongly work-efficient parallel graph-search algorithms and
the ideas behind our work by considering examples. The rest of the
paper makes these ideas precise by describing them in more detail
and illustrating their practical utility. For simplicity, we consider
small example graphs to illustrate the main points; it is not difficult
to generalize these example graphs to larger examples.
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Figure 1. The edge-balanced split operation on the frontier.

Challenge I: representing frontiers. Graph search algorithms
such as breadth-first search (BFS) and depth-first search (DFS)
maintain a set of vertices called frontier that contains the set of un-
visited vertices that are connected by an edge to an already visited
vertex. They then visit the vertices in the frontier a specific order.
The order itself is the primary difference between the breadth-first
and depth-first traversals. Apart from the work performed when vis-
iting a vertex, which can vary depending on the application, graph-
search algorithms spend most of their time operating on the frontier.
An efficient data structure for representing frontier is therefore key
to effective parallel graph traversal.

In sequential graph-search algorithms, it suffices for the frontier
to support two simple operations for inserting and deleting vertices
into and from the frontier. In parallel graph search, however, these
operations are not sufficiently powerful for creating parallelism. To
create parallelism, an additional operation that splits the frontier
into two halves suffices. Such a split operation can simply partition
the frontier based on the number of vertices, but ideally it should
also take into account the number of outgoing edges of each ver-
tex in the frontier, and perform edge-balanced split operations. An
edge-balanced split would partition the frontier into two parts such
that each part has approximately half of the edges. This is important
because, when processing a frontier, graph search algorithms per-
form work proportional to the number of out-edges of the vertices.
In addition to the ability to split, merging or combining frontiers
may also be necessary. Developing and implementing an efficient
frontier data structure that can support these operations while re-
maining highly competitive with a sequential frontier data structure
is a key challenge.

We address this challenge by presenting a frontier data structure
that remains competitive with its simpler sequential counterpart
while also supporting edge-balanced split, and merge operations.
To this end, we view the frontier as a set of outgoing edges (rather
than vertices) and use a sequence data structure that supports insert
and delete operations at the two ends of the sequence as well as
split operations efficiently. Our frontier data structure can be used
to implement both DFS and BFS (possibly also their variants).

To guarantee strong work efficiency, we need to take care not to
represent the edges explicitly, because this leads to disproportion-
ate overheads relative to serial frontier data structure. We therefore
rely on a hierarchical representation that represents the edges in the
frontier as a set of vertices they originate from and use as a weight
the out-degree of each vertex. In addition, we use two “carry” struc-
tures each consisting of a sequence of edges, which are implicitly
represented as a pair of pointers. Figure 1 illustrates an example.
The frontier F consists of the vertices a, b and implicitly their out-
edges. Performing a split operation divides the frontier into two
frontiers with equal number of outgoing edges (within a margin of
1), by dividing the edges of the vertices as necessary. In this exam-
ple, each part contains a single non-empty carry consisting of a half
of the edges of vertex b.
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Figure 2. A large graph serialized by parallel BFS.

Challenge II: granularity control for irregular graphs. When
programming essentially any parallel algorithm, it is critical to con-
trol the granularity of parallel threads so that we don’t create too
many parallel threads each with small amount of work. Controlling
granularity is relatively simple in principle: all we have to do is
to make sure that we avoid creating small threads. The challenge,
however, is to determine the threshold amount of work that de-
fines precisely what “small” means. If the threshold is too small,
the overheads of managing parallel threads can be too high. If it
is too high, then we may overly reduce parallelism and thus harm
robustness.

In highly regular parallel computations, e.g., dense matrix com-
putations, it can be relatively straightforward to determine the
threshold because there is plenty of parallelism available at large
granularity. Specifically, it often suffices to pick a threshold that
is large enough to amortize the cost of thread creation, which can
in turn be determined based on the architecture parameters. In ir-
regular parallel computations such as graph algorithms, however,
the structure of the computation can vary dramatically depending
on the graph, making it a challenge to select the right threshold.
This is because thread-scheduling costs, such as migration and
synchronization of non-local threads, can far outweigh those of
thread creation. Furthermore, increasing the threshold can amortize
such costs but can harm robustness: there exists graphs for which
increasing the thresholds would lead to significantly reduced par-
allelism. Thus it appears that we are doomed do choose between
significant overheads or suboptimal parallelism.

Fortunately, the lazy splitting technique [27] can allow us to
break this impasse. The basic idea behind lazy splitting is to create
parallelism only when there is a demand for it. Specifically, during
a parallel execution, each processor estimates the amount of paral-
lelism available (exactly how this estimation is performed depends
on the scheduler) and creates parallel threads only if there are idling
processors. Prior work shows this technique can be profitably ap-
plied to parallel loops, but can be challenging if the loops may be
nested [27], which is the case in algorithms such as BFS. Since,
however, our frontier data structure essentially allows us to flatten
the nested loops in BFS into a single, flat loop, we can (and do)
apply lazy splitting in PDFS and PBFS.
Challenge III: breadth-first search. The sequential BFS algo-
rithm stores in the frontier the set of vertices at a given distance
from the source. Initially, the frontier contains the source vertex.
At each iteration, the algorithm builds the next frontier by process-
ing the outgoing edges of vertices in the current frontier. One way
to parallelize BFS is to process the vertices in the current frontier in
parallel, while also processing the out-edges of each vertex in par-
allel. For this algorithm to be work-efficient, it is important to avoid
parallelizing loops (over vertices and edges) that contain fewer iter-
ations than a “threshold” whose exact value is determined based on
hardware so as to parallelize as much as possible, while avoiding
to create too many small parallel threads.

Unfortunately, the parallelization strategy of considering the
vertices and edges separately as described above is not robust
because it can lead to suboptimal parallelism and speedups by
serializing large computations. For example, our experiments show
that an algorithm that uses this strategy can suffer as much as 10x
decrease in speedups in certain graphs (Section 7). The problem is
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Figure 3. Example requiring aggressive work sharing.
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Figure 4. Problematic example for aggressive work sharing.

that if we sequentialize each loop when it contains smaller than the
threshold value of K iterations, we can end up parallelizing K2

iterations. (Choosing different threshold values might improve the
precision slightly but would not solve the problem.) As an example,
let’s assume a threshold of 4 and consider the graph shown in
Figure 2. In this graph, note that the frontier always contains 4 or
fewer vertices and each vertex has 4 or fewer edges. Thus, at any
and all levels, the loop over the vertices in the frontier and the edges
will be processed serially, leading to serial processing of the whole
graph, regardless of its size.

To overcome this challenge, we follow a different approach to
parallelizing BFS. Instead of parallelizing over the vertices and
edges separately, we use our edge-weighted frontier data structure
to view the frontier as a set of outgoing edges (rather than vertices)
and perform a parallel loop computation over the edges by using
a single threshold. This approach allows effectively exploiting the
parallelism available in the graph, significantly improve speedups
in some cases (Section 7). For example, with a threshold of 4, in the
graph shown in Figure 2, our algorithm creates 4 parallel threads
for each frontier, each of which consists of 4 edges of work.
Challenge IV: parallel depth-first search. In PDFS [24, 25],
each processor stores the vertices in the frontier in a stack data
structure. The algorithm starts by placing the source on the stack
of a processor. At each step, a processor removes the vertex on the
top of the stack and visits it by pushing all its out-neighbors onto
the stack. For load balancing, the scheduler transfers a subset on the
vertices in the stack of a processor to the stack of another processor
(typically, half of the vertices but the specifics vary depending on
the implementation).

Intuitively, we might think that if the frontier contains a small
number of vertices, it would not be worthwhile to share work with
other processors. This is not the case, however; in fact it can be
important to share even a single vertex. To see why, let’s consider
the graph shown in Figure 3. In parallel DFS, two processors can in
principle traverse the two chains in parallel, after sharing a single
vertex. To enable such a parallel execution, we must enable sharing
a single vertex, even when the frontier is very small. Unfortunately,
such aggressive sharing can lead to suboptimal performance. For
example, consider executing on two processors the algorithm in
the graph shown in Figure 4 with the aggressive sharing policy. In
such an execution, it is possible for the vertices b, d, f, h, j, l to be
shared with the other processor. Since such sharing actions involve
communication between processors, they can significantly increase
the run time by effectively shuttling the main spine of the graph
between the two processors. In fact, in this and in similar examples,
parallel run time can far exceed that of the sequential.

We thus have a dilemma. On the one hand, we need to share
possibly small amounts of work (even as little as a single vertex).
On the other hand, we need to take care that such aggressive
sharing does not lead to prohibitive overheads. When the shape
of the graph is known in advance, it might be possible to devise
heuristics for controlling sharing. In this paper, we are interested
in general-purpose techniques that work well for all inputs. We
therefore solve this dilemma by using amortization technique: each
processor shares work only if either (1) the work load shared

3 2014/12/1



class frontier { // interface
frontier ()
int nb_edges ()
void push_edges_of(int vertex)
void split(frontier& other)
// only used by parallel BFS
void merge(frontier& other)
// only used by eager parallel BFS
void iter(body_type body)
// only used by parallel DFS and lazy BFS
int iter_pop_nb(int nb , body_type body)

}
where type body_type = void body(int src , int dst)

Figure 5. Interface for the frontier data structure.

exceeds some threshold, or (2) the processor has already performed
some predetermined amount of work locally since the last time it
shared work.

3. Edge-Weighted Frontiers
In this section, we present our frontier data structure, which can
support merge operations and edge-weighted splits efficiently, both
in theory and in practice.

3.1 The Interface
Figure 5 shows the interface for our frontier data structure. The
operation frontier constructs an empty frontier; the operation
nb_edges returns the number of edges in the frontier; the operation
push_edges_of pushes all the out-edges of the given vertex into
the frontier; the operation split carves out half of the edges
into an independent frontier data structure; the operation merge
transfers all the edges of a frontier into another one. We assume that
the operation merge is never called after a split operation. Our
parallel graph algorithms don’t need to interleave these operations.

In addition, the data structure supports two forms of iteration.
The operation iter iterates over all the edges in the frontier; the
operation iter_pop_nb iterates over nb edges (or fewer, depend-
ing on the availability), and removes each edge considered from the
frontier. Note that iter_pop_nb returns the number of edges that
were actually processed. Remark: the data structure maintains a
stack order on the edges. Such ordering is not necessary in BFS and
is probably also not necessary in DFS because (non-deterministic)
load-balancing can alter traversal order.

We next describe how to implement this data structure effi-
ciently, such that push_edges_of and iteration operations are
nearly as fast as an optimized sequential frontier data structure,
and such that split and merge run in logarithmic time. To this
end, we first summarize a recently proposed weighted-sequence
data structure and then describe our implementation of the frontier
data structure based on the weighted sequence data structure.

3.2 Splittable and Catenable Weighted Sequences
A splittable and catenable weighted sequence data structure sup-
ports push and pop operations at the two ends of the sequence,
while also allowing us to put a weight on each item, splitting se-
quences at a specified weight, and concatenating sequences. In ad-
dition, the data structure allows iterating over all elements.

Recent work [3] gives a asymptotically efficient and practically
fast, catenable and splittable weighted sequence data structure by
using a chunking and a bootstrapping technique that allows rep-
resenting the sequence data structure as a shallow tree. The data
structure, called bootstrapped chunked sequence, stores a sequence
of weighted items. Perhaps the most interesting operation for our
purposes is the operation split_at, which takes a weight w and a
sequence S and divides S into three parts: S1, {x}, and S2, in such
a way that the total weight of S1 is less than w and that the weight
of S1 ∪ {x} is greater than or equal to w.

Bootstrapped chunked sequences ensure practical efficiency by
storing items in fixed-capacity chunks (represented as arrays). A
chunk size parameter, called K, controls the size of the chunks;
typical values for K on modern machines include 256 or 512.
For a given K, the concatenation and split operations have a
cost bounded by O(K ∗ logK/2 n). This cost is in practice close
to O(log2 n) operations on binary trees, because logK/2 n is much
smaller than log2 n, and because the constant factor associated with
the multiplicative K is very small (chunks manipulation relies on
highly-optimized memcpy operations).

In general, the worst-case asymptotic space usage of chunked
sequences is (2 + O(1)

K
) ∗ n. However, when concatenation is not

used, or when the order of the items in the sequence is not relevant
(i.e., for a bag semantics), the bound can be improved in such a way
as to guarantee asymptotic space usage of (1+ O(1)

K
)∗n, which, for

practical values of K, is very close to optimal. In such situations,
concatenation and split only cost O(K ∗ logK n).

3.3 The Implementation
We implement splittable, catenable edge-weighted frontiers on top
of bootstrapped chunked sequence. The basic idea is to represent a
frontier as a triple consisting of vertex-sequence and two ranges of
edges. A vertex sequence is represented as a bootstrapped chunked
sequence of vertices, where each vertex has a weight that matches
its out-degree. A range of edges corresponds to a contiguous subset
(subsequence) of the outgoing edges of a given vertex. A range is
represented as a vertex and a pair of indices marking the start and
the stop of the range.

To implement the frontier operation push_edges_of, we push
the vertex given to the vertex-sequence. The operation merge is
assumed to only be called on frontiers for which the two ranges are
empty —e.g., on frontiers constructed using only push_edges_of
and merge. We implement merge by concatenating the vertex-
sequences of the frontiers.

The operation split transfers half—the smaller half in case
the cardinality is not even— of the edges to another frontier data
structure, which is assumed to be initially empty. If the first range
contains at least half of the edges, we simply split this range
and transfer a subrange to the other frontier. Else, if the second
range contains at least half of the edges, we tranfer the appropriate
subrange from it. Otherwise, we need to split the sequence of
vertices. First, we transfer all of the second range to the other
frontier. Then, we split the sequence of vertices in three parts:
vertices that remains in the bag, vertices that go into the other bag,
and one vertex which contains the median edge. We consider the
full range of edges associated with this vertex and split this range
at the appropriate position, storing the left subrange into the second
range of the current frontier and storing the right subrange to the
first range of the other frontier.

The operation iter iterates over the edges in the first range;
then, for each vertex stored in the vertex sequence, it iterates over
the edges of this vertex; finally, it iterates over the edges in the sec-
ond range. The function iter_pop_nb follows a similar structure,
but returns after processing nb edges, and pops the edges from the
frontier as it processes them. The challenge in implementing this
function is that efficiency is critical in the loop over the edges—we
are careful to not perform any nontrivial additional operations com-
pared with the corresponding loop in the sequential DFS algorithm.

3.4 Efficiency in Theory and in Practice
Based on the known bounds of the weighted-sequence data struc-
ture, and based on the fact that operations on ranges can be per-
formed in constant time, it is straightforward to prove the following
theorem, which bounds the asymptotic cost of the operations on the
frontiers.
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Theorem 3.1 (Efficiency of the frontier data structure) Consider
a chunk size parameter K for the underlying weighted sequence
data structure. Assume that merge is allowed to reorder edges out-
going from distinct vertices. Recall that merge is assumed to never
be called after a split.

• nb_edges is O(1).
• push_edges_of is O(1).
• merge and split are O(K ∗ logK n).
• iter and iter_pop_nb costs O(1) per edge enumerated, in

addition of the cost of actually processing the items.
• The asymptotic space usage is (1+ O(1)

K
)∗n, close to optimal.1

In addition to good asymptotic bounds, the frontier data struc-
ture accepts a practically fast implementation by using the existing
fast implementation for the weighted sequences [3] and carefully
minimizing the interaction between the two ranges. In particular,
we were careful in implementing the function iter_pop_nb to not
introduce conditionals in the critical loops. Overall, the constant
factors of the function push_edges_of and with the iterators are
not too far from those of the push and iteration operations on plain
arrays. These small constant factors are the key to achieving strong
work efficiency.

4. Preliminaries
4.1 Scheduling interface
For plain fork-join programs, we do not need to make particular
assumptions about the scheduler. We only need to assume the
existence of a function called fork2, which takes two continuations
as arguments, and only returns once the two continuations have
executed —possibly in parallel.

void fork2(thread_type t1, thread_type t2)
where thread_type = void f(void)

For parallel programs involving lazy splitting, however, we need
a richer interface to the scheduler. This interface appears below, and
is explained next.

void acquire(frontier& fr)
void has_incoming_query ()
void reply(split_type split)

where split_type = void split(frontier& other_fr)

A processor that runs out of work calls the function acquire in
order to make queries to busy processors. This function may com-
municate the address of the frontier of the idle processor, so that the
busy processor may directly transfer data into this frontier, without
performing unecessary copy operations. Note that, while calling the
acquire function, idle processors are blocking incoming queries
from other idle processors.

Busy processors need to poll for serving queries. More pre-
cisely, they are responsible for periodically calling the function
has_incoming_query, in order to check whether they received
a query from an idle processor. The processor may then call the
function reply to share some work (possibly none). The function
reply is presented using a callback argument, which allows the
busy processor to obtain the address of the idle processor’s frontier
data structure, so as to be able to migrate items into it.

Note that it is possible for the busy processor to refuse to share
its work. In any case, at the end of the call to the function reply,

1 If we disallow merge to reorder the edges, then the bound for space usage
is (2+ O(1)

K
)∗n, and the cost of merge and split is O(K ∗ logK/2 n).

However, since only our parallel BFS algorithm uses merge, and since for
this algorithm the order of processing of the edges is unspecified anyway,
we allow reordering to take advantage of the better bounds shown above.

the idle processor that made the query receives a notification that
its query was processed.

Remark: we assume in this paper that an idle processor queries
at most one other processor at any given time, and that busy proces-
sors can be delivered at most one query at a time. More complex
communication schemes could be used, but it is unclear whether
they would improve the performance on current multicores.

4.2 Graph representation and marking of vertices
For both BFS and DFS traversals, we assume the graph to be
represented by an adjacency list, whose signature is as follows.

bag <int > neighbours[nb_vertices]

We also rely on an array of booleans, which we call visited, in
order to mark the nodes that have been visited. Note that, for BFS,
we may actually want to store the distance at which the vertices are
visited, but we drop this information here as it is orthogonal to the
problem of parallelizing the algorithm.

bool visited[nb_vertices] = { false , false , ... }

When considering an edge, the traversal algorithms check
whether the target vertex has already been visited or not. If not,
the vertex is marked as visited. For sequential algorithms, we use a
function attempt_first_visit to perform this action. The func-
tion, shown below, returns a boolean indicating whether the node
is being visited for the first time.

// non atomic version
bool attempt_first_visit(int target)

if visited[target]
return false

else
visited[target] <- true
return true

For parallel algorithms, however, we need to implement the
function differently in order to prevent data races, which may
occur when two processors discover a given vertex at the same
time. Indeed, we do not want both processors to add a same
vertex to their frontiers. To prevent such races, we rely on the
atomic compare-and-swap (CAS) operation. This operation applies
to a memory cell and, atomically, reads the content, compares it
with a given value, and updates it with a that given value it the
comparison succeeds. The compare-and-swap operation returns a
boolean indicating whether it succeeded. The atomic version of
attempt_first_visit is therefore implemented as follows.

// atomic version
bool attempt_first_visit(int target)

return cas(& visited[target], false , true)

Remark: when traversing a graph in a practical application,
we may want to perform some processing on each vertex as the
moment it is discovered for the first time; Such processing may me
performed when the function attempt_first_visit returns true.

Observe that, during a PBFS or PDFS traversal, processors are
only interacting with each other in one of two ways: when they
atomically read or write in the array marking visited vertices and
when they transfer pieces of frontier from a processor to another in
order to perform load balancing.

5. Parallel breadth first traversal
5.1 From sequential to parallel BFS
PBFS follows the same structure as the traditional two-stack ver-
sion of sequential BFS, which we recall next. The algorithm makes
use of two bags: one to represent the previous frontier (holding ver-
tices at distance d) and one to represent the next frontier (holding

5 2014/12/1



vertices at distance d + 1). Until the current frontier is empty, the
algorithm iterates over the edges associated with the vertices of the
current frontier in order to potentially discover new vertices and
push them into the next frontier. This processing is performed us-
ing an auxiliary function called step.

void bfs()
bag <int > cur = bag()
bag <int > next = bag()
cur.push(source_vertex)
while not cur.empty()

step(cur , next)
cur.swap(next)

For sequential BFS, the function step is implemented as the
function step_seq, which simply uses two nested for loops to
process all the outgoing edges, and makes calls to the function
attempt_first_visit in order to visit the target of the edges.
Note that the bags are here passed by reference (symbol &).

void step_seq(bag <int >& cur , bag <int >& next)
foreach vertex in cur

foreach target in neighbours[vertex]
if attempt_first_visit(target)

next.push(target)

To derive a parallel version of BFS, let us begin with the par-
allelizion of the loop over the vertices of the current frontier. To
that end, we implement the function step using a recursive func-
tion called step_par. This function, whose code is shown below,
applies the divide-and-conquer approach to recursively split the
current frontier in halves until it becomes small enough to be pro-
cessed sequentially. The end of recursion is controlled by a param-
eter called vertices_cutoff. Below this cutoff, the vertices are
processed sequentially. Above the cutoff, two subtasks are gener-
ated, one for each half of the frontier. These two tasks are forked as
recursive function calls, which may potentially run in parallel.

The division of the frontier in two halves is implemented using
a method called split, which we assume provided by the bag data
structure. Those two tasks contribute to the discovery of vertices,
stored in frontiers called next and next2, which, after the join, are
merged using a merge operation on bags.

void step_par(bag <int >& cur , bag <int >& next)
if cur.size() <= vertices_cutoff

step_seq(cur , next)
else

bag <int > cur2 = empty
bag <int > next2 = empty
cur.carve_half(cur2)
fork2((fun _ → step_par(cur ,next)),

(fun _ → step_par(cur2 ,next2 )))
next.merge(next2)

It is key to observe that the setting of vertices_cutoff is crit-
ical to the efficiency of the algorithm. On the one hand, if the value
is too small, then the overhead of the operations carve_half,
fork2, and merge may be significant relative to the cost of
process_vertex_seq (which may process as little as zero or
one edge), and the overall program will suffer from poor constant
factors. On the other hand, if the value of vertices_cutoff is too
large, then the algorithm would process in sequence large numbers
of vertices, potentially reducing the parallelism exposed.

The above algorithms exposes parallelism at the level of ver-
tices, but not at the level of outgoing edges of each vertex. In order
to expose as much parallelism as possible for graphs in which the
arity of the vertices is not bounded by a small constant factor, we
need to also parallelize the processing of the edges. As we have ex-
plained in the challenges section, we can parallelize the loop on the
edges using a divide-and-conquer recursive function, just like we
did for the vertices. However, as we argued, being able to exploit

parallelism both at the vertex and at the edge level independently in
general does not allow exploiting all the parallelism available. We
next present our solution.

5.2 Parallelization at the edge level, using the frontier
The key idea is to split the frontier according to the number of
edges, and not just according to the number of vertices. This split-
ting is made possible by the introduction of our frontier data struc-
ture. (Recall the interface given in Figure 5.)

Using the frontier structure, we implement PBFS as shown
below. The main loop is essentially the same as before, except
that it manipulates two frontiers (prev and next) as opposed to
manipulating a bag of vertex identifiers. The sequential process-
ing of a piece of frontier is also the same as before, up to this
change to the frontier data structure. The divide-and-conquer func-
tion step_frontier is used to parallel process the frontier. The
end of the recursion is controlled by a cutoff parameter, which is
expressed in terms of a number of edges.

void bfs()
frontier cur = frontier ()
frontier next = frontier ()
cur.push_edges_of(source_vertex)
while not cur.empty()

step_frontier(cur , next)
cur.swap(next)

void step_frontier_seq(frontier& cur , frontier& next)
cur.iter(fun (int vertex , int target) →

if attempt_first_visit_atomic(target)
next.push_edges_of(target)

void step_frontier(frontier& cur , frontier& next)
if cur.nb_edges () <= cutoff

step_frontier_seq(cur , next)
else

frontier cur2 = frontier ()
frontier next2 = frontier ()
cur.split(cur2)
fork2((fun _ → step_frontier(cur ,next)),

(fun _ → step_frontier(cur2 ,next2 )))
next.merge(next2)

Overall the code is basically as simple as that of the previous
code that only exploits parallelism at the vertex level, except that
the new code is able to exploit parallelism that is available either at
the vertex level, or at the edge level, or only across the two levels.

5.3 Lazy splitting based on number of edges
As argued in challenges section, there is no value for the cutoff that
will work well for all graphs: either the cutoff is too small, and the
algorithm suffers from large overheads; or the cutoff is too large,
and the algorithm is not able to exploit all the parallelism available.
Lazy splitting enables us to use a small value of the cutoff, enabling
parallelization, without inducing large overheads when the graph
exposes a lot of parallelism. Our lazy-splitting PBFS only forks
tasks when needed, that is, when an idle processor queries a busy
processor to obtain work. The function has_incoming_query is
used to detect queries; a follow-up call to fork2 leads to the
creation of two threads, the second of which is immediately sent
by the scheduler in response to the query.

We implement the lazy-splitting scheme by replacing the func-
tion step_frontierwith a new function, step_frontier_lazy,
whose code appears below. In addition to the cutoff parameter,
which decides the minimum amount of work that is allowed to be
split, the code now also involves a polling_cutoff parameter
which controls how frequently polling is performed. In practice,
processing a few dozen edges is sufficient for amortizing the cost
of polling on a memory cell and possibly rejecting a query.

void step_frontier_lazy(frontier& cur ,frontier& next)
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while not cur.empty()
if has_incoming_query ()

if cur.nb_edges () <= cutoff
reply(fun _ → return) // reject the query

else
frontier cur2 = frontier ()
frontier next2 = frontier ()
cur.split(cur2)
fork2((fun _ → step_frontier_lazy(cur ,next)),

(fun _ → step_frontier_lazy(cur2 ,next2 )))
next.merge(next2)
return

cur.iter_pop_nb(polling_cutoff , fun (v,target) →
if attempt_first_visit(target)

next.push_edges_of(target ))

Observe that if a (busy) processor owns more than cutoff+
polling_cutoff edges, and if it receives a query while processing
the first polling_cutoff edges, then the processor will share its
work. Therefore, it is the case that when (sufficient) parallelism
is present in the graph, this parallelism will be exposed by the
algorithm after a fairly short period of time.

As an optimization, we can modify the main loop of the BFS
algorithm in order to reduce overheads in the case where the fron-
tier at a given distance contains no more than cutoff edges. In this
case, there is no need to poll for queries, because at most one pro-
cessor has work to do. Note that, in this case, the processor can use
non-atomic operation to mark the vertices. (This later optimization
actually also applies to the previous algorithms.)

6. Parallel depth first traversal
6.1 From sequential to parallel DFS
Consider the following sequential algorithm for visiting all the
vertices reachable from a source vertex (in an unspecified order).
Maintain a frontier, storing the set of vertices whose edges need
to be processed, and repeat the following action until the frontier
becomes empty: pop a vertex from the frontier and visit all its
neighbours, pushing previously-unvisited vertices into the frontier.

void dfs()
bag <int > fr = bag()
fr.push(source_vertex)
while not fr.empty()

int vertex = fr.pop()
foreach target in neighbours[vertex]

if attempt_first_visit(target)
fr.push(target)

This traversal can be parallelized, by having each processor
work on its own frontier, and having work being transfered to pro-
cessors which have emptied their frontier completely. Eventually,
the DFS traversal needs to terminate when the frontiers associated
with each of the processors all become empty. Various techniques
can be used to detect termination, for example by having one pro-
cessor being responsible, when it has no work left, to check whether
all the other processors are idle.

6.2 Work efficient parallel DFS
As argued for in the challenges section, trying to share the work too
eagerly can be counter-productive. At the same time, withholding
the work for too long may prevent opportunities to exploit paral-
lelism. Our PDFS is designed in such a way that the communication
overheads are always amortized over a sufficiently-large amount of
work. This work may either be the work being transfered, or it may
be work that was performed locally immediately prior to the trans-
fer.

We show below the code being executed by each of the proces-
sors taking part in a run of our PDFS. Until the traversal is com-
plete, as tested by calling the function traversal_completed,
each processor is either out of work, in which case it calls acquire

to try and acquire work, or it has an nonempty frontier, in which
case it is able to process edges. As a processor visits the endpoint of
an edge, it may discover new vertices. For each vertex, the proces-
sor pushes the out-going edges into the same frontier data structure
from which it is consuming its edges.

A busy processor checks, in between every polling_cutoff
edges, whether it received an incoming query from an idle proces-
sor. If so, it shares half of the edges in its frontier, at the following
condition: either the frontier contains more than cutoff items, or
the processor has locally processed more than cutoff edges since
the last work transfer. Only when both of those contitions are met
is an edge sent. In the code below, the variable nb is used to keep
track of the number of edges processed since the last transfer.

void parallel_dfs_thread ()
frontier fr = frontier ()
int nb = 0
while not traversal_completed ()

if fr.empty ()
acquire(fr)
nb = 0

else
if has_incoming_query ()

if cur.nb_edges () > cutoff || nb > cutoff
reply(fun (frontier& other_fr) →

fr.split(other_fr ))
nb = 0

else
reply(fun _ → return) // reject the query

nb +=
fr.iter_pop_nb(polling_cutoff , fun(v,target) →

if attempt_first_visit(target)
fr.push(target ))

Like our PBFS, our PDFS is highly parallel: if a processor
has work and receives queries, then it will soon afterwards share
the work that it has. Here, however, work efficiency is trickier
to achieve: the migration cost cannot always be amortized on the
work being sent, sometimes the cost needs to be amortized on work
performed locally in between transfers.

7. Experiments
Remark: due to lack of space, we were not able to include details
about the implementation of termination detection, and benchmark-
ing results for single-processor runs of parallel programs. We have
made the technical appendix that contains this information avail-
able to the program chair.

7.1 Implementation of the scheduler

We implemented our algorithms in C++, using a lightweight multi-
threading library that we have developed for programming parallel
algorithms on multicore platforms. At the start time of the program,
our implementation creates one POSIX thread (i.e., pthread) for
each core available. Work items that are created by our graph al-
gorithms are scheduled on and balanced among the pthreads using
our implementation of the scheduling primitives described in Sec-
tion 4.1. We chose against using an off-the-shelf system, such as
Cilk Plus [15] or TBB [16], because we could find no obvious way
to add support for our scheduling primitives. In applicable cases,
such as the Leiserson and Schardl’s BFS algorithm, we compared
our library implementation against our reference Cilk Plus imple-
mentation to confirm that both implementations deliver comparable
performance on fork-join programs.

For fork-join algorithms, we follow the standard deque dis-
cipline of work stealing: processors push and pop threads from
the bottom of their deque, and share the threads from the top of
their deque. For our lazy splitting algorithms, load balancing relies
on the operations acquire, has_incoming_query and reply,
which we introduced in Section 4.1. Internally, these operations
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use a lightweight protocol based on compare-and-swap (CAS) op-
erations to register queries. Polling on queries involves only one
non-atomic read operation, and rejecting one query involves only
a non-atomic write operation. Following the work-stealing scheme,
idle processors make queries to non-idle targets selected at random.

7.2 Implementation of the algorithms
We ported to our library all the algorithms that we compare against,
namely Leiserson and Schardl’s PBFS and Cong et al’s PDFS. Our
porting effort involved rewriting the algorithms to the specifications
of the original publications, with the exception of Leiserson and
Schardl’s bag data structure, which we reused directly. We also
considered a port of the non-deterministic version of the PBFS
algorithm from PBBS [6]. We do not include the corresponding
results because this algorithm performed either similar to or worse
than Leiserson and Schardl’s code. Note that Cong et al’s algorithm
required significant care on our part to achieve high performance,
as their paper gives fewer details. We focused on three crucial
features: batches of vertices are represented by fast fixed-capacity
stacks storing 32 vertex ids each (other capacities lead to worse
performance); load balancing is implemented by our port of the
state-of-the-art concurrent deque structure proposed by Chase and
Lev [7]; finally, termination detection is mostly the same as the
technique used by our PDFS, except for one subtle complication
relating to work stealing with concurrent deques.2

Regarding the sequential baselines, we implemented three ver-
sions of BFS (using fixed-size FIFO queue, resizeable array, and
pair of non-resizeable arrays) and a two versions of DFS (using
fixed-size stack and resizeable array). We kept the version that was
performing best overall: pair of non-resizable arrays for BFS and
fixed-size stack for DFS. However, there was no single algorithm
that was delivering the best results on all graphs. In particular, there
are graphs for which the single-processor execution of the PBFS
algorithms runs faster than the baseline (by up to 35%). In all the
graphs that we considered, Leiserson and Schardl’s algorithm and
ours PBFS were either both faster than the baseline, or both slower
than the baseline, usually in comparable proportion.

We compared several possible choices for the cutoff values of
each of the algorithms, and selected the cutoffs that were perform-
ing best overall. For Leiserson and Schardl’s algorithm, we used
cutoff 512 (both for vertices and for the edges). Larger cutoffs
only improve performance by a few percent, but severely degrade
speedups on graphs with limited parallelism. Smaller cutoffs lead
to noticeable overheads on all graphs. For our algorithms, which
rely on lazy binary splitting, we are able to use a smaller cutoff
value, namely 128, as we do not have to pay for thread creation
overheads at high load.

7.3 Graphs used in the benchmarks
We considered the following large publicly available graphs that
come from data that was sampled from the real world. The Twit-
ter, Friendster, and Livejournal describe social networks [1, 19].
Remark: following Shun and Blelloch [26], we symmetrize and re-
move duplicates from the Twitter graph. The Wikipedia (as of 6
February 2007) and cage15 graphs are taken from the University of
Florida sparse-matrix collection [11].

We considered a set of synthetic graphs that we selected to range
from moderately to highly parallelizeable. The square- and cube-
grid graphs are directed grids in two- and three-dimensional space
in which each vertex has 2 and 3 edges, respectively. The random-
arity-x graphs are uniform random graphs, with average arity x on
every vertex. The complete tree is a perfect binary tree.

We chose several worst-case graphs to test the robustness of our
graph algorithms. The chain graph is a single, long path and the

2 For details, see the end of Chapter 17.6 of Herlihy and Shavit’s book [13].

parallel-chain-x graphs are different instantiations of the pattern
shown in Figure 3, where x denotes the number of independent
paths. For PBFS algorithms, parallel chain graphs stress the ability
to exploit limited parallelism. For PDFS, they stress the ability to
handle large amounts of sequential dependencies.

The trees-arity-x-y graphs are built upon trees of depth two in
which the first and second level have out degree x and y, respec-
tively. These trees are chained in the following sense: one random
leaf of one tree becomes the root of the next tree. These graphs
test the ability of the algorithms to exploit parallelism in the lists
of neighbors of the vertices. The phases-x-arity-y graphs are in-
stances of the structure shown in Figure 2. These graphs generalize
the idea of the grids, thus allowing us to have an even smaller num-
ber of frontiers (e.g., 50, or 10), and control the arity of the vertices
(e.g., 5, or 2). In the graph, phases-10-arity-2-but-one, each of the
10 frontiers contains 3.3 million vertices and each vertex has arity
2, except one particular vertex, which is linked to all the vertices in
the next frontier (and thus has arity 3.3 million). The goal of these
graphs is to stress the need for splitting the frontier according to the
number of edges and not just the number of vertices.

The graphs we consider are laid out in memory in the adjacency-
list format suggested by Cormen et al [10]. We arranged that our
format use a contiguous layout so that the graph contents can be
read quickly from disk using a single disk-read operation. In the
execution time that we report, we do not include the time taken
for loading the file from disk into the memory. However, we do
include the time taken for the (possibly-parallel) initialization of
the visited array. Note that this initialization time is typically
relatively small in front of the traversal time.

The different algorithms that we consider may traverse the ver-
tices in different order, depending in particular on the scheduling
decisions. For graphs with a regular shape, such as a grid graph,
if the adjacent vertices are laid out contiguously in memory, then
the order of visit can have a tremendous impact on the execution
time (easily more than a factor 10), due to cache effects. In order
to compare the algorithms in a fair way, we need to avoid such
massive cache effects. To that end, we shuffled the vertices of all
the graphs that we generated, so that they get assigned random la-
bels. This shuffling limits the divergence between the algorithms in
terms of the number of cache misses.

7.4 Experimental setup

We compiled all programs with GCC version 4.9.2, using optimiza-
tions -O2 -march=native. For the measurements, we considered
an Ubuntu Linux machine with kernel v3.2.0-58-generic. For scal-
able heap allocation, we used tcmalloc from gperftools version
2.2.1. Our test machine hosts 4 Intel E7-4870 chips running at
2.4GHz and has 1Tb of RAM. Each chip has 10 cores and shares a
30Mb L3 cache. Each of the 40 cores has 256Kb of L2 cache and
32Kb of L1 cache. Each core hosts 2 SMT threads, giving a total of
80 hardware threads but, to avoid complications with hyperthread-
ing, we did not use more than 40 threads.

7.5 Benchmark results

Figure 6 reports benchmark results. For parallel runs, the values are
averaged over 30 runs. In a few cases, the noise was as high as 10%,
but it was mostly below 5%. Sequential runs showed negligible
variance. We first comment on the baseline and the maximum
speedups achieved, then focus on the PBFS results, on the PDFS
results, and end on the comparison between PBFS and PDFS.

First, observe that the execution time of the sequential programs
are not proportional to the number of edges involved in the graph.
In particular, graphs involving fewer vertices are usually processed
faster. The reason is that when the visited array is smaller, ac-
cesses into it are more likely to result in cache hits than cache
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graph vertices edges seq LS ours runtime seq Cong. our runtime our PDFS
BFS PBFS PBFS diff DFS PDFS PDFS diff. vs PBFS

friendster 125m 1806m 74.6s 19.9x 23.4x -15% 58.4s 25.2x 27.2x -7% 1.5x
twitter 62m 2405m 76.4s 19.9x 24.1x -17% 64.5s 25.0x 27.9x -10% 1.4x
livejournal 4.8m 69m 1.5s 16.4x 18.7x -12% 1.4s 3.2x 21.7x -85% 1.2x
wikipedia-2007 3.6m 45m 1.4s 19.7x 22.2x -11% 0.9s 2.9x 18.2x -84% 1.3x
cage15 5.2m 99m 1.5s 12.1x 12.4x -3% 1.6s 3.3x 20.4x -84% 1.6x
random-arity-3 33m 100m 13.7s 19.6x 27.3x -28% 13.4s 19.0x 28.3x -33% 1.1x
random-arity-8 12m 100m 7.5s 23.9x 26.9x -11% 6.6s 12.0x 26.3x -55% 1.1x
random-arity-100 1.0m 100m 1.1s 17.3x 19.3x -10% 1.1s 3.3x 22.5x -85% 1.2x
squared-grid 50m 100m 27.5s 5.1x 5.8x -12% 18.2s 25.9x 29.5x -12% 7.7x
cube 33m 99m 20.3s 20.1x 21.4x -6% 12.7s 27.1x 28.1x -4% 2.1x
chain 50m 50m 24.5s 1.0x 1.0x -0% 22.3s 0.6x 1.0x -44% 1.1x
parallel-chains-8 50m 50m 23.4s 1.4x 1.4x -3% 22.6s 2.3x 8.0x -71% 5.7x
parallel-chains-20 50m 50m 23.3s 1.5x 1.5x -3% 22.7s 3.9x 19.2x -80% 13.1x
parallel-chains-100 50m 50m 23.7s 1.4x 1.5x -12% 22.9s 8.9x 31.0x -71% 21.0x
parallel-chains-524k 50m 50m 34.1s 36.4x 33.4x +9% 22.3s 22.7x 35.6x -36% 1.6x
phases-50-arity-5 40m 197m 29.2s 39.8x 37.9x +5% 18.9s 28.8x 34.1x -15% 1.4x
phases-10-arity-2-but-one 33m 93m 16.8s 28.1x 36.3x -23% 16.5s 6.7x 39.2x -83% 1.1x
trees-arity-524k 200m 200m 17.4s 13.7x 13.4x +3% 17.5s 0.7x 18.0x -96% 1.3x
complete-binary-tree 134m 134m 54.7s 37.8x 37.0x +2% 41.5s 35.4x 22.2x +59% 0.8x
trees-arity-10k-10k 100m 100m 7.6s 12.1x 13.8x -12% 7.9s 11.8x 18.6x -37% 1.3x
trees-arity-512-512 100m 100m 7.8s 0.9x 10.5x -91% 8.2s 8.4x 19.1x -56% 1.7x
trees-arity-512-1024 100m 100m 7.7s 1.3x 11.7x -89% 8.1s 8.5x 18.9x -55% 1.5x

Figure 6. Benchmark results. Number of vertices and edges are expressed in millions. Sequential run times are expressed in seconds; smaller
is better. PBFS and DFS speedups are relative to the BFS and DFS sequential code, respectively; higher is better. The percentage figures are
describing variations in execution time; large negative values are better.

misses. Second, observe that the sequential BFS and sequential
DFS baseline are quite close. The few differences (in particular on
grid-style graphs) can be explained by different access patterns to
the visited array, which may affect the number of cache misses.

Now, looking at the speedup results, we observe that, for the vast
majority of the graphs, speedups do not exceed 30x. Several factors
contribute to these sublinear speedups. First, the parallel algorithms
typically perform a little bit more work than the baseline algorithm.
For example, PBFS algorithms (both Leiserson and Schardl’s and
ours), when run with a single processor, can be 20% to 40% slower
than the sequential baseline. Second, graph traversals are memory
bound, and the memory systems of multicore machines are the
limiting factor. Studies by Leiserson and Schardl [20] and Shun
and Blelloch [26] report similar speedups on similar machines
and, moreover, the Leiserson and Schardl study offers evidence
suggesting that the sublinear speedups are limited by hardware.

For graphs with fewer than 5 million vertices, which are typi-
cally processed in fewer than 1.5 seconds, speedups appear to be
capped at 20x. Essentially, there is not enough work to feed 40
cores. Other graphs, such as the square grid, exhibit relatively poor
speedups in PBFS (about 5x), due to the fact that the traversal in-
volves many frontiers that each store a fairly small number of edges
(from 2 to 14000).

Comparing the speedups of Leiserson and Schardl’s (LS) PBFS
with ours (looking at the column which shows the relative change
in execution time), we observe that our algorithm is usually faster,
and, in the rare cases where it is not, our algorithm is no more than
10% slower. There are also a few graphs where our algorithms per-
form significantly better than LS. On the graph random-arity-100,
LS creates large sequential tasks. For the graph phases-10-arity-2-
but-one, we have a frontier that contains many vertices with small
out-degree, except for one vertex. On this graph, splitting the fron-
tier according to the number of edges as opposed to the number
of vertices leads to significantly better load balance. With the tree-
arity-512-512 graph near the bottom of the table, the LS algorithm

sequentializes all of the computation. Similarly, with tree-arity-
512-1024, in each frontier, the vertices are processed sequentially,
and, for each vertex, exactly two tasks are created to process the
out-going edges, significanty limiting the speedup (1.3x). In con-
trast, our algorithm is able to take advantage of the limited amount
of available parallelism, achieving speedups exceeding 10x.

Looking now at DFS results, we first observe that, on large real-
world graphs such as friendster, Cong et al’s algorithm is fairly
competitive. On other graphs, however, we are able to significantly
outperform Cong et al’s algorithm. Our better speedups can be
explained (1) by the fact that we are able to exploit parallelism
at the edge level, where Cong et al do not, and (2) by the fact that
our load balancing operations transfer half of the frontier, and not
just a small constant number of vertices. Moreover, there are a few
extreme differences, such as with parallel chains, where Cong et
al’s batching strategy induces significant overheads, In contrast, our
algorithm implements techniques for controlling the overheads.

The last column of the table shows the speedup of our PDFS
algorithm over our PBFS algorithm. For all graphs but the com-
plete binary tree, PDFS runs faster. For the complete binary tree,
synchronizing all the processors at each of the logn phases actu-
ally helps PBFS achieving a close-to-optimal load balancing in this
specific situation. At the other end of the spectrum, on the parallel
chain graphs, where PBFS shows no speedup because the frontiers
are too small, PDFS exhibits near optimal speedups: 8x for 8 par-
allel chains, and 19.3x for 20 parallel chains. More generally, if we
leave out the particular case of the single-chain graph which inher-
ently contains no parallelism, we can expect PDFS to significantly
outperform PBFS on all large diameter graphs.

8. Related Work
PBFS Leiserson and Schardl described essentially the algorithm
presented in section 5.2, with independent parallelization of the
outer loop over the vertices and the inner loop over the outgoing
edges [20]. A central aspect of Leiserson and Schardl’s contribution
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is a bag data structure that supports the efficient operations needed
for expressing parallel BFS as a divide and conquer algorithm:
push (to add a vertex to the bag), split (to extract approximately
half of the vertices from the bag into another bag; at least one third,
at most two thirds), merge (to transfer all the vertices from a bag
into another), and sequential iteration of the items. This bag data
structure is implemented using binomial trees (lists of trees whose
size grow exponentially), in which each node stores a pointer on a
fixed-capacity array of vertex ids. Our frontier data structure, which
builds on top of a weighted sequence data structure, improves over
Leiserson and Schardl’s bag in two ways: first, it supports splitting
based on the number of edges as opposed to the number of vertices;
and second, it supports exact splitting as opposed to approximate
splitting, improving the balancing of the work load and thereby
reducing the communication overheads.

The strength of Leiserson and Schardl’s PBFS is that it is work
efficient: the number of read and write operations that it performs is
just a tiny fraction greater than the number of operations performed
by the sequential BFS algorithm. Our PBFS improves on theirs by
adding the ability to exploit parallelism that spans across the two
nested loops (the loop on the vertices and the loop on the edges).
PDFS Cong et al [9] propose an algorithm for implementing
PDFS on multicore, using concurrent deques for implementing dy-
namic load balancing. Cong et al argue that, since pushing vertices
one by one into the deques induces too large overhead, vertices
should be batched, and batch pointers should be pushed into the
concurrent deques. They observe that the size of the batches should
be small at the beginning of the traversal, to allow for fast balancing
at low load, and that batches may then be of some size S (e.g., 128
vertices) otherwise. More precisely, a processor produces batches
of size min(S, 2|Q|), where |Q| denotes the size of the deque of
the process. Thanks to this adaptative batching strategy, Cong et
al’s algorithm is able to expose all the parallelism available. (Re-
call, e.g., the case of a graph with two parallel chains.) Our PDFS
takes a different approach to taming overheads. Instead of using
batches, our PDFS relies on an efficient frontier data structure that
can expose all instantaneous parallelism on demand. Instead of us-
ing concurrent deques, our PDFS relies on a message-passing-like
scheme to dynamically balance work among cores. This scheme
gives us more flexibility on the choice of the frontier data structure.

9. Conclusion
We have presented two new algorithms for PBFS and PDFS that are
based on our novel frontier data structure. We argued that our PBFS
and PDFS are efficient in theory and practice, comparing favorably
to two state-of-the-art algorithms: Leiserson and Schardl’s PBFS
and to Cong et al’s PDFS. Our evaluation demonstrates several
key improvements achieved by our techniques. Our PBFS is more
robust, achieving several-fold speedups on particular graphs, where
prior work does not yield any speedup. Although it uses slightly
more complex data structures, our algorithms are usually not slower
than prior work by more than a few percent, and never more than
10% slower on all our benchmark graphs. Our PDFS is typically
faster than PBFS, usually by 10% to 30%, as it does not need to
synchronize at every layer. There are even particular cases where
PDFS achieves over 20x where PBFS achieves no speedup. Our
PDFS, on social network graphs, performs just slightly better than
Cong et al. On other type of graphs, our algorithms performs a lot
better, being often more than twice faster.

References
[1] Stanford large network dataset collection. http://snap.stanford.

edu/.
[2] The 9th dimacs implementation challenge, 2013. http://www.dis.

uniroma1.it/challenge9/.
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A. Termination detection
In our parallel BFS, termination detection is implicitly handled
by the fork-join construct (fork2). When a thread is migrated
to another processor, the thread synchronizes upon termination
using the atomic counter associated with the join thread which is
performing the merge operations. In our PDFS, however, we do not
need to perform any merge operation. We can therefore rely on a
more efficient scheme, which simply detects when the frontiers of
all the processors become empty.

We implement this scheme by using an array of integers, with
one cell per processor. Initially, the array is filled with zeros. Then,
every time a processor sends a nonempty part of its frontier, it
increments its cell; and every time a processor empties its frontier,
it decrements its cell. Termination can be detected by observing
that the sum of the cells equals zero. A leader processor, chosen
arbitrarily, is responsible for checking this sum periodically when
it stands out of work. Note that the correctness of this scheme
relies on the assumption that store operations are not reorderd. Intel
architectures (x86-TSO) guarantee this. For others, such as Power,
a lightweight store-store memory fence is needed.

B. Sequential Overheads of Parallel Algorithms
Figure 7 reports on the run time of the single-processor parallel pro-
grams compared with that of the corresponding sequential baseline.
Note that negative values indicate situations where the parallel al-
gorithm outperforms the baseline, which is possible because there
is no sequential program that dominates all the others on all input
graphs.

C. Cutoff selection for parallel BFS
We investigated the choice of cutoff values on many graphs. Here,
we only report data for one particular graph, Friendster, to illus-
trate our experimental protocol. As Figure 8 shows, optimal cutoff
values for LS PBFS algorithm lie between 512 and 2014. As we
seen in general, performance quickly drop both with smaller values
(due to high overheads) and with larger values (due to lack of par-
allelism). Since we want to maximize parallelism, we choose the
smallest cutoff value that achieves limited overheads, and therefore
select 512. For our PBFS algorithm, which relies on lazy splitting,
the choice of the cutoff has no impact on graph with sufficient par-
allelism, such as the one considered. Note that, of course, the choice
of the cutoff for our PBFS algorithm has an impact on graphs with
limited parallelism.

D. Further Optimizations
In all algorithms, including the sequential ones, we implemented
the following optimization: we do not push into the frontier ver-
tices that have no out-going edges. This optimization significantly
improves the execution time for graphs with many leaves, in par-
ticular graphs which contain trees. The cost of reading the degree
of each vertex when it is first discovered does add some overhead,
however this overhead is very small. Indeed, the degree of a vertex
needs to be read anyway for later processing the out-going edges of
this vertex, and the value is in most cases still in the cache by the
time it is read again.

E. Pseudo-code for the Frontier Data Structure
The implementation of the frontier data structure is described by
the detailed pseudo-code from Figure 11. This code relies on the
implementation of ranges, given in Figure 10, and the interface to
the weighted sequence data structure, given in Figure 9. Note that,
in the pseudo-code, we treat the adjacency list, called neighbours,
as a global variable, even though in real code the frontier is actually
parameterized by the adjacency list structure.

graph LS our Cong. our
PBFS PBFS PDFS PDFS

friendster +85% +50% +43% +29%
twitter +95% +60% +46% +28%
livejournal +41% +23% +16% +22%
wikipedia-2007 +4% -12% +20% +22%
cage15 +73% +33% +61% +20%
random-arity-3 +49% +26% +11% +26%
random-arity-8 +47% +32% +29% +31%
random-arity-100 +33% +21% +14% +12%
squared-grid -17% -16% +32% +17%
cube -17% -27% +16% +25%
chain +5% +5% +90% +2%
parallel-chains-8 -27% -31% +33% +1%
parallel-chains-20 -30% -34% +19% +2%
parallel-chains-100 -24% -35% +7% +2%
parallel-chains-524k -16% -4% +4% +1%
phases-50-arity-5 -19% -11% +3% +10%
phases-10-arity-2-but-one +2% +11% -7% -10%
trees-arity-524k +19% +49% +79% +29%
complete-binary-tree -17% -12% -0% -10%
trees-arity-10k-10k +50% +62% +88% +41%
trees-arity-512-512 +16% +56% +71% +38%
trees-arity-512-1024 +20% +60% +73% +39%

Figure 7. Execution time of single-process runs of the parallel al-
gorithms, expressed relatively to their sequential baseline. Smaller
values are better.

friendster 40 cores
LS PBFS, vertex-cutoff=2048, edge-cutoff=2048 19.4x
LS PBFS, vertex-cutoff=1024, edge-cutoff=2048 19.7x
LS PBFS, vertex-cutoff=1024, edge-cutoff=1024 19.8x
LS PBFS, vertex-cutoff=512, edge-cutoff=1024 20.0x
LS PBFS, vertex-cutoff=512, edge-cutoff=512 19.9x
LS PBFS, vertex-cutoff=512, edge-cutoff=256 19.3x
LS PBFS, vertex-cutoff=256, edge-cutoff=256 19.4x
LS PBFS, vertex-cutoff=256, edge-cutoff=128 14.1x
our PBFS, cutoff=2048 23.4x
our PBFS, cutoff=1024 23.3x
our PBFS, cutoff=512 23.4x
our PBFS, cutoff=256 23.3x
our PBFS, cutoff=128 23.5x
our PBFS, cutoff=64 23.3x

Figure 8. Effect of the cutoff selection on the execution time on
the Friendster graph of PBFS algorithms.
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class weighted_seq <class A> { // interface
weighted_seq(weight_type f)

where weight_type = int f(A x)
int weight ()
void push(A x)
A pop()
void concat(weighted_seq <A>& other)
void split_at(int w, A& x, weighted_seq <A>& other)
void iter(body_type body)

}
where body_type = void body(A x)

Figure 9. Interface for the weighted sequence data structure,
which can be implemented using boostrapped chunked sequences.

class range { // implementation
int vertex
int low
int hi

range()
vertex = 0; low = 0; hi = 0

weight ()
return hi-low

void split_at(int w, range& other)
other.low = low + w
other.hi = hi
other.vertex = vertex
hi = low + w

void iter(body_type body)
for k = low to hi -1

body(vertex , neighbours[vertex ][k])

int iter_pop_nb(int nb , body_type body)
if nb == 0 then return 0 // optimization
nb = min(nb, hi-low)
int stop = low+nb_real
for k = low to stop -1

body(vertex , neighbours[vertex ][k])
low = stop
return nb

}

Figure 10. Implementation of the range of edges data structure.

class frontier { // implementation
weighted_seq <int > vs
range r1
range r2

frontier ()
vs = weighted_seq <int >( degree)
r1 = range ()
r2 = range ()

void swap(frontier& other)
// exchange vs, r1 and r2 with other

int degree(int vertex)
return neighbours[vertex ].size()

range full_range(int vertex)
return range(vertex , 0, degree(vertex ))

int nb_edges ()
return vs.weight () + r1.weight () + r2.weight ()

bool empty()
return nb_edges () == 0

void push_edges_of(int vertex)
vs.push(vertex)

void split(frontier& other)
int w = (nb_edges ()+1) / 2
if w <= r1.weight ()

r1.split_at(w, other.r1)
else if w <= r2.weight ()

r2.split_at(w, other.r1)
else

w -= r1.weight ()
other.r2 = r2
int v;
vs.split_at(w, v, other.vs)
r2 = full_range(v)
r2.split_at(w - vs.nb_edges(), other.r1)

void merge(frontier& other)
vs.concat(other.vs)

void iter(body_type body)
r1.iter(body)
vs.iter(fun vertex →

full_range(vertex ).iter(body))
r2.iter(body)

int iter_pop_nb(int nb, body_type body)
nb -= r1.iter_pop_nb(nb, body)
while nb > 0 && not vs.empty()

int vertex = vs.pop()
int d = degree(vertex)
if d <= nb

full_range(vertex ).iter(body)
nb -= d

else
r1 = full_range(vertex)
nb -= r1.iter_pop_nb(nb, body)
return nb

nb -= r2.iter_pop_nb(nb, body)
return nb;

}

Figure 11. Implementation of the frontier data structure.
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