
Characteristic Formulae for the Veri�cation

of Imperative Programs

Arthur Charguéraud

INRIA
arthur.chargueraud@inria.fr

Abstract. We have developed characteristic formulae as a technique
for verifying imperative programs using interactive theorem provers. The
characteristic formula of a program is a higher-order logic formula that
gives a sound and complete description of the semantics of this program
without referring to its source code. The formula can be constructed
automatically from the source code it describes, in a compositional way.
Moreover, it can be conveniently manipulated in interactive proofs. Char-
acteristic formulae support reasoning about all forms of �rst-class func-
tions, through the use of an abstract predicate used to specify functions
extensionally in the logic. Moreover, they integrate techniques from Sep-
aration Logic in order to support modular reasoning about mutable data
structures. Characteristic formulae serve as a basis for a tool, called
CFML, which supports the veri�cation of imperative Caml programs
using the Coq proof assistant. Using CFML, we have formally veri�ed
nontrivial imperative algorithms, as well as CPS functions, higher-order
iterators, and programs involving higher-order stores.

1 Introduction

In many applications, bugs can have dramatic consequences. Experience shows
that it is not possible to �nd all the bugs of a program through intensive testing
or static analysis. To ensure the complete absence of bugs, we need to prove that
a program is correct with respect to a speci�cation �the speci�cation is assumed
to be a valid formal description of the intended behavior of the program. The
process of building a proof of correctness and having this proof be veri�ed by a
machine is called program veri�cation. It allows to reach a very high degree of
con�dence in the correctness of the code. Yet, despite its importance, program
veri�cation is far from commonplace. Many approaches to program veri�cation
have been studied in the past 50 years, but none of them has yet succeeded in
making program veri�cation easily applicable to general-purpose programs.

The most common approach to program veri�cation consists of annotating
the program with its speci�cation and its invariants, and then using a Veri�-
cation Condition Generator (VCG) to extract a set of proof obligations. When
these proof obligations are simple enough, SMT solvers can be used to discharge
them automatically. This approach has so far shown to be quite e�ective for
reasoning about simple programs. However, this approach shows its limits in

2

the face of more complex programs. For example, when a program makes use of
higher-order functions or requires inductive reasoning, SMT solvers are usually
not able to make any progress. In theory, the user could use a proof assistant for
discharging the proof obligations interactively. Yet, in practice, the proof obli-
gations generated by a VCG, typically through the computation of a weakest
precondition, are numerous and are not at all well-suited for human consump-
tion.

A few researchers have developed interactive proof systems speci�cally for
reasoning about programs (e.g., KeY [4]). However, the use of an ad-hoc logic
precludes the use of standard proof assistants and its associated mathematical
libraries. Other researchers have worked instead on trying to use a standard
proof assistant as an environment in which to write programs and prove prop-
erties about them. This approach is known as shallow embedding. For example,
Coq [12] contains a purely-functional language, and its extraction mechanism [28]
allows to convert Coq de�nitions into Haskell or Caml code. However, there are
fundamental discrepancies between a programming language, whose functions
can be partial and perform side-e�ects, and a logical language, whose functions
must be pure and total. The project Ynot [11, 37, 38] showed how to extend Coq
with a monad for embedding side-e�ects and non-termination. This work has
shown that a shallow embedding can be used to produce formally-veri�ed im-
perative code. Yet, the language in which programs have to be written remains
tightly constrained by Coq. Therefore, this approach cannot be used to verify
existing programs written in a real programming language.

There exists a technique that, at least in theory, supports reasoning about
any program written in any programming language. It consists of using a deep

embedding, that is, a formalization of the syntax and the semantics of a pro-
gramming language inside a proof assistant. Using the deep embedding of a
given programming language, one can describe the source code of a program
and prove any true property about its semantics (within the limits of the ex-
pressiveness of the theorem prover). However, in practice, working through a
deep embedding is extremely cumbersome, because of the indirection that it
involves. All the terms and values of the language must be encoded using the
constructions of the deep embedding. In order to hide as much as possible the
details of the embedding from the user, it is possible to set up a collection of
notation and tactics. We have done so in our previous work on the deep embed-
ding of purely-functional Caml programs in Coq [7]. Yet, the complexity of the
deep embedding remains. In particular, speci�cations are polluted by the need
to relate embedded program values with the corresponding Coq values.

We have developed characteristic formulae as a new, practical approach to
program veri�cation. The characteristic formula of a program is a logical formula
that describes the semantics of this program, but without referring to a deep
embedding of this program. This formula is built automatically from the source
code alone and is expressed in a standard higher-order logic. To verify a program,
the user states its speci�cation in the form of a theorem and then prove this
theorem using the characteristic formula. The proof follows the structure of the

3

characteristic formula, which itself follows the structure of the code. Invariants
involved in the proofs, such as loop invariants, are provided by the user during
the interactive proofs.

Characteristic formulae can be used to prove that a program terminates and
satis�es a particular speci�cation. In fact, they can be used to prove any true
property of the value returned by a program �we have indeed established a
completeness result for characteristic formulae. In particular, the program does
not need to be rewritten in a particular form: characteristic formulae can be
applied to the veri�cation of existing programs. Note that the notion of char-
acteristic formula is not speci�c to a particular programming language. In this
paper, we explain how to develop characteristic formulae for a large subset of
Caml, and we demonstrate how these formulae can be used in practice to verify
nontrivial programs.

The notion of characteristic formula originates in process calculi. In this
context, two processes are behaviorally equivalent if and only if their character-
istic formulae are logically equivalent [19]. Graf and Sifakis proposed in the 80's
an algorithm for building the characteristic formula of any process [17]. More
recently, Honda, Berger and Yoshida adapted this idea from process logics to
program logics [21]. They gave an algorithm for building the pair of the weakest
pre-condition and of the strongest post-condition of any PCF program. Note
that their algorithm di�ers from weakest pre-condition calculus in that the PCF
program considered is not assumed to be annotated with any invariant. Honda
et al suggested that characteristic formulae could be used in program veri�ca-
tion. However, they did not �nd a way to encode the ad-hoc logic that they were
using for stating speci�cations into a standard logic. As a result, they could not
reuse any existing theorem prover. Since the development of a dedicated theo-
rem prover would have required too much e�ort, Honda et al's work remained
theoretical and did not result in an e�ective program veri�cation tool.

We have developed characteristic formulae much further and have turned
this concept into a practical approach to program veri�cation. Our contribution
is summarized next.

• We devise characteristic formulae that can be expressed in a standard higher-
order logic, allowing for the use of an o�-the-shelf proof assistants, e.g., Coq.

• Our characteristic formulae always have a size linear in that of the source
code they describe. Veri�cation using characteristic formulae therefore has a
chance to scale up to large pieces of code.

• We show how to set up a notation system that allows to pretty-print a char-
acteristic formula in a way that very closely resembles the source code that
the formula describes. The notation system makes proof obligations easy to
read and easy to relate to the source code.

• We explain how to integrate in characteristic formulae the frame rule from
Separation Logic [43]. The frame rule allows for local reasoning and is essential
to modularity.

4

• We have developed a set of Coq tactics that enables the user to e�ciently
manipulate characteristic formulae and conduct program veri�cation without
any knowledge of how characteristic formulae are constructed.

• We have implemented our approach in a tool, called CFML, which supports
the veri�cation of programs written in a large subset of Caml [27]. It targets
the Coq proof assistant [12].

• We have applied CFML to the veri�cation of a number of nontrivial im-
perative programs. In this paper, we report on the veri�cation of Dijkstra's
shortest path algorithm and on several examples illustrating nontrivial inter-
actions between �rst-class functions and the mutable state.

• We have proved that our characteristic formulae are sound and complete.
In this paper, we present the statement of the theorems and of the main
invariants, however we do not include the proofs (they can be found in [8]).

The work described in the present paper corresponds to the core of the au-
thor's PhD thesis [8]. We presented characteristic formulae for purely-functional
programs at ICFP'10 [9]. We later presented the generalization of characteristic
formulae to imperative programs at ICFP'11 [10]. Compared with our ICFP'11
paper, the present paper contains more details. In particular, we describe char-
acteristic formulae for assertions and pattern-matching, the treatment of n-ary
functions, the properties of the star operator and the heap entailment relation.
We also give additional details about the invariants of the soundness proof, and
explain how to justify our treatment of polymorphism. The tool CFML, which
directly implements all the ideas described in this paper, can be found online1.
The CFML webpage also contains all the examples from this paper and addi-
tional examples, including those taken from the veri�cation of more than half of
the content of Okasaki's book on Purely Functional Data Structures [41].

The content of this paper is organized in four main parts. Section 2 describes
the key ideas involved in the construction, the pretty-printing and the manipula-
tion of characteristic formulae. Section 3 formalizes the translation of types and
values, the representation and the speci�cation of heaps, the heap entailment
relation, the integration of the frame rule, and the construction of characteristic
formulae. Section 4 presents the statement of the soundness and completeness
theorems, and discusses the key invariants. Section 5 contains a presentation of
several examples that we have speci�ed and formalized using CFML. Section 6
discusses related work and Section 7 concludes.

2 Overview

2.1 Veri�cation through characteristic formulae

The characteristic formula of a term t relates a description of the input heap
in which the term t is executed with a description of the output value and a

1 http://arthur.chargueraud.org/softs/cfml/

5

description of the output heap produced by the execution of t. Characteristic
formulae are hence closely related to Hoare triples [20], and, more precisely, to
total correctness Hoare triples, which account not just for correctness but also
for termination.

A total correctness Hoare triple {H} t {Q} asserts that, when executed in
a heap satisfying the predicate H, the term t terminates and returns a value
v in a heap satisfying (Qv). The post-condition Q is thus used to specify both
the output heap and the output value. When t has type τ , the pre-condition H
has type Heap → Prop and the post-condition Q has type 〈τ〉 → Heap → Prop,
where Heap is the type of a heap and where 〈τ〉 is the Coq type that corresponds
to the ML type τ . To clarify the role of post-conditions, we give two examples.
The triple {r 7→ n} (incr r) {λ(_ : unit). r 7→ n + 1} asserts that a call to the
increment function on a reference r updates the content of this cell from n to
n+1 and returns the unit value. The triple {[]} (ref 3) {λr. r 7→ 3} asserts that,
starting from the empty heap, a call to the function ref with the argument 3
produces a heap made of a cell at a fresh location r whose content is the value 3.

The characteristic formula of a term t is written JtK. This predicate is such
that JtKH Q captures exactly the same proposition as the triple {H} t {Q}.
There is however a fundamental di�erence between Hoare triples and character-
istic formulae. A Hoare triple {H} t {Q} is a three-place relation, whose second
argument is a representation of the syntax of the term t. On the contrary, JtKH Q
is a logical proposition, expressed in terms of standard higher-order logic con-
nectives, such as ∧, ∃, ∀ and ⇒. Importantly, this proposition does not refer to
the syntax of the term t. Moreover, whereas Hoare-triples need to be established
by application of derivation rules speci�c to Hoare logic, characteristic formulae
can be proved using only basic higher-order logic reasoning, without involving
external derivation rules.

We have used characteristic formulae for building CFML, a tool that sup-
ports the veri�cation of imperative Caml programs using the Coq proof assis-
tant. CFML takes as input source code written in a large subset of Caml, and
it produces as output a set of Coq axioms that correspond to the characteristic
formulae of each top-level de�nition. It is worth noting that CFML generates
characteristic formulae without knowledge of the speci�cation nor of the invari-
ants of the source code. The speci�cation of each top-level de�nition is instead
provided by the user, in the form of the statement of a Coq theorem. The user
may prove such a theorem by exploiting the axiom generated by CFML for that
de�nition. The user provides information such as loop invariants interactively
during the proofs.

When reasoning about a program through its characteristic formula, a proof
obligation typically takes the form JtKH Q, asserting that the piece of code t
admits H as pre-condition and Q as post-condition. The user can make progress
in the proof by invoking the custom tactics provided by CFML. Proof obligations
thereby get decomposed into simpler subgoals, following the structure of the
code. When reaching a leaf of the source code, several facts may need to be
established in order to justify the correctness of the program. These facts, which

6

no longer contain any reference to characteristic formulae, can be proved using
general-purpose Coq tactics, including calls to decision procedures and to proof-
search algorithms.

The rest of this section presents the key ideas involved in the construction
of characteristic formulae, covering the treatment of sequences, let bindings, the
frame rule and functions.

2.2 Construction of characteristic formulae

Consider a sequence term, of the form �t1 ; t2�. The rule for reasoning on se-
quences in Hoare Logic (or Separation Logic) asserts that such a sequence admits
a pre-condition H and a post-condition Q if there exists a heap predicate de-
scribing the state between the execution of t1 and t2. More precisely, assume that
t1 admits the pre-condition H and the post-condition Q′. The state produced by
the execution of t1 is described as Q

′ tt , where tt denotes the unit value produced
by t1. Thus, t2 should admit the pre-condition Q′tt and the post-condition Q.
The reasoning rule for sequences is formally stated as follows.

{H} t1 {Q′} {Q′ tt} t2 {Q}
{H} (t1 ; t2) {Q}

The characteristic formula Jt1 ; t2K associated with the term �t1 ; t2� should
be a predicate such that the proposition Jt1 ; t2KH Q is equivalent to the triple
{H} (t1 ; t2) {Q}. Thus, Jt1 ; t2K should be an abstraction that takes H and
Q as argument. The body of the de�nition should match the premises of the
reasoning rules shown above: there should exist a Q′ such that t1 admits H
and Q′ as speci�cation and such that t2 admits Q′ tt and Q as speci�cation. We
therefore consider the following de�nition.

Jt1 ; t2K ≡ λH. λQ. ∃Q′. Jt1KH Q′ ∧ Jt2K (Q′ tt) Q

In the intention, the characteristic formula closely resembles the correspond-
ing Hoare-logic rule. However, the characteristic formulae correspond to the re-
cursive de�nition of a predicate, whereas Hoare-logic rules correspond to induc-
tive de�nitions. Moreover, in the characteristic formula, the intermediate post-
condition Q′ is explicitly introduced with an existential quanti�er, whereas this
quanti�cation is implicit in the Hoare-logic derivation rule. The existential quan-
ti�cation of unknown speci�cations, which is made possible by the strength of
higher-order logic, plays a central role. In particular, this existential quanti�ca-
tion of speci�cations contrasts with traditional program veri�cation approaches
where intermediate speci�cations, including loop invariants, need to be included
in the source code.

We introduce a notation system for pretty-printing characteristic formulae,
whose purpose is to make proof obligations easily readable and closely related to
the source code. For sequences, we de�ne the piece of notation shown below. Bold

7

keywords correspond to notation for logical formulae, whereas plain keywords
correspond to constructors from the programming language syntax.

(F1 ;F2) ≡ λH. λQ. ∃Q′. F1H Q′ ∧ F2 (Q
′ tt) Q

The de�nition of the characteristic formula of a let-binding can now be re-
formulated as follows.

Jt1 ; t2K ≡ (Jt1K ; Jt2K)

The generation of characteristic formulae, which is a translation from program
syntax to higher-order logic, therefore boils down to a re-interpretation of the
programming language keywords in terms of logical predicates.

The construction pattern described for sequences generalizes to other lan-
guage constructs, including constructs with binders. For example, consider a
let-binding of the form � letx = t1 in t2�. The reasoning rule for let-bindings can
be stated as follows. (Note that x denotes a logical variable in the premise al-
though it denotes a program variable in the conclusion.)

{H} t1 {Q′} ∀x. {Q′ x} t2 {Q}
{H} (letx = t1 in t2) {Q}

The characteristic formula for let-bindings is as follows.

Jletx = t1 in t2K ≡ λH. λQ. ∃Q′. Jt1KH Q′ ∧ ∀x. Jt2K (Q′ x) Q

Here again, the construction of the formula is entirely compositional and we are
able to reformulate the de�nition of the characteristic formula using an appro-
priate piece of notation.

(let x = F1 in F2) ≡ λH. λQ. ∃Q′. F1H Q′ ∧ ∀x. F2 (Q
′ x) Q

Jletx = t1 in t2K ≡ (let x = Jt1K in Jt2K)

Similarly, characteristic formulae and notation can be de�ned for all the
other constructions of the programming language. It follows that characteristic
formulae may be pretty-printed exactly like the source code they describe. During
the veri�cation of a term t, the proof-obligation takes the form JtKH Q and thus
appears to the user as a piece of source code followed with its pre-condition and
its post-condition, that is, it reads as �tH Q�. Note that this convenient display
applies not only to a top-level program de�nition t but also to all of the subterms
of t involved during the veri�cation of t.

CFML provides a set of tactics for making progress in the analysis of a
characteristic formula. For example, the tactic xseq applies to a goal of the
form �(F1 ;F2)H Q�. It introduces a fresh uni�cation variable, call it Q′, and
produces two subgoals: F1H Q′ and F2 (Q

′ tt)Q. The intermediate speci�cation
Q′ introduced here typically gets instantiated through uni�cation when solving
the �rst subgoal. The pre-condition for F2 is thus known when starting to reason
about the second subgoal. The instantiation of Q′ may also be provided by the

8

user explicitly, as argument of the tactic xseq. More generally, CFML provides
one such �x-tactic� for each language construction. As a result, the user is able
to verify a program using characteristic formulae even without any knowledge
about the construction of characteristic formulae.

2.3 Integration of the frame rule

Local reasoning [40] refers to the ability to verify a piece of code by reasoning
only about the memory cells that are involved in the execution of this code.
With local reasoning, all the memory cells that are not explicitly mentioned are
implicitly assumed to remain unchanged. The concept of local reasoning is very
elegantly captured by the �frame rule�, which originates in Separation Logic [43].

The frame rule states that if a program expression transforms a heap de-
scribed by a predicate H1 into heap described by a predicate H ′

1, then, for any
heap predicate H2, the same program expression also transforms a heap of the
form H1 ∗H2 into a state of the form H ′

1 ∗H2. The star symbol, called separating
conjunction, captures a disjoint union of two pieces of heap. The frame rule can
be formulated in terms of Hoare triples as shown next.

{H1} t {Q1}
{H1 ∗H2} t {Q1 ? H2}

Above, the symbol (?) is like (∗) except that it extends a post-condition with
a piece of heap. Technically, Q1 ? H2 is de�ned as �λx. (Q1 x) ∗H2�, where the
variable x denotes the output value and Q1 x describes the output heap.

The frame rule is not syntax-directed, meaning that one cannot guess from
the shape of the term t when the frame rule needs to be applied. Yet, our goal
is to generate characteristic formulae in a systematic manner from the syntax
of the source code. So, we introduce a predicate transformer, called local, which
corresponds to an application of the frame rule, and we insert this predicate at
every node of a characteristic formula. This predicate is de�ned in such a way
that, to prove the proposition � local JtKH Q�, it su�ces to �nd a decomposition
of H of the form H1 ∗ H2, a decomposition of Q of the form Q1 ? H2, and to
prove JtKH1Q1. In �rst approximation, the predicate local is de�ned as follows.

localF ≡ λH. λQ. ∃H1.∃H2.∃Q1.
H = H1 ∗H2 ∧ F H1Q1 ∧ Q = Q1 ? H2

This predicate is inserted at the head of every characteristic formulae, and our
pieces of notation are updated accordingly. For example, the notation for let-
bindings is updated as follows.

(let x = F1 in F2) ≡ local (λH. λQ. ∃Q′. F1H Q′ ∧ ∀x. F2 (Q
′ x) Q)

The introduction of the predicate local throughout characteristic formulae
allows us to apply the frame rule at any time during program veri�cation. If

9

there is no need to apply the frame rule, then the local predicate may be sim-
ply ignored. Indeed, given a formula F , the proposition �F H Q� is always a
su�cient condition for proving � localF H Q�. It su�ces to instantiate H2 as
the empty heap predicate. We will later generalize the local predicate so as to
also handle applications of the rule of consequence, which is used to strengthen
pre-conditions and weaken post-conditions, and to handle the garbage collection
rule, which allows to discard memory cells from assertions on heaps.

2.4 Translation of types

Purely-functional values may be directly re�ected in the logic. For example,
functional lists of Caml perfectly match the the lists of Coq, so we can use the
latter to reason about the former. However, particular care is required for speci-
fying and reasoning about program functions. Indeed, program functions cannot
be directly represented as logical functions, because of a profound mismatch be-
tween the two: program functions may be partial, whereas logical functions must
always be total. To work around this mismatch, we introduce a new data type,
called Func, in order to represent program functions in the logic. We present the
type Func as an abstract data type to the user of characteristic formulae. In the
proof of soundness, we interpret a value of type Func as the syntax of the source
code of a function.

To represent pointers in the logic, we simply view them as memory locations.
We use an abstract data type called Loc to represent these locations. In the
soundness proof, loc is implemented using natural numbers. Note that, contrary
to the type ref τ of Caml, the type Loc does not carry any information about
the type of the value stored in memory. Indeed, the type and the content of a
memory cell is instead described explicitly using heap predicates, so there is no
need to constrain the type Loc.

The translation of Caml types into Coq types is formalized through an op-
erator, written 〈·〉. In particular, this operator maps all arrow types to the type
Func and maps all reference types to the type Loc. For simplicity, we assume that
the compiler implements integers using an arbitrary-precision representation, so
we simply map Caml values of type int to Coq values of type Z. Note that it
would also be possible to map the type int to the Coq type int64. The de�nition
of the operator 〈·〉 is summarized as follows.

〈int〉 ≡ Z
〈τ1 × τ2〉 ≡ 〈τ1〉 × 〈τ2〉
〈τ1 + τ2〉 ≡ 〈τ1〉+ 〈τ2〉
〈τ1 → τ2〉 ≡ Func

〈ref τ〉 ≡ Loc

The translation from Caml types to Coq types is in fact conducted in two
steps. A well-typed ML program gets �rst translated into a well-typed weak-ML

program, and this weak-ML program is then fed to the characteristic formula
generator. Weak-ML corresponds to a relaxed version of ML that does not keep

10

track of the type of pointers nor of the type of functions. Moreover, weak-ML
does not impose any constraint on the typing of applications nor on the typing
of dereferencing.

Since weak-ML imposes strictly fewer constraints than ML, any program
well-typed in ML is also well-typed in weak-ML. Weak-ML nevertheless enforces
strong enough invariants to justify the soundness of characteristic formulae. So,
even though memory safety is not guaranteed by weak-ML, it is guaranteed by
the proofs of correctness established using a characteristic formula generated
from a well-typed weak-ML program.

It would be possible to generate characteristic formulae directly from ML
programs. Yet, the use of weak-ML as an intermediate type system serves three
important purposes. First, weak-ML helps simplifying the de�nition of the char-
acteristic formula generation algorithm. Second, it enables the veri�cation of
programs that are well-typed in weak-ML but not in ML, such as programs ex-
ploiting System F functions, null pointers, or strong updates (i.e., type-varying
updates of a reference cell). Third, weak-ML plays a crucial role in proving
the soundness and completeness of characteristic formulae. This latter aspect of
weak-ML is not discussed in this paper. It is, however, described in the author's
PhD dissertation [8].

2.5 Reasoning about functions

To specify the behavior of functions, we rely on a predicate, called App, which
we also present to the user as an abstract predicate. Intuitively, the proposi-
tion �App f v H Q� asserts that the application of the function f to v in a heap
satisfying H terminates and returns a value v′ in a heap satisfying Qv′. The
predicates H and Q correspond to the pre- and post-conditions of the appli-
cation of the function f to the argument v. It follows that the characteristic
formula for an application of a function f to a value v is simply built as the
partial application of App to f and v.

Jf vK ≡ App f v

The function f is viewed in the logic as a value of type Func. If f takes as
argument a value v described in Coq at type A and returns a value described
in Coq at type B, then the pre-condition H has type Hprop, a shorthand for
Heap→ Prop, and the post-condition Q has type B → Hprop. So, the predicate
App is typed as follows.

App : ∀AB. Func→ A→ Hprop→ (B → Hprop)→ Prop

For example, recall the triple describing the behavior of the increment function:
{r 7→ n} (incr r) {λ_. r 7→ n + 1}. This speci�cation is expressed with the
predicate App as follows.

∀r. ∀n. App incr r (r 7→ n) (λ_. r 7→ n+ 1)

11

As we have just seen, a statement of the form �App f v H Q� describes the
behavior of an application and can be used to state speci�cations. It remains
to explain where assumptions of the form �App f v H Q� can be obtained from.
Such assumptions are provided by characteristic formulae associated with func-
tion de�nitions. Consider a function f de�ned as the abstraction �λx. t�. CFML
represents this function in Coq by introducing an abstract constant (i.e., a Coq
axiom) named f of type Func. Given a particular argument v, we expect to be
able to derive an instance of �App f v H Q� simply by proving that the body
t, in which x is instantiated with v, admits the pre-condition H and the post-
condition Q. To that end, CFML provides a second abstract constant to describe
the semantics of the function: �∀xH Q. JtKH Q ⇒ App f xH Q�. Instantiating
the variable x with a value v in this constant automatically performs the ap-
propriate substitution in the characteristic formula JtK in which x may occur
as a free variable. Note that the soundness theorem proved for characteristic
formulae ensures that adding these two axioms does not introduce any logical
inconsistency.

For example, assume that f is de�ned as a function that expects a refer-
ence and increments its content twice: �λr. (incr r ; incr r)�. This function may be
speci�ed through the theorem �∀rn. App f r (r 7→ n) (λ_. r 7→ n+2)�. To prove
this theorem, we apply the axiom generated by CFML. The resulting proof obli-
gation is �(app incr r ; app incr r) (r 7→ n) (λ_. r 7→ n+ 2)� where �app� and
�;� correspond to the pieces of notation de�ned for the characteristic formulae
of applications and of sequences, respectively. This proof obligation can be dis-
charged with help of the tactic xseq, for reasoning about the sequence, and of
the tactic xapp, for reasoning about the two applications. In fact, for such a
simple function, one may establish correctness through a simple invocation of a
tactic called xgo, which repeatedly applies the appropriate x-tactic until some
information is required from the user.

When a function is not a top-level de�nition but a local de�nition, we gen-
erate its characteristic formula as follows.

Jlet rec f = λx. t in t′K ≡ λH. λQ. ∀f. H ⇒ Jt′KH Q

where H ≡ (∀xH ′Q′. JtKH ′Q′ ⇒ App f xH ′Q′)

Two observations are worth making about the treatment of functions. First,
characteristic formulae do not involve any speci�c treatment of recursivity. In-
deed, to prove that a recursive function satis�es a given speci�cation, it su�ces
to conduct a proof that the function satis�es that speci�cation by induction. The
induction may be conducted on a measure or on a well-founded relation, using
the induction facility from the interactive theorem prover being used. So, char-
acteristic formulae for recursive functions do not need to include any induction
hypothesis. A similar observation was also made by Honda et al in their work
on program logics [21].

The second observation concerns �rst-class functions. As explained through
this section, a function f is speci�ed with a statement of the form �App f v H Q�.
Because this statement is a proposition like any other (it has type Prop), it

12

may appear inside the pre-condition or the post-condition of any another func-
tion (thanks to the impredicativity of Prop in Coq). Moreover, this statement
may appear in the speci�cation of the content of a memory cell. The predicate
App therefore supports reasoning about higher-order functions (functions tak-
ing functions as arguments) and higher-order stores (memory stores containing
functions).

3 Characteristic formula generation

In this section, we explain in more details how characteristic formulae are con-
structed. We start with the translation from ML types into weak-ML types and
into Coq types. We then describe the source language, the representation in Coq
of program values and heaps, and the construction of characteristic formulae.

3.1 Translation of types

In what follows, we formalize the translation from ML types to weak-ML types,
then the translation from weak-ML types to Coq types. We let τ denote an ML
type, σ denote an ML type scheme, A denote a type variable, and C denote
a type constructor associated with an algebraic data type. We use the overbar
notation to denote a list of items. The grammar of ML types is as follows.

τ := A | int | C τ | τ → τ | ref τ | µA.τ

σ := ∀A.τ

Note that sum types, product types, the boolean type and the unit type can be
de�ned as algebraic data types.

Intuitively, weak-ML types are obtained from ML types by mapping all arrow
types to a constant type called func and by mapping all reference types to a
constant type called loc. We let T denote a weak-ML type and S denote a weak-
ML type scheme. The grammar of weak-ML types is as follows.

T := A | int | C T | func | loc

S := ∀A.T

The formalization of the translation of an ML type τ into its corresponding
weak-ML type, written 〈τ〉, appears in Figure 1. The treatment of polymor-
phism and of recursive types is explained next. When translating a type scheme,
the list of quanti�ed variables might shrink. For example, the ML type scheme
�∀AB. A+ (B → B)� is mapped in weak-ML to �∀A. A+ func�, which no longer
involves the type variable B. Weak-ML includes algebraic data types, but does
not support general equi-recursive types. For example, the recursive ML type
�µA.(A× int)� does not have any counterpart in weak-ML. Nevertheless, many
useful recursive ML types can be translated into weak-ML, because the recursion
involved might vanish when erasing arrow types. For example, the recursive ML
type �µA.(A → B)� gets mapped to the weak-ML type func. More generally,

13

〈A〉 ≡ A

〈int〉 ≡ int

〈C τ〉 ≡ C 〈τ〉
〈τ1 → τ2〉 ≡ func

〈ref τ〉 ≡ loc

〈∀A. τ〉 ≡ ∀B. 〈τ〉 where B = A ∩ fv(〈τ〉)

For equi-recursive types that are not algebraic data types:

〈µA.τ〉 ≡
∣∣∣∣ 〈τ〉 if A 6∈ 〈τ〉
program rejected otherwise

Fig. 1. Translation from ML types to weak-ML types.

our approach supports reasoning about any function with a recursive type. In
fact, we could even support System F functions if the source language was not
restricted to ML type schemes.

When building the characteristic formula of a weak-ML program, weak-ML
types get translated into Coq types. This translation is almost the identity,
because every type constructor from weak-ML is directly mapped to the cor-
responding Coq type constructor. Algebraic type de�nitions are translated into
corresponding Coq inductive de�nitions. The translation of a weak-ML type T
into its corresponding Coq type, written VTW, is de�ned as follows.

VintW ≡ Z
VlocW ≡ Loc

VfuncW ≡ Func

VAW ≡ A

VC TW ≡ C VTW
V∀A.TW ≡ ∀A. VTW

Above, the type variables A are assigned the kind Type in Coq �we will come
back to this aspect in �4.3. Note that the positivity requirement associated with
Coq inductive de�nitions is not a problem here: since there is no arrow type in
weak-ML, the translation from weak-ML types to Coq types can never produce
a negative occurrence of an inductive type in its own de�nition.

3.2 Typed source language

Before we can generate characteristic formulae, we �rst need to put programs in
administrative normal form. To that end, we pull out all e�ectful subexpressions
and name their results using let-bindings. We do the same for de�nitions of local
functions. This process, similar to A-normalization [15], preserves the semantics
and greatly simpli�es formal reasoning about programs. Similar transformations
have appeared in previous work on program veri�cation (e.g., [21, 42]). In this
paper, we omit a formal description of the normalization process and only show
the grammar of terms in normal form.

The characteristic formula generator expects a program in administrative
normal form. It moreover expects this program to be well-typed in weak-ML,

14

with every subterm being annotated with its type. We show below the syntax
of typed programs in normal forms. We let v̂ range over typed values, t̂ range
over typed term, b̂ range over lists of pattern matching clauses and p̂ range over
typed patterns.

v̂ := n | xT | DT (v̂, . . . , v̂) | ref | get | set | cmp | null

t̂ := v̂ | (v̂ v̂) | if v̂ then t̂ else t̂ | letx = t̂ in t̂ | letx = ΛA. v̂ in t̂ |
t̂ ; t̂ | let rec f = ΛA.λx.t̂ in t̂ | assert t̂ | match v̂with b̂

b̂ := ∅ | (p̂ 7→ t̂ | b̂)
p̂ := x | n | DT (p̂, . . . , p̂)

Note that locations and function closures do not exist in source programs,
so they are not included in the grammar above. The letter n denotes an integer.
The functions ref, get and set are used to allocate, read and write reference cells,
respectively. The function cmp enables comparison of two memory locations.
The null pointer, written null, is a particular location that never gets allocated.
A polymorphic function de�nition takes the form � let rec f = ΛA.λx.t̂1 in t̂2�,
where A denotes the list of generalized type variables. A polymorphic let-binding
takes the form � letx = ΛA. v̂ in t̂�. Due to the value restriction, the general form
� letx = ΛA. t̂1 in t̂2� is not allowed. Observe that the syntax of typed programs
explicitly keeps track of type applications, which take place either on a polymor-
phic variable x, written xT , or on a polymorphic data constructor D, written
DT . For-loops and while-loops are discussed further on (�3.10).

3.3 Re�ection of values in the logic

Constructing characteristic formulae requires a translation of every Caml value
that appears in the program source code into its corresponding Coq value. This
translation, called decoding, and written dv̂e, transforms a weak-ML value v̂ of
type T into the corresponding Coq value, which has type VTW (recall �3.1). The
de�nition of dv̂e is shown below and explained next. Values on the left-hand side
denote well-typed weak-ML values, and values on the right-hand side denote
(well-typed) Coq values.

dne ≡ n

dxT e ≡ x VTW
dDT (v̂1, . . . , v̂2)e ≡ D VTW (dv̂1e, . . . , dv̂2e)
dΛA. v̂e ≡ λA. dv̂e

A program integer n is mapped to the corresponding Coq integer. If x is a
non-polymorphic variable, then it is simply mapped to itself. However, if x is a
polymorphic variable applied to some types T , then this occurrence is translated
as the iterated application of x to the translation of each of the types from the
list T . A program data constructor D is mapped to the corresponding Coq in-
ductive constructor. Polymorphic data constructors, like polymorphic variables,

15

need to be applied to the appropriate lists of types. The primitive functions for
manipulating references (e.g., get) are mapped to corresponding abstract Coq
values of type Func.

The decoding of a polymorphic value ΛA.v̂ is a Coq function that expects the
types A and returns the decoding of the value v̂. For example, the polymorphic
pair (nil, nil) has type �∀A.∀B. listA× listB�. The Coq translation of this value is
�fun (A B : Type) => (@nil A, @nil B)�, where the pre�x @ indicates that
type arguments are given explicitly.

3.4 Heap predicates

The semantics of a source program involves a memory store, which is a �nite
map from locations to program values. We represent the memory store in Coq
as a heap data structure. In what follows, we describe the formalization in Coq
of heaps and of heap predicates in the style of Separation Logic.

The type Heap is de�ned in Coq as the type of �nite maps from locations to
dependent pairs, where a dependent pair is a pair made of a Coq type T and of
a Coq value V of type T . With this de�nition and the notion of exotic values
de�ned further on (�4.3), we are able to establish a bijection between the set of
well-typed memory stores and the set Coq values of type Heap.

We de�ne operations on heaps in terms of operations on maps. The empty
heap, written ∅, is de�ned as the empty map. A singleton heap, written l→T V ,
is de�ned as a singleton map that binds a location l to a dependent pair made of
a type T and a value V of type T . We say that two heaps are disjoint, written
h1 ⊥ h2, when their underlying maps have disjoint domains. We de�ne the union
of two heaps, written h1 + h2, as the union of the two underlying �nite maps.
Note that we are only concerned with disjoint unions here, so we do not need
to specify the behavior of the union operator on two maps with overlapping
domains.

Using these basic operations on heaps, we de�ne predicates for specifying
heaps in the style of Separation Logic, as is done for example in Ynot [11].
Heap predicates are predicates over values of type Heap, so they have the type
Heap→ Prop, which we abbreviate as Hprop. A singleton heap that binds a non-
null location l to a value V of type T is characterized by the predicate l 7→T V .
This predicate is de�ned as λh. l 6= null ∧ h = (l →T V). The heap predicate
H1 ∗H2 holds of a disjoint union of a heap satisfying H1 and of a heap satisfying
H2. It is formally de�ned as follows.

H1 ∗H2 ≡ λh. ∃h1h2. h1 ⊥ h2 ∧ h = h1 + h2 ∧ H1 h1 ∧ H2 h2

We lift propositions to the world of heap predicates by de�ning the predicate
[P] to describe an empty heap and carry the information that the proposition P
is true. Formally, we de�ne [P] as λh. P ∧ (h = ∅). We abbreviate [True] as [].
We also lift existential quanti�ers: ∃∃x.H holds of a heap h if there exists a value
x such that H holds of that heap. The formal de�nition of existential quanti�ers

16

properly handles binders: ∃∃x.H is in fact a notation for hexists (λx.H), where
hexists is de�ned as shown below (where the �rst argument is always left implicit).

hexists (A : Type) (J : A→ Hprop) ≡ λ(h : Heap). ∃(x : A). J x h

In this work, we ignore the disjunction construct (H1 ∨ H2). Instead, to
reason about the content of a heap by case analysis, we rely on heap predicates
of the form � ifP thenH1 elseH2�, which are de�ned using the built-in conditional
construct from classical logic. We also do not make use of the non-separating
conjunction (H1 ∧H2), and do not use the conjunction rule, which can be found
other formalizations of Separation Logic. From a practical perspective, we never
felt the need for the conjunction rule and we would �nd it very hard to devise
tactics to manipulate it. From a theoretical perspective, the conjunction rule
is not needed for characteristic formulae to achieve completeness. Finally, if we
wanted to include a conjunction rule, we would need to adapt it in a nontrivial
way, otherwise it would not be compatible with garbage collection. For example,
using the garbage collection rule through the predicate local de�ned further on
(�3.6), we can prove Jref 3K [] (λr. r 7→ 3) and prove Jref 3K [] (λr. []), however
there does not exist any heap that satis�es both r 7→ 3 and [] at the same time.
For all the aforementioned reasons, we are not interested in the non-separating
conjunction (H1 ∧H2).

Two heap predicates that characterize exactly the same set of heaps can
be proved to be equal thanks to the axiom of predicate extensionality, which
we assume in our work. Predicate extensionality asserts that the implication
(∀x. P x⇔ Qx)⇒ (P = Q) holds for any predicates P and Q.2 Using predicate
extensionality, we can show that heap predicates form a commutative monoid,
and that existential quanti�ers commute with the star operation under appro-
priate freshness conditions. These properties are formalized as follows.

neutral: H ∗ [] = H

commutativity: H1 ∗H2 = H2 ∗H1

associativity: (H1 ∗H2) ∗H3 = H1 ∗ (H2 ∗H3)

scope extrusion: (∃∃x.H1) ∗H2 = ∃∃x. (H1 ∗H2) when x /∈ fv(H2)

3.5 Heap entailment relation

To de�ne characteristic formulae, we need to use a heap entailment relation. This
relation, written H1 B H2, asserts that any heap satisfying H1 also satis�es H2.
It is formally de�ned as ∀h.H1 h⇒ H2 h. By extension, we de�ne the entailment
relation for post-conditions, written Q1 I Q2, and de�ned as ∀x. Q1 x B Q2 x.

2 Predicate extensionality, instead of being taken as an axiom, may also be derived
from two lower-level axioms: (1) functional extensionality, which asserts that, for
any functions f and g, we have (∀x. f x = g x) ⇒ (f = g), and (2) propositional
extensionality, which asserts that, for any propositions P and Q, we have (P ⇔
Q)⇒ (P = Q).

17

Heap entailment yields a partial order on heap predicates. Moreover, heap
entailment is regular with respect to the star operator.

reflexivity: H B H

transitivity: H1 B H2 ∧ H2 B H3 ⇒ H1 B H3

antisymmetry: H1 B H2 ∧ H2 B H1 ⇒ H1 = H2

regularity: H1 B H2 ∧ H ′
1 B H

′
2 ⇒ H1 ∗H ′

1 B H2 ∗H ′
2

The regularity property is typically exploited to cancel out a same heap predicate
from both sides of a heap entailment relation. For example, using regularity

and reflexivity we can easily show that in order to prove H1 ∗ H2 ∗ H3 B
H4 ∗ H2 ∗ H5, we may cancel out H2 from both sides: it is su�cient to prove
H1 ∗H3 B H4 ∗H5.

Furthermore, we need lemmas to extract and instantiate existential quanti-
�ers and pure facts from both sides of a heap entailment relating a source and a
target heap. These lemmas are shown below (omitting the classic freshness side
conditions) and explained next.

exists-left: (∀x. (H1 B H2)) ⇒ (∃∃x.H1) B H2

prop-left: (P ⇒ (H1 B H2)) ⇒ ([P] ∗H1) B H2

exists-right: H1 B ([x→ v]H2) ⇒ H1 B (∃∃x.H2)

prop-right: (H1 B H2) ∧ P ⇒ H1 B (H2 ∗ [P])

The lemma extract-exists-left allows to extract an existential quanti�er
packed in the source heap; this existential quanti�er, by contra-variance becomes
a universal quanti�er outside of the judgment; extract-prop-left allows to
extract an assumption about the source heap and to add this assumption to
the current proof context; extract-exists-right allows to instantiate an ex-
istential quanti�er in front of the target heap with a particular value; extract-
prop-right allows to provide a proof of a pure fact attached to the target
heap.

All these de�nitions are formalized in Coq and are usually exploited auto-
matically by tactics. For example, to prove ∃∃k. (r 7→ 4k) B ∃∃n. (r 7→ n)∗[evenn],
our tactic �rst applies the rule extract-exists-left to consider an arbitrary k
and introduce it in the proof context. It applies the rule extract-exists-right
to instantiate n with a fresh Coq uni�cation variable, call it N . It applies the
rule extract-prop-right. It then solves the goal (r 7→ 4k) B (r 7→ N) by
reflexivity, instantiating N with 4k in the process. It then leaves the goal
even (4k) for the user to discharge (possibly using another automated tactic).

Note that the reasoning about heap involved for manipulating characteristic
formulae never requires manipulating values of type Heap directly: the reasoning
exclusively takes place at the level of heap predicates, in terms of the heap
entailment relation.

Remark: the Separation Logic that we use here is not intuitionist: in general,
the entailment H1 ∗ H2 B H1 is false. In our work, garbage collection is taken

18

care of at the level of characteristic formulae with an explicit quanti�cation over
pieces of heap to be discarded.

3.6 Local formulae

In the introduction, we suggested how to de�ne the predicate transformer � local�
to account for applications of the frame rule. We now present a more general
de�nition of this predicate, which also accounts for the rule of consequence and
for the rule of garbage collection, and that supports the extraction of propositions
and existentially-quanti�ed variables from pre-conditions.

The de�nition of localF H Q, where F is a formula of the type Hprop→ (A→
Hprop) → Prop, consists of generalizing the de�nition given in the introduction
in order to add the possibility for strengthening the pre-condition, weakening
the post-condition, and performing garbage collection. Let H and Q describe
the initial and the �nal heap, H1 and Q1 describe the portions of H and Q with
which the formula F is concerned, let H2 correspond to the part of the heap
that is being framed out, and H3 correspond to the part of the heap that gets
garbage-collected at the logical level. A �rst attempt at the de�nition of local is
as follows.

local′ F H Q ≡ ∃H1H2H3Q1. H B H1 ∗H2 ∧ F H1Q1 ∧ Q1 ? H2 I Q ? H3

Yet, this de�nition is not strong enough to support the extraction of proposi-
tions and of existentially-quanti�ed variables from pre-conditions (lemmas extract-
prop and extract-exists stated further on). To support them, we need to
explicitly quantify over the input heap. The appropriate de�nition is as follows.

localF ≡ λH Q. ∀h. H h ⇒ ∃H1H2H3Q1.
(H1 ∗H2)h ∧ F H1Q1 ∧ Q1 ? H2 I Q ? H3

Note that the de�nition of the predicate local shows some similarities with the
de�nition of the �STsep� monad from Hoare Type Theory [36], in the sense that
both aim at baking the Separation Logic frame condition into a system originally
de�ned in terms of heaps describing the whole memory.

We can prove that the predicate local may safely be discarded during reason-
ing, in the sense that �F H Q� is a su�cient condition for proving � localF H Q�.
Another useful property of the predicate local is its idempotence: for any predi-
cate F , the predicate � localF� is equivalent to the predicate � local (localF)�. In
order to conveniently exploit the idempotence property, we introduce a predicate,
called islocalF , which asserts that the predicate F is extensionally equivalent to
� localF�.

islocalF ≡ (F = localF)

A formula satisfying islocal is called a local formula. As expected, we can
prove that � islocal (localF)� is true for any predicate F of the appropriate type.
In particular, a characteristic formula is always a local formula. The interest of
introducing the predicates islocal is that it conveniently allows us to apply any

19

Jv̂K ≡ local (λHQ. H B Q dv̂e)
Jv̂1 v̂2K ≡ local (λHQ. App dv̂1e dv̂2eH Q)

Jletx = t̂1 in t̂2K ≡ local (λHQ. ∃Q′. Jt̂1KH Q′ ∧ ∀x. Jt̂2K (Q′ x)Q)

Jt̂1 ; t̂2K ≡ local (λHQ. ∃Q′. Jt̂1KH Q′ ∧ Jt̂2K (Q′ tt)Q)

Jlet rec f = ΛA.λx.t̂1 in t̂2K ≡ local (λHQ. ∀f. H ⇒ Jt̂2KH Q)

with H ≡ ∀AxH ′Q′. Jt̂1KH ′Q′ ⇒ App f xH ′Q′

Jletx = ΛA. v̂ in t̂K ≡ local (λHQ. ∀x. x = λA.dv̂e ⇒ Jt̂KH Q)

Jassert falseK ≡ local (λHQ. False)

Jassert t̂K ≡ local (λHQ. Jt̂KH (λx. [x = true] ∗H) ∧ H B Q tt)

Jif v̂ then t̂1 else t̂2K ≡ local (λHQ. (dv̂e = true ⇒ Jt̂1KH Q)

∧ (dv̂e = false ⇒ Jt̂2KH Q))

Jmatch v̂with ∅K ≡ local (λHQ. False)

Jmatch v̂with p̂ 7→ t̂ | b̂K ≡ local (λHQ.
(
∀x. dv̂e = dp̂e ⇒ Jt̂KH Q

)
∧
(
(∀x. dve 6= dp̂e) ⇒ Jmatch v̂with b̂KH Q

)
where x are the free variables of p̂.

Fig. 2. Generation of characteristic formulae.

of the reasoning rules, an arbitrary number of times, and in any order. When
reasoning about characteristic formulae, we never unfold the de�nition of local or
islocal, but instead systematically use one of the high-level lemmas shown below.

frame: islocalF ∧ F H Q ⇒ F (H ∗H ′) (Q ? H ′)

gc-pre: islocalF ∧ F H Q ⇒ F (H ∗H ′)Q

gc-post: islocalF ∧ F H (Q ? H ′) ⇒ F H Q

consequence-pre: islocalF ∧ F H Q ∧ H ′ B H ⇒ F H ′Q

consequence-post: islocalF ∧ F H Q ∧ Q I Q′ ⇒ F H Q′

extract-prop: islocalF ∧ (P ⇒ F H Q) ⇒ F ([P] ∗H)Q

extract-exists: islocalF ∧ (∀x. F H Q) ⇒ F (∃∃x.H)Q

Note that the predicate islocal also plays a key role in the characteristic
formulae of for-loops and while-loops, as we will see in �3.10.

3.7 Construction of characteristic formulae

The characteristic formula of a typed term t̂ is written Jt̂K. If t̂ admits the weak-
ML type T , then the formula Jt̂K has type Hprop → (VTW → Hprop) → Prop,
where Hprop stands for Heap → Prop. The rules for constructing characteristic
formulae appear in Figure 2. Observe that every de�nition starts with an appli-
cation of the predicate local, and that all the Caml values are translated into
Coq values using the decoding operator dv̂e.

20

The �rst rule from Figure 2 states that a value v admits a pre-condition H
and a post-condition Q if the current heap H, also satis�es the predicate Q dv̂e.
The same rule applies in particular to variables. The treatment of applications,
function de�nitions, sequences and let-bindings has already been explained in
the introduction.

A polymorphic function is written � let rec f = ΛA.λx.t̂1�, where A denotes
the list of type variables involved in the type-checking of the body of the function.
The type variables from the list A are quanti�ed in the hypothesis H provided
by the characteristic formula for reasoning about the body of the function. Here
again, the type variables are assigned the kind Type in Coq. Recall that, in weak-
ML, a polymorphic function admits the type func, just like any other function.
So, the variable f involved in the characteristic formula admits in Coq the type
Func.

Consider now a polymorphic let-binding of the form � letx = ΛA. v̂ in t̂�, where
v̂ is a polymorphic value with free type variables A. If v̂ has type T , then the
program variable x has type ∀A.T . The characteristic formula associated with
this let-binding quanti�es over a Coq variable x of type ∀A.VTW, and provides the
assumption that x is the Coq value that corresponds to the program value v̂. This
assumption is stated through an extensional equality, written x = λA.dv̂e. This
equality implies that, for any list of weak-ML types U , the iterated application
of x to the types from the list VUW yields the Coq value that corresponds to the
program value [A→ U] v̂.

For assertions, we �rst consider the particular case of �assert false�. The char-
acteristic formula for such a term requires the programmer to prove that the
corresponding point in the code can never be reached. This task is equivalent to
proving that the set of assumptions accumulated before reaching the �assert false�
contains a logical inconsistency, i.e., that False is derivable. For the more general
form �assert t̂�, the characteristic formula requires the term t̂ to evaluate to true
and to not change the heap in any visible way. Indeed, it is a desirable property
that the program remains correct even if we disable the execution of assertions
at runtime. Note that this requirement does not preclude the possibility for t̂
to perform side-e�ects, as long as these e�ects do not alter the execution of the
rest of the program.

The characteristic formula for conditionals asserts that, in order to prove
that � if v̂ then t̂1 else t̂2� admits a particular speci�cation, we need to prove that
t̂1 admits this speci�cation when v̂ is true and that t̂2 admits this same speci�ca-
tion when v̂ is false. The characteristic formulae for pattern matching generalize
that of conditionals. Consider a pattern matching whose �rst branch is of the
form p̂ 7→ t̂, that is, it involves a pattern p̂ and a body t̂. The characteristic
formula is made of a conjunction of two propositions, corresponding to the two
possible cases. On the one hand, if the value v̂ being matched is equal to some
instantiation of the pattern p̂, then we evaluate the body of the branch, t̂, with
the pattern variable appropriately instantiated. On the other hand, if the argu-
ment v̂ of the pattern matching does not match the pattern p̂, then we consider
the characteristic formula of the remaining clauses.

21

A pattern matching with no branch left is equivalent to �assert false�. In the
particular case where the pattern matching can be proved to be exhaustive (e.g.,
by the exhaustivity procedure implemented in the Caml compiler), we know that
one of the branches must match, so we may safely replace local (λHQ. False).
with local (λHQ. True). Such a change saves the need for the user to prove
interactively the exhaustiveness of the pattern matching.

Note that the characteristic formula for pattern matching involves an auxil-
iary operation for decoding patterns, written dp̂e. This operation maps a well-
typed pattern p̂ of weak-ML type T towards the corresponding Coq value of
type VTW, by replacing all data constructors with their logical counterpart.
Note also that the recursive treatment of pattern matching de�ned in Fig-
ure 2 leads to the duplication of the value dv̂e, possibly making the size of
the formula grow non-linearly. To avoid this duplication, whenever the argu-
ment v̂ of the pattern matching is not reduced to a variable or to a trivial value,
we transform the pattern matching from the form �match v̂with b̂� to the form
� letx = v̂ inmatchxwith b̂� before computing the characteristic formula.

This completes the description of Figure 2. The treatment of mutually-
recursive functions is a straightforward generalization; it can be found in the
author's dissertation [8]. The characteristic formulae for loops are explained in
the next section.

For each construction of the programming language, we set up a Coq nota-
tion for pretty-printing the characteristic formula in a way that resembles the
source code. We have already explained in �2.2 how to pretty-print formulae
for sequences and let-bindings. We show below additional examples concerning
values, applications, function de�nitions and pattern matching.

(ret V) ≡ local (λHQ. H B QV)

(app V1 V2) ≡ local (λHQ. AppV1V2HQ)

(let recf = (funAx := F1) in F2) ≡ local (λHQ.
∀f. (∀AxH ′Q′. F1H

′Q′ ⇒ App f xH ′Q′) ⇒ F2H Q)

(case V is V ′ vars X then F1 else F2) ≡ local (λHQ.
(∀X. V = V ′ ⇒ F1 P) ∧ ((∀X. V 6= V ′) ⇒ F2 P))

3.8 Speci�cation of primitive functions

We give below the speci�cation of the primitive functions for manipulating ref-
erences. All these functions are re�ected in Coq as abstract values of type Func.
Below, v has type A, v′ has type A′, and r and r′ have type Loc. Observe that
the speci�cation of set allows for strong updates, that is, for changes in the type
of the content of a reference cell.

∀Av. App ref v [] (λr. r 7→A v)

∀Ar v. App get r (r 7→A v) (λx. [x = v] ∗ r 7→A v)

∀AA′ r v v′. App set (r, v) (r 7→A′ v′) (λ_. r 7→A v)

∀r r′. App cmp (r, r′) [] (λx. [x = true⇔ r = r′])

22

3.9 Treatment of n-ary functions

The treatment of functions that expects several arguments depend on how such
functions are represented in the programming language, and on whether partial
applications are supported. There are three main cases.

First, consider the case of a language with n-ary applications: functions are
applied to list of arguments, in the form f(v1, ..., vn). In this case, we generalize
the predicate �AppF V H Q� to the n-ary form �Appn F V1 ... VnH Q�, and then
use this predicate directly in characteristic formulae and speci�cations.

Second, consider the case of a ML-style language where the user is encouraged
to tuple the arguments: an application takes the form of a function being applied
to a single value that happens to be a tuple, i.e. f (v1, ..., vn). In this case, we
can specify functions using the predicate App. We de�ne �Appn F V1 ... VnH Q�
simply as a convenient notation for the predicate �AppF (V1, ..., Vn)H Q�. In
this setting, it remains possible (although cumbersome) to reason about curried
functions, by explicitly describing their behavior. For example, the speci�cation
of a curried function of two arguments asserts that the application of this function
to a �rst argument returns a function that still expects one more argument.

Third, consider the case of a language with curried functions such as Caml.
Function calls take the form form f v1 ... vn. Curried functions are delicate to rea-
son about due to the possibility for partial applications and over applications.
In particular, we need lemmas and tactics to handle the case where a function
speci�ed as curried function of n arguments is being applied to m arguments,
possibly with n 6= m. Of course, all these lemmas should be applied automati-
cally, so that reasoning about applications be as smooth as possible for the user.
To achieve this, we have developed in CFML a predicate that captures the fact
that a function is curried and that all its partial applications terminate. When
we use this predicate to specify a function, we are able to automatically derive
the speci�cation of a regular, partial or over application of this function. Details
can be found in [8].

If we were able to design the programming language, we would try to simplify
as much as possible the reasoning about applications. We would avoid curried
functions and opt for a built-in construct for n-ary applications, of the form
f(v1, ..., vn). To support partial applications, we would allow the arguments of a
function to be underscore symbols, to indicate that these arguments should be
re-abstracted on the �y.

3.10 Characteristic formulae for loops

Loops can be encoded as recursive functions. So, from a theoretical perspective,
we do note need to give speci�c characteristic formulae for loops. That said, loops
admit direct characteristic formulae whose use greatly shortens veri�cation proof
scripts. To understand the characteristic formula of a while loop, it is useful to
�rst study an example.

Consider the term �while (get r > 0) do (decr r ; incr s)�, and call this term t.
Let us prove that, for any non-negative integer n and any integer m, the term t

23

admits the pre-condition �(r 7→ n) ∗ (s 7→ m)� and the post-condition �λ_. (r 7→
0) ∗ (s 7→ m+n)�. We can prove this statement by induction on n. According to
the semantics of a while loop, the term t admits the same semantics as the term
� if (get r > 0) then (decr r ; incr s ; t) else tt�. If the content of r is zero, then n is
equal to zero, and it is straightforward to check that the pre-condition matches
the post-condition. Otherwise, the decrement function and increment function
are called, so the state after their execution is described as �(r 7→ n− 1) ∗ (s 7→
m + 1)�. At this point, we need to reason about the subsequent iterations of
the loop. To that end, we invoke the induction hypothesis, which asserts that
the term t, under the pre-condition �(r 7→ n − 1) ∗ (s 7→ m + 1)�, admits the
post-condition �λ_. (r 7→ 0) ∗ (s 7→ (m+ 1) + (n− 1))�. The latter matches the
required post-condition, that is, �λ_. (r 7→ 0) ∗ (s 7→ m+ n)�.

This example illustrates how the reasoning about a while loop is equiva-
lent to the reasoning about a conditional whose �rst branch ends with a call to
the same while loop. The characteristic formula of �while t1 do t2� builds upon
this idea. It involves a quanti�cation over an abstract variable R, which de-
notes the semantics of the while loop, in the sense that RH ′Q′ holds if and
only if the loop admits H ′ as pre-condition and Q′ as post-condition. The main
assumption provided about R states that, in order to establish the proposi-
tion RH ′Q′ for a particular H ′ and Q′, it su�ces to prove that the term
� if t1 then (t2 ; while t1 do t2) else tt� admits H ′ as pre-condition and Q′ as post-
condition. This latter statement is expressed with help of the pieces of notation
introduced for pretty-printing characteristic formulae. The characteristic formula
for while loops is therefore as shown below �the role of the hypothesis � islocalR�
is explained afterwards.

Jwhile t̂1 do t̂2K ≡ local (λHQ. ∀R. islocalR ∧ H ⇒ RH Q)

with H ≡ ∀H ′Q′. (if Jt̂1K then (Jt̂2K ;R) else ret tt)H ′Q′ ⇒ RH ′Q′

With the characteristic formula shown above, the veri�cation of a while-loop
can be conducted by induction on any well-founded relation. We also provide in
CFML tactics to address the typical case where the proof is conducted using a
loop invariant and a termination measure.

The hypothesis � islocalR� re�ects the fact that the predicate R supports ap-
plication of the frame rule as if it were a characteristic formula. For example, this
assumption would be useful for reasoning about the traversal of an imperative
list using a while-loop. At every iteration of such a loop, one cell is traversed.
This cell may be framed out from the reasoning about the subsequent iterations,
thanks to the assumption � islocalR�. Such an application of the frame rule makes
it possible to verify a list traversal using only the simple list representation pred-
icate, avoiding the need to involve the list-segment representation predicate. A
similar observation about the usefulness of applying the frame rule during the
execution of a loop was also made by Tuerk [45].

The characteristic formula of a for-loop is somewhat similar to that of a
while-loop. The main di�erence is that the predicate R is replaced with a predi-
cate S which takes as extra argument the current value of the loop counter. The

24

de�nition is as follows.

Jfor i = v̂1 to v̂2 do t̂K ≡ local (λHQ. ∀S. (∀i. islocal (S i)) ∧H ⇒ S dv̂1eH Q)

withH ≡ ∀iH ′Q′.(if i ≤ dv̂2e then (Jt̂K ;S (i+ 1)) else ret tt)H ′Q′ ⇒ S iH ′Q′

4 Soundness and completeness

4.1 Soundness theorem

The soundness theorem states that if the characteristic formula of a program
holds of some speci�cation, then this program indeed satis�es that speci�cation.
More precisely, if the characteristic formula of a term t holds of a pre-conditionH
and a post-condition Q, then the execution of t, starting from an initial state h0
satisfying the pre-condition H, terminates and produces a value v in a �nal
state hf such that the post-condition Q holds of v and hf . We write t̂/h0

⇓
v̂/hf

the evaluation judgment involved here. The formal statement shown below
also takes into account the fact the �nal heap may contain values that have
been subject to the garbage-collection reasoning rule. These values are gathered
in a sub-heap called hg. In other words, hf + hg corresponds to the full �nal
heap, possibly including values that are unreachable from the perspective of the
garbage collector.

Theorem 1 (Soundness). Let t̂ be a well-typed, closed weak-ML term. Let H
be a pre-condition, Q a post-condition, and h0 be a heap.

J t̂ K H Q ∧ H h0 ⇒ ∃v̂ hf hg. t̂/h0
⇓ v̂/(hf+hg) ∧ Q dv̂e hf

Above, H has type �Heap → Prop� and Q has type �VTW → Heap → Prop�,
where T is the weak-ML type of t̂.

The proof of the soundness theorem is conducted on a slightly more general
statement, which takes into account the fact that, due to the possible application
of the frame rule, the pre-condition H may describe only some portion of the
entire heap h0. We thus decompose the heap h0 in two disjoint parts: hi, which
corresponds to the part covered by the pre-condition, and hk, which corresponds
to the part that has been framed out. The disjointness of these two heaps is
written hi ⊥ hk. Note that the heap hk remains una�ected during the evaluation
of the term. The generalized statement of soundness is stated using an auxiliary
predicate called sound, as follows.

∀t̂ H Q. J t̂ KH Q ⇒ sound t̂HQ

where

sound t̂HQ ≡ ∀hi hk.
ß
hi ⊥ hk
H hi

⇒ ∃v̂ hf hg.

hf ⊥ hg ⊥ hk
t̂/(hi+hk) ⇓ v̂/(hf+hg+hk)

Q dv̂e hf

One important aspect of the soundness proof is the realization of the abstract
type Func and of the abstract predicate App. For these realizations, we refer to

25

a deep embedding of the source programming language in Coq, that is, a de-
scription of the syntax and the semantics of the source language using inductive
de�nitions. Let well-typed-closure be a predicate that characterizes values of the
form µf.ΛA.λx.t̂ that are well-typed in weak-ML. The type Func is constructed
as dependent pairs made of (the deep embedding of) a value v̂ and of a proof
that v̂ satis�es the predicate well-typed-closure.

Func ≡ Σv̂(well-typed-closure v̂)

For the purpose of the proof, we also extend the decoding operation to weak-
ML values of type func, which are mapped to Coq values of type Func. More
precisely, a weak-ML closure is mapped to a dependent pair made of (the deep
embedding of) this closure and a proof that this closure is well-typed. Formally:

dµf.ΛA.λx.t̂e ≡ (µf.ΛA.λx.t̂, H) : Func

where H is a proof of �well-typed-closure (µf.ΛA.λx.t̂)�

The realization of the predicate AppF V H Q asserts that F and V corre-
spond to the decoding of a weak-ML function f̂ and a weak-ML value v̂ such
that the application of the f̂ to v̂ yields a term that admits the pre-condition H
and the post-condition Q in the sense of the predicate sound.

AppF V H Q ≡ ∃f̂ v̂. F = df̂e ∧ V = dv̂e ∧ sound (f̂ v̂)H Q

The realizations of Func and App play a key role in the justi�cation of the
soundness of characteristic formulae for function de�nitions and function appli-
cations. In summary, even though characteristic formulae support reasoning on
programs without involving at any time the deep embedding of the source lan-
guage in the logic, the justi�cation of the soundness of characteristic formulae
critically relies on such a deep embedding.

4.2 Completeness theorem

The completeness theorem is a reciprocal to the soundness theorem. It asserts
that if a program admits a given speci�cation, then it is possible to establish this
speci�cation using only characteristic formulae. This completeness statement is,
of course, relative to the expressive power of the logic of Coq. More precisely, the
statement of completeness asserts that if we are able to establish, with respect to
a deep embedding of the source language in Coq, that a given program terminates
and produces a value satisfying a given post-condition, then we are able to prove
in Coq that the characteristic formula of this program holds of the post-condition
considered.

The general statement of the completeness theorem involves a number of
auxiliary de�nitions, such as the notion of the most-general speci�cation of a
value and of a heap, and the notion of typed reduction. We refer to [8] for
these de�nitions. In the present paper, we only describe a specialized version
of the completeness theorem that covers the case of an ML program producing

26

an integer result. This simpli�ed statement reads as follows: if t is a closed ML
program whose execution produces an integer n, then the characteristic formula
of t holds of a pre-condition that characterizes the empty heap and of a post-
condition asserting that the output value is exactly equal to n.

Theorem 2 (Completeness �particular case). Let t be a closed ML term,

let n be an integer and let h be a memory state. Then,

t/∅ ⇓ n/h ⇒ J t̂ K [] (λx. [x = n])

The completeness theorem is relative to the expressive power of Coq because the
hypothesis t/∅ ⇓ n/h corresponds to a proof in Coq about the semantics of the
term t with respect to the deep embedding of the source language.

The proofs of the soundness and completeness theorems are quite involved.
They amounts to about 30 pages of the author's PhD dissertation [8]. In addition
to those paper-and-pencil proofs, we have also considered a simple imperative
programming language (including while loops but no functions) and mechanized
the theory of characteristic formulae for this language. More precisely, we formal-
ized the syntax and semantics of this language, de�ned a characteristic formula
generator for it, and then proved in Coq that the formulae produced by this
generator are both sound and complete.

4.3 Quanti�cation of type variables

To re�ect in characteristic formulae the polymorphism occurring in source pro-
grams, we have introduced Coq type variables with the kind Type. (In Coq, kind
is just a synonymous for type.) The Coq expert might feel sceptical about the
correctness of the use of Type. Indeed, since a weak-ML type variable is intended
to be instantiated with a weak-ML type, the corresponding Coq type variable
occurring in a characteristic formula should presumably only be instantiated
with a Coq type that corresponds to the translation of a weak-ML type, that is,
a Coq type of the form VTW.

Thus, it seems that we ought to assign type variables the sort RType, de-
�ned as the set of all Coq types that belong to the image of V·W, that is
{T : Type | ∃T.T = VTW }. In practice, we could provide RType as an ab-
stract de�nition, since the fact that types correspond to re�ected types needs
not be exploited in proofs. Nevertheless, we found it more convenient to assign
type variables the sort Type instead of RType, because Type is the default kind in
Coq. Justifying that this change does not harm the soundness of characteristic
formulae is not so straightforward. We explain below the key ideas involved in
the proof.

Intuitively, a polymorphic program function cannot inspect its argument in
any way. Therefore, the value passed as argument to a polymorphic function
does not have to be a Caml value strictly speaking: it could be any object. In
particular, a polymorphic function could perfectly well manipulate a Coq value
that does not correspond to any regular program value. We need to formalize
this intuition in order to prove the soundness of the use of Type instead of RType.

27

To that end, we introduce the notion of exotic values. Exotic values are used
to embed in the source language the Coq values that do not correspond to the
decoding of any regular Caml value. We write exoTV an exotic value that carries
a Coq value V of type T (T denotes a Coq type). We extend the type system
accordingly. We let ExoticT denote the weak-ML type of an exotic value that
carries a Coq value of type T.

v̂ := . . . | exoTV
T := . . . | ExoticT

Note that a program never creates an exotic value: exotic values are only used
to justify that it is correct to replace RType with the strictly-larger kind Type.

With these exotic values, we can hope to extend the decoding operation d·e
and use it to set up a bijection between the set of all typed weak-ML values
and the set of all Coq values. Yet, in order to set up such a bijection, we need
to carefully handle what we call �semi-exotic values�. For example, consider two
Coq propositions P1 and P2, and consider the value exo (Prop× Prop) (P1,P2),
which is an exotic value that carries a Coq pair of two propositions, and the
value (exoPropP1, exoPropP2), which is a Caml pair made of two exotic values
each of them carrying a proposition. Both these values correspond to the same
Coq value, that is, the Coq pair (P1,P2). This example shows that it is not
obvious to obtain a bijection.

In order to obtain a bijection, we restrict exotic values to only carry Coq
values whose head constructor does not match any constructor of a Caml value.
To formalize this idea, we introduce the notion of exotic Coq type. A Coq type T
is said to be exotic, written � is-exoticT�, if the head constructor of T does not
correspond to a type constructor that exists in weak-ML. The corresponding
formal de�nition appears below, where C denotes the set of type constructors
introduced through algebraic data type de�nitions.

is-exoticT ≡ T 6= Z ∧ T 6= Loc ∧ T 6= Func

∧ (∀C ∈ C . ∀T′. T 6= C T′)
∧ (∀T′. T 6= ∀(A : Type).T′)

We then consider a typing rule asserting that an exotic value �exoTV � admits
the weak-ML type �ExoticT� if and only if is-exoticT is true.

We extend the translation of weak-ML types and values into Coq in the
obvious manner: the weak-ML type ExoticT is mapped to the Coq type T and
an exotic value carrying a value V is mapped to the Coq value V .

VExoticTW ≡ T
dexoTV e ≡ V

´
when � is-exoticT� holds

Under these extended de�nitions, we have proved in [8] that the operator
V·W yields a bijection between the set of all weak-ML types and the set of all
Coq values that admit the type Type, and that the decoding operator d·e yields
a bijection between the set of all typed weak-ML values and the set of all Coq

28

values. In particular, it follows that for every Coq type T, there exists a unique
weak-ML type T such that T = VTW. Therefore, when weak-ML includes exotic
values, the sort RType, which is de�ned as {T : Type | ∃T.T = VTW }, is identical
to the sort Type. This observation justi�es the assignment of the sort Type to
type variables in characteristic formulae.

5 Examples

In this section, we describe six examples. The �rst one shows how to reason about
a simple recursive function that performs side e�ects. The second one illustrates,
using Dijsktra's shortest path algorithm, how CFML supports the reasoning
about modular code involving complex invariants. The other four examples focus
on particularly delicate programs involving imperative �rst-class functions. More
precisely, we describe the formalization of: (1) a counter function with an abstract
local state, (2) Reynold's CPS-append function, (3) an iterator on imperative
lists, and (4) the generic operator compose.

To describe abstract data types in CFML, we rely on representation predi-
cates. The formula v RV is a heap predicate that relates the mutable data
structure found at location v with the mathematical value V that it represents.
Here, R is a representation predicate: it characterizes the relationship between
v, V and the piece of memory state spanned by the data structure under consid-
eration. The predicate v RV is simply de�ned as RV v, where R can be any
predicate of type A→ B → Hprop. This section contains examples of de�nition
and use of representation predicates.

5.1 A simple recursive function

Consider the recursive function f , shown below. It adds n to the content of a
reference cell r by recursively incrementing this reference.

let rec f r n = if (n = 0) then (incr r ; f r (n− 1))

Observe that the function enters an in�nite loop when n < 0.
The function f can be speci�ed in CFML as follows.

∀rna. n ≥ 0 ⇒ App2 f r n (r 7→ a) (λ_. r 7→ (a+ n))

Observe that the behavior of the function remains unspeci�ed when n < 0. Note
also that we have chosen to place the pure fact n ≥ 0 outside of the App predi-
cate. This presentation is more practical, because pure facts can be immediately
pushed to the proof context. That said, the formulation App2 f r n ([n ≥ 0]∗(r 7→
a)) (λ_. r 7→ (a+ n)) would be logically equivalent.

The speci�cation above can be proved by induction on n. On the one hand,
when n = 0, the code returns the unit value. According to the de�nition of
characteristic formula for values, we need to prove the heap implication (r 7→
a) B (λ_. r 7→ (a + n)) tt . We can check that it is valid using the fact that

29

n is equal to zero. On the other hand, when n > 0, we have to show that,
starting from the state r 7→ a, the body of the conditional produces the state
r 7→ (a+n). The �rst instruction from the body of the condition is the increment
of r, which takes the state from r 7→ a to r 7→ (a+1). The second instruction is
the recursive call to f , for which we can invoke the induction hypothesis. This
induction hypothesis, with n instantiated as n− 1 (the premise n− 1 ≥ 0 holds
because here n > 0) and with a instantiated as a+ 1, asserts that the recursive
call to f transforms the state from r 7→ (a+1), to r 7→ ((a+1)+ (n− 1)). After
simpli�cation, the latter corresponds to the expected �nal state r 7→ (a + n).
This concludes the proof.

5.2 Dijkstra's shortest path

We next describe the speci�cation and veri�cation of a Dijkstra's shortest path
algorithm. The particular version that we consider uses a priority queue that does
not support the decrease-key operation. Using such a queue makes the proofs
slightly more involved, because the invariants need to account for the fact that
the queue may contain superseded values. The algorithm involves three mutable
data structures: v, an array of boolean used to mark the nodes whose edges have
already been processed (for these nodes, the best distance is already known);
b, an array of distances used to store the best known distance for every node
(distances may be in�nite); and q, a priority queue for e�ciently identifying the
next node to visit.

The Caml source code is shown in Figure 3. It is organized around a main
while-loop. Inside the loop, the higher-order function List.iter is used for travers-
ing an adjacency list. The implementation of the priority queue is left abstract:
the source code is implemented as a Caml functor (not shown in Figure 3),
whose argument corresponds to a priority queue module. Similarly, the veri�-
cation script is implemented as a Coq functor, which expects two arguments:
a module representing the implementation of the priority queue, and a module
representing the proof of correctness of that queue implementation. This strategy
allows to achieve modular veri�cation of modular code.

The speci�cation of the function dijkstra states that if g is the location of a
data structure that represents a mathematical graph G through adjacency lists,
if the edges in G all have nonnegative weight, and if x and y are indices of two
nodes from that graph, then the application of the function dijkstra to g, x and y
returns a value d that is equal to the length of the shortest path between x and
y in the graph G (d may be in�nite). The notion of shortest path is captured by
the function dist, which is provided by a Coq library on �nite graphs. Moreover,
the speci�cation asserts that the structure of the graph is not modi�ed by the
execution of the function. The speci�cation is shown below.

∀gxyG. nonnegative_edgesG ∧ x ∈ nodesG ∧ y ∈ nodesG

⇒ App3 dijkstra g x y (g GraphAdjListG)
(λd. [d = distGxy] ∗ (g GraphAdjListG))

30

In the speci�cation, the heap predicate g GraphAdjListG is used to relate a
mathematical graph G with its representation as an array of lists of pairs stored
in memory at location g. More precisely, this heap predicate asserts that the
memory stores at location g an array, which we may describe by a �nite map N
from integers to lists of pairs of integers. This array is such that x is an index in
N if and only if it is the index of a node in G, and such that a pair (y, w) belongs
to the list N(x) if and only if the graph G has an edge of weight w between the
nodes x and y. The de�nition of GraphAdjList is formalized as follows.

GraphAdjList ≡ λGg. ∃∃N. (g ArrayN)

∗[∀x. x ∈ nodesG⇔ x ∈ domN]

∗[∀x ∈ nodesG.∀yw. (x, y, w) ∈ edgesG⇔ mem(y, w)N(x)]

The invariant of the main loop of Dijkstra's algorithm, written �hinvV BQ�
describes the state of the mutable data structures in terms of three mathematical
values: V is a �nite map describing the content of the array v, B is a �nite map
describing the array b, andQ is a multiset of pairs describing the priority queue q.
We enforce several logical invariants on the values V , B and Q. These invariants
are captured by a record of propositions, written � invV BQ�. The de�nition of
this record is not shown here but, for example, the �rst �eld of this record ensures
that if V [z] contains the value true then B[z] contains exactly the length of the
shortest path between the source x and the node z in the graph G.

The heap description specifying the memory state at each iteration of the
main loop therefore takes the following form.

hinvV BQ ≡ (g GraphAdjListG) ∗ (v ArrayV)
∗ (b ArrayB) ∗ (q PqueueQ) ∗ [invV BQ]

The proof that the function dijkstra satis�es its speci�cation consists of two
parts. The �rst part is concerned with a number of mathematical theorems that
justify the method used by Dijkstra's algorithm for computing shortest paths.
This part, which amounts to 180 lines of Coq scripts, is totally independent of
characteristic formulae and would presumably be needed in any approach to pro-
gram veri�cation. The second part consists of a single theorem, whose statement
is exactly the speci�cation given earlier on, and whose purpose is to establish
that the source code correctly implements Dijkstra's algorithm. The proof of
this theorem follows the structure of the characteristic formula generated. It
therefore also follows the structure of the source code.

The beginning of the proof script for this veri�cation theorem appears in Fig-
ure 4. The script contains three kind of tactics. First, x-tactics are used to make
progress through the characteristic formula. For example, the tactic xwhile_inv
is used to provide the loop invariant and the termination relation. Here, termi-
nation is justi�ed by a lexicographical order whose �rst component is the size
of the number of node treated (this number increases from zero up to the total
number of nodes) and whose second component is the size of the priority queue.
Second, the script makes use of general-purpose Coq tactics (all those whose
name does not start with the letter �x�), used for example to name variables,

31

let dijsktra g s e =

let n = Array.length g in

let b = Array.make n Infinite in

let v = Array.make n false in

let q = Pqueue.create() in

b.(s) <- Finite 0;

Pqueue.push (s,0) q;

while not (Pqueue.is_empty q) do

let (x,dx) = Pqueue.pop q in

if not v.(x) then begin

v.(x) <- true;

let update (y,w) =

let dy = dx + w in

if (match b.(y) with | Finite d -> dy < d

| Infinite -> true)

then (b.(y) <- Finite dy;

Pqueue.push (y,dy) q)

in

List.iter update g.(x);

end;

done;

b.(e)

Fig. 3. Source code for Dijkstra's algorithm.

unfold invariants, and discharge simple side-conditions. Third, the proof script
contains invocations of the mathematical theorems justifying that the algorithm
e�ectively computes shortest paths. For example, the script contains a reference
to the lemma inv_start, which justi�es that the loop invariant holds at the �rst
iteration of the loop. Overall, the veri�cation proof contains a total of 48 lines,
including 8 lines of statement of the invariants, and Coq is able to verify the
proof in 8 seconds on a 3 GHz machine. These proofs could be discharged even
faster if we were to re-implement our tactic for simplifying heap implications
directly in Caml.

Figure 5 gives an example of a proof obligation that arises during the veri�-
cation of the function dijkstra. The set of hypotheses appears above the dashed
line. Observe that all the hypotheses are short and well-named. Their names are
provided explicitly in the proof script. Providing names is not mandatory, how-
ever it generally helps to increase readability of proof obligations and robustness
of proof scripts. The proof obligation appears below the dashed line. It consists
of a characteristic formula applied to a pre-condition and to a post-condition.
Characteristic formulae are pretty-printed in CFML using capitalized keywords
(instead of bold keywords) and the sequence operator is written �;;�.

32

xcf. introv Pos Ns De. unfold GraphAdjList at 1.

hdata_simpl. xextract as N Neg Adj. xapp. intros Ln.

rewrite <- Ln in Neg. xapps. xapps. xapps. xapps �.

xapps. set (data := fun B V Q => g �> Array N *

v �> Array V * b �> Array B * q �> Heap Q).

set (hinv := fun VQ => let '(V,Q) := VQ in Hexists B,

data B V Q * [inv G n s V B Q (crossing G s V)]).

xseq (fun _ => Hexists V, hinv (V,\)).

set (W := lexico2 (binary_map (count (= true)) (upto n))

(binary_map card (downto 0))).

xwhile_inv W hinv.

(* -- initial state satisfies the invariant -- *)

refine (ex_intro' (_,_)). unfold hinv,data. hsimpl.

applys_eq � inv_start 2. permut_simpl.

(* -- verification of the loop -- *)

intros [V Q]. unfold hinv. xextract as B Inv. xwhilebody.

...

Fig. 4. Beginning of the proof script for Dijkstra's algorithm.

5.3 Counter function

The example of the counter function illustrates the treatment of functions asso-
ciated with an abstract local state. A counter function is a function that, every
time it is called, returns the successor of the integer that it returned on the
previous call.

The function create, whose de�nition is shown below, constructs a new counter
function. It allocates a fresh reference r with initial content 0, and then builds
a function whose body increments r and returns its content.

create ≡ λ_. let r = ref 0 in (λ_. (incr r ; get r))

To specify the function create without exposing the fact that its implemen-
tation is made of a reference cell, we use a representation predicate, called Cntr.
The heap predicate �f Cntrn� asserts that f is a counter function whose last
call returned the value n. The de�nition of Cntr involves an existential quanti�-
cation over a predicate I of type � int→ Hprop� for abstracting over the internal
state. More precisely, the existential quanti�cation of I allows us to state that
a call to the counter function f takes the counter from a state �I m� to a state
�I (m + 1)� and returns the value m + 1, without revealing any details of the
implementation of this counter function.

Cntrn f ≡ ∃∃I. (I n) ∗ [∀m. App1 f tt (I m) (λx. [x = m+ 1] ∗ I (m+ 1))]

The function create is then speci�ed as producing a new counter f with
internal state 0.

App create tt [] (λf. f Cntr 0)

33

Pos : nonnegative_edges G

Ns : s \in nodes G

Ne : e \in nodes G

Neg : nodes_index G n

Adj : forall x y w : int, x \in nodes G ->

Mem (y, w) (N\(x)) = has_edge G x y w

Nx : x \in nodes G

Vx : � V\(x)

Dx : Finite dx = dist G s x

Inv : inv G n s V' B Q (new_crossing G s x L' V)

EQ : N\(x) = rev L' ++ (y, w) :: L

Ew : has_edge G x y w

Ny : y \in nodes G

__(1/6)

(Let dy := Ret (dx + w) in

Let fy := App ml_array_get b y ; in

If Match

(Case fy = Finite d [d] Then Ret (dy < d) Else

(Case fy = Infinite Then Ret true Else Done))

Then (App ml_array_set b y (Finite dy) ;) ;;

App push (y, dy) h ; Else (Ret tt))

(q �> Pqueue Q * b �> Array B *

v �> Array V' * g �> Array N)

(fun _:unit => hinv' L)

Fig. 5. A proof obligation from the veri�cation of Dijkstra's algorithm.

By unfolding the de�nition of Cntr, we are able to reason about calls to
the function produced by create. That said, we can go even further in terms of
abstraction, and present Cntr as an abstract predicate to the client. To that end,
it su�ces to provide the user with a lemma for reasoning about calls to counter
functions. This lemma, shown below, asserts that, in a state f Cntrn, a call
to f returns the value n+ 1 and updates the state to f Cntr (n+ 1).

∀fn. App f tt (f Cntrn) (λx. [x = n+ 1] ∗ f Cntr (n+ 1))

In summary, the counter function example illustrates how the abstract local
state of a function can be entirely packed into a representation predicate.

5.4 Continuations

The CPS-append function has been proposed as a veri�cation challenge by
Reynolds [43], for testing the ability to specify and reason about continuations
that are used in a nontrivial way. The CPS-append function takes as an argument
two lists x and y, as well as an initial continuation k. The function ultimately
calls the continuation k on the concatenation of this lists x and y. What makes
this function nontrivial is that it does not build the list x++y explicitly. Instead,

34

the function calls itself recursively using a di�erent continuation at every iter-
ation. The nested execution of these continuations starts from the list y and
eventually produces the list x++y. This list is then passed as an argument to the
original continuation k. The code of the CPS-append function appears below.

let rec cpsapp (x y:'a list) (k:'a list->'b) : 'b =

match x with

| [] -> k y

| v::x' -> cpsapp x' y (fun z -> k (v::z))

The CPS-append function can be speci�ed as shown below, where k has type
Func, x and y have type listA, and ++ denotes the Coq concatenation operator.

∀AxykHQ. App1 k (x++y)H Q ⇒ App3 cpsappx y kH Q

Slightly more challenging is the veri�cation of the imperative counterpart of
the CPS-append function (whose code is not shown here). It is based on the same
principle as the purely-functional version, except that x and y are now pointers
to mutable lists and that the continuations mutate pointers in the list x in order
to build the concatenation of the two lists in place. The speci�cation of this
imperative version appears below, where Mlist is the representation predicate
for mutable lists.

∀AxykLMHQ. (∀z. App1 k z (H ∗ (z Mlist (L++M)))Q)
⇒ App3 cpsapp'x y k (H ∗ (x MlistL) ∗ (y MlistM))Q

Above, the pre-condition asserts that the locations x and y (here of type Loc) cor-
respond to lists called L andM , respectively. The pre-condition also mentions an
abstract heap predicate H, which is needed because the frame rule usually does
not apply when reasoning about CPS functions. Indeed, the entire heap needs
to be passed on to the continuation3. The continuation k is ultimately called on
a location z that corresponds to the list L++M . The proof that the imperative
CPS-append function satis�es its speci�cation is conducted by induction on L.
It is only 8 lines long in Coq.

5.5 Imperative list iterator

To specify the iterator on imperative lists in a useful way, we need a generalized
version of the representation predicate for lists. So far, we have used heap predi-
cates of the form m MlistL. This predicate works well when the values stored
in the list are of some base type. However, in general, the values stored in the list
need to be described using their own representation predicate. We therefore use a
more general �parametric representation predicate�, writtenMlistofT , where T is

3 Thielecke [44] suggests that answer-type polymorphism could be used to design rea-
soning rules that would save the need for quantifying over the heap H passed on to
the continuation. However, his technique has limitations, in particular it does not
support recursion through the store.

35

the representation predicate for the elements stored in the list. For example, we
may use the heap predicate �m Mlistof CntrL� to describe a mutable list that
starts at location m and contains a list of disjoint counter functions whose inter-
nal states are described by the integer values from the Coq list L. Note that the
predicate Mlist used previously is a particular case of Mlistof : it can be obtained
by applying Mlistof to the identity representation predicate �λX. λx. [x = X]�.

We are now ready to describe the speci�cation of an higher-order iterator on
mutable lists. This iterator, called iter, is implemented using a while loop which
traverse the list until reaching a null pointer. The execution of � iter f m� results
in the function f being applied to all the values stored in the list. This execution
may result in two kind of side-e�ects. First, it may modify the values stored in
the list. Second, it may a�ect the state of other mutable data structures. Thus,
the initial state takes the form H ∗ (m MlistofT L), and the �nal state takes
the form H ′∗(m MlistofT L′), where H and H ′ are two heap descriptions and
L and L′ are two Coq lists. To introduce some abstraction, we use a predicate
called I. The intention is that the proposition I LL′HH ′ captures the fact that,
for any m, the term � iter f m� admits the pre-condition H ∗ (m MlistofT L)
and the post-condition λ_. (H ′ ∗ (m MlistofT L′)).

Two assumptions are provided for reasoning about the predicate I. The �rst
one concerns the case where the list is empty. In this case, both L and L′ are
empty, and H ′ must match H. The second assumption concerns the case where
the list is not empty. In this case, we �rst perform a call to f and then recursively
call the function iter. The initial state of the list is then of the form X :: L and
the �nal state of the form X ′ :: L′. The values X and X ′ are related by the
speci�cation of the function f . This speci�cation also relates the input state H
with an intermediate state H ′′, which corresponds to the state after the call to
f and before the recursive call to iter. The formal statement of the assumptions
about I are thus as follows.

H1 ≡ ∀H. I nil nilHH

H2 ≡ ∀XX ′LL′HH ′H ′′. (∀x. App1 f x (H ∗ x T X) (H ′′ ∗ x T X ′))
∧ I LL′H ′′H ′

⇒ I (X :: L) (X ′ :: L′)HH ′

Above, L and L′ have type listA, f has type Func, X has type A, x has type B,
and T has type A→ B → Hprop.

To establish that the term � iter f m� admits the pre-condition H ∗ (m
MlistofT L) and the post-condition λ_. H ′ ∗ (m MlistofT L′), it su�ces to
prove the proposition I LL′HH ′, where I is the abstract predicate for which
only the assumptions H1 and H2 are provided. The speci�cation of iter is thus
as follows.

∀ABTfmLL′HH ′. (∀I. H1 ∧ H2 ⇒ I LL′HH ′) ⇒
App2 iter f m (H ∗ (m MlistofT L)) (λ_. H ′ ∗ (m MlistofT L′))

To check the usability of this speci�cation, we describe an example, which
involves a list m of distinct counter functions (recall �5.3). The idea is to make

36

a call to each of these counters in order to increment their internal states. The
values returned by these calls are simply ignored. What matters here is that every
counter sees its current state incremented by one. The function steps implements
this scenario.

steps ≡ λm. iter (λf. ignore (f tt))m

The heap predicate m Mlistof CntrL asserts that the mutable list starting at
locationm contains a list of counter functions whose internal states are described
by the integer values from the Coq list L. A call to the function steps on the listm
increments the internal state of every counter, so the �nal state is described by
the heap predicate m Mlistof CntrL′, where L′ is obtained by adding one to
all the elements in L. The speci�cation of the function steps is thus as follows.

∀mL. App1 stepsm (m Mlistof CntrL) (λ_. m Mlistof Cntr (map (+1)L))

This example demonstrates the ability of CFML to formally verify the ap-
plication of a polymorphic higher-order iterator to an imperative list made of
�rst-class functions associated with abstract local state.

5.6 The composition combinator

The function compose is de�ned as λg. λf. λx. g (f x). Because this de�nition is
so short and so general, it is hard to imagine a general speci�cation for compose
shorter or more abstract that the code itself �unless making speci�c assump-
tions about f and g.

With characteristic formulae, we are able to devise a simple, most-general
speci�cation for this function. The idea is to use the characteristic formula of
its body as speci�cation. Indeed, because characteristic formulae are sound and
complete, the characteristic formula of a term is always the most-general speci�-
cation for this term. The function compose hence admits the speci�cation shown
below. (Recall that bold keywords correspond to notation for characteristic for-
mulae.)

∀HQ. (let y = app f x in app g y)H Q

⇒ App3 compose g f xH Q

The above speci�cation describes the behavior of compose when applied to
three arguments. Nevertheless, the function compose is typically applied to only
two arguments. To support this case, the speci�cation can be reformulated as
follows.

App2 compose g f [] (λk.

[∀xHQ. (let y = app f x in app g y)H Q⇒ App1 k xH Q])

In CFML, we are able to automatically derive this latter speci�cation from the
earlier one in case of a partial application. Details can be found in the author's
PhD dissertation [8].

37

6 Related work

6.1 Program logics

A program logic consists of a speci�cation language and of a set of reasoning rules
that can be used to establish that a program satis�es a speci�cation. Program
logics do not directly provide an e�ective program veri�cation tool, but they
may serve as a basis for justifying the correctness of such a tool. Hoare logic [16,
20] is probably the most well-known program logic. Separation Logic [43] is an
extension of Hoare logic that supports local reasoning. Separation Logic serves as
a basis for a number of veri�cation tools, for example Smallfoot [5]. Separation
Logic has also often been used in existing interactive proof assistants, in which
Separation Logic formulae can be de�ned as predicates over heaps, as done, e.g.,
in [30, 1, 11, 31, 34] as well as in our work.

Dynamic Logic [18] is another program logic. In this modal logic, 〈t〉 is a
modality that embeds a program t in such a way that the formula �H1 → 〈t〉H2�
asserts that, in any heap satisfying H1, the sequence of commands t terminates
and produces a heap satisfying H2. Dynamic Logic serves as the foundation
for the KeY system [4], which targets the veri�cation of Java programs. One
limitation of Dynamic Logics is that they depart from standard mathematical
logics, precluding the use of standard proof assistants.

Very few program logics support reasoning about higher-order functions. One
of them is that developed by Honda, Berger and Yoshida [6]. The speci�cation
language of Honda et al's logic is a nonstandard �rst-order logic, which features
an ad-hoc construction, called evaluation formula, and written {H} v • v′ ↘
x {H ′}. This proposition asserts that, under a heap satisfying H, the application
of the value v to the value v′ produces a result named x in a heap satisfying
H ′. This evaluation formula plays a similar role as that of our predicate App.
Such evaluation formulae are the key to achieving completeness, because they
allow to fully specify the behavior of a function. Another speci�city of Honda
et al's speci�cation language is that the values of the logic are identi�ed with
the values of the programming language, including non-terminating functions.
This nonstandard speci�cation language prevented Honda et al from building a
practical veri�cation tool on top of an existing theorem prover. In contrast, our
characteristic formulae are expressed in terms of a standard higher-order logic,
making it possible to reuse existing proof tools.

6.2 Veri�cation condition generators

A Veri�cation Condition Generator (VCG) is a tool that, given a program an-
notated with speci�cations and invariants, extracts a set of proof obligations.
Discharging these proof obligations, either automatically or manually, ensures
the correctness of the program. A large number of VCGs targeting various pro-
gramming languages have been implemented in the last decades. For example,
the tool Spec-# [2] parses annotated C# programs, and then produces proof
obligations that can then be sent to an SMT solver. Because most SMT solvers

38

are restricted to �rst-order logic, the speci�cation language is usually restricted
to this fragment. Speci�cations therefore do not bene�t from the expressiveness,
the modularity, and the elegance of higher-order logic.

A few tools support higher-order logic. One notable example is the tool
Why [13], an intermediate language that can be used in conjunction with a
front-end, for example Caduceus [14] for C programs or Krakatoa [29] for Java
programs. When Why produces a proof obligation that cannot be veri�ed auto-
matically by at an SMT solver, this proof obligation may be discharged using
an interactive proof assistant such as Coq. Recent work has focused on trying
to extend Why with support for higher-order functions [23], building upon ideas
developed for the tool Pangolin [42]. Pangolin's approach consists of representing
in the logic a function directly as a pair of a pre-condition and a post-condition,
yet this approach precludes the use of auxiliary variables in the speci�cation of
�rst-class functions.

Another tool that supports higher-order logic is Jahob [46], which targets
the veri�cation of programs written in a subset of Java. For discharging proof
obligations, Jahob relies on a translation from a subset of higher-order logic
into �rst order logic, as well as on automated theorem provers extended with
specialized decision procedures for reasoning on lists, trees, sets and maps. A
key feature of Jahob is its integrated proof language, which allows the user to
include proof hints directly inside the source code. Those hints are intended to
guide automated theorem provers, in particular by indicating how to instantiate
existential variables.

We �nd that, when it comes to verifying complex programs, it is more prac-
tical to work in an interactive environment. Indeed, coming up with the right
invariants typically requires a number of iterations. With a VCG tool such as
Why or Jahob, if the user changes, say, a local loop invariant, then he needs to
run again the VCG tool, wait for the SMT solvers to try and discharge the proof
obligations, and then read the remaining obligations, which may have changed
quite signi�cantly even upon minor changes by the user. Overall, each cycle is
quite time consuming. On the contrary, with characteristic formulae, the user
works in an interactive setting that provides nearly-instantaneous feedback on
changes: the user can update the invariant and e�ciently replay the same proof
script, most often without any modi�cation.

6.3 Shallow embeddings

The shallow embedding approach to program veri�cation consists of relating a
source program with a corresponding logical de�nition. The relationship can take
three forms.

First, one may write a logical de�nition and use an extraction mechanism
(e.g., [28]) to translate the code into a conventional programming language. For
example, Leroy's certi�ed C compiler [26] is developed in this way. However,
only purely function code can be produced. Also based on extraction is the tool
Ynot [11], which implements Hoare Type Theory (HTT) [37], by axiomatically

39

extending the Coq language with a monad for encapsulating side e�ects and par-
tial functions. HTT was also later re-implemented by Nanevski et al [38] without
using any axioms, yet at the expense of loosing the ability to reason on higher-
order stores. In HTT, the monad involved has a type of the form �STsepP Q�,
and it corresponds to a partial-correctness speci�cation with pre-condition P
and post-condition Q. Veri�cation is performed through the type-checking in
Coq of the program. This type-checking phase may produce a set of proof obli-
gations that may be discharged interactively using tactics. One advantage of
characteristic formulae is that they are able to target an existing programming
language, whereas the Ynot programming language has to �t into the logic it
is implemented in. For example, supporting features such as alias-patterns and
when-clauses would be a real challenge for Ynot, because pattern matching is so
deeply hard-wired in Coq that it would be very hard to modify it.

Another technical di�culty faced by HTT is the treatment of auxiliary vari-
ables. A speci�cation of the form �STsepP Q� does not naturally allow for auxil-
iary variables to be used for sharing information between the pre- and the post-
condition. Indeed, if P and Q both refer to a auxiliary variable x quanti�ed out-
side of the type �STsepP Q�, then x is considered as a computationally-relevant
value and thus it will appear in the extracted code. Ynot [11] relies on a hack for
simulating the Implicit Calculus of Constructions [3], in which computationally-
irrelevant values are tagged explicitly. A danger of this approach is that forgetting
to tag a variable as auxiliary lead to the extraction of potentially very ine�cient
code, because computationally-irrelevant values may get allocated and passed
around at runtime.

Other implementations of HTT handle auxiliary variables di�erently, by re-
lying on post-conditions that refer not only to the output heap but also to the
input heap [37, 38]. Such binary post-conditionsmake it possible to eliminate aux-
iliary variables by duplicating the pre-condition inside the post-condition. For
example, �∀x. STsepP Q� is encoded as �STsep (∃x.P) (∀x. P ⇒ Q)�. HTT [38]
then provides tactics to try and avoid the duplication of proof obligations. How-
ever, duplication typically remains visible in speci�cations. This is problematic
because speci�cations are part of the trusted base, so their statement should be
as simple as possible.

The second way of relating a source program to a logical de�nition works
in the other direction: it consists of decompiling a piece of conventional source
code into a set of logical de�nitions. This approach is used for example in the
LOOP compiler [22] and also in Myreen and Gordon's work [35]. The LOOP
compiler takes Java programs and compiles them into PVS de�nitions. LOOP's
proof tactics rely on a weakest-precondition calculus to achieve a high degree of
automation. However, interactive proofs require a lot of expertise: LOOP requires
the user to understand the compilation scheme involved [22]. By contrast, the
tactics manipulating characteristic formulae allow conducting interactive proofs
of correctness without detailed knowledge on the construction of those formulae.

Myreen and Gordon showed how to decompile machine code into HOL4 func-
tions [35]. The lemmas proved interactively about the generated HOL4 functions

40

can then be automatically transformed into lemmas about the behavior of the
corresponding pieces of machine code. This translation from machine code into
HOL4 is only possible because the functional translation of a while loop is a
tail-recursive function, and because tail-recursive functions can be accepted as
logical de�nitions in HOL4 without compromising the soundness of the logic,
even when the function is non-terminating. Without exploiting this peculiarity
of tail-recursive functions, the automated translation of source code into HOL4
would not be possible. For this reason, it does not seem possible to apply this
decompilation-based approach to the veri�cation of code featuring general re-
cursion and higher-order functions.

A third approach to using a shallow embedding consists of writing the pro-
gram to be veri�ed twice, once as a program de�nition and once as a logical
de�nition, and then proving that the two are related. This approach has been
employed in the veri�cation of a microkernel as part of the Sel4 project [25].
Compared with Myreen and Gordon's work [35, 33], the main di�erence is that
the low-level code is not decompiled automatically but instead decompiled by
hand. This decompilation phase is then proved correct using semi-automated
tactics. The Sel4 approach thus allows for more �exibility in the choice of the
logical de�nitions, yet at the expense of a larger investment from the user. More-
over, like in Myreen and Gordon's work, general recursion is problematic: all the
code of the Sel4 microkernel written in the shallow embedding had to avoid any
form of nontrivial recursion [24].

In summary, all the approaches based on a shallow embedding share one cen-
tral di�culty: the need to overcome the discrepancies between the programming
language and the logical language, in particular with respect to the treatment
of imperative functions, partial functions, and recursive functions. In contrast,
characteristic formulae rely on the �rst-order data type Func for representing
functions. As established by the completeness theorem, this approach supports
reasoning about all forms of �rst-class functions.

6.4 Deep embeddings

A deep embedding consists of a description of the syntax and the semantics
of a programming language in the logic of a proof assistant, using inductive
de�nitions. In theory, a deep embedding can be used to verify programs written in
any programming language, without any restrictions in terms of expressiveness,
apart from those of the proof assistant. Mehta and Nipkow [32] have set up the
�rst proof-of-concept by formalizing a basic procedural language in Isabelle/HOL
and proving Hoare-style reasoning rules correct with respect to the semantics of
that language. More recently, Shao et al have developed frameworks such as
XCAP [39] for reasoning in Coq about short but complex assembly routines.

In previous work [7], the author has worked on a deep embedding of the
pure fragment of Caml inside the Coq proof assistant. Working with deep em-
bedding su�ers from at least two major issues. First, deep embeddings involve
an explicit representation of syntax. In particular, we need to represent binders,
which are notoriously problematic: a representation based on names does not

41

enjoy alpha-conversion, and a representation involving de Bruijn indices makes
programs unreadable (unless having dedicated support from the prover). Sec-
ond, deep embeddings describe values through an encoding. For example, the
list of integers �3 :: 2 :: nil� is represented in the deep embedding as the term
�vconstr2 cons (vint 3) (vconstr2 cons (vint 2) (vconstr0 nil))� where vconstr is the
constructor from the grammar of values used to represent the application of
data constructors (the index corresponds to the arity), and where vint is the
constructor from the grammar of values used to represent program integers.

This work on a deep embedding [7] then did lead to the development of
characteristic formulae, which can be viewed as an abstract layer built on top of
a deep embedding: characteristic formulae hide the technical details associated
with the explicit representation of syntax while retaining the high expressiveness
of that approach. In particular, characteristic formulae avoid the representation
of program syntax and directly lift pure program values at the logical level.

7 Conclusion

In this paper, we have explained how to build characteristic formulae for impera-
tive programs. The key ingredients involved in the approach are: (1) a re�ection
of program values in the logic, using, in particular, the abstract data type Func to
represent functions and the abstract predicate App to specify them, (2) a shallow
embedding of Separation Logic formulae for describing imperative data struc-
tures, (3) a compositional algorithm for constructing a predicate that describes
the semantics of the program in the logic, (4) an integration of the frame rule,
the rule of consequence and the rule of garbage collection through the predicate
local, (5) a notation layer for displaying formulae in a way that resembles the
source code, (6) a set of tactics for manipulating characteristic formulae without
having to understand how they are built. We have proved that program veri�-
cation through characteristic formulae is only limited by the expressiveness of
the theorem prover. Moreover, we have shown that characteristic formulae can
be used to verify nontrivial Caml programs in practice.

Acknowledgments I wish to thank François Pottier for his very useful guid-
ance during my PhD. I also thank the anonymous reviewers for their helpful
comments.

References

1. Andrew W. Appel. Tactics for separation logic. Unpublished draft,
http://www.cs.princeton.edu/appel/papers/septacs.pdf, 2006.

2. Mike Barnett, Rob DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram
Schulte. Veri�cation of object-oriented programs with invariants. Journal of Object
Technology, 3(6), 2004.

42

3. Bruno Barras and Bruno Bernardo. The implicit calculus of constructions as a
programming language with dependent types. In FoSSaCS, volume 4962 of LNCS,
pages 365�379. Springer, 2008.

4. Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Veri�cation of Object-
Oriented Software: The KeY Approach, volume 4334 of LNCS. Springer-Verlag,
Berlin, 2007.

5. Josh Berdine, Cristiano Calcagno, and Peter W. O'Hearn. Smallfoot: Modular
automatic assertion checking with separation logic. In International Symposium
on Formal Methods for Components and Objects, volume 4111 of LNCS, pages
115�137. Springer, 2005.

6. Martin Berger, Kohei Honda, and Nobuko Yoshida. A logical analysis of aliasing
in imperative higher-order functions. In ICFP, pages 280�293, 2005.

7. Arthur Charguéraud. Veri�cation of call-by-value functional
programs through a deep embedding. 2009. Unpublished.
http://arthur.chargueraud.org/research/2009/deep/.

8. Arthur Charguéraud. Characteristic Formulae for Mechanized Program Veri�ca-
tion. PhD thesis, Université Paris-Diderot, 2010.

9. Arthur Charguéraud. Program veri�cation through characteristic formulae. In
ICFP, pages 321�332. ACM, 2010.

10. Arthur Charguéraud. Characteristic formulae for the veri�cation of imperative
programs. In Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy, editors,
Proceeding of the 16th ACM SIGPLAN International Conference on Functional
programming (ICFP), pages 418�430. ACM, 2011.

11. Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan
Wisnesky. E�ective interactive proofs for higher-order imperative programs. In
ICFP, 2009.

12. The Coq Development Team. The Coq Proof Assistant Reference Manual, Version
8.2, 2009.

13. Jean-Christophe Filliâtre. Veri�cation of non-functional programs using interpre-
tations in type theory. Journal of Functional Programming, 13(4):709�745, 2003.

14. Jean-Christophe Filliâtre and Claude Marché. Multi-prover veri�cation of C pro-
grams. In Formal Methods and Software Engineering, 6th ICFEM 2004, volume
3308 of LNCS, pages 15�29. Springer, 2004.

15. Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence
of compiling with continuations. In PLDI, pages 237�247, 1993.

16. R. W. Floyd. Assigning meanings to programs. In Mathematical Aspects of Com-
puter Science, volume 19 of Proceedings of Symposia in Applied Mathematics, pages
19�32. American Mathematical Society, 1967.

17. Susanne Graf and Joseph Sifakis. A modal characterization of observational con-
gruence on �nite terms of CCS. Information and Control, 68(1-3):125�145, 1986.

18. David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. The MIT Press,
Cambridge, Massachusetts, 2000.

19. Matthew Hennessy and Robin Milner. On observing nondeterminism and concur-
rency. In ICALP, volume 85 of LNCS, pages 299�309. Springer-Verlag, 1980.

20. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576�580, 583, 1969.

21. Kohei Honda, Martin Berger, and Nobuko Yoshida. Descriptive and relative com-
pleteness of logics for higher-order functions. In ICALP, volume 4052 of LNCS.
Springer, 2006.

22. Bart Jacobs and Erik Poll. Java program veri�cation at nijmegen: Developments
and perspective. In ISSS, volume 3233 of LNCS, pages 134�153. Springer, 2003.

43

23. Johannes Kanig and Jean-Christophe Filliâtre. Who: a veri�er for e�ectful higher-
order programs. In ML'09: Proceedings of the 2009 ACM SIGPLAN workshop on
ML, pages 39�48. ACM, 2009.

24. Gerwin Klein, Philip Derrin, and Kevin Elphinstone. Experience report: seL4:
formally verifying a high-performance microkernel. In ICFP, pages 91�96. ACM,
2009.

25. Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Nor-
rish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal veri�cation
of an OS kernel. In Proceedings of the 22nd Symposium on Operating Systems
Principles (SOSP), Operating Systems Review (OSR), pages 207�220, Big Sky,
MT, 2009. ACM SIGOPS.

26. Xavier Leroy. Formal certi�cation of a compiler back-end or: programming a com-
piler with a proof assistant. In POPL, pages 42�54, 2006.

27. Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouil-
lon. The Objective Caml system, 2005.

28. Pierre Letouzey. Programmation fonctionnelle certi�ée � l'extraction de pro-
grammes dans l'assistant Coq. PhD thesis, Université Paris 11, 2004.

29. Claude Marché, Christine Paulin Mohring, and Xavier Urbain. The Krakatoa tool
for certi�cation of Java/JavaCard programs annotated in JML. Journal of Logic
and Algebraic Programming (JLAP), 58(1�2):89�106, 2004.

30. Nicolas Marti, Reynald A�eldt, and Akinori Yonezawa. Towards formal veri�cation
of memory properties using separation logic, 2005.

31. Andrew McCreight. Practical tactics for separation logic. In TPHOLs, volume
5674 of LNCS, pages 343�358. Springer, 2009.

32. Farhad Mehta and Tobias Nipkow. Proving pointer programs in higher-order logic.
Information and Computation, 199(1�2), 2005.

33. Magnus O. Myreen. Formal Veri�cation of Machine-Code Programs. PhD thesis,
University of Cambridge, 2008.

34. Magnus O. Myreen. Separation logic adapted for proofs by rewriting. In Interactive
Theorem Proving (ITP), volume 6172 of LNCS, pages 485�489. Springer, 2010.

35. Magnus O. Myreen and Michael J. C. Gordon. Veri�ed LISP implementations
on ARM, x86 and powerPC. In TPHOLs, volume 5674 of LNCS, pages 359�374.
Springer, 2009.

36. Aleksandar Nanevski and Greg Morrisett. Dependent type theory of stateful
higher-order functions. Technical Report TR-24-05, Harvard University, 2005.

37. Aleksandar Nanevski, J. Gregory Morrisett, and Lars Birkedal. Hoare type theory,
polymorphism and separation. Journal of Functional Programming, 18(5-6):865�
911, 2008.

38. Aleksandar Nanevski, Viktor Vafeiadis, and Josh Berdine. Structuring the veri�-
cation of heap-manipulating programs. In POPL, pages 261�274. ACM, 2010.

39. Zhaozhong Ni and Zhong Shao. Certi�ed assembly programming with embedded
code pointers. In POPL, 2006.

40. Peter O'Hearn, John Reynolds, and Hongseok Yang. Local reasoning about pro-
grams that alter data structures. In CSL, volume 2142 of LNCS, pages 1�19,
Berlin, 2001. Springer-Verlag.

41. Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
1999.

42. Yann Régis-Gianas and François Pottier. A Hoare logic for call-by-value functional
programs. In MPC, 2008.

44

43. John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS, pages 55�74, 2002.

44. Hayo Thielecke. Frame rules from answer types for code pointers. In POPL, pages
309�319, 2006.

45. Thomas Tuerk. Local reasoning about while-loops. In VSTTE LNCS, 2010.
46. Karen Zee, Viktor Kuncak, and Martin C. Rinard. An integrated proof language

for imperative programs. In PLDI, pages 338�351. ACM, 2009.

