
UNIVERSITÉ PARIS.DIDEROT (Paris 7)

ÉCOLE DOCTORALE : Sciences Mathématiques de Paris Centre

Ph.D in Computer Science

Characteristic Formulae for
Mechanized Program Verification

Arthur Charguéraud

Advisor: François POTTIER

Defended on December 16, 2010

Jury

Claude Marché Reviewer
Greg Morrisett Reviewer
Roberto di Cosmo Examiner
Yves Bertot Examiner
Matthew Parkinson Examiner
François Pottier Advisor

Abstract
This dissertation describes a new approach to program verification,
based on characteristic formulae. The characteristic formula of a pro-
gram is a higher-order logic formula that describes the behavior of that
program, in the sense that it is sound and complete with respect to
the semantics. This formula can be exploited in an interactive theorem
prover to establish that the program satisfies a specification expressed
in the style of Separation Logic, with respect to total correctness.

The characteristic formula of a program is automatically generated
from its source code alone. In particular, there is no need to annotate the
source code with specifications or loop invariants, as such information
can be given in interactive proof scripts. One key feature of characteristic
formulae is that they are of linear size and that they can be pretty-
printed in a way that closely resemble the source code they describe, even
though they do not refer to the syntax of the programming language.

Characteristic formulae serve as a basis for a tool, called CFML, that
supports the verification of Caml programs using the Coq proof assis-
tant. CFML has been employed to verify about half of the content of
Okasaki’s book on purely functional data structures, and to verify sev-
eral imperative data structures such as mutable lists, sparse arrays and
union-find. CFML also supports reasoning on higher-order imperative
functions, such as functions in CPS form and higher-order iterators.

Remerciements

Je tiens tout d’abord à remercier chaleureusement mon directeur de thèse, François
Pottier. Toujours disponible, François excelle tout autant dans l’art de travailler à
l’intuition que dans l’art de vérifier la correction des détails techniques. Par ailleurs,
je resterai marqué par son impressionnante productivité ainsi que sa haute récepti-
vité au travail d’autrui, deux ingrédients qui font la force des grands chercheurs. Sa
façon de travailler restera pour moi un modèle.

Je tiens à remercier tout particulièrement Claude Marché et Greg Morrisett pour
leur minutieuse relecture de cette thèse. Je remercie également Yves Bertot, Roberto
di Cosmo et Matthew Parkinson de me faire l’honneur d’être dans mon jury.

La manière dont j’ai abordé ma thèse a été significativement influencée par mes
premiers pas dans le monde de la recherche. Le premier pas fut un stage de six
semaines avec Didier Rémy. Ce stage a directement guidé le domaine ainsi que le lieu
de ma thèse. Le second pas fut un stage d’un semestre à l’université de Pennsylvanie
avec Benjamin Pierce et Stephanie Weirich. Écrire mon premier papier de recherche
avec eux s’est révélé extrêmement formateur.

Au cours de ces dernières années passées à l’INRIA-Rocquencourt, j’ai eu la
chance d’avoir été en contact direct avec des grands gourous du “Bat.8 virtuel” :
Damien Doligez, Gérard Huet, Xavier Leroy, Jean-Jacques Lévy, Luc Maranget,
François Pottier, Didier Rémy, et Francesco Zappa-Nardelli. Ce fut un plaisir de
découvrir non seulement leur vision de la recherche (la technique), mais aussi leur
vision du monde de la recherche (la politique).

Je me souviendrai également des nombreuses discussions avec mes co-thésards au
coin café (où je n’ai d’ailleurs jamais bu un seul café), d’abord avec les thésards de la
première vague : Alain, Yann, Zaynah, Boris, Benoît, et surtout Jean-Baptiste ; puis
avec ceux de la seconde vague : Benoît, Tahina, Alexandre, Nicolas, et Jonathan.
Par ailleurs, j’ai eu la chance de discuter à de nombreuses reprises de preuve de
programme avec les membres du projet Proval et de tactiques Coq avec les membres
du projet 𝜋𝑟2. Je tiens à les remercier.

Pour finir, je souhaite remercier très fort ceux à qui je dois presque tout : mes
parents, ma famille et Josefa.

3

Contents

1 Introduction 8
1.1 Approaches to program verification 8
1.2 Overview . 12
1.3 Implementation . 17
1.4 Contribution . 20
1.5 Research and publications . 21
1.6 Structure of the dissertation . 21

2 Overview and specifications 23
2.1 Characteristic formulae for pure programs 23

2.1.1 Example of a characteristic formula 23
2.1.2 Specification and verification 25

2.2 Formalizing purely functional data structures 28
2.2.1 Specification of the signature 28
2.2.2 Verification of the implementation 31
2.2.3 Statistics on the formalizations 34

3 Verification of imperative programs 37
3.1 Examples of imperative functions . 37

3.1.1 Notation for heap predicates 37
3.1.2 Specification of references . 38
3.1.3 Reasoning about for-loops . 39
3.1.4 Reasoning about while-loops 41

3.2 Mutable data structures . 42
3.2.1 Recursive ownership . 42
3.2.2 Representation predicate for references 43
3.2.3 Representation predicate for lists 44
3.2.4 Focus operations for lists . 46
3.2.5 Example: length of a mutable list 47
3.2.6 Aliased data structures . 49
3.2.7 Example: the swap function 50

3.3 Reasoning on loops without loop invariants 51
3.3.1 Recursive implementation of the length function 52

4

CONTENTS 5

3.3.2 Improved characteristic formulae for while-loops 53
3.3.3 Improved characteristic formulae for for-loops 54

3.4 Treatment of first-class functions . 55
3.4.1 Specification of a counter function 55
3.4.2 Generic function combinators 56
3.4.3 Functions in continuation passing-style 57
3.4.4 Reasoning about list iterators 58

4 Characteristic formulae for pure programs 61
4.1 Source language and normalization 61
4.2 Characteristic formulae: informal presentation 62

4.2.1 Characteristic formulae for the core language 63
4.2.2 Definition of the specification predicate 64
4.2.3 Specification of curried n-ary functions 65
4.2.4 Characteristic formulae for curried functions 67

4.3 Typing and translation of types and values 68
4.3.1 Erasure of arrow types and recursive types 68
4.3.2 Typed terms and typed values 69
4.3.3 Typing rules of weak-ML . 70
4.3.4 Reflection of types in the logic 70
4.3.5 Reflection of values in the logic 72

4.4 Characteristic formulae: formal presentation 72
4.4.1 Characteristic formulae for polymorphic definitions 73
4.4.2 Evaluation predicate . 73
4.4.3 Characteristic formula generation with notation 74

4.5 Generated axioms for top-level definitions 75
4.6 Extensions . 77

4.6.1 Mutually-recursive functions 77
4.6.2 Assertions . 77
4.6.3 Pattern matching . 78

4.7 Formal proofs with characteristic formulae 81
4.7.1 Reasoning tactics: example with let-bindings 82
4.7.2 Tactics for reasoning on function applications 83
4.7.3 Tactics for reasoning on function definitions 85
4.7.4 Overview of all tactics . 86

5 Generalization to imperative programs 88
5.1 Extension of the source language . 88

5.1.1 Extension of the syntax and semantics 88
5.1.2 Extension of weak-ML . 90

5.2 Specification of locations and heaps 91
5.2.1 Representation of heaps . 91
5.2.2 Predicates on heaps . 92

5.3 Local reasoning . 93

6 CONTENTS

5.3.1 Rules to be supported by the local predicate 93
5.3.2 Definition of the local predicate 94
5.3.3 Properties of local formulae 95
5.3.4 Extraction of invariants from pre-conditions 96

5.4 Specification of imperative functions 97
5.4.1 Definition of the predicates AppReturns and Spec 97
5.4.2 Treatment of n-ary applications 99
5.4.3 Specification of n-ary functions 99

5.5 Characteristic formulae for imperative programs 101
5.5.1 Construction of characteristic formulae 101
5.5.2 Generated axioms for top-level definitions 103

5.6 Extensions . 103
5.6.1 Assertions . 103
5.6.2 Null pointers and strong updates 104

5.7 Additional tactics for the imperative setting 106
5.7.1 Tactic for heap entailment . 106
5.7.2 Automated application of the frame rule 108
5.7.3 Other tactics specific to the imperative setting 109

6 Soundness and completeness 110
6.1 Additional definitions and lemmas 111

6.1.1 Interpretation of Func . 111
6.1.2 Reciprocal of decoding: encoding 111
6.1.3 Substitution lemmas for weak-ML 113
6.1.4 Typed reductions . 113
6.1.5 Interpretation and properties of AppEval 116
6.1.6 Substitution lemmas for characteristic formulae 117
6.1.7 Weakening lemma . 118
6.1.8 Elimination of n-ary functions 118

6.2 Soundness . 120
6.2.1 Soundness of characteristic formulae 120
6.2.2 Soundness of generated axioms 123

6.3 Completeness . 124
6.3.1 Labelling of function closures 125
6.3.2 Most-general specifications 127
6.3.3 Completeness theorem . 128
6.3.4 Completeness for integer results 131

6.4 Quantification over Type . 131
6.4.1 Case study: the identity function 131
6.4.2 Formalization of exotic values 132

CONTENTS 7

7 Proofs for the imperative setting 134
7.1 Additional definitions and lemmas 134

7.1.1 Typing and translation of memory stores 134
7.1.2 Typed reduction judgment . 135
7.1.3 Interpretation and properties of AppEval 136
7.1.4 Elimination of n-ary functions 137

7.2 Soundness . 138
7.3 Completeness . 144

7.3.1 Most-general specifications 145
7.3.2 Completeness theorem . 147
7.3.3 Completeness for integer results 154

8 Related work 156
8.1 Characteristic formulae . 156
8.2 Separation Logic . 158
8.3 Verification Condition Generators . 160
8.4 Shallow embeddings . 162
8.5 Deep embeddings . 166

9 Conclusion 170
9.1 Characteristic formulae in the design space 170
9.2 Summary of the key ingredients . 171
9.3 Future work . 174
9.4 Final words . 177

Chapter 1

Introduction

The starting point of this dissertation is the notion of correctness of a
program. A program is said to be correct if it behaves according to its
specification. There are applications for which it is desirable to establish
program correctness with a very high degree of confidence. For large-
scale programs, only mechanized proofs, i.e., proofs that are verified by
a machine, can achieve this goal. While several decades of research on
this topic have brought many useful ingredients for building verification
systems, no tool has yet succeeded in making program verification a
routine exercise. The matter of this thesis is the development of a new
approach to mechanized program verification. In this introduction, I
explain where my approach is located in the design space and give a
high-level overview of the ingredients involved in my work.

1.1 Approaches to program verification

Motivation Computer programs tend to become involved in a growing number of
devices. Moreover, the complexity of those programs keeps increasing. Nowadays,
even a cell phone typically relies on more than ten million lines of code. One major
concern is whether programs behave as they are intended to. Writing a program
that appears to work is not so difficult. Producing a fully-correct program has
shown to be astonishingly hard. It suffices to get one single character wrong among
millions of lines of code to end up with a buggy program. Worse, a bug may remain
undetected for a long time before the particular conditions in which the bug shows
up are gathered. If you are playing a game on your cell phone and a bug causes
the game to crash, or even causes the entire cell phone to reboot, it will probably
be upsetting but it will not have dramatic consequences. However, think of the
consequences of a bug occurring in the cruise control of an airplane, a bug in the
program running the stock exchange, or a bug in the control system of a nuclear
plant.

Testing can be used to expose bugs, and a coverage analysis can even be used to

8

1.1. APPROACHES TO PROGRAM VERIFICATION 9

check that all the lines from the source code of a program have been tested at least
once. Yet, although testing might expose many bugs, there is no guarantee that it
will expose all the bugs. Static analysis is another approach, which helps detecting
all the bugs of a certain form. For example, type-checking ensures that no absurd
operation is being performed, like reading a value in memory at an address that
has never been allocated by the program. Static analysis has also been successfully
applied to array bound checking, and in particular to the detection of buffer overflow
vulnerabilities (e.g., [84]). Such static analyses can be almost entirely automated
and may produce a reasonably-small number of false positives.

Program verification Neither testing nor static analysis can ensure the total
absence of errors. More advanced tools are needed to prove that programs always
behave as intended. In the context of program verification, a program is said to be
correct if it satisfies its specification. The specification of a program is a description
of what a program is intended to compute, regardless of how it computes it. The
general problem of computing whether a given program satisfies a given specification
is undecidable. Thus, a general-purpose verification tool must include a way for the
programmer to guide the verification process.

In traditional approaches based on a Verification Condition Generator (VCG),
the transfer of information from the user to the verification system takes the form
of invariants that annotate the source code. Thus, in addition to annotating every
procedure with a precise description of what properties the procedure can expect of
its input data and of what properties it guarantees about its output data, the user
also needs to include intermediate specifications such as loop invariants. The VCG
tool then extracts a set of proof obligations from such an annotated program. If all
those proof obligations can be proved correct, then the program is guaranteed to
satisfy its specification.

Another approach to transferring information from the user to the verification
tool consists in using an interactive theorem prover. An interactive theorem prover,
also called a proof assistant, allows one to state a theorem, for instance a mathemat-
ical result from group theory, and to prove it interactively. In an interactive proof,
the user writes a sequence of tactics and statements for describing what reasoning
steps are involved in the proofs, while the proof assistant verifies in real-time that
each of those steps is legitimate. There is thus no way to fool the theorem prover:
if the proof of a theorem is accepted by the system, then the theorem is certainly
true (assuming, of course, that the proof system itself is sound and correctly im-
plemented). Interactive theorem provers have been significantly improved in the
last decade, and they have been successfully applied to formalize large bodies of
mathematical theories.

The statement “this program admits that specification” can be viewed as a theo-
rem. So, one could naturally attempt to prove statements of this form using a proof
assistant. This high-level picture may be quite appealing, yet it is not so immediate
to implement. On the one hand, the source code of a program is expressed in some

10 CHAPTER 1. INTRODUCTION

programming language. On the other hand, the reasoning about the behavior of that
program is carried out in terms of a mathematical logic. The challenge is to find a
way of building a bridge between a programming language and a mathematical logic.
For example, one of the main issue is the treatment of mutable state. In a program,
a variable 𝑥 may be assigned to the value 5 at one point, and may later updated to
the value 7. In mathematics, on the contrary, when 𝑥 has the value 5 at one point, it
has the value 5 forever. Devising a way to describe program behaviors in terms of a
mathematical logic is a central concern of my thesis. Several approaches have been
investigated in the past. I shall recall them and explain how my approach differs.

Interactive verification The deep embedding approach involves a direct axioma-
tization of the syntax and of the semantics of the programming language in the logic
of the theorem prover. Through this construction, programs can be manipulated in
the logic just as any other data type. In theory, this natural approach allows proving
any correct specification that one may wish to establish about a given program. In
practice, however, the approach is associated with a fairly high overhead, due to the
clumsiness of explicit manipulation of program syntax. Nonetheless, this approach
has enabled the verification of low-level assembly routines involving a small number
of instructions that perform nontrivial tasks [65, 25].

Rather than relying on a representation of programs as a first-order data type,
one may exploit the fact that the logic of a theorem prover is actually a sort of
programming language itself. For example, the logic of Coq [18] includes functions,
algebraic data structures, case analysis, and so on. The idea of the shallow embed-
ding approach is to relate programs from the programming language with programs
from the logic, despite the fact that the two kinds of programs are not entirely
equivalent.

There are basically three ways to build on this idea. A first technique consists
in writing the code in the logic and using an extraction mechanism (e.g., [49]) to
translate the code into a conventional programming language. For example, Leroy’s
certified C compiler [47] is developed in this way. The second technique works in
the other direction: a piece of conventional source code gets decompiled into a set
of logical definitions. Myreen [58] has employed this technique to verify a machine-
code implementation of a LISP interpreter. Finally, with the third approach, one
writes the program twice: once in a deep embedding of the programming language,
and once directly in the logic. A proof can then be conducted to establish that
the two programs match. Although this approach requires a bigger investment than
the former two, it also provides a lot of flexibility. This third approach has been
employed in the verification of a microkernel, as part of the Sel4 project [46].

All approaches based on shallow embedding share one big difficulty: the need
to overcome the discrepancies between the programming language and the logical
language, in particular with respect to the treatment of partial functions and of
mutable state. One of the most developed techniques for handling those features in
a shallow embedding has been developed in the Ynot project [17]. Ynot, which is

1.1. APPROACHES TO PROGRAM VERIFICATION 11

based on Hoare Type Theory (HTT) [63], relies on a dependently-typed monad for
describing impure computations.

The approach developed in this thesis is quite different: given a conventional
source code, I generate a logical proposition that describes the behavior of that
code. In other words, I generate a logical formula that, when applied to a speci-
fication, yields a sufficient condition for establishing that the source code satisfies
that specification. This sufficient condition can then be proved interactively. By
not representing explicitly program syntax, I avoid the technical difficulties related
to the deep embedding approach. By not relying on logical functions to represent
program functions, I avoid the difficulties faced by the shallow embedding approach.

Characteristic formulae The formula that I generate for a given program is a
sound and almost-complete description of the behavior of that program, hence it is
called a characteristic formula. Remark: a characteristic formula is only “almost-
complete” because it does not reveal the exact addresses of allocated memory cells
and it does not allow specifying the exact source code of function closures. Instead,
functions have to be specified extensionally. The notion of characteristic formu-
lae dates back to the 80’s and originates in work on process calculi, a model for
parallel computations. There, characteristic formulae are propositions, expressed
in a temporal logic, that are generated from the syntactic definition of a process.
The fundamental result about those formulae is that two processes are behaviorally
equivalent if and only if their characteristic formulae are logically equivalent [70, 57].
Hence, characteristic formulae can be employed to prove the equivalence or the dis-
equivalence of two given processes.

More recently, Honda, Berger and Yoshida [40] adapted characteristic formulae
from process logic to program logic, targetting PCF, the “Programming language
for Computable Functions”. PCF can be seen as a simplified version of languages
of the ML family, which includes languages such as Caml and SML. Honda et al
give an algorithm that constructs the “total characteristic assertion pair” of a given
PCF program, that is, a pair made of the weakest pre-condition and of the strongest
post-condition of the program. (Note that the PCF program is not annotated with
any specification nor any invariant, so the algorithm involved here is not the same
as a weakest pre-condition calculus.) This notion of most-general specification of
a program is actually much older, and originates in work from the 70’s on the
completeness of Hoare logic [31]. The interest of Honda et al’s work is that it shows
that the most general specification of a program can be expressed without referring
to the programming language syntax.

Honda et al also suggested that characteristic formulae could be used to prove
that a program satisfies a given specification, by establishing that the most-general
specification entails the specification being targeted. This entailment relation can
be proved entirely at the logical level, so the program verification process can be
conducted without the burden of referring to program syntax. Yet, this appealing
idea suffered from one major problem. The specification language in which total

12 CHAPTER 1. INTRODUCTION

characteristic assertion pairs are expressed is an ad-hoc logic, where variables denote
PCF values (including non-terminating functions) and where equality is interpreted
as observational equality. As it was not immediate to encode this ad-hoc logic into
a standard logic, and since the construction of a theorem prover dedicated to that
new logic would have required an tremendous effort, Honda et al’s work remained
theoretical and did not result in an effective program verification tool.

I have re-discovered characteristic formulae while looking for a way to enhance
the deep embedding approach, in which program syntax is explicitly represented
in the theorem prover. I observed that it was possible to build logical formulae
capturing the reasoning that can be done through a deep embedding, yet without
exposing program syntax at any time. In a sense, my approach may be viewed as
building an abstract layer on top of a deep embedding, hiding the technical details
while retaining its benefits. Contrary to Honda, Berger and Yoshida’s work, the
characteristic formulae that I build are expressed in terms of standard higher-order
logic. I have therefore been able to build a practical program verification tool based
on characteristic formulae.

1.2 Overview

The characteristic formula of a term 𝑡, written J𝑡K, relates a description of the input
heap in which the term 𝑡 is executed with a description of the output value and of
the output heap produced by the execution of 𝑡. Characteristic formulae are closely
related to Hoare triples [29, 36]. A total correctness Hoare triple {𝐻} 𝑡 {𝑄} asserts
that, when executed in a heap satisfying the predicate 𝐻, the term 𝑡 terminates
and returns a value 𝑣 in a heap satisfying 𝑄𝑣. Note that the post-condition 𝑄
is used to specify both the output value and the output heap. When 𝑡 has type
𝜏 , the pre-condition 𝐻 has type Heap → Prop and the post-condition 𝑄 has type
⟨𝜏⟩ → Heap → Prop, where Heap is the type of a heap and where ⟨𝜏⟩ is the Coq
type that corresponds to the ML type 𝜏 .

The characteristic formula J𝑡K is a predicate such that J𝑡K𝐻 𝑄 captures exactly
the same proposition as the triple {𝐻} 𝑡 {𝑄}. There is however a fundamental dif-
ference between Hoare triples and characteristic formulae. A Hoare triple {𝐻} 𝑡 {𝑄}
is a three-place relation, whose second argument is a representation of the syntax
of the term 𝑡. On the contrary, J𝑡K𝐻 𝑄 is a logical proposition, expressed in terms
of standard higher-order logic connectives, such as ∧, ∃, ∀ and ⇒, which does not
refer to the syntax of the term 𝑡. Whereas Hoare-triples need to be established by
application of derivation rules specific to Hoare logic, characteristic formulae can
be proved using only basic higher-order logic reasoning, without involving external
derivation rules.

In the rest of this section, I present the key ideas involved in the construction
of characteristic formulae, focusing on the treatment of let bindings, of function
applications, and of function definitions. I also explain how to handle the frame
rule, which enables local reasoning.

1.2. OVERVIEW 13

Let-bindings To evaluate a term of the form “ let𝑥 = 𝑡1 in 𝑡2”, one first evaluates
the subterm 𝑡1 and then computes the result of the evaluation of 𝑡2, in which 𝑥
denotes the result produced by 𝑡1. To prove that the expression “ let𝑥 = 𝑡1 in 𝑡2”
admits 𝐻 as pre-condition and 𝑄 as post-condition, one needs to find a valid post-
condition 𝑄′ for 𝑡1. This post-condition, when applied to the result 𝑥 produced by 𝑡1,
describes the state of memory after the execution of 𝑡1 and before the execution
of 𝑡2. So, 𝑄′ 𝑥 denotes the pre-condition for 𝑡2. The corresponding Hoare-logic rule
for reasoning on let-bindings appears next.

{𝐻} 𝑡1 {𝑄′} ∀𝑥. {𝑄′ 𝑥} 𝑡2 {𝑄}
{𝐻} (let𝑥 = 𝑡1 in 𝑡2) {𝑄}

The characteristic formula for a let-binding is built as follows.

Jlet𝑥 = 𝑡1 in 𝑡2K ≡ 𝜆𝐻. 𝜆𝑄. ∃𝑄′. J𝑡1K𝐻 𝑄′ ∧ ∀𝑥. J𝑡2K (𝑄′ 𝑥) 𝑄

This formula closely resembles the corresponding Hoare-logic rule. The only real
difference is that, in the characteristic formula, the intermediate post-condition 𝑄′

is explicitly introduced with an existential quantifier, whereas this quantification is
implicit in the Hoare-logic derivation rule. The existential quantification of unknown
specifications, which is made possible by the strength of higher-order logic, plays
a central role in my work. This contrasts with traditional program verification
approaches where intermediate specifications, including loop invariants, have to be
included in the source code.

In order to make proof obligations more readable, I introduce a system of notation
for characteristic formulae. For example, for let-bindings, I define:

(let 𝑥 = ℱ1 in ℱ2) ≡ 𝜆𝐻. 𝜆𝑄. ∃𝑄′. ℱ1𝐻 𝑄′ ∧ ∀𝑥. ℱ2 (𝑄′ 𝑥) 𝑄

Note that bold keywords correspond to notation for logical formulae, whereas plain
keywords correspond to constructors from the programming language syntax. The
generation of characteristic formulae then boils down to a re-interpretation of the
keywords from the programming language.

Jlet𝑥 = 𝑡1 in 𝑡2K ≡ (let 𝑥 = J𝑡1K in J𝑡2K)

It follows that characteristic formulae may be pretty-printed exactly like source code.
Hence, the statement asserting that a term 𝑡 admits a pre-condition 𝐻 and a post-
condition 𝑄, which takes the form “J𝑡K𝐻 𝑄”, appears to the user as the source code
of 𝑡 followed with its pre-condition and its post-condition. Note that this convenient
display applies not only to a top-level program definition 𝑡 but also to all of the
subterms of 𝑡 involved during the proof of correctness of the term 𝑡.

Frame rule “Local reasoning” [67] refers to the ability of verifying a piece of code
through a piece of reasoning concerned only with the memory cells that are involved

14 CHAPTER 1. INTRODUCTION

in the execution of that code. With local reasoning, all the memory cells that are
not explicitly mentioned are implicitly assumed to remain unchanged. The concept
of local reasoning is very elegantly captured by the “frame rule”, which originates in
Separation Logic [77]. The frame rule states that if a program expression transforms
a heap described by a predicate 𝐻1 into heap described by a predicate 𝐻 ′

1, then,
for any heap predicate 𝐻2, the same program expression also transforms a heap of
the form 𝐻1 *𝐻2 into a state described by 𝐻 ′

1 *𝐻2, where the star symbol, called
separating conjunction, captures a disjoint union of two pieces of heap.

For example, consider the application of the function incr, which increments the
contents of the memory cell, to a location 𝑙. If (𝑙 →˓ 𝑛) describes a singleton heap
that binds the location 𝑙 to the integer 𝑛, then an application of the function incr
expects a heap of the form (𝑙 →˓ 𝑛) and produces the heap (𝑙 →˓ 𝑛+1). By the frame
rule, one can deduce that the application of the function incr to 𝑙 also takes a heap
of the form (𝑙 →˓ 𝑛) * (𝑙′ →˓ 𝑛′) towards a heap of the form (𝑙 →˓ 𝑛 + 1) * (𝑙′ →˓ 𝑛′).
Here, the separating conjunction asserts that 𝑙′ is a location distinct from 𝑙. The use
of the separating conjunction gives us for free the property that the cell at location
𝑙′ is not modified when the contents of the cell at location 𝑙 is incremented.

The frame rule can be formulated on Hoare triples as follows.

{𝐻1} 𝑡 {𝑄1}
{𝐻1 *𝐻2} 𝑡 {𝑄1 ⋆ 𝐻2}

where the symbol (⋆) is like (*) except that it extends a post-condition with a piece
of heap. Technically, 𝑄1 ⋆ 𝐻2 is defined as “𝜆𝑥. (𝑄1 𝑥) * 𝐻2”, where the variable 𝑥
denotes the output value and 𝑄1 𝑥 describes the output heap.

To integrate the frame rule in characteristic formulae, I rely on a predicate
called frame. This predicate is defined in such a way that, to prove the proposition
“frame J𝑡K𝐻 𝑄”, it suffices to find a decomposition of 𝐻 as 𝐻1 *𝐻2, a decomposition
of 𝑄 as 𝑄1 ⋆ 𝐻2, and to prove J𝑡K𝐻1𝑄1. The formal definition of frame is thus as
follows.

frameℱ ≡ 𝜆𝐻𝑄. ∃𝐻1𝐻2𝑄1.

𝐻 = 𝐻1 *𝐻2

ℱ 𝐻1𝑄1

𝑄 = 𝑄1 ⋆ 𝐻2

The frame rule is not syntax-directed, meaning that one cannot guess from the
shape of the term 𝑡 when the frame rule needs to be applied. Yet, I want to generate
characteristic formulae in a systematic manner form the syntax of the source code.
Since I do not know where to insert applications of the predicate frame, I simply
insert applications of frame at every node of a characteristic formula. For example,
I update the previous definition for let-bindings to:

(let 𝑥 = ℱ1 in ℱ2) ≡ frame (𝜆𝐻. 𝜆𝑄. ∃𝑄′. ℱ1𝐻 𝑄′ ∧ ∀𝑥. ℱ2 (𝑄′ 𝑥) 𝑄)

This aggressive strategy allows applying the frame rule at any time in the reasoning.
If there is no need to apply the frame rule, then the frame predicate may be simply

1.2. OVERVIEW 15

ignored. Indeed, given a formula ℱ , the proposition “ℱ 𝐻 𝑄” is always a sufficient
condition for proving “frameℱ 𝐻 𝑄”. It suffices to instantiate 𝐻1 as 𝐻, 𝑄1 as 𝑄
and 𝐻2 as a specification of the empty heap.

The approach that I have described here to handle the frame rule is in fact gener-
alized so as to also handle applications of the rule of consequence, for strengthening
pre-conditions and weakening post-conditions, and to allow discarding memory cells,
for simulating garbage collection.

Translation of types Higher-order logic can naturally be used to state properties
about basic values such as purely-functional lists. Indeed, the list data structure can
be defined in the logic in a way that perfectly matches the list data structure from
the programming language. However, particular care is required for specifying and
reasoning on program functions. Indeed, programming language functions cannot
be directly represented as logical functions, because of a mismatch between the
two: program functions may diverge or crash whereas logical functions must always
terminate. To address this issue, I introduce a new data type, called Func, used
to represent functions. The type Func is presented as an abstract data type to the
user of characteristic formulae. In the proof of soundness, a value of type Func is
interpreted as the syntax of the source code of a function.

Another particularity of the reflection of Caml values into Coq values is the
treatment of pointers. When reasoning through characteristic formulae, the type
and the contents of memory cells are described explicitly by heap predicates, so
there is no need for pointers to carry the type of the memory cell they point to. All
pointers are therefore described in the logic through an abstract data type called
Loc. In the proof of soundness, a value of type Loc is interpreted as a store location.

The translation of Caml types [48] into Coq [18] types is formalized through an
operator, written ⟨·⟩, that maps all arrow types towards the type Func and maps all
reference types towards the type Loc. A Caml value of type 𝜏 is thus represented as
a Coq value of type ⟨𝜏⟩. The definition of the operator ⟨·⟩ is as follows.

⟨int⟩ ≡ Int
⟨𝜏1 × 𝜏2⟩ ≡ ⟨𝜏1⟩ × ⟨𝜏2⟩
⟨𝜏1 + 𝜏2⟩ ≡ ⟨𝜏1⟩ + ⟨𝜏2⟩
⟨𝜏1 → 𝜏2⟩ ≡ Func
⟨ref 𝜏⟩ ≡ Loc

On the one hand, ML typing is very useful as knowing the type of values allows
to reflect Caml values directly into the corresponding Coq values. On the other
hand, typing is restrictive: there are numerous programs that are correct but cannot
be type-checked in ML. In particular, the ML type system does not accommodate
programs involving null pointers and strong updates. Yet, although those features
are difficult to handle in a type system without compromising type safety, their
correctness can be justified through proofs of program correctness. So, I extend
Caml with null pointers and strong udpates, and then use characteristic formulae to

16 CHAPTER 1. INTRODUCTION

justify that null pointers are never dereferenced and that reads in memory always
yield a value of the expected type.

The correctness of this approach is however not entirely straightforward to jus-
tify. On the one hand, characteristic formulae are generated from typed programs.
On the other hand, the introduction of null pointers and strong updates may jeop-
ardize the validity of types. To justify the soundness of characteristic formulae, I
introduce a new type system called weak-ML. This type system does not enjoy type
soundness. However, it carries all the type information and invariants needed to
generate characteristic formulae and to prove them sound.

In short, weak-ML corresponds to a relaxed version of ML that does not keep
track of the type of pointers or functions, and that does not impose any constraint
on the typing of dereferencing and applications. The translation from Caml types
to Coq types is in fact conducted in two steps: a Caml type is first translated into
a weak-ML type, and this weak-ML type it then translated into a Coq type.

Functions To specify the behavior of functions, I rely on a predicate called AppReturns.
The proposition “AppReturns 𝑓 𝑣 𝐻 𝑄” asserts that the application of the function 𝑓
to 𝑣 in a heap satisfying 𝐻 terminates and returns a value 𝑣′ in a heap satisfying
𝑄𝑣′. The predicates 𝐻 and 𝑄 correspond to the pre- and post-conditions of the
application of the function 𝑓 to the argument 𝑣. It follows that the characteristic
formula for an application of a function 𝑓 to a value 𝑣 is simply built as the partial
application of AppReturns to 𝑓 and 𝑣.

J𝑓 𝑣K ≡ AppReturns 𝑓 𝑣

The function 𝑓 is viewed in the logic as a value of type Func. If 𝑓 takes as
argument a value 𝑣 described in Coq at type 𝐴 and returns a value described in Coq
at type 𝐵, then the pre-condition 𝐻 has type Hprop, a shorthand for Heap → Prop,
and the post-condition 𝑄 has type 𝐵 → Hprop. So, the type of AppReturns is as
follows.

AppReturns : ∀𝐴𝐵. Func → 𝐴 → Hprop → (𝐵 → Hprop) → Prop

For example, the function incr is specified as shown below, using a pre-condition
of the form (𝑙 →˓ 𝑛) and a post-condition describing a heap of the form (𝑙 →˓ 𝑛+ 1).
Note: the abstraction “𝜆_.” is used to discard the unit value returned by the function
incr.

∀𝑙. ∀𝑛. AppReturns incr 𝑙 (𝑙 →˓ 𝑛) (𝜆_. 𝑙 →˓ 𝑛 + 1)

To establish a property about the behavior of an application, one needs to exploit
an instance of AppReturns. Such instances can be derived from the characteristic
formula associated with the definition of the function involved. If a function 𝑓
is defined as the abstraction “𝜆𝑥. 𝑡”, then, given a particular argument 𝑥, one can
derive an instance of “AppReturns 𝑓 𝑥𝐻 𝑄” simply by proving that the body 𝑡 admits
the pre-condition 𝐻 and the post-condition 𝑄 for that particular argument 𝑥. The

1.3. IMPLEMENTATION 17

characteristic formula of a function definition (let rec 𝑓 = 𝜆𝑥. 𝑡 in 𝑡′) is defined as
follows.

Jlet rec 𝑓 = 𝜆𝑥. 𝑡 in 𝑡′K ≡
𝜆𝐻𝑄. ∀𝑓. (∀𝑥𝐻 ′𝑄′. J𝑡K𝐻 ′𝑄′ ⇒ AppReturns 𝑓 𝑥𝐻 ′𝑄′) ⇒ J𝑡′K𝐻 𝑄

Observe that the formula does not involve a specific treatment of recursivity.
Indeed, to prove that a recursive function satisfies a given specification, it suffices
to conduct a proof by induction that the function indeed satisfies that specification.
The induction may be conducted on a measure or on a well-founded relation, using
the induction facility from the theorem prover. So, there is no need to strengthen
the characteristic formula in any way for supporting recursive functions. A similar
observation was also made by Honda et al [40].

1.3 Implementation

I have implemented a tool, called CFML, short for “Characteristic Formulae for ML”,
that targets the verification of Caml programs [48] using the Coq proof assistant [18].
This tool comprises two parts. The CFML generator is a program that translates
Caml source code into a set of Coq definitions and axioms. The CFML library is
a Coq library that contains notation, lemmas and tactics for manipulating charac-
teristic formulae. In this section, I describe precisely the fragment of the OCaml
language supported by CFML, as well as the exact logic in which the reasoning on
characteristic formulae is taking place. I also give an overview of the architecture of
CFML, and comment on its trusted computing base.

Source language I have focused on a subset of the OCaml programming lan-
guage, which is a sequential, call-by-value, high-level programming language. The
current implementation of CFML supports the core 𝜆-calculus, including higher-
order functions, recursion, mutual recursion and polymorphic recursion. It supports
tuples, data constructors, pattern matching, reference cells, records and arrays. I
provide an additional Caml library that adds support for null pointers and strong
updates.

For the sake of simplicity, I model machine integers as mathematical integers,
thus making the assumption that no arithmetic overflow ever occurs. Moreover, I do
not include floating-point numbers, whose formalization is associated with numerous
technical difficulties. Also, I assume the source language to be deterministic. This
determinacy requirement might in fact be relaxed, but the formal developments were
slightly simpler to conduct under this assumption.

Lazy expressions are supported under the condition that the code would termi-
nate without any lazy annotation. Although this restriction does not enable reason-
ing on infinite data structures, it covers some uses of laziness, such as computation
scheduling, which is exploited in particular in Okasaki’s data structures [69]. In
fact, CFML simply ignores any annotation relative to laziness. Indeed, if a program

18 CHAPTER 1. INTRODUCTION

satisfies its specification when evaluated without any lazy annotation, then it also
satisfies its specification when evaluated with lazy annotations. (The reciprocal is
not true.)

Moreover, CFML includes an experimental support for Caml modules and func-
tors, which are reflected as Coq modules and functors. This development is still
considered experimental because of several limitations of the current module system
of Coq.1 Yet, the support for modules has shown useful in the verification of data
structures implemented using Caml functors.

Thereafter, I refer to the subset of the OCaml language supported by CFML as
“Caml”.

Target logic When verifying programs through characteristic formulae, both the
specification process and the verification process take place in the logic. The logic
targeted by CFML is the logic of Coq. More precisely, I work in the Calculus
of Inductive Constructions, strengthened with the following standard extensions:
functional extensionality, propositional extensionality, classical logic, and indefinite
description (also called Hilbert’s epsilon operator). Note that the proof irrelevance
property is derivable in this setting.

Those axioms are all compatible with the standard boolean model of type theory.
They are not included by default in Coq but they are integrated in other higher-
order logic proof assistants such as Isabelle/HOL and HOL4. Remark: although
the CFML library is implemented in the Coq proof assistant, the developments it
contains could presumably be reproduced in another general-purpose proof assistant
based on higher-order logic.

The CFML generator The CFML generator starts by parsing a Caml source
file. This source code need not be annotated with any specification nor invariant.
The tool then normalizes the source code in order to assign names to intermediate
expressions, that is, to make sequencing explicit. It then type-checks the code and
generates a Coq file. This Coq file contains a set of declarations reflecting every
top-level declaration from the source code.

For example, consider a top-level function definition “ let 𝑓 𝑥 = 𝑡”. The CFML
generator produces an axiom named f, of type Func, as well as an axiom named f_cf,
which allows deriving instances of the predicate AppReturns for the function f.

Axiom f : Func.
Axiom f_cf : ∀𝑥𝐻 𝑄. J𝑡K𝐻 𝑄 ⇒ AppReturns f𝑥𝐻 𝑄.

The specification and verification of the content of a file called demo.ml takes
place in a proof script called demo_proof.v. The file demo_proof.v depends on the

1A major limitation of the Coq module system is that the positivity requirement for inductive
definitions is based on a syntactic check that does not appropriately support abstract type con-
structors. In other words, Coq does not implement a feature equivalent to the variance constraints
of Caml. Another inconvenience is that Coq module signatures cannot be described on-the-fly like
in Caml; they have to be named explicitly.

1.3. IMPLEMENTATION 19

generated file, which is called demo_ml.v. When the source file demo.ml is modified,
the CFML generator needs to be executed again, producing an updated demo_ml.v
file. The proof script from demo_proof.v, which records the arguments explaining
why the previous version of demo.ml was correct, may need to be updated. To find
out where modifications are required, it suffices to run the Coq proof assistant on
the proof script until the first point where a proof breaks. One can then fix the
proof script so as to reflect the changes made in the source code.

The CFML library The CFML library is made of three main parts. First, it
includes a system of notation for pretty-printing characteristic formulae. Second, it
includes a number of lemmas for reasoning on the specification of functions. Third,
it includes the definition of high-level tactics that are used to efficiently manipulate
characteristic formuale.

The CFML library is built upon three axioms. The first one asserts the existence
of a type Func, which is used to represent functions. The second one asserts the
existence of a predicate AppEval, a low-level predicate in terms of which the predicate
AppReturns is defined. Intuitively, the proposition AppEval 𝑓 𝑣 ℎ 𝑣′ ℎ′ corresponds to
the big-step reduction judgment for functions: it is equivalent to (𝑓 𝑣)/ℎ ⇓ 𝑣′/ℎ′ . The
third axiom asserts that AppEval is deterministic: in the judgment AppEval 𝑓 𝑣 ℎ 𝑣′ ℎ′,
the last two arguments are uniquely determined by the first three. The library
also includes axioms for describing the specification of the primitive functions for
manipulating references. Through the proof of soundness, I establish that all those
axioms can be given a sound interpretation.

Trusted computing base The framework that I have developed aims at proving
programs correct. To trust that CFML actually establish the correctness of a pro-
gram, one needs to trust that the characteristic formulae that I generate and that
I take as axioms are accurate descriptions of the programs they correspond to, and
that those axioms do not break the soundness of the target logic.

The trusted computing base of CFML also includes the implementation of the
CFML generator, which I have programmed in OCaml, the implementation of the
parser and of the type-checker of OCaml, and the implementation of the Coq proof
assistant. To be exhaustive, I shall also mention that the correctness of the frame-
work indirectly relies on the correctness of the complete OCaml compiler and on the
correctness of the hardware.

The main priority of my thesis has been the development and implementation of
a practical tool for program verification. For this reason, I have not yet invested time
in trying to construct a mechanized proof of the soundness of characteristic formulae.
In this dissertation, I only give a detailed paper proof justifying that all the axioms
involved can be given a concrete interpretation in the logic. An interesting direction
for future work consists in trying to replace the axioms with definitions and lemmas,
which would be expressed in terms of a deep embedding of the source language.

20 CHAPTER 1. INTRODUCTION

1.4 Contribution

The thesis that I defend is summarized in the following statement.

Generating the characteristic formula of a program and ex-
ploiting that formula in an interactive proof assistant provides
an effective approach to formally verifying that the program
satisfies a given specification.

A characteristic formula is a logical predicate that precisely describes the set of
specifications admissible by a given program, without referring to the syntax of
the programing language. I have not invented the general concept of characteristic
formulae, however I have turned that concept into a practical program verification
technique. More precisely, the main contributions of my thesis may be summarized
as follows.

I show that characteristic formulae can be expressed in terms of a standard
higher-order logic. Moreover, I show that characteristic formulae can be pretty-
printed just like the source code they describe. Hence, compared with Honda et
al’s work, the characteristic formulae that I generate are easy to read and can be
manipulated within an off-the-shelf theorem prover. I also explain how characteristic
formulae can support local reasoning. More precisely, I rely on separation-logic
style predicates for specifying memory states, and the characteristic formulae that I
generate take into account potential applications of the frame rule.

I demonstrate the effectiveness of characteristic formulae through the imple-
mentation of a tool called CFML that accepts Caml programs and produces Coq
definitions. I have used CFML to verify a collection of purely-functional data struc-
tures taken from Okasaki’s book on purely-functional data structures [69]. Some
advanced structures, such as bootstrapped queues, had never been formally verified
previously.

I have investigated the treatment of higher-order imperative functions. In par-
ticular, I have verified the following functions: a higher-order iterator for lists, a
function that manipulates a list of counters in which each counter is a function that
carries its own private state, the generic combinator compose, and Reynolds’ CPS-
append function [77]. More recently, I have verified three imperative algorithms: an
implementation of Dijkstra’s shortest path algorithm (the version of the algorithm
that uses a priority queue), an implementation of Tarjan’s Union-Find data structure
(specified with respect to a partial equivalence relations), and an implementation of
sparse arrays (as described in the first task from the Vacid-0 challenge [78]). Those
developments, which are not described in this manuscript, can be found online2.

2Proof scripts: http://arthur.chargueraud.org/research/2010/thesis/

1.5. RESEARCH AND PUBLICATIONS 21

1.5 Research and publications

During my thesis, I have worked on three main projects. First, I have studied a
type system based on linear capabilities for describing mutable state. This type
system has been described in an ICFP’08 paper, and it is not included in my disser-
tation. Second, I have worked on a deep embedding of the pure fragment of Caml
in Coq. This deep embedding is described in a research paper which has not been
published. The work on the deep embedding led me to characteristic formulae for
purely-functional Caml programs. This work has appeared as an ICFP’10 paper.
Most of the content of that paper is included in my dissertation. I have recently
extended characteristic formulae to imperative programs, reusing in particular ideas
that had been developed for the type system based on capabilities. At the time of
writing, the extension of characteristic formulae to the imperative setting has not
yet been submitted as a conference paper.

Previous research papers:

− Functional Translation of a Calculus of Capabilities,
Arthur Charguéraud and François Pottier,
International Conference on Functional Programming (ICFP), 2008.

− Verification of Functional Programs Through a Deep Embedding,
Arthur Charguéraud,
Unpublished, 2009.

− Program Verification Through Characteristic Formulae,
Arthur Charguéraud,
International Conference on Functional Programming (ICFP), 2010.

1.6 Structure of the dissertation

The thesis is structured as follows. Examples of verification through characteristic
formulae is described in Chapter 2 for pure programs, and in Chapter 3 for imper-
ative programs. The construction of characteristic formulae for pure programs is
developed in Chapter 4. This construction is then generalized to imperative pro-
grams in Chapter 5. The proof of soundness and completeness of characteristic
formulae for pure programs is the matter of Chapter 6. Those proofs are then ex-
tended to an imperative setting in Chapter 7. Finally, related work is discussed in
Chapter 8, and conclusions are given in Chapter 9.

Notice: several predicates are used with a different meaning in the context of
purely-functional programs than in the context of imperative programs. For ex-
ample, the big-step reduction judgment for pure programs takes the form 𝑡 ⇓ 𝑣,
whereas the judgment for imperative programs takes the form 𝑡/𝑚 ⇓ 𝑣′/𝑚′ . Simi-
larly, reasoning on applications in a purely-functional setting involves the predicate

22 CHAPTER 1. INTRODUCTION

“AppReturns 𝑓 𝑣 𝑃 ”, whereas in an imperative setting the same predicate takes the
form “AppReturns 𝑓 𝑣 𝐻 𝑄”. This reuse of predicate names, which makes the presen-
tation lighter and more uniform, should not lead to confusion since a given predicate
is always used in a consistent manner in each chapter.

Chapter 2

Overview and specifications

The purpose of this overview is to give some intuition on how to construct
a characteristic formula and how to exploit it. To that end, I consider
a small but illustrative purely-functional function as running example.
Another goal of the chapter is to explain the specification language upon
which I rely. Specifications take the form of Coq lemmas, stated using
special predicates as well as a layer of notation. The specification of
modules and functors is illustrated through the presentation of a case
study on purely-functional red-black trees.

2.1 Characteristic formulae for pure programs

In a purely-functional setting, the characteristic formulae J𝑡K associated with a term
𝑡 is such that, for any given post-condition 𝑃 , the proposition “J𝑡K𝑃 ” holds if and
only if the term 𝑡 terminates and returns a value satisfying the predicate 𝑃 . Note
that reasoning on the total correctness of pure programs can be conducted with-
out pre-conditions. In terms of types, the characteristic formula associated with a
term 𝑡 of type 𝜏 applies to a post-condition 𝑃 of type ⟨𝜏⟩ → Prop and produces a
proposition, so J𝑡K admits the type (⟨𝜏⟩ → Prop) → Prop. In terms of a denotational
interpretation, J𝑡K corresponds to the set of post-conditions that are valid for the
term 𝑡. I next describe an example of a characteristic formula.

2.1.1 Example of a characteristic formula

Consider the following recursive function, which divides by two any non-negative
even integer. For the interest of the example, the function diverges when called on a
negative integer and crashes when called on an odd integer. Through this example, I
present the construction of characteristic formulae and also illustrate the treatment

23

24 CHAPTER 2. OVERVIEW AND SPECIFICATIONS

of partial functions, of recursion, and of ghost variables.

let rec half 𝑥 =
if 𝑥 = 0 then 0
else if 𝑥 = 1 then crash
else let 𝑦 = half (𝑥− 2) in

𝑦 + 1

Given an argument 𝑥 and a post-condition 𝑃 of type int → Prop, the characteristic
formula for half describes what needs to be proved in order to establish that the
application of half to 𝑥 terminates and returns a value satisfying the predicate
𝑃 , written “AppReturns half𝑥𝑃 ”. The characteristic formula associated with the
definition of the function half appears below and is explained next.

∀𝑥. ∀𝑃.

(𝑥 = 0 ⇒ 𝑃 0)
∧ (𝑥 ̸= 0 ⇒

(𝑥 = 1 ⇒ False)
∧ (𝑥 ̸= 1 ⇒

∃𝑃 ′. (AppReturns half (𝑥− 2)𝑃 ′)
∧ (∀𝑦. (𝑃 ′ 𝑦) ⇒ 𝑃 (𝑦 + 1))))

⇒ AppReturns half𝑥𝑃

When 𝑥 is equal to zero, the function half returns zero. So, if we want to show that
half returns a value satisfying 𝑃 , we have to prove “𝑃 0”. When 𝑥 is equal to one,
the function half crashes, so we cannot prove that it returns any value. The only
way to proceed is to show that the instruction fail cannot be reached. Hence the
proof obligation False. Otherwise, we want to prove that “ let 𝑦 = half (𝑥−2) in 𝑦 + 1”
returns a value satisfying 𝑃 . To that end, we need to exhibit a post-condition 𝑃 ′

such that the recursive call to half on the argument 𝑥− 2 returns a value satisfying
𝑃 ′. Then, for any name 𝑦 that stands for the result of this recursive call, assuming
that 𝑦 satisfies 𝑃 ′, we have to show that the output value 𝑦 + 1 satisfies the post-
condition 𝑃 .

For program verification to be realistic, the proof obligation “J𝑡K𝑃 ” should be
easy to read and manipulate. Fortunately, characteristic formulae can be pretty-
printed in a way that closely resemble source code. For example, the characteristic
formula associated with half is displayed as follows.

Let half = fun 𝑥 ↦→
if 𝑥 = 0 then return 0
else if 𝑥 = 1 then crash
else let 𝑦 = app half (𝑥− 2) in

return (𝑦 + 1)

At first sight, it might appear that the characteristic formula is merely a rephras-
ing of the source code in some other syntax. To some extent, this is true. A charac-
teristic formula is a sound and complete description of the behavior of a program.

2.1. CHARACTERISTIC FORMULAE FOR PURE PROGRAMS 25

Thus, it carries no more and no less information than the source code of the pro-
gram itself. However, characteristic formulae enable us to move away from program
syntax and conduct program verification entirely at the logical level. Characteristic
formulae thereby avoid all the technical difficulties associated with manipulation of
program syntax and make it possible to work directly in terms of higher-order logic
values and formulae.

2.1.2 Specification and verification

One of the key ingredients involved in characteristic formulae is the abstract pred-
icate AppReturns, which is used to specify functions. Because of the mismatch be-
tween program functions, which may fail or diverge, and logical functions, which
must always be total, we cannot represent program functions using logical func-
tions. For this reason, I introduce an abstract type, named Func, to represent
program functions. Values of type Func are exclusively specified in terms of the
predicate AppReturns. The proposition “AppReturns 𝑓 𝑥𝑃 ” states that the applica-
tion of the function 𝑓 to an argument 𝑥 terminates and returns a value satisfying
𝑃 . Hence the type of AppReturns, shown below.

AppReturns : ∀𝐴𝐵. Func → 𝐴 → (𝐵 → Prop) → Prop

Observe a function 𝑓 is described in Coq at the type Func, regardless of Caml type of
the function 𝑓 . Having Func as a constant type and not a parametric type allows for
a simple treatment of polymorphic functions and of functions that admit a recursive
type.

The predicate AppReturns is used not only in the definition of characteristic
formulae but also in the statement of specifications. One possible specification for
half is the following: if 𝑥 is the double of some non-negative integer 𝑛, then the
application of half to 𝑥 returns an integer equal to 𝑛. The corresponding higher-
order logic statement appears next.

∀𝑥. ∀𝑛. 𝑛 ≥ 0 ⇒ 𝑥 = 2 * 𝑛 ⇒ AppReturns half𝑥 (= 𝑛)

Remark: the post-condition (= 𝑛) denotes a partial application of equality: it is
short for “𝜆𝑎. (𝑎 = 𝑛)”. Here, the value 𝑛 corresponds to a ghost variable: it appears
in the specification of the function but not in its source code. The specification
that I have considered for half might not be the simplest one, however it is useful to
illustrate the treatment of ghost variables.

The next step consists in proving that the function half satisfies its specification.
This is done by exploiting its characteristic formula. I first give the mathematical
presentation of the proof and then show the corresponding Coq proof script. The
specification is proved by induction on 𝑥. Let 𝑥 and 𝑛 be such that 𝑛 ≥ 0 and
𝑥 = 2 *𝑛. We apply the characteristic formula to prove “AppReturns half𝑥 (= 𝑛)”. If
𝑥 is equal to 0, we conclude by showing that 𝑛 is equal to 0. If 𝑥 is equal to 1, we
show that 𝑥 = 2 * 𝑛 is absurd. Otherwise, 𝑥 ≥ 2. We instantiate 𝑃 ′ as “= 𝑛 − 1”,

26 CHAPTER 2. OVERVIEW AND SPECIFICATIONS

and prove “AppReturns half (𝑥 − 2)𝑃 ′” using the induction hypothesis. Finally, we
show that, for any 𝑦 such that 𝑦 = 𝑛 − 1, the proposition 𝑦 + 1 = 𝑛 holds. This
completes the proof. Note that, through this proof by induction, we have proved
that the function half terminates when it is applied to a non-negative even integer.

Formalizing the above piece of reasoning in a proof assistant is straightforward.
In Coq, a proof script takes the form of a sequence of tactics, each tactic being used
to make some progress in the proof. The verification of the function half could be
done using only built-in Coq tactics. Yet, for the sake of conciseness, I rely on a few
specialized tactics to factor out repeated proof patterns. For example, each time we
reason on a “if” statement, we want to split the conjunction at the head of the goal
and introduce one hypothesis in each subgoal. The tactics specific to my framework
can be easily recognized: they start with the letter “x”. The verification proof script
for half appears next.

xinduction (downto 0).
xcf. introv IH Pos Eq. xcase.

xret. auto. (* x = 0 *)
xfail. auto. (* x = 1 *)
xlet. (* otherwise *)

xapp (n-1); auto. (* half (x-2) *)
xret. auto. (* return y+1 *)

The interesting steps in that proof are: the setting up of the induction on the set
of non-negative integers (xinduction), the application of the characteristic formula
(xcf), the case analysis on the value of 𝑥 (xcase), and the instantiation of the
ghost variable 𝑛 with the value “𝑛− 1” when reasoning on the recursive call to half
(xapp). The tactic auto runs a goal-directed proof search and may also rely on a
decision procedure for linear arithmetic. The tactic introv is used to assign names
to hypotheses. Such explicit naming is not mandatory, but in general it greatly
improves the readability of proof obligations and the robustness of proof scripts.

When working with characteristic formulae, proof obligations always remain very
tidy. The Coq goal obtained when reaching the subterm “ let 𝑦 = half (𝑥−2) in 𝑦+ 1”
is shown below. In the conclusion (stated below the line), the characteristic formula
associated with that subterm is applied to the post-condition to be established,
which is “= 𝑛”. The context contains the two pre-conditions 𝑛 ≥ 0 and 𝑥 = 2 * 𝑛,
the negation of the conditionals that have been tested, 𝑥 ̸= 0 and 𝑥 ̸= 1, as well as
the induction hypothesis, which asserts that the specification that we are trying to
prove for half already holds for any non-negative argument 𝑥′ smaller than 𝑥.

x : int
IH : forall x’, 0 <= x’ -> x’ < x ->

forall n, n >= 0 -> x’ = 2 * n ->
AppReturns half x’ (= n)

n : int
Pos : n >= 0

2.1. CHARACTERISTIC FORMULAE FOR PURE PROGRAMS 27

Eq : x = 2 * n
C1 : x <> 0
C2 : x <> 1

(Let y := App half (x-2) in Return (1+y)) (= n)

As illustrated through the example, a verification proof script typically inter-
leaves applications of “x”-tactics with pieces of general Coq reasoning. In order
to obtain shorter proof scripts, I set up an additional tactic that automates the
invokation of x-tactics. This tactic, named xgo, simply looks at the head of the
characteristic formula and applies the appropriate x-tactic. A single call to xgo may
analyse an entire characteristic formula and leave a set of proof obligations, in a
similar fashion as a Verification Condition Generator (VCG).

Of course, there are pieces of information that xgo cannot infer. Typically, the
specification of local functions must be provided explicitly. Also, the instantiation
of ghost variables cannot always be inferred. In our example, Coq automation is
slightly too weak to infer that the ghost variable 𝑛 should be instantiated as 𝑛− 1
in the recursive call to half. In practice, xgo stops running whenever it lacks too
much information to go on. The user may also explicitly tell xgo to stop at a
given point in the code. Moreover, xgo accepts hints to be exploited when some
information cannot be inferred. For example, we can run xgo with the indication
that the function application whose result is named 𝑦 should use the value 𝑛 − 1
to instantiate a ghost variable.1 In this case, the verification proof script for the
function half is reduced to:

xinduction (downto 0). xcf. intros.
xgo~ ’y (Xargs (n-1)).

Automation, denoted by the tilde symbol, is able to handle all the subgoals produced
by xgo.

For simple functions like half, a single call to xgo is usually sufficient. However,
for more complex programs, the ability of xgo to be run only on given portions of
code is crucial. In particular, it allows one to stop just before a branching point
in the code in order to establish facts that are needed in several branches. Indeed,
when a piece of reasoning needs to be carried out manually, it is extremely important
to avoid duplicating the corresponding proof script across several branches.

To summarize, my approach allows for very concise proof scripts whenever ver-
ifying simple pieces of code, thanks to the automated processing done by xgo and

1The name y is a bound name in the characteristic formula. Since Coq tactics are not allowed
to depend on bound names, the tactic xgo actually takes as argument a constant called ’y. The
constant ’y, defined by the CFML generator, serves as an identifier used to tag the characteristic
formula associated with the subterm “ let 𝑦 = half (𝑥− 2) in 𝑦+1”. This tagged formula is displayed
in Coq as follows: Let ’y y := App half (x-2) in Return (1+y). If the tactic language did
support ways of referring to bound variables, then the work-around described in this footnote
would not be needed.

28 CHAPTER 2. OVERVIEW AND SPECIFICATIONS

module type Fset = sig | module type Ordered = sig
type elem | type t
type fset | val lt: t -> t -> bool
val empty: fset | end
val insert: elem -> fset -> fset |
val member: elem -> fset -> bool |

end |

Figure 2.1: Module signatures for finite sets and ordered types

to the good amount of automation available through the proof search mechanism
and the decision procedures that can be called from Coq. At the same time, when
verifying more complex code, my approach offers a very fine-grained control on the
structure of the proofs and it greatly benefits from the integration in a proof assistant
for proving nontrivial facts interactively.

2.2 Formalizing purely functional data structures

Chris Okasaki’s book Purely Functional Data Structures [69] contains a collection of
efficient data structures, with concise implementation and nontrivial invariants. Its
code appeared as a excellent benchmark for testing the usability of characteristic
formulae for verifying pure programs. I have verified more than half of the contents
of the book. Here, I focus on describing the formalization of red-black trees and give
statistics on the other formalizations completed.

Red-black trees are binary search trees where each node is tagged with a color,
either red or black. Those tags are used to maintain balance in the tree, ensuring a
logarithmic asymptotic complexity. Okasaki’s implementation appears in Figure 2.2.
It consists of a functor that, given an ordered type, builds a module matching the
signature of finite sets. The Caml signatures involved appear in Figure 2.1.

I specify each Caml module signature through a Coq module signature. I then
verify each Caml module implementation through a Coq module implementation
that contains lemmas establishing that the Caml code satisfies its specification. I rely
on Coq’s module system to ensure that the lemmas proved actually correspond to
the expected specification. This strategy allows for modular verification of modular
programs.

2.2.1 Specification of the signature

In order to specify functions manipulating red-black trees, I introduce a represen-
tation predicate called rep. Intuitively, every data structure admits a mathematical
model. For example, the model of a red-black tree is a set of values. Similarly, the
model of a priority queue is a multiset, and the model of a queue is a sequence (a
list). Sometimes, the mathematical model is simply the value itself. For instance,
the model of an integer or of a value of type color is just the value itself.

2.2. FORMALIZING PURELY FUNCTIONAL DATA STRUCTURES 29

module RedBlackSet (Elem : Ordered) : Fset = struct

type elem = Elem.t
type color = Red | Black
type fset = Empty | Node of color * fset * elem * fset

let empty = Empty

let rec member x = function
| Empty -> false
| Node (_,a,y,b) ->

if Elem.lt x y then member x a
else if Elem.lt y x then member x b
else true

let balance = function
| (Black, Node (Red, Node (Red, a, x, b), y, c), z, d)
| (Black, Node (Red, a, x, Node (Red, b, y, c)), z, d)
| (Black, a, x, Node (Red, Node (Red, b, y, c), z, d))
| (Black, a, x, Node (Red, b, y, Node (Red, c, z, d)))

-> Node (Red, Node(Black,a,x,b), y, Node(Black,c,z,d))
| (col,a,y,b) -> Node(col,a,y,b)

let rec insert x s =
let rec ins = function

| Empty -> Node(Red,Empty,x,Empty)
| Node(col,a,y,b) as s ->

if Elem.lt x y then balance(col,ins a,y,b)
else if Elem.lt y x then balance(col,a,y,ins b)
else s in

match ins s with
| Empty -> raise BrokenInvariant
| Node(_,a,y,b) -> Node(Black,a,y,b)

end

Figure 2.2: Okasaki’s implementation of Red-Black sets

30 CHAPTER 2. OVERVIEW AND SPECIFICATIONS

I formalize models through instances of a typeclass named Rep. If values of
a type 𝑎 are modelled by values of type 𝐴, then I write “Rep 𝑎𝐴”. For example,
consider red-black trees that contain items of type 𝑡. If those items are modelled by
values of type 𝑇 (i.e., Rep 𝑡 𝑇), then trees of type fset are modelled by values of type
set𝑇 (i.e., Rep fset (set𝑇)), where set is the type constructor for mathematical sets
in Coq.

The typeclass Rep contains two fields, as shown below. For an instance of type
“Rep 𝑎𝐴”, the first field, rep, is a binary relation that relates values of type 𝑎 with
their model, of type 𝐴. Note that not all values admit a model. For instance, given a
red-black tree 𝑒, the proposition “rep 𝑒𝐸” can only hold if 𝑒 is a well-balanced, well-
formed binary search tree. The second field of Rep, named rep_unique, is a lemma
asserting that every value of type 𝑎 admits at most one model. We sometimes need
to exploit this fact in proofs.

Class Rep (a:Type) (A:Type) :=
{ rep : a -> A -> Prop;

rep_unique : forall x X Y,
rep x X -> rep x Y -> X = Y }.

Remark: although representation predicates have appeared previously in the context
of interactive program verification (e.g. [63, 27, 56]), my work seems to be the first
to use them in a systematic manner through a typeclass definition.

Figure 2.3 contains the specification for an abstract finite set module named F.
Elements of the sets, of type elem, are expected to be modelled by some type 𝑇
and to be related to their models by an instance of type “Rep elem𝑇 ”. Moreover,
the values implementing finite sets, of type fset, should be related to their model,
of type set𝑇 , through an instance of type “Rep fset (set𝑇)”. The module signature
then contains the specification of the values from the finite set module F. The first
one asserts that the value empty should be a representation for the empty set. The
specifications for insert and member rely on a special notation, explained next.

So far, I have relied on the predicate AppReturns to specify functions. Even
though AppReturns works well for functions of one argument, it becomes impractical
for curried functions of higher arity, in particular because one needs to specify the
behavior of partial applications. So, I introduce the Spec notation, explaining its
meaning informally and postponing its formal definition to §4.2.3. With the Spec
notation, the specification of insert, shown below, reads like a prototype: insert takes
two arguments, x of type elem and e of type fset. Then, for any model X of x and for
any set E that models e, the function returns a finite set e’ which admits a model E’
equal to {X} ∪ E. Below, \{X} is a Coq notation for a singleton set and \u denotes
the set union operator.

Parameter insert_spec :
Spec insert (x:elem) (e:fset) |R>>

forall X E, rep x X -> rep e E ->
R (fun e’ => exists E’,

2.2. FORMALIZING PURELY FUNCTIONAL DATA STRUCTURES 31

rep e’ E’ /\ E’ = \{X} \u E).

The conclusion, which takes the form “R (fun e’ => H)”, can be read as “the ap-
plication of insert to the arguments x and e returns a value e’ satisfying H”. Here
R is bound in the notation “|R»”. The notation will be explained later on (§4.2.2).

As it is often the case that arguments and/or results are described through their
rep predicate, I introduce the RepSpec notation. With this new layer of syntactic
sugar, the specification becomes:

Parameter insert_spec :
RepSpec insert (X;elem) (E;fset) |R>>

R (fun E’ => E’ = \{X} \u E ; fset).

The specification is now stated entirely in terms of the models, and no longer refers
to the names of Caml input and output values. Only the types of those program
values remain visible. Those type annotations are introduced by semi-columns.

The specification for the function insert given in Figure 2.3 makes two further
simplifications. First, it relies on the notation RepTotal, which avoids the introduc-
tion of a name 𝑅 when it is immediately applied. Second, it makes uses of a partial
application of equality, of the form “= {X}∪E”, for the sake of conciseness. Overall,
the interest of introducing several layers of notation is that the final specifications
from Figure 2.3 are about the most concise formal specifications one could hope for.

Let me briefly describe the remaining specifications. The function member takes
as argument a value 𝑥 and a finite set 𝑒, and returns a boolean which is true if
and only if the model X of 𝑥 belongs to the model E of 𝑒. Figure 2.4 contains
the specification of an abstract ordered type module named O. Elements of the
ordered type 𝑡 should be modelled by a type 𝑇 . Values of type 𝑇 should be ordered
by a total order relation. The order relation and the proof that it is total are
described through instances of the typeclasses Le and Le_total_order, respectively.
An instance of the strict-order relation (LibOrder.lt) is automatically derived through
the typeclass mechanism. This relation is used to specify the boolean comparison
function lt, defined in the module O.

2.2.2 Verification of the implementation

It remains to specify and verify the implementation of red-black trees. Consider a
module O that describes an ordered type. Assume the module O has been verified
through a Coq module named OS of signature OrderedSigSpec. Our goal is then to
prove correct the module obtained by applying the functor RedBlackSet to the mod-
ule O, through the construction of a Coq module of signature FsetSigSpec. Thus, the
verification of the Caml functor RedBlackSet is carried through the implementation
of a Coq functor named RedBlackSetSpec, which depends both on the module O and
on its specification OS. For the Coq experts, I show the first few lines of this Coq
functor are shown below

32 CHAPTER 2. OVERVIEW AND SPECIFICATIONS

Module Type FsetSigSpec.

Declare Module F : MLFset. Import F.

Parameter T : Type.
Instance elem_rep : Rep elem T.
Instance fset_rep : Rep fset (set T).

Parameter empty_spec : rep empty \{}.
Parameter insert_spec :

RepTotal insert (X;elem) (E;fset) >> = \{X} \u E ; fset.
Parameter member_spec :

RepTotal member (X;elem) (E;fset) >> bool_of (X \in E).

End FsetSigSpec.

Figure 2.3: Specification of finite sets

Module Type OrderedSigSpec.

Declare Module O : MLOrdered. Import O.

Parameter T : Type.
Instance rep_t : Rep t T.
Instance le_inst : Le T.
Instance le_order : Le_total_order.

Parameter lt_spec :
RepTotal lt (X;t) (Y;t) >> bool_of (LibOrder.lt X Y).

End OrderedSigSpec.

Figure 2.4: Specification of ordered types

2.2. FORMALIZING PURELY FUNCTIONAL DATA STRUCTURES 33

Module RedBlackSetSpec
(O:MLOrdered) (OS:OrderedSigSpec with Module O:=O)
<: FsetSigSpec with Definition F.elem := O.t.

Module Import F <: MLFset := MLRedBlackSet O.

The next step in the construction of this functor is the definition of an instance
of the representation predicate for red-black trees. To start with, assume that our
goal is simply to specify a binary search tree (not necessarily balanced). The rep
predicate would be defined in terms of an inductive invariant called inv, as shown
below. First, inv relates the empty tree to the empty set. Second, inv relates a
node with root y and subtrees a and b to the set {Y} ∪ A ∪ B, where the uppercase
variables are the models associated with their lowercase counterpart. Moreover, we
need to ensure that all the elements of the left subtree A are smaller than the root Y,
and that, symmetrically, elements from B are greater than Y. Those invariants are
stated with help of the predicate foreach. The proposition “foreach𝑃 𝐸” asserts that
all the elements in the set 𝐸 satisfy the predicate 𝑃 .

Inductive inv : fset -> set T -> Prop :=
| inv_empty :

inv Empty \{}
| inv_node : forall col a y b A Y B,

inv a A -> inv b B -> rep y Y ->
foreach (is_lt Y) A -> foreach (is_gt Y) B ->
inv (Node col a y b) (\{Y} \u A \u B).

A red-black tree is a binary search tree satisfying three additional invariants.
First, every path from the root to a leaf should contain the same number of black
nodes. Second, no red node can have red child. Third, the root of the entire tree
must be black. In order to capture the first invariant, I extend the predicate inv so
that it depends on a natural number n representing the number of black nodes to be
found in every path. For an empty tree, this number is zero. For a nonempty tree,
this number is equal to the number m of black nodes that can be found in every
path of each of the two subtrees, augmented by one if the node is black. The second
invariant, asserting that a red node must have black children, can be enforced simply
by testing colors. The rep predicate then relates a red-black tree e with a set E if
there exists a value n such that “ inv n e E” holds and such that the root of e is black
(the third invariant). The resulting definition of inv appears in Figure 2.5.

In practice, I further extend the invariant with an extra boolean (this extended
definition does not appear here; it can be found in the Coq development). When
the boolean is true, the definition of inv is unchanged. However, when the boolean
is false, then the second invariant, which asserts that a red node cannot have a
red children, might be broken at the root of the tree. This relaxed version of the
invariant is useful to specify the behavior of the auxiliary function balance. Indeed,
this function takes as input a color, an item and two subtrees, and one of those two
subtrees might have its root incorrectly colored.

34 CHAPTER 2. OVERVIEW AND SPECIFICATIONS

Inductive inv : nat -> fset -> set T -> Prop :=
| inv_empty : forall,

inv 0 Empty \{}
| inv_node : forall n m col a y b A Y B,

inv m a A -> inv m b B -> rep y Y ->
foreach (is_lt Y) A -> foreach (is_gt Y) B ->
(n = match col with Black => m+1 | Red => m end) ->
(match col with | Black => True

| Red => root_color a = Black
/\ root_color b = Black end) ->

inv n (Node col a y b) (\{Y} \u A \u B).

Global Instance fset_rep : Rep fset (set T).
Proof. apply (Build_Rep

(fun e E => exists n, inv n e E /\ root_color e = Black)).
... (* the proof for the field rep_unique is not shown *)

Defined.

Figure 2.5: Representation predicate for red-black trees

Figure 2.6 shows the lemma corresponding to the verification of insert. Observe
that the local recursive function ins is specified in the script. It is then verified with
the help of the tactic xgo.

2.2.3 Statistics on the formalizations

I have specified and verified various implementations of queues, double-ended queues,
priority queues (heaps), sets, as well as sortable lists, catenable lists and random-
access lists. Caml implementations are directly adapted from Okaski’s SML code
[69]. All code and proofs can can be found online.2 Figure 2.7 contains statistics
on the number of non-empty lines in Caml source code and in Coq scripts. The
programs considered are generally short, but note that Caml is a concise language
and that Okasaki’s code is particularly minimalist. Details are given about Coq
scripts.

The column “inv” indicates the number of lines needed to state the invariant
of each structure. The column “facts” gives the length of proof script needed to
state and prove facts that are used several times in the verification scripts. The
column “spec” indicates the number of lines of specification involved, including the
specification of local and auxiliary functions. Finally, the last column describes
the size of the actual verification proof scripts where characteristic formulae are
manipulated. Note that Coq proof scripts also contain several lines for importing
and instantiating modules, a few lines for setting up automation, as well as one line
per function for registering its specification in a database of lemmas.

I evaluate the relative cost of a formal verification by comparing the number

2http://arthur.chargueraud.org/research/2010/cfml/

2.2. FORMALIZING PURELY FUNCTIONAL DATA STRUCTURES 35

Lemma insert_spec : RepTotal insert (X;elem) (E;fset) >>
= \{X} \u E ; fset.

Proof.
xcf. introv RepX (n&InvE&HeB).
xfun_induction_nointro_on size (Spec ins e |R>>

forall n E, inv true n e E -> R (fun e’ =>
inv (is_black (root_color e)) n e’ (\{X} \u E))).

clears s n E. intros e IH n E InvE. inverts InvE as.
xgo*. simpl. constructors*.
introv InvA InvB RepY GtY LtY Col Num. xgo~.
(* case insert left *)
destruct~ col; destruct (root_color a); tryifalse~.
ximpl as e. simpl. applys_eq* Hx 1 3.
(* case insert right *)
destruct~ col; destruct (root_color b); tryifalse~.
ximpl as e. simpl. applys_eq* Hx 1 3.
(* case no insertion *)
asserts_rewrite~ (X = Y). apply~ nlt_nslt_to_eq.

subst s. simpl. destruct col; constructors*.
xlet as r. xapp~. inverts Pr; xgo. fset_inv. exists*.

Qed.

Figure 2.6: Invariant and model of red-black trees

of lines specific to formal proofs (figures from columns “facts” and “verif”) against
the number of lines required in a properly-documented source code (source code
plus invariants and specifications). For particularly-tricky data structures, such as
bootstrapped queues, Hood-Melville queues and binominal heaps, this ratio is close
to 2.0. In all other structures, the ration does not exceed 1.25. For a user as fluent
in Coq proofs as in Caml programming, it means that the formalization effort can
be expected to be comparable to the implementation and documentation effort (at
least in terms of lines of code).

36 CHAPTER 2. OVERVIEW AND SPECIFICATIONS

Development Caml Coq inv facts specif verif
BatchedQueue 20 73 4 0 16 16
BankersQueue 19 95 6 20 15 16
PhysicistsQueue 28 109 8 10 19 32
RealTimeQueue 26 104 4 12 21 28
ImplicitQueue 35 149 25 21 14 50
BootstrappedQueue 38 212 22 54 29 77
HoodMelvilleQueue 41 363 43 53 33 180
BankersDeque 46 172 7 26 24 58
LeftistHeap 36 132 16 28 15 22
PairingHeap 33 137 13 17 16 35
LazyPairingHeap 34 132 12 24 14 32
SplayHeap 53 176 10 41 20 59
BinomialHeap 48 367 24 118 41 110
UnbalancedSet 21 85 9 11 5 22
RedBlackSet 35 183 20 43 22 53
BottomUpMergeSort 29 151 23 31 9 40
CatenableList 38 153 9 20 23 37
RandomAccessList 63 272 29 37 47 83
Total 643 3065 284 566 383 950

Figure 2.7: Non-empty lines of source code and proof scripts

Chapter 3

Verification of imperative
programs

This chapter contains an overview of the treatment of imperative pro-
grams. After introducing some notation for specifying heaps, I present
the specification of the primitive functions for manipulating references,
and I explain the treatment of for-loops and while-loops, using loop in-
variants. I then introduce representation predicates for mutable data
structures, focusing on mutable lists to illustrate the definition and ma-
nipulation of such predicates. I study the example of a function that
computes the length of a mutable list and explain why reasoning on
loops using invariants does not take advantage of local reasoning. I then
present a different treatment of loops. Finally, I explain the treatment
of higher-order functions and that of functions with local state.

3.1 Examples of imperative functions

3.1.1 Notation for heap predicates

I start by describing informally the combinators for constructing heap predicates,
which have type Hprop. Formal definitions are postponed to §5.2.1. The empty
heap is written [] and the spatial conjunction of two heaps is written 𝐻1 *𝐻2. The
predicate “𝑙 →˓𝒯 𝑣” describes a reference cell 𝑙 whose contents is described in Coq
as the value 𝑣 of type 𝒯 . Since the type 𝒯 can be deduced from the value 𝑣, I
often omit it and write “𝑙 →˓ 𝑣”. A more general predicate for describing mutable
data structures, written “𝑙 𝑇 𝑣”, is explained further on. I lift propositions and
existentials into heap predicates as follows. The predicate [𝑃] holds of the empty
heap when the proposition 𝑃 is true. The predicate ∃∃𝑥.𝐻 holds of a heap ℎ if
there exists a value 𝑥 such that the predicate 𝐻 holds of ℎ (note that 𝑥 is bound in
𝐻). The corresponding ASCII notations, which are used in Coq statements, appear
below.

37

38 CHAPTER 3. VERIFICATION OF IMPERATIVE PROGRAMS

Heap predicate Latex notation ASCII notation
Empty heap [] []
Separating conjunction 𝐻1 *𝐻2 C1 * C2
Mutable data structure 𝑙 𝑇 𝑣 l ˜> T v
Reference cell 𝑙 →˓ 𝑣 l ˜̃ > v
Lifted proposition [𝑃] [P]
Lifted existential ∃∃𝑥.𝐻 Hexists x, H

The post-condition for a term 𝑡 describes both the output value and the output
state returned by the evaluation of 𝑡. If 𝑡 admits the type 𝜏 , then the post-condition
for its evaluation is a predicate of type ⟨𝜏⟩ → Hprop. So, a post-condition generally
takes the form 𝜆𝑥.𝐻. In the particular case where the return value 𝑥 is of type
unit, the name 𝑥 is irrelevant, and I write #𝐻 as a shorthand for 𝜆_ : unit. 𝐻. In
the particular case where the evaluation of a term returns exactly a value 𝑣 in the
empty heap, the post-condition takes the form 𝜆𝑥. [𝑥 = 𝑣]. To describe such a post-
condition, I use the shorthand \= 𝑣. Finally, it is useful to extend a post-condition
with a piece of heap. The predicate 𝑄⋆𝐻 is a post-condition for a term that returns
a value 𝑥 and a heap ℎ such that the heap ℎ satisfies the predicate (𝑄𝑥) *𝐻. The
corresponding ASCII notations are given in the next table.

Post-condition predicate Latex notation ASCII notation
General post-condition 𝜆𝑥.𝐻 fun x => H
Unit return value #𝐻 # H
Exact return value \= 𝑣 \= v
Separating conjunction 𝑄 ⋆ 𝐻 Q *+ H

The symbol (B) denotes entailment between heap predicates, so the proposition
𝐻1 B 𝐻2 asserts that any heap satisfying 𝐻1 also satisfies 𝐻2. Similarly, 𝑄1 I 𝑄2

asserts that a post-condition 𝑄1 entails a post-condition 𝑄2, in the sense that for
any value 𝑥 and any heap ℎ, the proposition 𝑄1 𝑥ℎ implies 𝑄2 𝑥ℎ.

Entailment relation Latex notation ASCII notation
Between heap predicates 𝐻1 B 𝐻2 H1 ==> H2
Between post-conditions 𝑄1 I 𝑄2 Q1 ===> Q2

3.1.2 Specification of references

In this section, I present the specification of functions manipulating references. I
start with the function incr, which increments the contents of a reference on an
integer. Recall the specification of the function incr from the introduction. It asserts
that the proposition “AppReturns incr 𝑟 (𝑟 →˓ 𝑛) (# 𝑟 →˓ 𝑛+1)” holds for any location
𝑟 and any integer 𝑛. The specification can be presented using the notation Spec,
which is like that introduced in the previous chapter except that the variable 𝑅
bound by the Spec notation now stands for a predicate that takes as argument both
a pre-condition and a post-condition.

3.1. EXAMPLES OF IMPERATIVE FUNCTIONS 39

Lemma incr_spec :
Spec incr r |R>> forall n, R (r ˜̃ > n) (# r ˜̃ > n+1)

Observe how the variable 𝑅, which describes the behaviour of the application of incr
to the argument 𝑟, plays the same role as the predicate “AppReturns incr 𝑟”.

The primitive function ref takes as argument a value 𝑣 and allocates a reference
with contents 𝑣. Its pre-condition is the empty heap, and its post-condition asserts
that the application of ref to 𝑣 produces a location 𝑙 in a heap of the form 𝑙 →˓ 𝑣.
The specification is polymorphic in the type 𝐴 of the value 𝑣. Remark: since ref
is a built-in function, its specification is not proved as a lemma but is taken as an
axiom.

Axiom ref_spec : forall A,
Spec ref (v:A) |R>> R [] (fun l => l ˜̃ > v).

The function get applies to a location 𝑙 and to a heap of the form 𝑙 →˓ 𝑣, and returns
exactly the value 𝑣, without changing the heap. Hence its specification shown next.

Spec get (l:Loc) |R>> forall (v:A),
R (l ˜̃ > v) (\=v *+ l ˜̃ > v).

The function set applies to a location 𝑙 and to a value 𝑣. The heap must be of the
form 𝑙 →˓ 𝑣′ for some value 𝑣′, indicating that the location 𝑙 is already allocated.
The application of set produces the unit value and a heap of the form 𝑙 →˓ 𝑣.

Spec set (l:Loc) (v:A) |R>> forall (v’:A),
R (l ˜̃ > v’) (# l ˜̃ > v).

One can prove the specification of incr with respect to the specifications of get and
set. The verification is conducted on the administrative normal form of the definition
of the function incr, where the side-effect associated with reading the contents of the
reference is separated from the action of updating the contents of the reference. The
normal form of incr, shown next, is automatically generated by CFML.

let incr r = (let x = get r in set r (x + 1))

The proof of the specification of incr is quite short: “xgo.xsimpl̃ .”. The tactic xgo
follows the structure of the code and exploits the specifications of the functions for
reading and updating references. The tactic xsimpl̃ is used to discharge the proof
obligation produced, which simply consists in checking that, under the assumption
𝑥 = 𝑛, the heap predicate 𝑟 →˓ 𝑥 + 1 is equivalent to the heap predicate 𝑟 →˓ 𝑛 + 1.

3.1.3 Reasoning about for-loops

To illustrate the treatment of for-loops, I consider a function that takes as argument
a non-negative integer 𝑘 and a reference 𝑟, and then calls 𝑘 times the function incr
on the reference 𝑟.

40 CHAPTER 3. VERIFICATION OF IMPERATIVE PROGRAMS

let incr_for k r = (for i = 1 to k do (incr r) done)

The specification of this function asserts that if 𝑛 is the initial contents of the
reference 𝑟, then 𝑛 + 𝑘 is its final content.

Spec incr_for k r |R>> forall n, k >= 0 ->
R (r ˜̃ > n) (# r ˜̃ > n + k).

The proof involves providing a loop invariant for reasoning on the loop. The tactic
xfor_inv expects a predicate 𝐼, of type Int → Hprop, describing the state of the
heap in terms of the loop counter. In the example, the appropriate loop invariant,
called 𝐼, is defined as 𝜆𝑖. (𝑟 →˓ 𝑛 + 𝑖 − 1). One may check that an execution of
the loop body, which increments 𝑟, turns a heap satisfying 𝐼 𝑖 into a heap satisfying
𝐼 (𝑖 + 1). One may also check that, when 𝑖 is equal to 1, the heap predicate 𝐼 1
is equivalent to the initial heap (𝑟 →˓ 𝑛). Moreover, when 𝑖 is equal to 𝑘 + 1, the
heap predicate 𝐼 (𝑘 + 1) is equivalent to the final heap (𝑟 →˓ 𝑛 + 𝑘). Note that
the post-condition of the loop is described by 𝐼 (𝑘 + 1) and not by 𝐼 𝑘, because 𝐼 𝑘
describes the heap before the final iteration of the loop, whereas 𝐼 (𝑘 + 1) describes
the heap after that final iteration.

The characteristic formula of a for-loop of the form “for 𝑖 = 𝑎 to 𝑏 do 𝑡” is shown
next. The invariant 𝐼 is quantified existentially at head of the formula. A con-
junction of three propositions follows. The first one asserts that the initial heap 𝐻
entails the application of the invariant to the initial value 𝑎 of the loop counter. The
second one asserts that the execution of the body 𝑡 of the loop, starting from a heap
satisfying the invariant 𝐼 𝑖 for a valid value of the loop counter 𝑖, terminates and
produces a heap that satisfies the invariant 𝐼 (𝑖+ 1). The third and last proposition
checks that the predicate 𝐼 (𝑏 + 1) entails the expected final heap description 𝑄 tt
(where tt denotes the unit value). This third proposition is in fact generalized so as
to correctly handle the case where 𝑎 is greater than 𝑏, in which case the loop body is
not executed at all. The heap predicate 𝐼 (max 𝑎 (𝑏+1)) concisely takes into account
both the case 𝑎 ≤ 𝑏 and the case 𝑎 > 𝑏.

Jfor 𝑖 = 𝑎 to 𝑏 do 𝑡K ≡ frame (𝜆𝐻𝑄. ∃𝐼.

𝐻 B 𝐼 𝑎
∀𝑖 ∈ [𝑎, 𝑏]. J𝑡K (𝐼 𝑖) (# 𝐼 (𝑖 + 1))
𝐼 (max 𝑎 (𝑏 + 1)) B 𝑄 tt

)

Remark: the function that increments 𝑘 times a reference 𝑟 may in fact be
assigned a more general specification that also covers the case where 𝑘 is a negative
value. This specification, shown next, involves a post-condition asserting that the
contents of 𝑟 is equal to 𝑛 plus the maximum of 𝑘 and 0.

Spec incr_for k r |R>> forall n,
R (r ˜̃ > n) (# r ˜̃ > n + max k 0).

3.1. EXAMPLES OF IMPERATIVE FUNCTIONS 41

3.1.4 Reasoning about while-loops

I now adapt the previous example to a while-loop. The function shown below takes
as argument two references, called 𝑠 and 𝑟, and executes a while-loop. As long as
the contents of 𝑠 is positive, the contents of 𝑟 is incremented and the contents of 𝑠
is decremented.

let incr_while s r = (while (!s > 0) do (incr r; decr s) done)

If 𝑘 denotes the initial contents of 𝑠 (assume 𝑘 to be non-negative for the sake of
simplicity) and if 𝑛 denotes the initial contents of 𝑠, then the final contents of 𝑠
is equal to zero and the final contents of 𝑟 is equal to 𝑛 + 𝑘. The corresponding
specification appears next.

Spec incr_while s r |R>> forall k n, k >= 0 ->
R (s ˜̃ > k * r ˜̃ > n) (# s ˜̃ > 0 * r ˜̃ > n+k).

The function is proved correct using a loop-invariant. Contrary to for-loops, there
is no loop counter to serve as index for the invariant. So, I artificially introduce
some indices. Those indices are used to describe how the heap evolves through the
execution of the loop, and to argue for termination, using a well-founded relation
over indices.

In the example, we may choose to index the invariant with values of types Int.
The invariant 𝐼 is then defined as “𝜆𝑖. (𝑠 →˓ 𝑖) * (𝑟 →˓ 𝑛 + 𝑘 − 𝑖) * [𝑖 ≥ 0]”. The
execution of the loop increments 𝑟 and decrements 𝑠, so it turns a heap satisfying 𝐼 𝑖
into a heap satisfying 𝐼 (𝑖−1). Observe that the initial state of the loop is described
by 𝐼 𝑘 and that the final state of the loop is described by 𝐼 0. Since the value of the
index 𝑖 decreases from 𝑘 to 0 during the execution of the loop, the absolute value
of 𝑖 is a measure that justifies the termination of the loop.

The characteristic formula for a loop “while 𝑡1 do 𝑡2”, in its version based on a
loop invariant, appears below. This formula quantifies existentially over a type 𝐴
used to represent indices, over an invariant 𝐼 of type 𝐴 → Hprop describing heaps
before evaluating the loop condition, over an invariant 𝐽 of type 𝐴 → bool →
Hprop describing the post-condition of the loop condition (𝐽 is needed because the
evaluation of 𝑡1 may modify the store), and over a binary relation (≺) of type
𝐴 → 𝐴 → Prop.

A conjunction of five propositions follows. This first one asserts that (≺), the
relation used to argue for termination, is well-founded. The second one requires the
existence of a index 𝑋0 such that the initial heap satisfies the heap predicate 𝐼 𝑋0.
The third proposition states that, for any index 𝑋, the loop condition 𝑡1 should be
executable in a heap of the form 𝐼 𝑋 and produce a heap of the form 𝐽 𝑋. The
two remaining proposition correspond to the cases where the loop condition returns
true or false, respectively. When the loop condition returns true, the loop body 𝑡2 is
executed in a heap satisfying 𝐽 𝑋 true. The execution of that body should produce a
heap satisfying the invariant 𝐼 𝑌 for some index 𝑌 , which is existentially-quantified
in the formula. To ensure termination, 𝑌 has to be smaller than 𝑋, written 𝑌 ≺ 𝑋.

42 CHAPTER 3. VERIFICATION OF IMPERATIVE PROGRAMS

When the loop condition returns false, the loop terminates in a heap satisfying
𝐽 𝑋 false. This heap description should entail the expected heap description 𝑄 tt .

Jwhile 𝑡1 do 𝑡2K ≡ frame (𝜆𝐻𝑄.

∃𝐴. ∃𝐼. ∃𝐽. ∃(≺).

well-founded(≺)
∃𝑋0. 𝐻 B 𝐼 𝑋0

∀𝑋. J𝑡1K (𝐼 𝑋) (𝐽 𝑋)
∀𝑋. J𝑡2K (𝐽 𝑋 true) (#∃∃𝑌. (𝐼 𝑌) * [𝑌 ≺ 𝑋])
∀𝑋. 𝐽 𝑋 false B 𝑄 tt

)

3.2 Mutable data structures

In this section, I introduce a family of predicates, written 𝑥 𝐺𝑋, for describing
“linear” mutable data structures, such as mutable lists and mutable trees. More
generally, a linear data structure is a structure that does not involve sharing of
sub-structures. Those predicates are also used to describe purely-functional data
structures that may contain mutable elements. The treatment of non-linear data
structure, where pointer aliasing is involved, is discussed as well.

3.2.1 Recursive ownership

In the heap predicate 𝑥 𝐺𝑋, the value 𝑥 denotes the entry point of a mutable
data structure, for example the location at the head of a mutable list. The value 𝑋
describes the mathematical model of that data structure, for example 𝑋 might be
a Coq list. The predicate 𝐺 captures the relation between the entry point 𝑥 of the
structure, the mathematical model 𝑋 of the structure, and the piece of heap contain-
ing the representation of that structure. The predicate 𝐺 is called a representation
predicate.

The predicate 𝑥 𝐺𝑋 is defined as 𝐺𝑋 𝑥. (More generally, 𝑥 𝑃 is defined
as 𝑃 𝑥.) So, if 𝑥 has type 𝑎 and 𝑋 has type 𝐴, then 𝐺 has type 𝐴 → 𝑎 → Hprop. The
tagging of the application of 𝐺𝑋 to 𝑥 with an arrow symbol serves two purposes:
improving the readability of specifications, and simplifying the implementation of
the Coq tactics from the CFML library.

For example, the representation predicate Mlist is used to describe mutable lists.
The heap predicate 𝑙 Mlist𝐺𝐿 describes a heap that contain the representation
of a mutable list starting at location 𝑙 and whose mathematical model is the Coq
list 𝐿. The representation predicate 𝐺 here describes the relation between the items
found in the mutable list and their mathematical model. So, when 𝐺 has type 𝑎 →
𝐴 → Hprop, the representation predicate Mlist𝐺 has type Loc → List𝐴 → Hprop.

The representation predicate for pure values (e.g., values of type Int) simply
asserts that the mathematical model of a base value is the value itself. This repre-
sentation predicate is called Id, and its formal definition is shown next.

Definition Id (A:Type) (X:A) (x:A) : Hprop := [x = X].

3.2. MUTABLE DATA STRUCTURES 43

Thereafter, I write Id𝐴 to denote the type application of Id to the type 𝐴, and simply
write Id when the type 𝐴 can be deduced from the context. Note that, for any type
𝐴 and any value 𝑥 of type 𝐴, the predicate 𝑥 Id𝐴 𝑥 holds of the empty heap.

Combining the predicate Mlist and Id, we can build for instance a heap predicate
𝑙 Mlist IdInt 𝐿, which describes a mutable list of integers. Here, the location 𝑙 has
type Loc and 𝐿 has type List Int. More interestingly, we can go one step further and
construct a heap predicate describing a mutable list that contains mutable lists of
integers as elements, through a heap predicate of the form 𝑙 Mlist (Mlist IdInt)𝐿.
The mathematical model 𝐿 here is a list of lists, of type List (List Int). Intuitively,
the representation predicate Mlist (Mlist IdInt) describes the ownership of a mutable
list and of all the mutable lists that it contains. There are, however, some situations
where we only want to describe the ownership of the main mutable list. In this
case, we view the mutable list as a list of locations, through a predicate of the form
𝑙 Mlist IdLoc 𝐿. The list 𝐿 now has type List Loc, and the locations contained in
𝐿 are entry points for other mutable lists, which can be described using other heap
predicates.

To summarize, representation predicates for mutable data structures not only
relate pieces of data laid out in memory with their mathematical model, they also
indicate the extent of ownership. On the one hand, the application of a represen-
tation predicate to another nontrivial representation predicate describes recursive
ownership of data structures. On the other hand, the representation predicate IdLoc
“cuts” recursive ownership. Although representation predicates are commonplace in
program verification, the definition of parametric representation predicates, where a
representation predicate for a container takes as argument the representation predi-
cate for the elements, does not appear to have been exploited in a systematic manner
in other program verification tools. Remark: the polymorphic representation predi-
cates that I use here are the heap-predicate counterpart of the capabilities involved
in the type system that I have developed during the first year of my PhD, together
with François Pottier [16].

3.2.2 Representation predicate for references

In this section, I explain how to define a representation predicate for references. I
also describe the focus and unfocus operations, which allow rearranging one’s view
on memory.

So far, a heap containing a reference has been specified using the predicate 𝑟 →˓ 𝑥,
which asserts that the location 𝑟 points towards the value 𝑥. To concisely describe
the situation where 𝑥 corresponds to the entry point of a mutable data structure, I
introduce a representation predicate for references, called Ref. The heap predicate
𝑟 Ref𝐺𝑋 describes a heap made of a memory cell at address 𝑟 that points to
some value 𝑥 on the one hand, and of a heap described by the predicate 𝑥 𝐺𝑋
on the other hand.

Definition Ref (a:Type) (A:Type) (G:A->a->Hprop) (X:A) (r:Loc) :=
Hexists x:a, (r ˜̃ > x) * (x ˜> G X).

44 CHAPTER 3. VERIFICATION OF IMPERATIVE PROGRAMS

For example, a reference 𝑟 whose contents is an integer 𝑛 is described by the
heap predicate 𝑟 Ref IdInt 𝑛, which is logically equivalent to 𝑟 →˓Int 𝑛. A more
interesting example is that of a reference 𝑟 whose content is the location of another
reference, call it 𝑠, whose contents is the integer 𝑛. A direct description involves a
conjunction of two heap predicates: (𝑟 Ref IdLoc 𝑠) * (𝑠 Ref IdInt 𝑛). We may
also describe the same heap as: 𝑟 Ref (Ref IdInt)𝑛. This second predicate is more
concise than the first one, however it does not expose the location 𝑠 of the inner
reference.

The heap predicate “∃∃𝑠. (𝑟 Ref IdLoc 𝑠) * (𝑠 Ref IdInt 𝑛)” and the heap predi-
cate “Ref (Ref IdInt)” are equivalent in the sense that one can convert from one to the
other by unfolding the definition of the representation predicate Ref. The action of
unfolding the definition of Ref is called “focus”, following a terminology introduced
by Fähndrich and DeLine [23] and reused in [16] for a closely-related operation. The
statement of the focus lemma for references is an implication between heap pred-
icates. It takes the ownership of a reference 𝑟 and of its contents represented by
a model 𝑋 with respect to some representation predicate 𝐺, and turns it into the
conjunction of the ownership of a reference 𝑟 that contains a base value 𝑥 on the one
hand, and of the ownership of a data structure whose entry point is 𝑥 and whose
model with respect to 𝐺 is the value 𝑋 on the other hand.

Lemma focus_ref : forall a A (G:A->a->Hprop) (r:Loc) (X:A),
(r ˜> Ref G X) ==> Hexists x, (r ˜̃ > x) * (x ˜> G X).

The reciprocal operation is called “unfocus”. It consists in packing the ownership
of a reference with the ownership of its contents back into a single heap predicate.
The unfocus lemma could be formulated as the reciprocal of the focus lemma, yet
in practice it is more convenient to extract the existential quantifiers as shown next.

Lemma unfocus_ref : forall a A G (r:Loc) (x:a) (X:A),
(r ˜̃ > x) * (x ˜> G V) ==> (r ˜> Ref G X).

The lemmas focus_ref and unfocus_ref are involved in verification proof scripts
for changing from one view on memory to another. In the current implementation,
those lemmas need to be invoked explicitly by the user, yet it might be possible to
design specialized decision procedures that are able to automatically exploit focus
and unfocus lemmas.

3.2.3 Representation predicate for lists

In this section, I present the definition of the representation predicate Mlist for
mutable lists, as well as the representation predicate Plist for purely-functional lists.
I then describe the focus and unfocus lemmas associated with list representation
predicates.

For the sake of type soundness, the Caml programming language does not fea-
ture null pointers. Nevertheless, a standard backdoor (called “Obj.magic”) can be
exploited to augment the language with null pointers. In Caml extended with null

3.2. MUTABLE DATA STRUCTURES 45

pointers, one can implement C-style mutable lists. The head cell of a nonempty
mutable list is represented by a reference on a pair of an item and of the tail of the
list (a two-field record could also be used), and the empty list is represented by the
null pointer. Hence the Caml type of mutable list shown next.

type ’a mlist = (’a * ’a mlist) ref

The Coq definition of the representation predicate Mlist appears next. It relates a
pointer 𝑙 with a Coq list 𝐿. The predicate Mlist is defined inductively following the
structure of the list 𝐿, as done in earlier work on Separation Logic. When 𝐿 is the
empty list, the pointer 𝑙 should be the null pointer, written null. When 𝐿 has the
form 𝑋 :: 𝐿′, the pointer 𝑙 should point to a reference cell that contains a pair (𝑥, 𝑙′),
such that 𝑋 is the model of the data structure of entry point 𝑥 and such that 𝐿′ is
the model of the list starting at pointer 𝑙′. Note that a heap predicate of the form
(𝑙 →˓ 𝑣) entails the fact that the location 𝑙 is not null.

Fixpoint Mlist A a (G:A->a->Hprop) (L:list A) (l:Loc) : Hprop :=
match L with
| nil => [l = null]
| X::L’ => Hexists x l’,

(l ˜̃ > (x,l’)) * (x ˜> G X) * (l’ ˜> Mlist G L’)
end.

One can devise a slightly more elegant definition of Mlist using the representation
predicate Ref and the representation predicate Pair, which is explained next. The
definition of Pair is such that a pair (𝑋,𝑌) is the mathematical model of a pair (𝑥, 𝑦)
with respect to the representation predicate “Pair𝐺1𝐺2” when 𝑋 is the model of 𝑥
with respect to 𝐺1 and 𝑌 is the model of 𝑦 with respect to 𝐺2. The Coq definition
of Pair appears next (for the sake of readability, I pretend that a Coq definition can
bind pairs of names directly).

Definition Pair A B a b (G1:A->a->Hprop) (G2:B->b->hprop)
((X,Y):A*B) ((x,y):a*b) : Hprop :=

(x ˜> G1 X) * (y ˜> G2 Y).

The definition of Mlist can now be improved as follows. The list 𝑋 :: 𝐿′ is the
model of the pointer 𝑙 with respect to the representation predicate Mlist𝐺 if the pair
(𝑋,𝐿′) is the mathematical model of the pointer 𝑙 with respect to the representation
predicate Ref (Pair𝐺 (Mlist𝐺)). So, the updated definition no longer needs to involve
existential quantifiers. Existential quantifiers are only involved in the focus lemma
presented further on.

Fixpoint Mlist A a (G:A->a->Hprop) (L:list A) (l:Loc) : Hprop :=
match L with
| nil => [l = null]
| X::L’ => l ˜> Ref (Pair G (Mlist G)) (X,L’)
end.

46 CHAPTER 3. VERIFICATION OF IMPERATIVE PROGRAMS

I now define the representation predicate Plist for purely-functional lists. Con-
trary to Mlist, the predicate Plist relates a Coq list 𝑙 of type List 𝑎 with another
Coq list 𝐿 of type List𝐴, where the representation predicate 𝐺 associated with the
elements has type 𝐴 → 𝑎 → Prop. The definition of Plist is conducted by induction
on the list 𝐿 and by case analysis on the list 𝑙. The Coq definition appears next.
Observe that the lists 𝑙 and 𝐿 must be either both empty or both non-empty.

Fixpoint List A a (G:A->a->Hprop) (L:list A) (l:list a) : Hprop :=
match L,l with
| nil , nil => [True]
| X::L’, x::l’ => (x ˜> G X) * (l’ ˜> List G L’)
| _ , _ => [False]
end.

An example of use of the predicate Plist is given later on.

3.2.4 Focus operations for lists

In this section, I describe focus and unfocus lemmas for mutable lists. I first present
the lemmas that are used in practice, and explain afterwards how those lemmas
can be derived as immediate corollaries of a few lower-level lemmas. Note that the
contents of this section could be directly applied to other linear data structures such
as mutable trees and purely-functional lists. Note also that the lemmas presented in
this section have to be stated and proved manually. Indeed, the current version of
CFML is only able to generate focus and unfocus lemmas for data structures that
do not involve null pointers.

I start with the unfocus operation for empty lists. There are two versions. The
first one asserts that if a pointer 𝑙 has for model the empty list then the pointer 𝑙
must be the null pointer. The second one reciprocally asserts that if a null pointer
has for model a list 𝐿 then the list 𝐿 must be the empty list.

Lemma unfocus_nil : forall a A (G:A->a->Hprop) (l:Loc),
l ˜> Mlist G nil ==> [l = null].

Lemma unfocus_nil’ : forall a A (G:A->a->Hprop) (L:list A),
null ˜> Mlist G L ==> [L = nil].

The focus operation for the empty list asserts that a null pointer has for model the
empty heap. This statement does not involve any pre-condition, so the left-hand
side is the empty heap predicate.

Lemma focus_nil : forall a A (G:A->a->Hprop),
[] ==> null ˜> Mlist G nil.

There are two focus operations for non-empty lists. The first one asserts that
if a pointer 𝑙 has for model the list 𝑋 :: 𝐿′, then this pointer points to a reference

3.2. MUTABLE DATA STRUCTURES 47

cell that contains a pair of a value 𝑥 modelled as 𝑋 and of a pointer 𝑙′ modelled
as 𝐿′. The values 𝑥 and 𝑙′ are existentially quantified. Henceforth, for the sake of
readability, I do not show the universal quantifications at the head of statements.

Lemma focus_cons :
(l ˜> Mlist G (X::L’)) ==>
Hexists x l’, (l ˜̃ > (x,l’)) * (x ˜> G X) * (l’ ˜> Mlist G L’).

The second focus operation asserts that if a non-null pointer 𝑙 has for model the list
𝐿, then this list decomposes as 𝑋 :: 𝐿′, and 𝑙 points to a reference cell that contains
a pair of a value 𝑥 modelled as 𝑋 and of a pointer 𝑙′ modelled as 𝐿′.

Lemma focus_cons’ :
[l <> null] * (l ˜> Mlist G L) ==> Hexists x l’, Hexists X L’,

[L = X::L’] * (l ˜̃ > (x,l’)) * (x ˜> G X) * (l’ ˜> Mlist G L’).

The unfocus lemma for non-empty lists states the reciprocal entailment of the focus
operations.

Lemma unfocus_cons :
(l ˜̃ > (x,l’)) * (x ˜> G X) * (l’ ˜> Mlist G L’) ==>
(l ˜> Mlist G (X::L’)).

All the lemmas presented in this section can be derived from three core lemmas.
Those lemmas are stated with an equality symbol, which corresponds to logical
equivalence between heap predicates (recall that I work in Coq with predicate ex-
tensionality). In other words, the equality 𝐻1 = 𝐻2 holds when both 𝐻1 entails
𝐻2 and 𝐻2 entails 𝐻1. Working with an equality reduces the number of times the
definition of Mlist needs to be unfolded in proofs.

Lemma models_iff :
(l ˜> Mlist G L) = [l = null <-> L = nil] * (l ˜> Mlist G L).

Lemma models_nil :
[] = (null ˜> Mlist G nil).

Lemma models_cons :
l ˜> Mlist G (X::L’)) = Hexists x l’,

(l ˜̃ > (x,l’)) * (x ˜> G X) * (l’ ˜> Mlist G L’).

3.2.5 Example: length of a mutable list

The function length computes the length of a mutable list, using a while loop to
traverse the list. It involves a counter 𝑛 for counting the items that have already
been passed by, as well as a pointer ℎ for maintaining the current position in the
list.

let length (l : ’a mlist) : int =
let n = ref 0 in

48 CHAPTER 3. VERIFICATION OF IMPERATIVE PROGRAMS

let h = ref l in
while (!h) != null do

incr n;
h := tail !h;

done;
!n

The specification of the length function is stated in terms of the representation
predicate Mlist. If the pointer 𝑙 given as input to the function describes a mutable
list modelled by the Coq list 𝐿, then the function returns an integer equal to the
length of 𝐿. The input list is not modified, so the post-condition also mentions a
copy of the pre-condition. Note that the references 𝑛 and ℎ allocated during the
execution of the function are local; they do not appear in the specification.

Lemma length_spec : forall a,
Spec length (l:Loc) |R>> forall A (G:A->a->Hprop) L

R (l ˜> Mlist G L) (\= length L *+ l ˜> Mlist G L).

I explain later how to prove this specification correct without involving a loop in-
variant. In this section, I follow the standard proof technique, which is based on
a loop invariant and involves the manipulation of segments of mutable lists. The
representation predicate MlistSeg 𝑒𝐺 describes a list segment that ends on a pointer
𝑒. It relates a pointer 𝑙 (the head of the list segment) with a Coq list 𝐿 if the items
contained between the pointer 𝑙 and the pointer 𝑒 are modelled by the list 𝐿. So,
a list segment heap predicate takes the form 𝑙 MlistSeg 𝑒𝐺𝐿. The definition of
MlistSeg directly extends that of Mlist.

Fixpoint MlistSeg (e:Loc) A a (G:A->a->Hprop) (L:list A) (l:Loc) :=
match L with
| nil => [l = e]
| X::L’ => l ˜> Ref (Pair G (Mlist G)) (X,L’)
end.

A mutable list is a segment of mutable list that ends on the null pointer. Hence,
Mlist is equivalent to MlistSeg null. In fact, I use this result as a definition for Mlist.

Definition Mlist := MlistSeg null.

The loop invariant for the while-loop involved in the length function decomposes
the list in two parts: the segment of list made of the cells that have already been
passed by, and the list made of the cells that remain ahead. So, the mathematical
model 𝐿 is decomposed in two sub-lists 𝐿1 and 𝐿2. If 𝑒 is the pointer contained
in the reference ℎ, then the list 𝐿1 models the segment that starts at the pointer
𝑙 and ends at the pointer 𝑒, and the list 𝐿2 models the list that starts at pointer
𝑒. The counter 𝑛 is equal to the length of 𝐿1. During the execution of the loop,
the pointer ℎ traverses the list, so the length of 𝐿1 increases and the length of 𝐿2

decreases. I use the list 𝐿2 as index for the loop invariant (recall §3.1.4). The loop
invariant is then defined as follows.

3.2. MUTABLE DATA STRUCTURES 49

Definition inv L2 := Hexists e L1,
[L = L1++L2] * (n ˜̃ > length L1) * (h ˜̃ > e)
* (l ˜> MlistSeg e G L1) * (e ˜> MList G L2).

One can check that the instantiation of 𝐿2 as the list 𝐿 (in which case 𝐿1 must be
the empty list) describes the state before the beginning of the loop, and that the
instantiation of 𝐿2 as the empty list (in which case 𝐿1 must be the list 𝐿) describes
the state after the final iteration of the loop.

At a given iteration, either the pointer 𝑒 is null, in which case the loop terminates,
or the pointer 𝑒 is not null, in which case the loop body is executed. In this case,
the focus lemma for non-empty mutable lists can be exploited (lemma focus_cons’)
to get the knowledge that the list 𝐿2 takes the form 𝑋 :: 𝐿′

2 and that 𝑒 points to
a reference on a pair of the form (𝑥, 𝑒′) such that 𝑋 models 𝑥 and 𝐿′

2 models the
list starting at 𝑒′. An unfocus operation that operates at the tail of a list segment
can be used to extend the segment ranging from 𝑙 to 𝑒 into a segment ranging from
𝑙 to 𝑒′ (the statement of this unfocus lemma is not shown here). The other facts
involved in checking that the execution of the loop body leaves a heap satisfying the
invariant instantiated with the list 𝐿′

2 are straightforward to prove.

3.2.6 Aliased data structures

The heap predicate 𝑙 Mlist (Ref IdInt)𝐿 describes a mutable list that contains
distinct references as elements. Some algorithms, however, involve manipulating a
mutable list containing possibly-aliased pointers, in the sense that two pointers from
the list may point to a same reference. In this case, one would use the predicate
𝑙 Mlist IdLoc 𝐿 instead, in which 𝐿 is a list of locations (of type List Loc). To
describe the references being pointed to by pointers from the list 𝐿, we need a new
heap predicate that describes a set of mutable data structures.

A value of type Heap describes a set of memory cells. It is isomorphic to a map
from locations to values. Values of type Heap only offer a low-level view on memory,
because they do not make use of representation predicates for describing the elements
contained in the memory cells. So, I introduce a “group predicate”, written Group,
to describe a piece of heap containing a set of mutable data structures of the same
type. If 𝑇 is a representation predicate of type 𝐴 → Loc → Prop, and if 𝑀 is a map
from locations to values of type 𝐴, then the predicate Group𝐺𝑀 describes a disjoint
union of heaps of the form 𝑥𝑖 𝐺𝑋𝑖, where 𝑥𝑖 denotes a key from the map 𝑀 and
where 𝑋𝑖 denotes the value bound to 𝑥𝑖 in 𝑀 . The group predicate is defined using
a fold operation on the map 𝑀 to iterate applications of the separating conjunction,
as follows.

Definition Group A (G:A->loc->hprop) (M:map Loc A) : Hprop :=
Map.fold (fun (acc:Hprop) (x:Loc) (X:A) => acc * (x ˜> G X))

[] M.

The focus operation consists in taking one element out of a group. Reciprocally,
the unfocus operation on a group consists in adding one element to a group. The

50 CHAPTER 3. VERIFICATION OF IMPERATIVE PROGRAMS

formal statement of those operations involves manipulation of finite maps. Insertion
or update of a value in a map is written M\[x:=X], reading is written M\[x], and
removal of a binding is written M\|x. Moreover, the proposition index M x asserts
that x is a key bound in M (reading at a key that is not bound in a map returns an
unspecified value). The statements of the focus and unfocus operations on group
are then expressed as follows.

Lemma group_unfocus :
forall A (G:A->loc->hprop) (M:map Loc A) (x:Loc) (X:A),
(Group G M) * (x ˜> G X) ==> (Group G (M\[x:=X]))

Lemma group_focus :
forall A (G:A->loc->hprop) (M:map Loc A) (x:Loc), index M x ->
(Group G M) ==> (Group G (M\|x)) * (x ˜> G (M\[x]))

Most often, group predicates are not manipulated directly but through derived
specifications. For example, consider a mutable list of possibly-aliased integer refer-
ences. The corresponding heap is described by a mutable list modelled as 𝐿, by a
group predicate modelled as 𝑀 , and by a proposition asserting that values from 𝐿
are keys in 𝑀 .

𝑙 Mlist IdLoc 𝐿 * Group (Ref IdInt)𝑀 * [∀𝑥. 𝑥 ∈ 𝐿 ⇒ 𝑥 ∈ dom(𝑀)]

To read at a pointer occurring in the list 𝐿, one can use a derived specification for get
specialized for reading in groups of the form Group (Ref Id𝐴)𝑀 . This specification
asserts that reading at a location 𝑥 that belongs to a group described by 𝑀 returns
the value M[x].

Spec get (x:Loc) |R>> forall A (M:map Loc A), index M x ->
R (Group (Ref Id) M) (\= M\[x] *+ Group (Ref Id) M).

3.2.7 Example: the swap function

A standard example for illustrating the reasoning on possibly-aliased pointers is the
swap function, which permutes the contents of two references. In the case where
the two pointers 𝑟1 and 𝑟2 given as argument to the swap function are distinct, the
following specification applies.

Spec swap (r1:Loc) (r2:Loc) |R>> forall G1 G2 X1 X2,
R ((r1 ˜> Ref G1 X1) * (r2 ˜> Ref G2 X2))
(# (r2 ˜> Ref G1 X1) * (r1 ˜> Ref G2 X2)).

This specification requires that 𝑟1 and 𝑟2 be two distinct pointers, otherwise it is not
possible to realize the pre-condition. Nevertheless, the code of the function swap
works correctly even when the two pointers 𝑟1 and 𝑟2 are equal. The swap function
admits another specification covering this case.

3.3. REASONING ON LOOPS WITHOUT LOOP INVARIANTS 51

Spec swap (r1:Loc) (r2:Loc) |R>> forall G X, r1 = r2 ->
R ((r1 ˜> G X) (# (r1 ˜> G X)).

It is straightforward to establish both specifications independently. For the swap
function, which is very short, it suffices to verify twice the same piece of code.
However, in general, we need a way to state and prove a single specifications that
handles both the case of non-aliased arguments and that of aliased arguments.

Such a general specification can be expressed using group predicates. The pre-
condition describes a group predicate modelled by a map 𝑀 that should contain both
𝑟1 and 𝑟2 in its domain. The post-condition describes a group predicate modelled
by a map 𝑀 ′, which corresponds to a copy of 𝑀 where the contents of the bindings
on 𝑟1 and 𝑟2 have been exchanged.

Spec swap (r1:Loc) (r2:Loc) |R>> forall G M,
index M r1 -> index M r2 ->
let M’ := M \[r1:=M\[r2]] \[r2:=M\[r1]] in
R (Group G M) (# Group G M’).

This general specification can be used to derive the earlier two specifications given
for the swap function, using the focus and unfocus operations on group predicates.

3.3 Reasoning on loops without loop invariants

Although reasoning on loops using loop invariants is sound, it does not take full
advantage of local reasoning. In short, the frame rule can be applied to the entire
execution of a loop, however it cannot be applied at a given iteration of the loop in
order to frame out pieces of heap from the reasoning on the remaining iterations. In
this section, I explain why this problem arises and how to fix it.

After writing this material, I learnt that the limitation of loop invariants in
Separation Logic has also been recently pointed out by Tuerk [83]. Both Tuerk’s
solution and mine are based on the same idea: first generate a reasoning rule that
corresponds to the encoding of a while-loop as a recursive function, and then simplify
this reasoning rule. This approach is also closely related to Hehner’s specified blocks
[34], where, in particular, loops are described using pre- and post-conditions instead
of loop invariants (even though Hehner was not using local reasoning). More detailed
comparisons can be found in the related work section (§8.2).

The simplest example exhibiting the failure of loop invariants to take advantage
of the frame rule is the function that computes the length of a mutable list. The
proof of this function using loop invariants has been presented earlier on (§3.2.5).
In this section, I consider a variation of the code where the while-loop is encoded as
a local recursive procedure, and I show that this transformation allows us to apply
the frame rule and to simplify the proof significantly, in particular by removing the
need to involve list segments.

52 CHAPTER 3. VERIFICATION OF IMPERATIVE PROGRAMS

3.3.1 Recursive implementation of the length function

The code of the length function, where the while loop has been replaced by a local
recursive procedure called aux, appears next.

let length (l : ’a mlist) =
let n = ref 0 in
let h = ref l in
let rec aux () =

if (!h) != null then begin
incr n;
h := tail !h;
aux()

end in
aux ();
!n

The function aux admits a pre-condition that describes a reference 𝑛 containing a
value 𝑘 and a reference ℎ containing a location 𝑒 such that 𝑒 points to a mutable list
modelled by 𝐿2. Its post-condition asserts that the reference 𝑛 contains the value
𝑘 augmented by the length of the list 𝐿2, that the reference ℎ contains the null
pointer, and that 𝑒 still points to a mutable list modelled by 𝐿2. Note: 𝑛 and ℎ are
free variables of the specification of aux shown next.

Spec aux () |R>> forall k e L2,
R ((n ˜̃ > k) * (h ˜̃ > e) * (e ˜> Mlist G L2))

(# (n ˜̃ > k + length L2) * (h ˜̃ > null) * (e ˜> Mlist G L2)).

Observe that, contrary to the loop invariant from the previous section, the speci-
fication involved here does not refer to the list segment 𝐿1 made of the cells that
have already been passed by. The absence of reference to 𝐿1 is made possible by
the fact that the frame rule can then be applied around the recursive call to the
function aux. Intuitively, every time a list cell is being passed by, it is framed out
of the reasoning.

Let me explain in more details how the frame rule is applied. Assume that the
location 𝑒 contained in the reference ℎ is not the null pointer. The list 𝐿2 can be
decomposed as 𝑋 :: 𝐿′

2, and 𝑒 points towards a pair of the form (𝑥, 𝑒′), where 𝑋
models 𝑥 and 𝐿′

2 models 𝑥. Just before making the recursive call to the function
aux, the heap satisfies the predicate shown next.

(n ˜̃ > k+1) * (h ˜̃ > e) * (e’ ˜> Mlist G L2’)
* (x ˜> G X) * (e ˜̃ > (x,e’))

The frame rule can be applied to exclude the two heap predicates that are mentioned
in the second line of the above statement. The specification of the function aux can
then be exploited on the predicates from the first line. Combining the post-condition
of the recursive call to aux with the predicates that have been framed out, we obtain
a predicate describing the heap that remains after the execution of aux.

3.3. REASONING ON LOOPS WITHOUT LOOP INVARIANTS 53

(n ˜̃ > k+1+length L2’) * (h ˜̃ > null) * (e’ ˜> Mlist G L2’)
* (x ˜> G X) * (e ˜̃ > (x,e’))

It remains to verify that the above predicate entails the post-condition of aux. To
that end, it suffices to apply the unfocus lemma to undo the focus operation per-
formed earlier on, and to check that the length of 𝐿2 is equal to one plus the length
of 𝐿′

2 (recall that 𝐿′
2 is the tail of 𝐿2).

Encoding the while-loop into a recursive function has led to a dramatic simpli-
fication of the proof of correctness. The gain would be even more significant in an
algorithm that traverses a mutable tree, as the possibility to apply the frame rule
typically saves the need to carry the description of a tree structure with exactly one
hole inside it (i.e., the generalization of a list segment to a tree structure).

3.3.2 Improved characteristic formulae for while-loops

I now explain how to produce characteristic formulae for while-loops that directly
support local reasoning.

The term “while 𝑡1 do 𝑡2” and the term “ if 𝑡1 then (𝑡2 ; while 𝑡1 do 𝑡2) else tt” admit
exactly the same semantics (recall that tt denotes the unit value). So, the char-
acteristic formulae of the two terms should be two logically-equivalent predicates,
as stated below (recall that bold symbols correspond to notation for characteristic
formulae).

Jwhile 𝑡1 do 𝑡2K = if J𝑡1K then (J𝑡2K ; Jwhile 𝑡1 do 𝑡2K) else JttK

Let 𝑅 be a shorthand for the characteristic formula Jwhile 𝑡1 do 𝑡2K. The assertion
stating that the term “while 𝑡1 do 𝑡2” admits a pre-condition 𝐻 ′ and a post-condition
𝑄′ is then captured by the proposition 𝑅𝐻 ′𝑄′. According to the equality stated
above, it suffices to prove the proposition (if J𝑡1K then (J𝑡2K ;𝑅) else JttK)𝐻 ′𝑄′

for establishing 𝑅𝐻 ′𝑄′. For this reason, the characteristic formula for a while loop
provides the following assumption.

∀𝐻 ′𝑄′. (if J𝑡1K then (J𝑡2K ;𝑅) else JttK)𝐻 ′𝑄′ ⇒ 𝑅𝐻 ′𝑄′

Then, to prove that the evaluation of the term “while 𝑡1 do 𝑡2” admits a particular
pre-condition 𝐻 and a particular post-condition 𝑄, it suffices to establish 𝑅𝐻 𝑄
under the above assumption. Notice the difference between 𝐻 and 𝑄, which specify
the behavior of all the iterations of the loop, and 𝐻 ′ and 𝑄′, which can be used
to specify any subset of those iterations. In the definition of the characteristic
formula for “while 𝑡1 do 𝑡2”, the variable 𝑅 cannot explicitly refer to Jwhile 𝑡1 do 𝑡2K,
which we are precisely trying to define. Instead, 𝑅 is quantified universally and the
only assumption about it is the fact that it supports application of the frame rule.
This assumption is written is_local𝑅 (the predicate is_local is defined further on,
in §5.3.3).

Jwhile 𝑡1 do 𝑡2K ≡ local (𝜆𝐻𝑄. ∀𝑅. is_local𝑅 ∧ ℋ ⇒ 𝑅𝐻 𝑄)

where ℋ ≡ ∀𝐻 ′𝑄′. (if J𝑡1K then (J𝑡2K ;𝑅) else JttK)𝐻 ′𝑄′ ⇒ 𝑅𝐻 ′𝑄′

54 CHAPTER 3. VERIFICATION OF IMPERATIVE PROGRAMS

Remark: the above characteristic formula is stronger than the one stated using a
loop invariant and a well-founded relation (this result is proved in Coq and exploited
by tactics that support reasoning on loops using loop invariants).

Let me illustrate the application of such a characteristic formula on the example
of the while-loop implementation of the length function. When reasoning on the
loop, a variable 𝑅 is introduced from the characteristic formula and the goal is as
follows.

R ((n ˜̃ > 0) * (h ˜̃ > l) * (l ˜> Mlist G L))
((n ˜̃ > length L) * (h ˜̃ > null) * (l ˜> Mlist G L))

This statement is first generalized for the induction, by universally quantifying over
the list 𝐿, over the pointer 𝑙, and over the initial contents 𝑘 of the counter 𝑛.

forall L l k,
R ((n ˜̃ > k) * (h ˜̃ > l) * (l ˜> Mlist G L))

((n ˜̃ > k + length L) * (h ˜̃ > null) * (l ˜> Mlist G L))

The proof is then conducted by induction on the structure of 𝐿. In the body of
the loop, in the particular case where the pointer 𝑙 is not null, the counter 𝑛 is
incremented and the rest of the loop is executed to compute the length of the tail
of the list. Let 𝑙′ denote the pointer on the tail of the list, and let 𝑋 :: 𝐿′ be the
decomposition of 𝐿. The proof obligation associated with the verification of the
remaining executions of the loop body is shown next.

R ((n ˜̃ > k+1) * (h ˜̃ > l’) * (l’ ˜> Mlist G L’)
* (l ˜̃ > (x,l’)) * (x ˜> G X))

((n ˜̃ > k+1+length L’) * (h ˜̃ > null) * (l’ ˜> Mlist G L’)
* (l ˜̃ > (x,l’)) * (x ˜> G X))

At this point, the heap predicates from the second and the fourth line can be framed
out, and the remaining statement follows directly from the induction hypothesis.

3.3.3 Improved characteristic formulae for for-loops

I construct a local-reasoning version of the characteristic formula for for-loops in
a very similar manner as for while-loops. In the case of a while-loop, I quantified
over some predicate 𝑅, where 𝑅𝐻 𝑄 meant “under the pre-condition 𝐻, the loop
terminates and admits the post-condition 𝑄”. Contrary to while-loops, for-loops
involve a counter whose value changes at every iteration. So, to handle a for-loop,
I quantify instead over a predicate, called 𝑆, that depends on the initial value of
the counter. The proposition 𝑆 𝑎𝐻 𝑄 means that the execution of the term “for 𝑖 =
𝑎 to 𝑏 do 𝑡” admits the pre-condition 𝐻 and the post-condition 𝑄.

The characteristic formula for for-loops is then stated as shown next. The main
goal is 𝑆 𝑎𝐻 𝑄, and the main assumption relates the predicate 𝑆 𝑖, which describes
the behavior of the loop starting from index 𝑖, with 𝑆 (𝑖 + 1), which describes the

3.4. TREATMENT OF FIRST-CLASS FUNCTIONS 55

behavior of the loop starting from index 𝑖 + 1. The assumption is_local1 𝑆 asserts
that the predicate 𝑆 𝑖 supports the frame rule for any index 𝑖.

Jfor 𝑖 = 𝑎 to 𝑏 do 𝑡K ≡ local (𝜆𝐻𝑄. ∀𝑆. is_local1 𝑆 ∧ ℋ ⇒ 𝑆 𝑎𝐻 𝑄)

with ℋ ≡ ∀𝑖𝐻 ′𝑄′. (if 𝑖 ≤ 𝑏 then (J𝑡K ;𝑆 (𝑖 + 1)) else JttK)𝐻 ′𝑄′ ⇒ 𝑆 𝑖𝐻 ′𝑄′

3.4 Treatment of first-class functions

In this section, I describe the specification of a counter function, which carries its own
local piece of mutable state, and describe the treatment of higher-order functions,
with list iterators, with generic combinators such as composition, with functions
in continuation-passing style, and with a function manipulating a list of counter
functions.

3.4.1 Specification of a counter function

The function make_counter allocates a reference 𝑟 with the contents 0 and returns a
function that, every time it is called, increments the contents of 𝑟 and then returns
the current contents of 𝑟.

let make_counter () =
let r = ref 0 in
(fun () -> incr r; !r)

I first describe a naive specification for make_counter that fully exposes the im-
plementation of the local state of the function. This specification asserts that the
function creates a reference 𝑟 with contents 0 and returns a function 𝑓 specified as
follows: for every contents 𝑚 of the reference 𝑟, a call to 𝑓 returns the value 𝑚 + 1
and sets the contents of 𝑟 to the value 𝑚 + 1.

Spec make_counter () |R>>
R [] (fun f => Hexists r, (r ˜̃ > 0) *

[Spec f () |R>> forall m,
R (r ˜̃ > m) (\= (m+1) *+ r ˜̃ > (m+1))]).

A better specification can be devised for make_counter, hiding the fact that the
counter is implemented using a reference cell. I define the representation predicate
Counter, which relates a counter function 𝑓 with its mathematical model 𝑛, where
𝑛 is the current value of the counter. So, a heap predicate describing a counter 𝑓
takes the form 𝑓 Counter𝑛. The Coq definition of Counter is shown next.

Definition Counter (n:int) (f:Func) : Hprop :=
Hexists I:int->hprop,

(I n) * [Spec f () |R>> forall m,
R (I m) (\= (m+1) *+ I (m+1))].

56 CHAPTER 3. VERIFICATION OF IMPERATIVE PROGRAMS

The post-condition of make_counter simply states that the return value 𝑓 is a
counter whose model is the integer 0.

Spec make_counter () |R>>
R [] (fun f => f ˜> Counter 0)

So far, reasoning on a call to a counter function still requires the definition of the
predicate Counter to be exposed. It is in fact possible to hide the definition of Counter
by providing a lemma describing the behaviour of the application of a counter func-
tion. This lemma is stated using AppReturns, as shown below.

Lemma Counter_apply : forall f n,
AppReturns f tt (f ˜> Counter n)

(\= (n+1) *+ f ˜> Counter (n+1)).

Note: the packing of local state in the representation predicate Counter is similar to
Pierce and Turner’s encoding of objects [73].

To summarize, a library implementing a counter function only needs to expose
three things: an abstract predicate Counter, the lemma Counter_apply, and the
specification of the function make_counter stated in terms of the abstract predi-
cate Counter. This example illustrates how local state can be entirely packed into
representation predicates and need not be mentioned in specifications.

3.4.2 Generic function combinators

In this section, I describe the specification of the combinators apply and compose.
Their definition is recalled next.

let apply f x = f x
let compose g f x = g (f x)

The specification of apply states that, for any pre-condition 𝐻 and for any post-
condition 𝑄, if the application of 𝑓 to the argument 𝑥 admits 𝐻 as pre-condition
and 𝑄 as post-condition (written AppReturns 𝑓 𝑥𝐻 𝑄), then the application of apply
to the arguments 𝑓 and 𝑥 admits the pre-condition 𝐻 and the post-condition 𝑄
(written 𝑅𝐻 𝑄 below).

Spec apply (f:Func) (x:A) |R>> forall (H:Hprop) (Q:B->hprop),
AppReturns f x H Q -> R H Q.

The fact that “AppReturns 𝑓 𝑥𝐻𝑄” is a sufficient condition for proving the propo-
sition “Japply 𝑓 𝑥K𝐻 𝑄” should not be surprising. Indeed, “AppReturns 𝑓 𝑥” is the
characteristic formula of “𝑓 𝑥” and “Japply 𝑓 𝑥K𝐻 𝑄” is the characteristic formula of
“apply 𝑓 𝑥”, and “apply 𝑓 𝑥” has the same semantics as “𝑓 𝑥”.

The quantification over a pre- and a post-condition in a specification is a typical
pattern when reasoning on functions with unknown specifications. This technique
is applied throughout this section, and also in the next one which is concerned with
reasoning on functions in continuation-passing style.

3.4. TREATMENT OF FIRST-CLASS FUNCTIONS 57

The specification of compose is shown next. It quantifies over an initial pre-
condition 𝐻, over a final post-condition 𝑄, and also over an intermediate post-
condition 𝑄′, which describes the output of the application of the argument 𝑓 to the
argument 𝑥.

Spec compose (g:Func) (f:Func) (x:A) |R>> forall H Q Q’,
AppReturns f x H Q’ ->
(forall y, AppReturns g y (Q’ y) Q) ->
R H Q.

The hypotheses closely resemble the premises of the reasoning rule for let-
bindings. Indeed, the term “compose 𝑔 𝑓 𝑥” has the same semantics as the term
“ let 𝑦 = 𝑓 𝑥 in 𝑔 𝑦”. In fact, we can use the notation for characteristic formulae to
give a more concise specification to the function compose, as shown below. The
bold keywords associated with notation for characteristic formulae are written in
Coq using capitalized keywords. In particular, App is a notation for the predicate
AppReturns.

Spec compose (g:Func) (f:Func) (x:A) |R>> forall H Q,
(Let y = (App f x) In (App g y)) H Q -> R H Q.

With this specification, reasoning on an application of the function compose produces
exactly the same proof obligation as if the source code of the function compose was
inlined. In general, code inlining is not a satisfying approach to verifying higher-
order functions because it is not modular. However, the source code of the function
compose is so basic that its specification is not more abstract that its source code.

3.4.3 Functions in continuation passing-style

The CPS-append function has been proposed as a verification challenge by Reynolds
[77]. This function takes three arguments: two lists 𝑥 and 𝑦 and a continuation 𝑘.
Its purpose is to call the continuation 𝑘 on the list obtained by concatenation of
the lists 𝑥 and 𝑦. The function is implemented recursively, so as to compute the
concatenation of 𝑥 and 𝑦 using the function itself. I study first the purely-functional
version of CPS-append, and then the corresponding imperative version that uses
mutable lists.

The source code of the pure CPS-append function is shown next.

let rec cps_app (x:’a list) (y:’a list) (k:’a list->’b) : ’b =
match x with | [] -> k y

| v::x’ -> cps_app x’ y (fun z -> k (v::z))

An example where 𝑥 is instantiated as a singleton list of the form “𝑣 :: nil” helps
understand the working of the function.

cps_app (𝑣 :: nil) 𝑦 𝑘 = cps_app nil 𝑦 (𝜆𝑧. 𝑘(𝑣 :: 𝑧)) = (𝜆𝑧. 𝑘(𝑣 :: 𝑧)) 𝑦 = 𝑘(𝑣 :: 𝑦)

58 CHAPTER 3. VERIFICATION OF IMPERATIVE PROGRAMS

The specification of the function asserts that if the application of the continuation
𝑘 to the concatenation of 𝑥 and 𝑦 admits a pre-condition 𝐻 and a post-condition 𝑄,
then so does the application of the CPS-append function to the arguments 𝑥, 𝑦 and
𝑘. (For the sake of simplicity, I here assume the lists to contain purely-functional
values, thereby avoiding the need for representation predicates.)

Spec cps_app (x:list a) (y:list a) (k:Func) |R>>
forall H Q, AppReturns k (x++y) H Q -> R H Q.

This specification is proved by induction on the structure of the list 𝑥.
The imperative version of the CPS-append function is shown next. The func-

tion tail and set_tail are used to obtain and to update the tail of a mutable list,
respectively.

let rec cps_app’ (x:’a mlist) (y:’a mlist) (k:’a mlist->’b) : ’b =
if x == null

then k y
else cps_app’ (tail x) y (fun z -> set_tail x z; k x)

The specification is slightly more involved than in the purely-functional case because
it involves representation predicates for the list and for the elements of that list. The
pre-condition asserts that the pointers 𝑥 and 𝑦 are starting points of lists modelled
as 𝐿 and 𝑀 , respectively. It also mentions a heap predicate 𝐻 covering the rest of
the heap. We need 𝐻 because the frame rule does not apply when reasoning with
CPS functions, as the entire heap usually needs to be passed on to the continuation.
In the imperative CPS-append function, the continuation 𝑘 is called on a pointer 𝑧
that points to a list modelled as the concatenation of 𝐿 and 𝑀 . In addition to the
representation predicate associated with 𝑧, the pre-condition of 𝑘 also mention the
heap predicate 𝐻. The post-condition of the function, called 𝑄, is then the same as
the post-condition of the continuation. The complete specification appears next.

Spec cps_app’ (x:Loc) (y:Loc) (k:Func) |R>>
forall (G:a->A->hprop) (L M:list A) H Q,
(forall z, AppReturns k z (z ˜> Mlist G (L++M) * H) Q) ->
R (x ˜> Mlist G L * y ˜> Mlist G M * H) Q.

This specification is proved by induction on the structure of the list 𝐿.

3.4.4 Reasoning about list iterators

In this section, I show how to specify the iter function on purely-functional lists, and
illustrate the use of this specification for reasoning on the manipulation of a list of
counter functions.1

1Due to lack of time, I do not describe the specification of the functions fold and map, nor the
specification of iterators on imperative maps. I will add those later on.

3.4. TREATMENT OF FIRST-CLASS FUNCTIONS 59

The specification of the function iter shares a number of similarities with the
treatment of loops. Again, I want to avoid the introduction of a loop invariant and
use a presentation that takes advantage of local reasoning, because I want to be able
to reason about the application of the function iter to a function 𝑓 and to a list 𝑙
without asserting that some prefix of the list 𝑙 has been treated by the function 𝑓
while the remaining segment of the list 𝑙 has not yet been treated.

Recall the recursive implementation of the function iter.

let rec iter f l = match l with
| [] -> ()
| x::l -> f x; iter f l

The function iter is quite similar to the recursive encoding of a for-loop, in the sense
that the argument changes at every recursive call. So, I quantify over a predicate,
called 𝑆, that depends on the argument 𝑙. The proposition 𝑆 𝑙𝐻 𝑄 asserts that
the application of “ iter 𝑓 ” to the list 𝑙 admits the pre-condition 𝐻 and the post-
condition 𝑄.

In the specification shown below, 𝑙0 denotes the initial list passed to iter, and 𝑙 de-
notes a sublist of 𝑙0. The term “ iter 𝑓 𝑙0” admits 𝐻 and 𝑄 as pre- and post-conditions,
written 𝑅𝐻 𝑄 (where 𝑅 is bound by the Spec notation), if the proposition 𝑆 𝑙0𝐻 𝑄
does hold. The hypothesis given about 𝑆 is a slightly simplified version of the
characteristic formula associated with the body of the function iter.

Spec iter (f:val) (l0:list a) |R>>
(forall (S:(list a)->hprop->(unit->hprop)->Prop),

is_local_1 S ->
(forall l H’ Q’,

match l with
| nil => (H’ ==> Q’ tt)
| x::l’ => (App f x ;; S l’) H’ Q’
end ->

S l H’ Q’) ->
S l0 H Q) ->

R H Q.

To check the usability of the specification of the function iter, I consider an
example. The function step_all, whose code appears below, takes as argument a
list of distinct counter functions (recall §3.4.1), and makes a call to each of those
counters for incrementing their local state. To keep the example simple, the results
produced by the invocation of the counter functions are simply ignored.

let step_all (l:list(unit->int)) =
List.iter (fun f => ignore (f())) l

A list of counters is modelled using the application of the representation predicate
Plist to the representation predicate Counter. More precisely, if 𝑙 is a list of functions

60 CHAPTER 3. VERIFICATION OF IMPERATIVE PROGRAMS

and 𝐿 is a list of integers, then the predicate 𝑙 Plist Counter𝐿 asserts that 𝐿
contains the integer values describing the current state of each of the counters from
the list 𝑙. A call to the function step_all on the list 𝑙 increments the state of every
counter, so the model of 𝑙 evolves from the list 𝐿 to a list 𝐿′. The list 𝐿′ is obtained
by applying the successor function to the elements of 𝐿, written map (𝜆𝑛. 𝑛 + 1)𝐿,
where map denotes the map function on Coq lists. Hence the specification shown
next.

Spec step_all (l:list Func) |R>> forall (L:list int),
R (l ˜> List Counter L)

(# l ˜> List Counter (map (fun n => n+1) L)).

Chapter 4

Characteristic formulae for pure
programs

This chapter describes the construction, pretty-printing and manipula-
tion of characteristic formulae for purely-functional programs. I start
with the presentation of a set of informal rules explaining, for each con-
struct from the source programming language, what logical formula de-
scribes it. I then focus on the specification of n-ary functions and for-
mally define the predicate Spec and the notation associated with it. The
formal presentation of a characteristic formula generator follows. Com-
pared with the informal presentation, it involves direct support for n-ary
functions and n-ary applications, it describes the lifting of program values
to the logical level, and it shows how polymorphism is handled. Finally,
I explain how to build a set of tactics for reasoning on characteristic
formulae.

4.1 Source language and normalization

Before generating the characteristic formula of a program, I apply a transforma-
tion on the source code so as to put the program in a administrative normal form.
Through this process, the program is arranged so that all intermediate results and
all functions become bound by a let-definition. One notable exception is the appli-
cation of simple total functions such as addition and subtraction; for example, the
application “𝑓 (𝑣1 + 𝑣2)” is considered to be in normal form although “𝑓 (𝑔 𝑣1 𝑣2)” is
not in normal form in general. Without such a special treatment of basic operators,
programs in normal form tend to be hard to read.

The normalization process, which is similar to 𝐴-normalization [28], preserves
the semantics and greatly simplifies formal reasoning on programs. Moreover, it is
straightforward to implement. Similar transformations have appeared in previous
work on program verification (e.g., [40, 76]). I omit a formal description of the
normalization process because it is relatively standard and because its presentation

61

62 CHAPTER 4. CHARACTERISTIC FORMULAE FOR PURE PROGRAMS

is of little interest.
The grammar of terms in administrative normal form includes values, applica-

tions of a value to another value, failure, conditionals, let-bindings for terms, and
let-bindings for recursive function definitions. The grammar of terms is extended
later on with curried n-ary functions and curried n-ary applications (§4.2.4), as well
as pattern matching (§4.6.3). The grammar of values includes integers, algebraic
values, and function closures. Algebraic data types correspond to an iso-recursive
type made of a tagged unions of tuples. In particular, the boolean values true and
false are defined using algebraic data type. Note that source code may contain func-
tion definitions but no function closure. Function closures, written 𝜇𝑓.𝜆𝑥.𝑡, are only
created at runtime, and they are always closed values.

𝑥, 𝑓 := variables
𝑛 := integers
𝐷 := algebraic data constructors
𝑣 := 𝑥 | 𝑛 | 𝐷(𝑣, . . . , 𝑣) | 𝜇𝑓.𝜆𝑥.𝑡

𝑡 := 𝑣 | (𝑣 𝑣) | crash | if 𝑣 then 𝑡 else 𝑡 |
let𝑥 = 𝑡 in 𝑡 | let rec 𝑓 = 𝜆𝑥. 𝑡 in 𝑡

In this chapter, I only consider programs that are well-typed in ML with recursive
types (I explain in §4.3.1 what kind of recursive types is handled). The grammar
of types and type schema is recalled below. Note: in several examples, I use binary
pairs and binary sums; those type constructors can be encoded as algebraic data
types.

𝐴 := type variable
𝐶 := algebraic type constructors
𝜏 := lists of types
𝜏 := 𝐴 | int | 𝐶 𝜏 | 𝜏 → 𝜏 | 𝜇𝐴.𝜏

𝜎 := ∀𝐴.𝜏
The associated typing rules are the standard typing rules of ML; I do not recall them
here.

Characteristic formulae are proved sound and complete with respect to the se-
mantics of the programming language. Since characteristic formulae describe the
big-step behavior of programs, it is convenient to describe the source language se-
mantics using big-step rules, as opposed to using a set of small-step reduction rules.
The big-step reduction judgment, written 𝑡 ⇓ 𝑣, is defined through the standard
inductive rules shown in Figure 4.1.

4.2 Characteristic formulae: informal presentation

The key ideas involved in the construction of characteristic formulae are explained
next, through an informal presentation. Compared with the formal definitions given
afterwards, the informal presentation makes two simplifications: Caml values and
Coq values are abusively identified, and typing annotations are omitted.

4.2. CHARACTERISTIC FORMULAE: INFORMAL PRESENTATION 63

𝑣 ⇓ 𝑣

([𝑓 → 𝜇𝑓.𝜆𝑥.𝑡1] [𝑥 → 𝑣2] 𝑡1) ⇓ 𝑣

((𝜇𝑓.𝜆𝑥.𝑡1) 𝑣2) ⇓ 𝑣

𝑡1 ⇓ 𝑣1 ([𝑥 → 𝑣1] 𝑡2) ⇓ 𝑣

(let𝑥 = 𝑡1 in 𝑡2) ⇓ 𝑣

([𝑓 → 𝜇𝑓.𝜆𝑥.𝑡1] 𝑡2) ⇓ 𝑣

(let rec 𝑓 = 𝜆𝑥. 𝑡1 in 𝑡2) ⇓ 𝑣

𝑡1 ⇓ 𝑣

(if true then 𝑡1 else 𝑡2) ⇓ 𝑣

𝑡2 ⇓ 𝑣

(if false then 𝑡1 else 𝑡2) ⇓ 𝑣

Figure 4.1: Semantics of functional programs

J𝑣K ≡ 𝜆𝑃. (𝑃 𝑣)
J𝑓 𝑣K ≡ 𝜆𝑃. AppReturns 𝑓 𝑣 𝑃
JcrashK ≡ 𝜆𝑃. False
Jif 𝑣 then 𝑡1 else 𝑡2K ≡ 𝜆𝑃. (𝑣 = true ⇒ J𝑡1K𝑃) ∧ (𝑣 = false ⇒ J𝑡2K𝑃)
Jlet𝑥 = 𝑡1 in 𝑡2K ≡ 𝜆𝑃. ∃𝑃 ′. J𝑡1K𝑃 ′ ∧ (∀𝑥. 𝑃 ′ 𝑥 ⇒ J𝑡2K𝑃)
Jlet rec 𝑓 = 𝜆𝑥. 𝑡1 in 𝑡2K ≡ 𝜆𝑃. ∀𝑓. (∀𝑥.∀𝑃 ′. J𝑡1K𝑃 ′ ⇒ AppReturns 𝑓 𝑥𝑃 ′) ⇒ J𝑡2K𝑃

Figure 4.2: Informal presentation of the characteristic formula generator

4.2.1 Characteristic formulae for the core language

The characteristic formula of a term 𝑡, written J𝑡K, is generated using an algorithm
that follows the structure of 𝑡. Recall that, given a post-condition 𝑃 , the charac-
teristic formula is such that the proposition “J𝑡K𝑃 ” holds if and only if the term 𝑡
terminates and returns a value that satisfies 𝑃 . The definition of J𝑡K for a particular
term 𝑡 always takes the form “𝜆𝑃.ℋ”, where ℋ expresses what needs to be proved in
order to show that the term 𝑡 returns a value satisfying the post-condition 𝑃 . The
definitions appear in Figure 4.2 and are explained next.

To show that a value 𝑣 returns a value satisfying 𝑃 , it suffices to prove that “𝑃 𝑣”
holds. So, J𝑣K is defined as “𝜆𝑃. (𝑃 𝑣)”. Next, to prove that an application “𝑓 𝑣”
returns a value satisfying 𝑃 , one must exhibit a proof of “AppReturns 𝑓 𝑣 𝑃 ”. So, J𝑓 𝑣K
is defined as “𝜆𝑃. AppReturns 𝑓 𝑣 𝑃 ”. To show that “ if 𝑣 then 𝑡1 else 𝑡2” returns a value
satisfying 𝑃 , one must prove that 𝑡1 returns such a value when 𝑣 is true and that
𝑡2 returns such a value when 𝑣 is false. So, the proposition “Jif 𝑣 then 𝑡1 else 𝑡2K𝑃 ” is
equivalent to

(𝑣 = true ⇒ J𝑡1K𝑃) ∧ (𝑣 = false ⇒ J𝑡2K𝑃)

To show that the term “crash” returns a value satisfying 𝑃 , the only way to pro-
ceed is to show that this point of the program cannot be reached, by proving that
the assumptions accumulated at that point are contradictory. Therefore, JcrashK is

64 CHAPTER 4. CHARACTERISTIC FORMULAE FOR PURE PROGRAMS

defined as “𝜆𝑃. False”.
To show that a term “ let𝑥 = 𝑡1 in 𝑡2” returns a value satisfying 𝑃 , one must prove

that there exists a post-condition 𝑃 ′ such that 𝑡1 returns a value satisfying 𝑃 ′ and
that, for any 𝑥 satisfying 𝑃 ′, 𝑡2 returns a value satisfying 𝑃 . So, the proposition
Jlet𝑥 = 𝑡1 in 𝑡2K𝑃 is equivalent to the proposition “∃𝑃 ′. J𝑡1K𝑃 ′ ∧ (∀𝑥. 𝑃 ′ 𝑥 ⇒
J𝑡2K𝑃)”.

Consider the definition of a possibly-recursive function “ let rec 𝑓 = 𝜆𝑥. 𝑡1 in 𝑡2”.
The proposition “∀𝑥.∀𝑃 ′. J𝑡1K𝑃 ′ ⇒ AppReturns 𝑓 𝑥𝑃 ′” is called the body description
associated with the function definition “ let rec 𝑓 = 𝜆𝑥. 𝑡1”. It captures the fact that,
in order to prove that the application of 𝑓 to 𝑥 returns a value satisfying a post-
condition 𝑃 ′, it suffices to prove that the body 𝑡1, instantiated with that particular
argument 𝑥, terminates and returns a value satisfying 𝑃 ′. The characteristic formula
for a function definition is built upon the body description of that function: to prove
that the term “ let rec 𝑓 = 𝜆𝑥. 𝑡1 in 𝑡2” returns a value satisfying 𝑃 , it suffices to prove
that, for any name 𝑓 , asssuming the body description for “ let rec 𝑓 = 𝜆𝑥. 𝑡1” to
hold, the term 𝑡2 returns a value satisfying 𝑃 . Hence, “Jlet rec 𝑓 = 𝜆𝑥. 𝑡1 in 𝑡2K𝑃 ” is
equivalent to:

∀𝑓. (∀𝑥. ∀𝑃 ′. J𝑡1K𝑃 ′ ⇒ AppReturns 𝑓 𝑥𝑃 ′) ⇒ J𝑡2K𝑃

4.2.2 Definition of the specification predicate

In a language like Caml, functions of several arguments are typically presented in a
curried fashion. A definition of the form “ let rec 𝑓 = 𝜆𝑥 𝑦. 𝑡” describes a function that,
when applied to its first argument 𝑥, returns a function that expects an argument 𝑦.
In order to obtain a realistic tool for the verification of Caml programs, it is crucial
to offer direct support for reasoning on the definition and application of n-ary curried
functions. In this next section, I give the formal definition of the predicate Spec used
to specify unary functions. In the next section I describe the generalization of this
predicate to higher arities.

Consider the specification of the function half, written in terms of the predicate
AppReturns.

∀𝑥. ∀𝑛 ≥ 0. 𝑥 = 2 * 𝑛 ⇒ AppReturns half𝑥 (= 𝑛)

The same specification can be rewritten with the Spec notation as follows.

Spec half (𝑥 : int) |𝑅 >> ∀𝑛 ≥ 0. 𝑥 = 2 * 𝑛 ⇒ 𝑅 (= 𝑛)

The notation introduced by the keyword Spec is defined using a family of higher-
order predicates called Spec𝑛, where 𝑛 corresponds to the arity of the function.
The definition of Spec1 appears next, and its generalization Spec𝑛 for 𝑛 is given
afterwards.

The proposition “Spec1 𝑓 𝐾” asserts that the function 𝑓 admits the specification
𝐾. The predicate 𝐾 takes both 𝑥 and 𝑅 as argument, and specifies the result of the
application of 𝑓 to 𝑥. The predicate 𝑅 is to be applied to the post-condition that

4.2. CHARACTERISTIC FORMULAE: INFORMAL PRESENTATION 65

holds of the result of “𝑓 𝑥”. For example, the previous specification for half actually
stands for:

Spec1 half (𝜆𝑥𝑅. ∀𝑛 ≥ 0. 𝑥 = 2 * 𝑛 ⇒ 𝑅 (= 𝑛))

In first approximation, the predicate Spec1 is defined as follows:

Spec1 𝑓 𝐾 ≡ ∀𝑥. 𝐾 𝑥 (AppReturns 𝑓 𝑥)

where 𝐾 has type 𝐴 → ((𝐵 → Prop) → Prop) → Prop, and where 𝐴 and 𝐵
correspond to the input and the output type of 𝑓 .

For example, consider an application of half to the argument 8. The behav-
ior of this application is described by the proposition “𝐾 8 (AppReturns1 half 8)”,
where 𝐾 stands for the specification of the function half, which is “𝜆𝑥𝑅. ∀𝑛 ≥
0. 𝑥 = 2 * 𝑛 ⇒ 𝑅 (= 𝑛)”. Simplifying the application of 𝐾 in the expression
“𝐾 8 (AppReturns1 half 8)” gives back the first property that was stated about that
function:

∀𝑛. 𝑛 ≥ 0 ⇒ 8 = 2 * 𝑛 ⇒ AppReturns1 half 8 (= 𝑛)

The actual definition of Spec1 includes an extra side-condition, expressing that 𝐾
is covariant in 𝑅. Covariance is formally captured by the predicate Weakenable,
defined as follows:

Weakenable 𝐽 ≡ ∀𝑃 𝑃 ′. 𝐽 𝑃 → (∀𝑥. 𝑃 𝑥 → 𝑃 ′ 𝑥) → 𝐽 𝑃 ′

where 𝐽 has type “(𝐵 → Prop) → Prop” for some type 𝐵. The formal definition of
Spec1 appears in the middle of Figure 4.3. Fortunately, thanks to appropriate lem-
mas and tactics, the predicate Weakenable never needs to be manipulated explicitly
while verifying programs.

4.2.3 Specification of curried n-ary functions

Generalizing the definitions of AppReturns1 and Spec1 to higher arities is not entirely
straightforward, due to the need to support reasoning on partial applications and
over applications. Intuitively, the specification of a 𝑛-ary curried function 𝑓 should
capture the property that the application of 𝑓 to less than 𝑛 arguments terminates
and returns a function whose specification is an appropriate specialization of the
specification of 𝑓 .

Firstly, I define the predicate AppReturns𝑛 in such a way that the proposition
“AppReturns𝑛 𝑓 𝑣1 . . . 𝑣𝑛 𝑃 ” states that the application of 𝑓 to the 𝑛 arguments 𝑣1
. . . 𝑣𝑛 returns a value satisfying 𝑃 . The family of predicates AppReturns𝑛 is defined
by induction on 𝑛, ultimately in terms of the abstract predicate AppReturns, as
shown at the top of Figure 4.3. For instance, “AppReturns2 𝑓 𝑥 𝑦 𝑃 ” states that the
application of 𝑓 to 𝑥 returns a function 𝑔 such that the application of 𝑔 to 𝑦 returns
a value satisfying 𝑃 . More generally, if 𝑚 is smaller than 𝑛, then applications at
arities 𝑛 and 𝑚 are related as follows:

AppReturns𝑛 𝑓 𝑥1 . . . 𝑥𝑛 𝑃 ⇐⇒
AppReturns𝑚 𝑓 𝑥1 . . . 𝑥𝑚 (𝜆𝑔.AppReturns𝑛−𝑚 𝑔 𝑥𝑚+1 . . . 𝑥𝑛 𝑃)

66 CHAPTER 4. CHARACTERISTIC FORMULAE FOR PURE PROGRAMS

AppReturns1 𝑓 𝑥𝑃 ≡ AppReturns 𝑓 𝑥𝑃
AppReturns𝑛 𝑓 𝑥1 . . . 𝑥𝑛 𝑃 ≡ AppReturns 𝑓 𝑥1 (𝜆𝑔. AppReturns𝑛−1 𝑔 𝑥2 . . . 𝑥𝑛 𝑃)

is_spec1𝐾 ≡ ∀𝑥.Weakenable (𝐾 𝑥)
is_spec𝑛𝐾 ≡ ∀𝑥. is_spec𝑛−1 (𝐾 𝑥)

Spec1 𝑓 𝐾 ≡ is_spec1𝐾 ∧ ∀𝑥.𝐾 𝑥 (AppReturns 𝑓 𝑥)
Spec𝑛 𝑓 𝐾 ≡ is_spec𝑛𝐾 ∧ Spec1 𝑓 (𝜆𝑥𝑅. 𝑅 (𝜆𝑔. Spec𝑛−1 𝑔 (𝐾 𝑥)))

In the figure, 𝑛 > 1 and (𝑓 : Func) and (𝑔 : Func) and (𝑥𝑖 : 𝐴𝑖) and (𝑃 : 𝐵 →
Prop) and (𝐾 : 𝐴1 → . . . 𝐴𝑛 → ((𝐵 → Prop) → Prop) → Prop).

Figure 4.3: Formal definitions for AppReturns𝑛 and Spec𝑛

Secondly, I define the predicate Spec𝑛, again by induction on 𝑛. For example,
a curried function 𝑓 of two arguments is a total function that, when applied to
its first argument 𝑥, returns a unary function 𝑔 that admits a certain specification
which depends on that first argument. If 𝐾 denotes the specification of 𝑓 then
“𝐾 𝑥” denotes the specification of the partial application of 𝑓 to 𝑥. Intuitively, the
definition of Spec2 is as follows.

Spec2 𝑓 𝐾 ≡ Spec1 𝑓 (𝜆𝑥𝑅. 𝑅 (𝜆𝑔. Spec1 𝑔 (𝐾 𝑥)))

where 𝐾 has type “𝐴1 → 𝐴2 → ((𝐵 → Prop) → Prop) → Prop”. Note that Spec2
is polymorphic in the types 𝐴1, 𝐴2 and 𝐵. The formal definition of Spec𝑛, which
appears in Figure 4.3, also includes a side condition to ensure that 𝐾 is covariant
in its argument 𝑅, written is_spec𝑛𝐾.

The high-level notation for specifications used in §2.2 can now be easily explained
in terms of the family of predicates Spec𝑛.

Spec 𝑓 (𝑥1 : 𝐴1) . . . (𝑥𝑛 : 𝐴𝑛) |𝑅 >> ℋ
≡ Spec𝑛 𝑓 (𝜆(𝑥1 : 𝐴1). . . . 𝜆(𝑥𝑛 : 𝐴1). 𝜆𝑅. ℋ)

The predicate Spec𝑛 is ultimately defined in terms of AppReturns. A direct elim-
ination lemma can be proved for relating a specification for a n-ary function stated
in terms of Spec𝑛 with the behavior of an application of that function described with
the predicate AppReturns𝑛. This elimination lemma takes the following form.

Spec𝑛 𝑓 𝐾 ⇒ 𝐾 𝑥1 . . . 𝑥𝑛 (AppReturns𝑛 𝑓 𝑥1 . . . 𝑥𝑛)

where 𝑓 has type Func, where each 𝑥𝑖 admits a type 𝐴𝑖, and where 𝐾 is of type
𝐴1 → . . . 𝐴𝑛 → ((𝐵 → Prop) → Prop) → Prop, with 𝐵 being the return type
of the function 𝑓 . This elimination lemma is not intended to be used directly;
it serves as a basis for proving other lemmas upon which tactics for reasoning on
applications are based (§4.7.2). Note that the elimination lemma admits a reciprocal,

4.2. CHARACTERISTIC FORMULAE: INFORMAL PRESENTATION 67

which is presented in detail in §4.7.3. This introduction lemma admits the following
statement (two side-conditions are omitted).Ä

∀𝑥1 . . . 𝑥𝑛. 𝐾 𝑥1 . . . 𝑥𝑛 (AppReturns𝑛 𝑓 𝑥1 . . . 𝑥𝑛)
ä

⇒ Spec𝑛 𝑓 𝐾

Remark: in the CFML library, the predicates AppReturns𝑛 and Spec𝑛 are imple-
mented up to 𝑛 = 4. It would not take very long to support arities up to 12, which
should be sufficient for most functions used in practice. It might even be possible
to define the n-ary predicates in an arity-generic way, however I have not had time
to work on such definitions.

4.2.4 Characteristic formulae for curried functions

In this section, I update the generation of characteristic formulae to add direct
support for reasoning on n-ary functions using AppReturns𝑛 and Spec𝑛. Note that
the grammar of terms in normal form is now extended with n-ary applications and
n-ary abstractions.

The generation of the characteristic formula for a n-ary application is straight-
forward, as it directly relies on the predicate AppReturns𝑛. The definition is:

J𝑓 𝑣1 . . . 𝑣𝑛K ≡ 𝜆𝑃. AppReturns𝑛 𝑓 𝑣1 . . . 𝑣𝑛 𝑃

The treatment of n-ary abstractions is slightly more complex. Recall that the
body description associated with a function definition “ let rec 𝑓 = 𝜆𝑥. 𝑡” is the propo-
sition: “∀𝑥. ∀𝑃. J𝑡K𝑃 ⇒ AppReturns 𝑓 𝑥𝑃 ”. I could generalize this definition using
the predicate AppReturns𝑛, but this would not capture the fact that partial applica-
tions of the n-ary function terminate. Instead, I rely on the predicate Spec𝑛. In this
new presentation, the body description of a n-ary function “ let rec 𝑓 = 𝜆𝑥1 . . . 𝑥𝑛. 𝑡”,
where 𝑛 ≥ 1, is defined as follows.

∀𝐾. is_spec𝑛𝐾 ∧
Ä
∀𝑥1 . . . 𝑥𝑛. 𝐾 𝑥1 . . . 𝑥𝑛 J𝑡K

ä
⇒ Spec𝑛 𝑓 𝐾

It may be surprising to see the predicate “𝐾 𝑥1 . . . 𝑥𝑛” being applied to a char-
acteristic formula J𝑡K. It is worth considering an example. Recall the definition
of the function half. It takes the form “ let rec half = 𝜆𝑥. 𝑡”, where 𝑡 stands for the
body of half. Its specification takes the form “Spec1 half𝐾”, where 𝐾 is equal to
“𝜆𝑥𝑅. ∀𝑛 ≥ 0. 𝑥 = 2 * 𝑛 ⇒ 𝑅 (= 𝑛)”. According to the new body description for
functions, in order to prove that the function half satisfies its specification, we need
to prove the proposition “∀𝑥.𝐾 𝑥 J𝑡K”. Unfolding the definition of 𝐾, we obtain:
“∀𝑥.∀𝑛 ≥ 0. 𝑥 = 2 * 𝑛 ⇒ J𝑡K (= 𝑛)”. As expected, we are required to prove that
the body of the function half, which is described by the characteristic formula J𝑡K,
returns a value equal to 𝑛, under the assumption that 𝑛 is a non-negative integer
such that 𝑥 is equal to 2 * 𝑛.

To summarize, the characteristic formula of a n-ary application is expressed in
terms of the predicate AppReturns𝑛 and the characteristic formula of a n-ary function
definition is expressed in terms of the predicate Spec𝑛. The elimination lemma, which
relates Spec𝑛 to AppReturns𝑛, then serves as a basis for reasoning on the application
of n-ary functions.

68 CHAPTER 4. CHARACTERISTIC FORMULAE FOR PURE PROGRAMS

4.3 Typing and translation of types and values

So far, I have abusively identified program values from the programming language
with values from the logic. This section clarifies the translation from Caml types to
Coq types and the translation from Caml values to Coq values.

4.3.1 Erasure of arrow types and recursive types

I map every Caml type to its corresponding Coq type, except for arrow types. As
explained earlier on, due to the mismatch between the programming language arrow
type and the logical arrow type, I represent Caml functions using Coq values of type
Func.

To simplify the presentation and the proofs about characteristic formulae, it is
convenient to consider an intermediate type system, called weak-ML. This type sys-
tem is like ML except that the arrow type constructor is replaced with a constant
type constructor, called func. During the generation of characteristic formulae, vari-
ables that have the type func in weak-ML become variables of type Func in Coq.
Also, weak-ML does not include general recursive types but only algebraic data
types, such as the type of lists. The grammar of weak-ML types is thus as follows.

𝑇 := 𝐴 | int | 𝐶 𝑇 | func
𝑆 := ∀𝐴.𝑇

The translation of an ML type 𝜏 into the corresponding weak-ML type is written
⟨𝜏⟩. In short, ⟨𝜏⟩ is a copy of 𝜏 where all the arrow types are replaced with the type
func. The erasure operator ⟨·⟩ also handles polymorphic types and general recursive
types, as explained further on. The formal definition of the erasure operator ⟨·⟩
appears in Figure 4.4. Note that ⟨𝜏⟩ denotes the application of the erasure operator
to all the elements of the list of types 𝜏 .

The translation of a Caml type scheme ∀𝐴.𝜏 is a weak-ML type scheme of the
form ∀𝐵.⟨𝜏⟩. The list of types 𝐵 might be strictly smaller than the list 𝐴 because
some type variables occurring in 𝜏 may no longer occur in ⟨𝜏⟩. For example, the
ML type scheme “∀𝐴𝐵. 𝐴 + (𝐵 → 𝐵)” is translated in weak-ML as “∀𝐴. 𝐴 + func”,
which no longer involves the type variable 𝐵.

An ML program may involve general equi-recursive types, of the form “𝜇𝐴.𝜏 ”.
Such recursive types are handled by CFML only if the translation of the type 𝜏 no
longer refers to the variable 𝐴. This is often the case because any occurrence of the
variable 𝐴 under an arrow type gets erased. For example, the term “𝜆𝑥. 𝑥 𝑥” admits
the general recursive type “𝜇𝐴.(𝐴 → 𝐵)”. This type is simply translated in weak-ML
as func, which no longer involves a recursive type. So, CFML supports reasoning on
the value “𝜆𝑥. 𝑥 𝑥”. However, reasoning on a value that admits a type in which the
recursivity does not traverse an arrow is not supported. For example, CFML does
not support reasoning on a program involving values of type “𝜇𝐴.(𝐴× int)”.

In summary, CFML supports base types, algebraic data types and arrow types.
Moreover it can handle functions that admit an equi-recursive type, because all

4.3. TYPING AND TRANSLATION OF TYPES AND VALUES 69

⟨𝐴⟩ ≡ 𝐴

⟨int⟩ ≡ int
⟨𝐶 𝜏⟩ ≡ 𝐶 ⟨𝜏⟩
⟨𝜏1 → 𝜏2⟩ ≡ func
⟨∀𝐴. 𝜏⟩ ≡ ∀𝐵. ⟨𝜏⟩ where 𝐵 = 𝐴 ∩ fv(⟨𝜏⟩)

⟨𝜇𝐴.𝜏⟩ ≡
∣∣∣∣∣ ⟨𝜏⟩ if 𝐴 ̸∈ ⟨𝜏⟩

program rejected otherwise

Figure 4.4: Translation from ML types to weak-ML types

arrow types are mapped to the constant type func.

4.3.2 Typed terms and typed values

The characteristic formula generator takes as input a typed weak-ML program,
that is, a program in which all the terms and all the values are annotated with
their weak-ML type. In the implementation, the CFML generator takes as input
the type-carrying abstract syntax tree produced by the OCaml type-checker, and it
applies the erasure operator to all the types carried by that data structure. I explain
next the notation employed for referring to typed terms and typed values.

The meta-variable 𝑡 ranges over typed term, 𝑣 ranges over typed values, and �̂�
ranges over polymorphic typed values. A typed entity is a pair, whose first compo-
nent is a weak-ML type, and whose second component is a construction from the
programming. Typed programs moreover carry explicit information about gener-
alized types variables and type applications. A list of universally-quantified type
variables, written “Λ𝐴.”, appears in polymorphic let-bindings, in polymorphic val-
ues, and in function closures. Note that a polymorphic function is not a polymorphic
value because all functions, including polymorphic functions, admit the type func. In
the grammar of typed values, explicit type applications are mentioned for variables,
written 𝑥𝑇 , and for polymorphic data constructors, written 𝐷𝑇 .

𝑣 := 𝑥𝑇 | 𝑛 | 𝐷𝑇 (𝑣, . . . , 𝑣) | 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡

�̂� := Λ𝐴. 𝑣

𝑡 := 𝑣 | 𝑣 𝑣 | crash | if 𝑣 then 𝑡 else 𝑡
let𝑥 = Λ𝐴. 𝑡 in 𝑡 | let rec 𝑓 = Λ𝐴.𝜆𝑥.𝑡 in 𝑡

Substitution in typed terms involves polymorphic values. For example, during
the evaluation of the term “ let𝑥 = Λ𝐴. 𝑡1 in 𝑡2”, the term 𝑡1 reduces to some value
𝑣, and then the variable 𝑥 is substituted in 𝑡2 with the polymorphic value “Λ𝐴. 𝑣”.
Such polymorphic values are written �̂�.

I write 𝑡𝑇 to indicate that 𝑇 is the type that annotates by the typed term 𝑡. A
similar convention applies for values, written 𝑣 𝑇 . Moreover, I write 𝜇𝑓.Λ𝐴.𝜆𝑥𝑇0 .𝑡𝑇1

70 CHAPTER 4. CHARACTERISTIC FORMULAE FOR PURE PROGRAMS

to denote the fact that the input type of the function is 𝑇0 and that its return type
is 𝑇1. Finally, given a typed term 𝑡, one may strip all the types and obtained a
corresponding raw term 𝑡, which is written “strip_types 𝑡”.

Remark: to simplify the soundness proof, I enforce the invariant that bound
polymorphic variables must occur at least once in the type on which they scope. In
particular, in a function closure of the form 𝜇𝑓.Λ𝐴.𝜆𝑥𝑇0 .𝑡𝑇1 , a type variable from
the list 𝐴 should occur in the type 𝑇0 or in type 𝑇1 (or in both).1

4.3.3 Typing rules of weak-ML

A typed term 𝑡 denotes a term in which every node is annotated with a weak-
ML type. However, it is not guaranteed that those type annotations are coherent
throughout the term. Since the construction of characteristic formulae only makes
sense when type annotations are coherent, I introduce a typing judgment for weak-
ML typed terms, written ∆ ⊢ 𝑡, or simply ⊢ 𝑡 when the typing context ∆ is
empty.

The proposition ∆ ⊢ 𝑡 captures the fact that the type-annotated term 𝑡 is
well-typed in a context ∆, where ∆ maps variables to weak-ML type schema. The
typing rules defining this typing judgment appear in Figure 4.5. In those typing
rules, typed terms are systematically annotated with the type they carry. Note that
the typing rule for data constructors involves a premise describing the type of a data
constructor: the proposition “𝐷 : ∀𝐴. (𝑇1 × . . .× 𝑇𝑛) → 𝐶 𝐴” asserts that the data
constructor 𝐷 is polymorphic in the types 𝐴, and that it expects arguments of type
𝑇𝑖 and constructs a value of type 𝐶 𝐴.

Compared with the typing rules that one would have for terms annotated with
ML types, the only difference is that arrow types are replaced with the type func.
This results in the typing rule for applications, shown in the upper-left corner of
the figure, being totally unconstrained: a function of type func can be applied to
an argument of some arbitrary type 𝑇1, and pretend to produce a result of some
arbitrary type 𝑇2.

Throughout the rest of this chapter, all the typed values and typed terms being
manipulated are well-typed in weak-ML.

4.3.4 Reflection of types in the logic

In this section, I define the translation from weak-ML types to Coq types. This
translation is almost the identity, since every type constructor from weak-ML is di-
rectly mapped to the corresponding Coq type constructor. Yet, it would be confusing
to identify weak-ML types with Coq types. So, I introduce an explicit reflection op-
erator: V𝑇W denotes the Coq type that corresponds to the weak-ML type 𝑇 . The

1If the invariant is not satisfied, then one can replace the dangling free type variables with an
arbitrary type, say int, without changing the semantics of the term nor its generality. For example,
the function 𝜇𝑓.Λ𝐴.𝜆𝑥int.((𝜆𝑦(list𝐴). 𝑥) nil)int has type “∀𝐴. int → int”. The type variable 𝐴 is used
to type-check the empty list nil which plays no role in the function. The typing of the function can
be updated to 𝜇𝑓.Λ.𝜆𝑥int.((𝜆𝑦(list int). 𝑥) nil)int, which no longer involves a dangling type variable.

4.3. TYPING AND TRANSLATION OF TYPES AND VALUES 71

∆ ⊢ 𝑓 func ∆ ⊢ 𝑣𝑇1

∆ ⊢ (𝑓 func 𝑣𝑇1)𝑇2

∆ ⊢ 𝑣bool ∆ ⊢ 𝑡1
𝑇 ∆ ⊢ 𝑡2

𝑇

∆ ⊢ (if 𝑣bool then 𝑡1𝑇 else 𝑡2𝑇)𝑇 ∆ ⊢ crash𝑇

∆, 𝐴 ⊢ 𝑡1
𝑇1 ∆, 𝑥 : ∀𝐴.𝑇1 ⊢ 𝑡2

𝑇2

∆ ⊢ (let𝑥 = Λ𝐴. 𝑡1
𝑇1 in 𝑡2𝑇2)𝑇2

∆, 𝐴, 𝑓 : func, 𝑥 : 𝑇0 ⊢ 𝑡1
𝑇1 ∆, 𝑓 : func ⊢ 𝑡2

𝑇2

∆ ⊢ (let rec 𝑓 = Λ𝐴.𝜆𝑥𝑇0 .𝑡1
𝑇1 in 𝑡2𝑇2)𝑇2

(𝑥 : ∀𝐴.𝑇) ∈ ∆

∆ ⊢ (𝑥𝑇)([𝐴→𝑇]𝑇)

∆ ⊢ 𝑛int

𝐷 : ∀𝐴. (𝑇1 × . . .× 𝑇𝑛) → 𝐶 𝐴 ∀𝑖. ∆ ⊢ 𝑣𝑖
([𝐴→𝑇]𝑇𝑖)

∆ ⊢ (𝐷𝑇 (𝑣1, . . . , 𝑣𝑛))(𝐶 𝑇)

∆, 𝐴, 𝑓 : func, 𝑥 : 𝑇0 ⊢ 𝑡1
𝑇1

∆ ⊢ (𝜇𝑓.Λ𝐴.𝜆𝑥𝑇0 .𝑡1
𝑇1)func

∆, 𝐴 ⊢ 𝑣𝑇

∆ ⊢ (Λ𝐴. 𝑣𝑇)(∀𝐴.𝑇)

Figure 4.5: Typing rules for typed weak-ML terms

formal definition of the reflection operator V·W appears below.

V𝐴W ≡ 𝐴

VintW ≡ Int
V𝐶 𝑇W ≡ 𝐶 V𝑇W
VfuncW ≡ Func
V∀𝐴.𝑇W ≡ ∀𝐴. V𝑇W

Algebraic type definitions are translated into corresponding Coq inductive defi-
nitions. This translation is straightforward. For example, Caml lists are translated
into Coq lists. Note that the positivity requirement associated with Coq inductive
types is not a problem here because all arrow types have been mapped to the type
func, so the translation does not produce any negative occurrence of an inductive
type in its definition. Thus, for every type constructor 𝐶 from the source program,
a corresponding constant 𝐶 is defined in Coq. In particular, the translation of the
type 𝐶 𝑇 is written 𝐶 V𝑇W.

Henceforth, I let 𝒯 range over Coq types of the form V𝑇W, which are called
reflected types. Similarly, I let 𝒮 range over Coq types of the form V𝑆W, where 𝑆 is
a weak-ML type scheme. Note that a reflected type scheme 𝒮 always takes the form
∀𝐴.𝒯 , for some reflected type 𝒯 . To summarize, we start with an ML type, written
𝜏 , then turn it into a weak-ML type, written 𝑇 , and finally translate it into a Coq
type, written 𝒯 .

72 CHAPTER 4. CHARACTERISTIC FORMULAE FOR PURE PROGRAMS

4.3.5 Reflection of values in the logic

I now describe the translation from Caml values to Coq values. The decoding
operator, written ⌈𝑣⌉, transforms a value 𝑣 of type 𝑇 into the corresponding Coq
value of type V𝑇W. Since program values might contain free variables, the decoding
operator in fact also takes as argument a context Γ that maps Caml variables to
Coq variables. The decoding of a value 𝑣 in a context Γ is written ⌈𝑣⌉Γ. The Coq
variables bound by Γ should be typed appropriately: if 𝑣 contains a free variable 𝑥
of type 𝑆 then the Coq variable Γ(𝑥) should admit the type V𝑆W.

In the definition of ⌈𝑣⌉Γ shown next, values on the left-hand side are typed
weak-ML values and values on the right-hand side are Coq values. Note that Coq
values are inherently well-typed, because Coq is based on type theory. The only
difficulty is the treatment of polymorphism. When the source program contains a
polymorphic variable 𝑥 applied to some types 𝑇 , this occurrence is translated as the
application of Γ(𝑥) to the translation of the types 𝑇 , written Γ(𝑥) V𝑇W. Similarly,
the type arguments of data constructors get translated. Function closures do not
exist in source programs, so there is no need to translate them.

⌈𝑥𝑇 ⌉Γ ≡ Γ(𝑥) V𝑇W
⌈𝑛⌉Γ ≡ 𝑛

⌈𝐷𝑇 (𝑣1, . . . , 𝑣2)⌉Γ ≡ 𝐷 V𝑇W (⌈𝑣1⌉Γ, . . . , ⌈𝑣2⌉Γ)

⌈𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡⌉Γ ≡ not needed at this time

When decoding closed values, the context Γ is typically empty. Henceforth, I write
⌈𝑣⌉ as a shorthand for ⌈𝑣⌉Γ.

The decoding of polymorphic values is not needed for generating characteristic
formulae, however it is involved in the proofs of soundness and completeness. Having
in mind the definition of the decoding of polymorphic values helps understanding the
generation of characteristic formulae for polymorphic let-bindings. The decoding of
a closed polymorphic value “Λ𝐴. 𝑣” is a Coq function that expects some types 𝐴 and
returns the decoding of the value 𝑣.

⌈Λ𝐴. 𝑣⌉ ≡ 𝜆𝐴. ⌈𝑣⌉

For example, the value (nil, nil) has type “∀𝐴.∀𝐵. list𝐴× list𝐵”. The Coq translation
of this value is “fun A B => (@nil A, @nil B)”, where the symbol @ indicates that
type arguments are given explicitly.

4.4 Characteristic formulae: formal presentation

This section contains the formal definition of a characteristic formula generator,
including the definition of the notation system for characteristic formulae. It starts
with a description of the treatment of polymorphism, and it includes the definition
of AppReturns.

4.4. CHARACTERISTIC FORMULAE: FORMAL PRESENTATION 73

4.4.1 Characteristic formulae for polymorphic definitions

Consider a polymorphic let-binding “ let𝑥 = Λ𝐴. 𝑡1 in 𝑡2”, and let 𝑇1 denote the type
of 𝑡1. The variable 𝑥 has type ∀𝐴.𝑇1. I define the characteristic formula associated
with that polymorphic let-bindings as follows.

Jlet𝑥 = Λ𝐴. 𝑡1 in 𝑡2K ≡
𝜆𝑃. ∃𝑃 ′.

Ä
∀𝐴. J𝑡1K (𝑃 ′𝐴)

ä
∧
Ä
∀𝑥. (∀𝐴. (𝑃 ′ 𝐴) (𝑥𝐴)) ⇒ J𝑡2K𝑃

ä
where 𝑃 ′ has type ∀𝐴.(V𝑇1W → Prop) and the quantified variable 𝑥 has type ∀𝐴.V𝑇1W.
The formula first asserts that, for any instantiations of the types 𝐴, the typed term
𝑡1, which depend on the variables 𝐴, should satisfy the post-condition (𝑃 ′𝐴). Ob-
serve that the post-condition 𝑃 ′ describing 𝑥 is a polymorphic predicate of type
∀𝐴.(V𝑇1W → Prop). It is not a predicate of type (∀𝐴.V𝑇W) → Prop, because we only
care about specifying monomorphic instances of the polymorphic variable 𝑥. A par-
ticular monomorphic instance of 𝑥 in 𝑡2 takes the form 𝑥𝑇 . It is expected to satisfy
the predicate 𝑃 ′ 𝑇 . Hence the assumption ∀𝐴. (𝑃 ′𝐴) (𝑥𝐴) provided for reasoning
about 𝑥 in the continuation 𝑡2.

It remains to see how polymorphism in handled in function definitions. Con-
sider a function definition “ let rec 𝑓 = Λ𝐴.𝜆𝑥1 . . . 𝑥𝑛.𝑡1 in 𝑡2”. The associated body
description, shown below, quantifies over the types 𝐴. Those types are involved in
the type of the specification 𝐾, in the type of the arguments 𝑥𝑖, in the characteristic
formula of the body 𝑡1, and in the implicit arguments of the predicate Spec𝑛.

∀𝐴.∀𝐾. is_spec𝑛𝐾 ∧
Ä
∀𝑥1 . . . 𝑥𝑛. 𝐾 𝑥1 . . . 𝑥𝑛 J𝑡1K

ä
⇒ Spec𝑛 𝑓 𝐾

4.4.2 Evaluation predicate

The predicate AppReturns is defined in the CFML library in terms of a lower-level
predicate called AppEval, which is one of the three axioms upon which the library
is built. The proposition AppEval𝐹 𝑉 𝑉 ′ captures the fact that the application of a
function whose decoding is 𝐹 to a value whose decoding is 𝑉 returns a value whose
decoding is 𝑉 ′. The type of AppEval is as follows.

AppEval : ∀𝐴𝐵. Func → 𝐴 → 𝐵 → Prop

A formal definition that justifies the interpretation of the axiom AppEval is included
in the soundness proof (§6.1.5).

Intuitively, the judgment “AppReturns𝐹 𝑉 𝑃 ” asserts that the application of 𝐹
to the argument 𝑉 terminates and returns a value 𝑉 ′ that satisfies 𝑃 . The predicate
AppReturns can thus be easily defined in terms of AppEval, with a definition that
need not refer to program values.

AppReturns𝐹 𝑉 𝑃 ≡ ∃𝑉 ′. AppEval𝐹 𝑉 𝑉 ′ ∧ 𝑃 𝑉 ′

74 CHAPTER 4. CHARACTERISTIC FORMULAE FOR PURE PROGRAMS

J 𝑣 KΓ ≡ return ⌈𝑣⌉Γ
J 𝑓 𝑣1 . . . 𝑣𝑛 KΓ ≡ app ⌈𝑓⌉Γ ⌈𝑣1⌉Γ . . . ⌈𝑣𝑛⌉Γ
J crash KΓ ≡ crash
J if 𝑣 then 𝑡1 else 𝑡2 KΓ ≡ if ⌈𝑣⌉Γ then J𝑡1KΓ else J𝑡2KΓ

J let𝑥 = Λ𝐴. 𝑡1 in 𝑡2 KΓ ≡ let𝐴 𝑋 = J𝑡1KΓ in J𝑡2K(Γ,𝑥 ↦→𝑋)

J let rec 𝑓 = Λ𝐴.𝜆𝑥1 . . . 𝑥𝑛.𝑡1 in 𝑡2 KΓ ≡ let rec𝐴 𝐹 𝑋1 . . . 𝑋𝑛 = J𝑡1K(Γ,𝑓 ↦→𝐹,𝑥𝑖 ↦→𝑋𝑖)

in J𝑡2K(Γ,𝑓 ↦→𝐹)

Figure 4.6: Characteristic formula generator (formal presentation)

4.4.3 Characteristic formula generation with notation

The characteristic formula generator can now be given a formal presentation in
which types are made explicit and in which Caml values are reflected into Coq
through calls to the decoding operator ⌈·⌉. In order to justify that characteristic
formulae can be displayed like the source code, I proceed in two steps. First, I
describe the characteristic formula generator in terms of an intermediate layer of
notation (Figure 4.6). Then, I define the notation layer in terms of higher-order logic
connectives and in terms of the predicate AppReturns𝑛 (Figure 4.7). The contents of
those figures simply refine the earlier informal presentation. From those definitions,
it appears clearly that the size of a characteristic formula is linear in the size of the
source code it describes.

Observe that the notation for function definitions relies on two auxiliary pieces
of notation, introduced with the keywords let fun and body. Those auxiliary defi-
nitions will be helpful later on for pretty-printing top-level functions and mutually-
recursive functions.

The CFML generator annotates characteristic formulae with tags in order to
ease the work of the Coq pretty-printer. A tag is simply an identity function with
a particular name. For example, tag_if is the tag used to label Coq expressions
that correspond to the characteristic formula of a conditional expression. The Coq
definition of the tag and the definition of the notation in which it is involved appear
next.

Definition tag_if : forall A, A -> A := id.
Notation "’If’ V ’Then’ F1 ’Else’ F2" :=

(tag_if (fun P => (V = true -> F1 P) /\ (V = false -> F2 P))).

The use of tags, which appear as head constant of characteristic formulae, signifi-
cantly eases the task of the pretty-printer of Coq because each tag corresponds to
exactly one piece of notation.

4.5. GENERATED AXIOMS FOR TOP-LEVEL DEFINITIONS 75

return 𝑉

≡ 𝜆𝑃. 𝑃 𝑉

app 𝐹 𝑉1 . . . 𝑉𝑛

≡ 𝜆𝑃. AppReturns𝑛 𝐹 𝑉1 . . . 𝑉𝑛 𝑃

crash
≡ 𝜆𝑃. False

if 𝑉 then ℱ else ℱ ′

≡ 𝜆𝑃. (𝑉 = true ⇒ ℱ 𝑃) ∧ (𝑉 = false ⇒ ℱ ′ 𝑃)

let𝐴 𝑋 = ℱ in ℱ ′

≡ 𝜆𝑃. ∃𝑃 ′. (∀𝐴. ℱ (𝑃 ′𝐴) ∧ (∀𝑋. (∀𝐴.𝑃 ′𝐴 (𝑋 𝐴)) ⇒ ℱ ′ 𝑃)

let rec𝐴 𝐹 𝑋1 . . . 𝑋𝑛 = ℱ1 in ℱ2

≡ (let fun 𝐹 = (body𝐴 𝐹 𝑋1 . . . 𝑋𝑛 = ℱ1) in ℱ2)

let fun 𝐹 = ℋ in ℱ
≡ 𝜆𝑃. ∀𝐹. ℋ ⇒ ℱ 𝑃

body𝐴 𝐹 𝑋1 . . . 𝑋𝑛 = ℱ
≡ ∀𝐴𝐾. is_spec𝑛𝐾 ∧ (∀𝑋1 . . . 𝑋𝑛. 𝐾 𝑋1 . . . 𝑋𝑛ℱ) ⇒ Spec𝑛 𝐹 𝐾

Figure 4.7: Syntactic sugar to display characteristic formulae

4.5 Generated axioms for top-level definitions

Reasoning on complete programs Consider a program “ let𝑥 = 𝑡”. The CFML
generator could produce a definition corresponding to the characteristic formula of
the typed term 𝑡, and then the user could use this definition to specify the result
value 𝑥 of the program with respect to some post-condition 𝑃 .

Definition X_cf := J𝑡K.
Lemma X_spec : X_cf 𝑃.

Yet, this approach is not really practical because a Caml program is typically made
of a sequence of top-level declarations, not just of a single declaration.

Instead, the CFML generator produces axioms to describe the result values of
each top-level declaration, and produces an axiom to describe the characteristic for-
mula associated with each definition. In what follows, I first present the axioms that
are generated for a top-level value definition, and then present specialized axioms
for the case of functions.

Generated axioms for values Consider a top-level non-polymorphic definition
“ let𝑥 = 𝑡𝑇 ” that does not describe a function. The CFML tool generates two
axioms. The first axiom, named X, has type V𝑇W, which is the Coq type that reflects

76 CHAPTER 4. CHARACTERISTIC FORMULAE FOR PURE PROGRAMS

the type 𝑇 . This axiom represents the result of the evaluation of the declaration
“ let𝑥 = 𝑡”.

Axiom X : V𝑇W.

The second axiom, named X_cf, can be used to establish properties about the value
𝑋. Given a post-condition 𝑃 of type V𝑇W → Prop, this axiom describes what needs
to be proved in order to deduce that the proposition 𝑃 X holds.

Axiom X_cf : ∀𝑃. J 𝑡 K∅ 𝑃 ⇒ 𝑃 X.

When the definition 𝑥 has a polymorphic type 𝑆, the Coq value X admits the
type V𝑆W, which is of the form ∀𝐴.V𝑇W. In this case, the post-condition 𝑃 has type
∀𝐴.(V𝑇W → Prop) and the axiom X_cf is as follows.

Axiom X_cf : ∀𝐴. ∀𝑃. J 𝑡 K∅ (𝑃 𝐴) ⇒ (𝑃 𝐴) (X𝐴).

Proof that types are inhabited A declaration of the form “Axiom X : V𝑆W”
would be incoherent if the type V𝑆W were not inhabited. To avoid this issue, CFML
generates a proof obligation to ensure that V𝑆W is inhabited before producing the
axiom X. The statement relies on the Coq predicate Inhab, which holds only of
inhabited types. The lemma generated thus takes the form:

Lemma X_safe : Inhab V𝑆W.

This lemma can be discharged automatically by Coq whenever the type V𝑆W is
inhabited, through invokation of Coq’s proof search tactic eauto. However, if the
type V𝑆W is not inhabited, then the lemma X_safe cannot be proved. In this case,
the generated file does not compile, and soundness is not compromised.

Overall, CFML rejects definitions of values whose type is not inhabited. Fortu-
nately, those values are typically uninteresting to specify. Indeed, a term can admit
an un-inhabited type only if it never returns a value, that is, if it always either
crashes or diverges.

Axioms generated for functions Consider a top-level function definition, of
the form “ let rec 𝑓 = 𝜆𝑥. 𝑡”. Such a definition can be encoded as the definition
“ let 𝑓 = (let rec 𝑓 = 𝜆𝑥. 𝑡 in 𝑓)”, which can be handled like other top-level value
definitions. That said, it is more convenient in practice to directly produce an
axiom corresponding to the body description of the function “ let rec 𝑓 = 𝜆𝑥. 𝑡”.

Consider a function definition of the form “ let rec 𝑓 = Λ𝐴.𝜆𝑥1 . . . 𝑥𝑛.𝑡”. An axiom
named F represents the function. The type Func can be safely considered as being
inhabited, so there is no concern about soundness here.

Axiom F : Func.

The axiom F_cf generated for F asserts the body description of the function 𝑓 .

Axiom F_cf : body𝐴 𝐹 𝑋1 . . . 𝑋𝑛 = J 𝑡 K(𝑓 ↦→𝐹,𝑥𝑖 ↦→𝑋𝑖).

In Chapter 6, I prove that the all the generated axioms are sound.

4.6. EXTENSIONS 77

4.6 Extensions

In this section, I explain how to extend the generation of characteristic formulae to
handle mutually-recursive functions, assertions, and pattern matching. For the sake
of presentation, I return to an informal presentation style, working with untyped
terms.

4.6.1 Mutually-recursive functions

To reason on mutually-recursive functions, one needs to state the specification of
each of the functions involved, and then to prove those functions correct together,
because the termination of a function may depend on the termination of the other
functions. Consider the definition of two mutually-recursive functions 𝑓1 and 𝑓2, of
body 𝑡1 and 𝑡2. The corresponding characteristic formula is built as follows.

Jlet 𝑓1 = 𝜆𝑥1. 𝑡1 and 𝑓2 = 𝜆𝑥2. 𝑡2 in 𝑡K ≡ 𝜆𝑃. ∀𝑓1.∀𝑓2. ℋ1 ∧ ℋ2 ⇒ J𝑡K𝑃

where ℋ1 ≡ ∀𝐾. is_spec𝐾 ∧ (∀𝑥1. 𝐾 𝑥1 J𝑡1K) ⇒ Spec 𝑓1𝐾
ℋ2 ≡ ∀𝐾. is_spec𝐾 ∧ (∀𝑥2. 𝐾 𝑥2 J𝑡2K) ⇒ Spec 𝑓2𝐾

There might be more than two mutually-recursive functions, moreover each func-
tion might expect several arguments. To avoid the need to define an exponential
amount of notation, I rely directly on the notation body for pretty-printing the body
description ℋ𝑖 associated with each function, and I rely directly on a generalized ver-
sion of the notation let fun for pretty-printing the definition of mutually-recursive
definitions. For example, for the arity two, I define:

(let fun 𝐹1 = ℋ1 and 𝐹2 = ℋ2 in ℱ) ≡ 𝜆𝑃. ∀𝐹1. ∀𝐹2. ℋ1 ∧ ℋ2 ⇒ ℱ 𝑃

Overall, I need one version of body for each possible number of arguments and one
version of let fun for each possible number of mutually-recursive functions.

For top-level mutually-recursive functions, I first generate one axiom to represent
each function, and then generate the body description of each of the functions. Those
body descriptions may refer to the name of any of the mutually-recursive functions
involved.

This approach to treating mutually-recursive functions works very well in prac-
tice, as I could experience through the verification of Okasaki’s “bootstrapped queues”,
whose implementation relies on five mutually-recursive functions. Those functions
involve polymorphic recursion and some of them expect several arguments.

4.6.2 Assertions

Programmers can use assertions to test at runtime whether a particular property or
invariant holds of the data structures being manipulated is satisfied. If an assertion
evaluates to the boolean true, then the program execution continues as if the asser-
tion was not present. However, if the assertion evaluates to false, then the program

78 CHAPTER 4. CHARACTERISTIC FORMULAE FOR PURE PROGRAMS

halts by raising a fatal error. Assertions are thus a convenient tool for debugging, as
they enable the programmer to detect precisely when and where the specifications
are violated.

When formal methods are used to prove that the program satisfies its specifi-
cation before the program is executed, the use of assertions appears to be of much
less interest. Nevertheless, I want to be able to verify existing programs, whose
code might already contain assertions. So, I wish to prove that all the assertions
contained in a program always evaluate to true. In what follows, I recall the syntax
and semantics of assertions and I explain how to build characteristic formulae for
assertions.

The term “assert 𝑡1 in 𝑡2” evaluates the assertion 𝑡1 and proceeds to the evalua-
tion of 𝑡2 only when 𝑡1 returns true.

𝑡1 ⇓ true 𝑡2 ⇓ 𝑣

(assert 𝑡1 in 𝑡2) ⇓ 𝑣

The characteristic formula is very simple to build. Indeed, to show that the term
“assert 𝑡1 in 𝑡2” admits 𝑃 as post-condition, it suffices to show that the characteristic
formula of 𝑡1 holds of the post-condition “= true” and that 𝑡2 admits 𝑃 as post-
condition. Hence the following definition:

Jassert 𝑡1 in 𝑡2K ≡ 𝜆𝑃. J𝑡1K (= true) ∧ J𝑡2K𝑃

Remark: the expression “assert 𝑡1 in 𝑡2” has exactly the same behavior as the expres-
sion “ let𝑥 = 𝑡1 in if𝑥 then 𝑡2 else crash”. One can indeed prove that the characteristic
formula of this latter term is equivalent to the formula given above.

4.6.3 Pattern matching

Syntax and semantics of pattern-matching The grammar of terms is ex-
tended with a construction “match 𝑣with 𝑝1 ↦→ 𝑡1 | . . . | 𝑝𝑛 ↦→ 𝑡𝑛”, denoting that the
value 𝑣 is matched against the linear patterns 𝑝𝑖. The terms 𝑡𝑖 are the continuations
associated with each of the patterns. In the formal presentation, I let 𝑏 range over
pairs of a pattern and a continuation, of the form 𝑝 ↦→ 𝑡. Formally, the pattern
matching construction takes the form “match 𝑣with 𝑏”.

𝑡 := . . . | match 𝑣with 𝑏
𝑏 := 𝑝 ↦→ 𝑡
𝑝 := 𝑥 | 𝑛 | 𝐷(𝑝, . . . , 𝑝)

For generating characteristic formulae, it is simpler that patterns do not contain
any wildcard. So, during the normalization process of the source code, I replace all
wildcards by fresh identifiers. Note: the treatment of and-patterns, or-patterns, and
when-clauses is not described.

4.6. EXTENSIONS 79

The big-step reduction rules associated with patterns are given next. Below, the
function fv is used to compute the set of free variables of a pattern.

𝑥 = fv 𝑝 𝑣 = [𝑥 → 𝑣] 𝑝 ([𝑥 → 𝑣] 𝑡) ⇓ 𝑣

(match 𝑣with 𝑝 ↦→ 𝑡 | 𝑏) ⇓ 𝑣

𝑥 = fv 𝑝 (∀𝑣𝑖. 𝑣 ̸= [𝑥 → 𝑣] 𝑝) (match 𝑣with 𝑏) ⇓ 𝑣

(match 𝑣with 𝑝 ↦→ 𝑡 | 𝑏) ⇓ 𝑣

Example I first illustrate the generation of characteristic formulae for pattern-
matching through an example. Assume that 𝑣 is a pair of integers being pattern-
matched first against the pattern (3, 𝑥) and then against the pattern (𝑥, 4). Assume
that the two associated continuation are terms named 𝑡1 and 𝑡2. The corresponding
characteristic formula is described by the following statement.

Jmatch 𝑣with (3, 𝑥) ↦→ 𝑡1 | (𝑥, 4) ↦→ 𝑡2K ≡ 𝜆𝑃. (∀𝑥. 𝑣 = (3, 𝑥) ⇒ J𝑡1K 𝑃)
∧ ((∀𝑥. 𝑣 ̸= (3, 𝑥)) ⇒

(∀𝑥. 𝑣 = (𝑥, 4) ⇒ J𝑡2K 𝑃)
∧ ((∀𝑥. 𝑣 ̸= (𝑥, 4) ⇒ False))

If the value 𝑣 is equal to (3, 𝑥) for some 𝑥, then we have to show that 𝑡1 returns a
value satisfying 𝑃 . Otherwise, we can assume that the value 𝑣 is different from (3, 𝑥)
for all 𝑥. Then, if the value 𝑣 is equal to (4, 𝑥) for some 𝑥, we have to show that 𝑡2
returns a value satisfying 𝑃 . Otherwise, we can assume that, the value 𝑣 is different
from (4, 𝑥) for all 𝑥. Since there are no remaining cases in the pattern-matching,
and since we want to show that the code does not crash, we have to show that all
the possible cases have been already covered. Hence the proof obligation False.

Observe that the treatment of pattern matching in characteristic formulae allows
for reasoning on the branches one by one, accumulating the negation of all the
previous patterns which have not been matched.

In practice, I pretty-print the above characteristic formula as follows:

case 𝑣 = (3, 𝑥) vars 𝑥 then J𝑡1K else
case 𝑣 = (𝑥, 4) vars 𝑥 then J𝑡2K else crash

The idea is to rely on a cascade of cases, introduced by the keyword case, corre-
sponding to the various patterns being tested. The keyword vars introduces the
list of pattern variables bound by each pattern. The then keyword introduces the
characteristic formula associated with continuation to be executed when the current
pattern matches. The else keyword introduces the formula associated with the con-
tinuation to be followed otherwise. Note that variables bound by the keyword vars
range over the then branch but not over the else branch. Those piece of notation
are formally defined soon afterwards.

80 CHAPTER 4. CHARACTERISTIC FORMULAE FOR PURE PROGRAMS

Informal presentation Consider a term “match 𝑣with 𝑝 ↦→ 𝑡 | 𝑏”. The value 𝑣 is
being matched against a pattern 𝑝, associated with a continuation 𝑡, and let 𝑏 range
over the remaining branches of the pattern-matching on 𝑣. Let 𝑥 denote the set
of pattern variables occurring in 𝑝. The generation of characteristic formulae for
pattern-matching is described through the following two rules.

Jmatch 𝑣with 𝑝 ↦→ 𝑡 | 𝑏K ≡ 𝜆𝑃.
Ä
∀𝑥. 𝑣 = 𝑝 ⇒ J𝑡K𝑃

ä
∧
Ä
(∀𝑥. 𝑣 ̸= 𝑝) ⇒ Jmatch 𝑣with 𝑏K𝑃

ä
Jmatch 𝑣with ∅K ≡ 𝜆𝑃. False

Remark: The value 𝑣 describing the argument of the pattern matching is du-
plicated in each branch. Thus, the size of the characteristic formula might not
be linear in the size of the input program when the value 𝑣 is not reduced to a
variable. In practice, this does not appear to be a problem. However, from a
theoretical perspective, it is straightforward to re-establish linearity of the charac-
teristic formula. Indeed, it suffices to change the term “match 𝑣with 𝑝 ↦→ 𝑡 | 𝑏” into
“ let𝑥 = 𝑣 in match𝑥with 𝑝 ↦→ 𝑡 | 𝑏” for some fresh name 𝑥 before computing the char-
acteristic formula.

Decoding of patterns In order to formalize the generation of characteristic for-
mulae for patterns, I need to consider typed patterns, written 𝑝, and to define the
decoding of a typed pattern. This function, written ⌈𝑝⌉Γ, transforms a typed pattern
𝑝 of type 𝑇 into a Coq value of type V𝑇W, by replacing all data constructors with
their logical counterpart, and by replacing pattern variables with their associated
Coq variable from the map Γ.

⌈𝑥⌉Γ ≡ Γ(𝑥)

⌈𝑛⌉Γ ≡ 𝑛

⌈𝐷𝑇 (𝑝1, . . . , 𝑝𝑛)⌉Γ ≡ 𝐷 V𝑇W (⌈𝑝1⌉Γ, . . . , ⌈𝑝𝑛⌉Γ)

Remark: the variables bound in Γ always have a monomorphic type, since pattern
variables are not generalized (I have not included the construction “ let 𝑝 = 𝑡 in 𝑡” in
the source language).

Formal presentation, with notation I define the generation of characteristic
formulae through an intermediate layer of syntactic sugar, relying on the notation
case introduced earlier on in the example. Below, 𝑥 denotes the list of variables
bound by the pattern 𝑝, and 𝑋 denotes a list of fresh Coq variables of the same
length.

Jmatch 𝑣with 𝑝 ↦→ 𝑡 | 𝑏KΓ ≡ case ⌈𝑣⌉Γ = ⌈𝑝⌉(𝑥 ↦→𝑋) vars 𝑋

then J𝑡K(Γ,𝑥 ↦→𝑋)

else Jmatch 𝑣with 𝑏KΓ

Jmatch 𝑣with ∅KΓ ≡ crash

4.7. FORMAL PROOFS WITH CHARACTERISTIC FORMULAE 81

where the notation case is formally defined as follows:

(case 𝑉 = 𝑉 ′ vars 𝑋 then ℱ else ℱ ′) ≡
𝜆𝑃. (∀𝑋. 𝑉 = 𝑉 ′ ⇒ ℱ 𝑃) ∧ ((∀𝑋. 𝑉 ̸= 𝑉 ′) ⇒ ℱ ′ 𝑃)

Remark: in the characteristic formula, the value ⌈𝑣⌉Γ appears under the scope
of the pattern variables 𝑥, although this was not the case in the program source
code. So, if the value 𝑣 contains a variable with the same name as a variable bound
in the pattern 𝑝, then we need to alpha-rename the pattern variable in conflict.
Alternatively, we may first bind the value 𝑣 to a fresh variable 𝑥, building the term
“ let𝑥 = 𝑣 in match𝑥with 𝑝 ↦→ 𝑡 | 𝑏”, in which the value being matched, namely 𝑥, is
guaranteed to be distinct from all the pattern variables. The implementation of
CFML performs this transformation whenever the value 𝑣 contains a free variable
that clashes with one of the pattern variables involved in the pattern matching.

Exhaustive patterns By default, the OCaml type-checker checks for exhaustive-
ness of coverage in pattern-matching constructions, through an analysis based on
types. If there exists a value that might not match any of the patterns, then the
Caml compiler issues a warning. There are cases where the invariants of the program
guarantee that the given set of branches actually covers all the possible cases. In
such a case, the user may ignore the warning produced by the compiler.

When the compiler’s analysis recognizes a pattern matching as exhaustive, then it
is safe to modify the characteristic formula so as to remove the proof-obligation that
corresponds to exhaustiveness. In such a case, I replace the formula crash, which
is defined as “𝜆𝑃.False”, with the formula done, which is defined as “𝜆𝑃.True”.
Through this change, a nontrivial proof obligation “crash𝑃 ” is replaced with a
trivial proof obligation “done𝑃 ”. In practice, most patterns are exhaustive, so the
amount of work required in interactive proofs is greatly reduced by this optimization
which exploits the strength of the exhaustiveness decision procedure.

Conclusion and extensions In summary, characteristic formulae rely on equal-
ities and disequalities to reason on pattern matching. The branches of a pattern
can be studied one by one, following the execution flow of the program. The CFML
library also includes a tactic that applies to the characteristic formula of a pattern
with 𝑛 branches and directly generates 𝑛 subgoals, plus one additional subgoal when
the pattern is not recognized as exhaustive. The treatment of for alias patterns (of
the form “𝑝 as𝑥”) and of top-level or-patterns is not described here but is imple-
mented in CFML. The treatment of when-clauses and general or-patterns is left to
future work.

4.7 Formal proofs with characteristic formulae

In this section, I explain how to reason about programs through characteristic for-
mulae. While it is possible to manipulate characteristic formulae directly, I have

82 CHAPTER 4. CHARACTERISTIC FORMULAE FOR PURE PROGRAMS

found it much more effective to design a set of high-level tactics. Moreover, the use
of high-level tactics means that the user does not need to know about the details of
the construction of characteristic formulae.

4.7.1 Reasoning tactics: example with let-bindings

Definition of the core tactic To start with, assume we want to show that a term
“ let𝑥 = 𝑡1 in 𝑡2” returns a value satisfying a predicate 𝑃 . The goal to be established,
“Jlet𝑥 = 𝑡1 in 𝑡2K𝑃 ”, is equivalent to the proposition shown next.

∃𝑃 ′. J𝑡1K𝑃 ′ ∧ (∀𝑋. 𝑃 ′𝑋 ⇒ J𝑡2K(𝑥 ↦→𝑋) 𝑃)

On this goal, a call to the tactic xlet with an argument 𝑃1 instantiates 𝑃 ′ as 𝑃1

and produces two subgoals. The first subgoal, “J𝑡1K𝑃1”, corresponds to the body of
the let-binding. The second subgoal consists in proving “J𝑡2K(𝑥 ↦→𝑋) 𝑃 ” in a context
extended with a free variable named 𝑋 and an hypothesis 𝑃1𝑋.

The Coq implementation of the tactic xlet is straightforward. First, it provides
its argument P1 as a witness, with a call to “exists𝑃1”. Then, it splits the con-
junction, with the tactic split. Finally, in the second subgoal, it introduces 𝑋 as
well as the hypothesis about 𝑋, calling the tactic intro twice. The corresponding
Coq tactic definition appears next.

Tactic Notation "xlet" constr(P1) :=
exists P1; split; [| intro; intro].

Inference of specification The tactic xlet described so far requires the inter-
mediate specification 𝑃1 to be provided explicitly. Yet, it is very often the case that
this post-condition can be automatically inferred when solving the goal “J𝑡1K𝑃1”.
For example, if 𝑡1 is the application of a function, then the post-condition 𝑃1 gets
unified with the post-condition of that function. So, I also define a tactic xlet that
does not expect any argument, and that simply instantiates 𝑃1 with a fresh unifica-
tion variable. As soon as this unification variable is instantiated in the first subgoal
J𝑡1K𝑃1, the hypothesis “𝑃1𝑋” from the second subgoal becomes fully determined.

The implementation of this alternative tactic xlet relies on a call to the tactic
“exists_”, where the underscore symbol indicates that a fresh unification variable
should be created.

Tactic Notation "xlet" :=
exists _; split; [| intro; intro].

Generation of names Choosing appropriate names for variables and hypotheses
is extremely important in practice for conducting interactive proofs. Indeed, a proof
script that relies on generated names such as H16 is very brittle, because any change
to the program or to the proof may shift the names and result in H16 being renamed,
for example into H19. Moreover, proof obligations are much easier to read when they

4.7. FORMAL PROOFS WITH CHARACTERISTIC FORMULAE 83

involve only meaningful names. I have invested particular care in developing two
versions of every tactic: one version where the user explicitly provides a name for
a variable or an hypothesis, and one version that tries and picks a clever name
automatically. As a result, it is possible to obtain robust proof scripts and readable
proof obligations at a reasonable cost, by providing only a few names explicitly.

Let me illustrate this with the tactic xlet. A call to the tactic intro moves
a universally-quantified variable or a hypothesis from the head of the goal into the
proof context. The name 𝑋 that appears in the characteristic formula of a let-
binding comes from the source code of the program, after it has been put in normal
form. When the name 𝑋 comes from the original source code, it makes sense to reuse
that name. However, when 𝑋 corresponds to a variable that has been introduced
during the normalization process (for assigning names to intermediate expressions
from the source code), it is sometimes better to use a more meaningful name than
the one that has been generated automatically. A call of the form “xlet as X”
enables one to specify the name that should be used for 𝑋.

The tactic xlet also needs to come up with a name for the hypothesis “𝑃1𝑋”.
By default, the tactic picks the name HX, which is obtained by placing the letter H
in front of the name of the variable. However, it is also possible to specify the name
to be used explicitly, by providing it as extra argument to xlet. This possibility is
particularly useful when the hypothesis “𝑃1𝑋” needs to be decomposed in several
conjuncts. For example, if the post-condition 𝑃1 of the term 𝑡1 takes the form
“(𝜆𝑋. ∃𝑌. 𝐻1 𝑌 ∧𝐻2 𝑌)”, then a call to the tactic “xlet as X (Y&M1&M2)” leaves in
the second subgoal a proof context containing a variable Y, an hypothesis M1 of type
“𝐻1 𝑌 ” and an hypothesis M2 of type “𝐻2 𝑌 ”. Without such a convenient feature,
one would have to write instead something of the form “xlet as X. destruct HX
as (Y&M1&M2)”, or to rely on a more evolved tactic language such as SSReflect [30].

Overall, there are five ways to call the tactic xlet, as summarized below.

xlet.
xlet P1 as X.
xlet P1 as X HX.
xlet as X.
xlet as X HX.

All of the tactics implemented in CFML offer a similar degree of flexibility.

4.7.2 Tactics for reasoning on function applications

The process of proving a specification for a function 𝑓 and then exploiting that
specification for reasoning on applications of that function is as follows. First, one
states the specification of 𝑓 as a lemma of the form Spec𝑛 𝑓 𝐾. Second, one proves
this lemma using the characteristic formula describing the behavior of 𝑓 . Third,
one registers that lemma in a database of specification lemmas, so that the name
of the lemma does not need to be mentioned explicitly in the proof scripts. Then,
when reasoning on a piece of code that involves an application of the function 𝑓 , a

84 CHAPTER 4. CHARACTERISTIC FORMULAE FOR PURE PROGRAMS

proof obligation of the form AppReturns𝑚 𝑓 𝑥1 . . . 𝑥𝑚 𝑃 is involved. The tactic xapp
helps proving that goal. The implementation of the tactic depends on whether the
function is applied to the exact number of arguments it expects (𝑚 = 𝑛), or whether
a partial-application is involved (𝑚 < 𝑛), or whether an over-application is involved
(𝑚 > 𝑛). Note that all the lemmas about Spec𝑛 mentioned thereafter are proved in
Coq.

Normal applications The elimination lemma for the predicate Spec𝑛 (introduced
in §4.2.3) can be used to deduce a proposition about AppReturns𝑛 𝑓 from the spec-
ification Spec𝑛 𝑓 𝐾. However, it does not directly have a conclusion of the form
AppReturns𝑚 𝑓 𝑥1 . . . 𝑥𝑛 𝑃 . So, the implementation of the tactic xapp relies on a
corollary of the elimination lemma, shown next.®

Spec𝑛 𝑓 𝐾
∀𝑅. Weakenable𝑅 ⇒ 𝐾 𝑥1 . . . 𝑥𝑛𝑅 ⇒ 𝑅𝑃

⇒ AppReturns𝑛 𝑓 𝑥1 . . . 𝑥𝑛 𝑃

Let me illustrate the working of this lemma through an example. Suppose that
a value 𝑥 is a non-negative multiple of 4 (i.e. 𝑥 = 4 * 𝑘 for some 𝑘 > 0), and let me
show that the application of the function half to 𝑥 returns an even value, that is,
“AppReturns1 half𝑥 even”. The proof obligation is:

∀𝑅. Weakenable𝑅 ⇒ (∀𝑛 ≥ 0. 𝑥 = 2 * 𝑛 ⇒ 𝑅 (= 𝑛)) ⇒ 𝑅 even

By instantiating the hypothesis with 𝑛 = 2*𝑘 and checking that 𝑥 = 2*𝑛, we derive
the fact “𝑅 (= 2*𝑘)”. The conclusion, namely “𝑅 even”, follows: since 𝑅 is compatible
with weakening, it suffices to check that the proposition “∀𝑦. 𝑦 = 2 * 𝑘 ⇒ even 𝑦”
holds.

Partial applications Partial application occurs when the function 𝑓 is applied to
fewer arguments than it normally expects. The result of such a partial application
is another function, call it 𝑔, whose specification is an appropriate specialization
of the specification of 𝑓 . For example, if 𝐾 is the specification of 𝑓 , then the
partial application of 𝑓 to an argument 𝑥 admits the specification 𝐾 𝑥. So, to show
that the partial application of 𝑓 to arguments 𝑥1 . . . 𝑥𝑛 satisfies a post-condition
𝑃 , one needs to prove that the specification 𝑃 is a consequence of the specification
𝐾 𝑥1 . . . 𝑥𝑛. The following result is exploited by the tactic xapp for reasoning on
partial applications (𝑛 > 𝑚).®

Spec𝑛 𝑓 𝐾
∀𝑔. Spec𝑛−𝑚 𝑔 (𝐾 𝑥1 . . . 𝑥𝑚) ⇒ 𝑃 𝑔

⇒ AppReturns𝑚 𝑓 𝑥1 . . . 𝑥𝑚 𝑃

Over-applications Over-application occurs when the function 𝑓 is applied to
more arguments that it normally expects. This situation typically occurs with
higher-order combinators, such as compose, that return a function. The case of over-
applications can be viewed as a particular case of a normal applications. Indeed, a

4.7. FORMAL PROOFS WITH CHARACTERISTIC FORMULAE 85

𝑚-ary application can be viewed as a 𝑛-ary application that returns a function of
“𝑚−𝑛” arguments. More precisely, when 𝑚 > 𝑛, the goal AppReturns𝑚 𝑓 𝑥1 . . . 𝑥𝑚 𝑃
can be rewritten into the goal shown below.

AppReturns𝑛 𝑓 𝑥1 . . . 𝑥𝑛 (𝜆𝑔.AppReturns𝑚−𝑛 𝑔 𝑥𝑛+1 . . . 𝑥𝑚 𝑃)

Hence, the reasoning on over-applications relies on the following lemma.®
Spec𝑛 𝑓 𝐾
∀𝑅. Weakenable𝑅 ⇒ 𝐾 𝑥1 . . . 𝑥𝑛𝑅 ⇒ 𝑅 (𝜆𝑔.AppReturns𝑚−𝑛 𝑔 𝑥𝑛+1 . . . 𝑥𝑚 𝑃)

⇒ AppReturns𝑚 𝑓 𝑥1 . . . 𝑥𝑚 𝑃

4.7.3 Tactics for reasoning on function definitions

Reasoning by weakening The tactic xweaken allows proving a specification
Spec𝑛 𝐹 𝐾 ′ from an existing specification Spec𝑛 𝐹 𝐾. Using weakening, one may
derive several specifications for a single function without verifying the code of that
function more than once. The targeted specification 𝐾 ′ must be weaker than the
existing specification 𝐾 in the sense that 𝐾 𝑥1 . . . 𝑥𝑛𝑅 has to imply 𝐾 ′ 𝑥1 . . . 𝑥𝑛𝑅
for any predicate 𝑅 compatible with weakening. Notice that 𝐾 ′ has to be a valid
specification in the sense that it should satisfy the predicate is_spec𝑛 .

Spec𝑛 𝑓 𝐾
∀𝑥1 . . . 𝑥𝑛𝑅. Weakenable𝑅 ⇒ (𝐾 𝑥1 . . . 𝑥𝑛𝑅 ⇒ 𝐾 ′ 𝑥1 . . . 𝑥𝑛𝑅)
is_spec𝑛𝐾

′

⇒ Spec𝑛 𝑓 𝐾 ′

For example, from the specification of the function half we can deduce a weaker
specification that captures the fact that when the input is of the form 4 * 𝑚 then
the output is a non-negative integer.

Spec1 half (𝜆𝑥𝑅. ∀𝑚. 𝑚 ≥ 0 ⇒ 𝑥 = 4 *𝑚 ⇒ 𝑅 (𝜆𝑦. 𝑦 ≥ 0))

In this case, the proof obligation is:

∀𝑥𝑅. Weakenable𝑅 ⇒
Ä
∀𝑛. 𝑛 ≥ 0 ⇒ 𝑥 = 2 * 𝑛 ⇒ 𝑅 (= 𝑛)

ä
⇒
Ä
∀𝑚. 𝑚 ≥ 0 ⇒ 𝑥 = 4 *𝑚 ⇒ 𝑅 (𝜆𝑦. 𝑦 ≥ 0)

ä
Consider a particular value of 𝑥, 𝑅 and 𝑚. The goal is to show 𝑅 (𝜆𝑦. 𝑦 ≥ 0), and we
have the assumptions Weakenable𝑅 and

Ä
∀𝑛. 𝑛 ≥ 0 ⇒ 𝑥 = 2 * 𝑛 ⇒ 𝑅 (= 𝑛)

ä
and

𝑚 ≥ 0 and 𝑥 = 4*𝑚. If we instantiate 𝑛 with 2*𝑚 in the second assumption about
𝑅, we get 𝑅 (= 2*𝑚). Since 𝑅 is compatible with weakening, we can prove the goal
𝑅 (𝜆𝑦. 𝑦 ≥ 0) simply by showing that any value 𝑦 equal to 2 * 𝑚 is non-negative.
This property holds because 𝑚 is non-negative.

86 CHAPTER 4. CHARACTERISTIC FORMULAE FOR PURE PROGRAMS

Reasoning by induction The purpose of the tactic xinduction is to establish
by induction that a function 𝑓 admits a specification 𝐾. More precisely, it states
that, to prove Spec𝑛 𝑓 𝐾, it suffices to show that 𝐾 is a correct specification for the
application of 𝑓 to an argument 𝑥 under the assumption that 𝐾 is already a correct
specification for applications of 𝑓 to smaller arguments.

In the particular case of a function of arity one, calling the tactic xinduction
on an argument (≺), which denotes a well-founded relation used to argue for termi-
nation, transforms a goal of the form Spec1 𝑓 𝐾 into the goal:

Spec1 𝑓 (𝜆𝑥𝑅. Spec1 𝑓 (𝜆𝑥′𝑅′. 𝑥′ ≺ 𝑥 ⇒ 𝐾 𝑥′𝑅′) ⇒ 𝐾 𝑥𝑅)

The tactic xinduction relies on the following lemma.Ö
Spec𝑛 𝑓 (𝜆𝑥1 . . . 𝑥𝑛𝑅.

Spec𝑛 𝑓 (𝜆𝑥′1 . . . 𝑥
′
𝑛𝑅

′. (𝑥′1, . . . , 𝑥
′
𝑛) ≺ (𝑥1, . . . , 𝑥𝑛) ⇒ 𝐾 𝑥′1 . . . 𝑥

′
𝑛𝑅

′)
⇒ 𝐾 𝑥1 . . . 𝑥𝑛𝑅)

⇒ Spec𝑛 𝑓 𝐾

where 𝑓 has type Func, 𝐾 has type 𝐴1 → . . . 𝐴𝑛 → ((𝐵 → Prop) → Prop) → Prop,
and (≺) is a well-founded binary relation over values of type 𝐴1 × . . .×𝐴𝑛.

Advanced reasoning by induction The induction lemma can be used to estab-
lish the specification of a function by induction on a well-founded relation over the
arguments of that function. However, it does not support induction over the struc-
ture of the proof of an inductive proposition. The purpose of the tactic xintros
is to change a goal of the form Spec𝑛 𝑓 𝐾 into a goal with a conclusion about
AppReturns𝑛 𝑓 , thereby making it possible to conduct advanced forms of induction.

The implementation of the tactic xintros relies on an introduction lemma for
specifications, which is a form of reciprocal to the elimination lemma: it allows
proving the specification of a function 𝑓 in terms of a description of the behavior
of applications of 𝑓 to some arguments. This introduction lemma is formalized as
follows.

∀𝑥1 . . . 𝑥𝑛. 𝐾 𝑥1 . . . 𝑥𝑛 (AppReturns𝑛 𝑓 𝑥1 . . . 𝑥𝑛)
Spec𝑛 𝑓 (𝜆𝑥1 . . . 𝑥𝑛𝑅.True)
is_spec𝑛𝐾

⇒ Spec𝑛 𝑓 𝐾

The lemma involves two side-conditions. The first one asserts that 𝑓 is a n-ary
curried function, meaning that the application to the 𝑛 − 1 first arguments always
terminates. The second hypothesis asserts that 𝐾 is a valid specification, in the
sense that it is compatible with weakening.

4.7.4 Overview of all tactics

The CFML library includes one tactic for each construction of the language. I have
already presented the tactic xlet for let-bindings and the tactic xapp for applica-
tions. Four other tactics are briefly described next. The tactic xret is used to reason

4.7. FORMAL PROOFS WITH CHARACTERISTIC FORMULAE 87

on a value. It simply unfolds the notation return, changing a goal “(return 𝑉) 𝑃 ”
into “𝑃 𝑉 ”. The tactic xif helps reasoning on a conditional. It applies to a goal of
the form “(if 𝑉 then ℱ else ℱ ′) 𝑃 ” and produces two subgoals: first “ℱ 𝑃 ”, with an
hypothesis 𝑉 = true, and second “ℱ 𝑃 ”, with an hypothesis 𝑉 = false. The syntax
“xif as H” allows specifying how to name those new hypotheses. The tactic xfun
S applies to a goal of the form “(let fun 𝐹 = ℋ in ℱ) 𝑃 ”. It leaves two subgoals.
The first goal requires proving the proposition 𝑆, which is typically of of the form
Spec𝐹𝐾, under the assumption ℋ, which is the body description for 𝐹 . The second
goal corresponds to the continuation: it requires proving ℱ 𝑃 under the assumption
𝑆, which can be used to reason about applications of the function 𝐹 .

For pattern matching, I provide the tactic xmatch that produces one goal for each
branch of the pattern matching. In case the completeness of the pattern matching
could not be established automatically, the tactic produces an additional goal as-
serting that the pattern matching is complete (recall §4.6.3). I also provide a tactic,
called xcase, for reasoning on the branches one by one. This strategy allows ex-
ploiting the assumption that a pattern has not been matched for deriving a fact that
needs to be exploited through the reasoning on the remaining branches. Thereby,
the tactic xcase helps factorizing pieces of proof involved in the verification of a
nontrivial pattern matching.

The remaining tactics have already been described. They are briefly summarized
next. The tactic xweaken allows establishing a specification from another specifica-
tion, xinduction is used for proving a specification by induction on a well-founded
relation, and xintros is used for proving a specification by induction on the proof of
an inductively-defined predicate. The tactic xcf applies the characteristic formula of
a top-level definition. The tactic xgo automatically applies the appropriate x-tactic,
and stops when a specification of a local function is needed or when a ghost variable
involved in an application cannot be inferred.

Chapter 5

Generalization to imperative
programs

In this chapter, I explain how to generalize the ingredients from the pre-
vious chapter in order to support imperative programs. First, I describe
a data structure for representing heaps, and define Separation Logic con-
nectives for concisely describing those heaps. Second, I define a predicate
transformer called local that supports in particular applications of the
frame rule. Third, I introduce the predicates used to specify imperative
functions. I then explain how to build characteristic formulae for imper-
ative programs using those ingredients. Finally, I describe the treatment
of null pointers and strong updates.

5.1 Extension of the source language

5.1.1 Extension of the syntax and semantics

To start with, I briefly describe the syntax and the semantics of the source language
extended with imperative features. Compared with the pure language from the pre-
vious chapter, the grammar of values is extended with memory locations, written 𝑙.
The null pointer is just a particular location that never gets allocated. Values are
also extended with primitive functions for allocating, reading and updating refer-
ence cells, and with a primitive function for comparing pointers. The unit value,
written tt , is defined as a particular algebraic data type definition with a unique
data constructor. The grammar of terms is extended with sequence, for-loops and
while-loops. The grammar of ML types is extended with reference types.

𝑙 := locations
𝑣 := . . . | 𝑙 | ref | get | set | cmp
𝑡 := . . . | 𝑡 ; 𝑡 | for𝑥 = 𝑣 to 𝑣 do 𝑡 | while 𝑡 do 𝑡
𝜏 := . . . | ref 𝜏

88

5.1. EXTENSION OF THE SOURCE LANGUAGE 89

𝑣/𝑚 ⇓ 𝑣/𝑚

([𝑓 → 𝜇𝑓.𝜆𝑥.𝑡] [𝑥 → 𝑣] 𝑡)/𝑚 ⇓ 𝑣′/𝑚′

((𝜇𝑓.𝜆𝑥.𝑡) 𝑣)/𝑚 ⇓ 𝑣′/𝑚′

𝑡1/𝑚1
⇓ tt/𝑚2

𝑡2/𝑚2
⇓ 𝑣′/𝑚3

(𝑡1 ; 𝑡2)/𝑚1
⇓ 𝑣′/𝑚3

𝑡1/𝑚1
⇓ 𝑣/𝑚2

([𝑥 → 𝑣] 𝑡2)/𝑚2
⇓ 𝑣′/𝑚3

(let𝑥 = 𝑡1 in 𝑡2)/𝑚1
⇓ 𝑣′/𝑚3

𝑡1/𝑚 ⇓ 𝑣′/𝑚′

(if true then 𝑡1 else 𝑡2)/𝑚 ⇓ 𝑣′/𝑚′

𝑡2/𝑚 ⇓ 𝑣′/𝑚′

(if false then 𝑡1 else 𝑡2)/𝑚 ⇓ 𝑣′/𝑚′

𝑙 = 1 + max(dom(𝑚))

(ref 𝑣)/𝑚 ⇓ 𝑙/𝑚⊎[𝑙 ↦→𝑣]

𝑙 ∈ dom(𝑚)

(get 𝑙)/𝑚 ⇓ (𝑚[𝑙])/𝑚

𝑙 ∈ dom(𝑚)

(set 𝑙 𝑣)/𝑚 ⇓ tt/(𝑚[𝑙 ↦→𝑣])

𝑙1 = 𝑙2

(cmp 𝑙1 𝑙2)/𝑚 ⇓ true/𝑚

𝑙1 ̸= 𝑙2

(cmp 𝑙1 𝑙2)/𝑚 ⇓ false/𝑚

𝑎 ≤ 𝑏 ([𝑖 → 𝑎] 𝑡)/𝑚1
⇓ tt/𝑚2

(for 𝑖 = 𝑎 + 1 to 𝑏 do 𝑡)/𝑚2
⇓ tt/𝑚3

(for 𝑖 = 𝑎 to 𝑏 do 𝑡)/𝑚1
⇓ tt/𝑚3

𝑎 > 𝑏

(for 𝑖 = 𝑎 to 𝑏 do 𝑡)/𝑚 ⇓ tt/𝑚

𝑡1/𝑚 ⇓ false/𝑚′

(while 𝑡1 do 𝑡2)/𝑚 ⇓ tt/𝑚′

𝑡1/𝑚1
⇓ true/𝑚2

𝑡2/𝑚2
⇓ tt/𝑚3

(while 𝑡1 do 𝑡2)/𝑚3
⇓ tt/𝑚4

(while 𝑡1 do 𝑡2)/𝑚1
⇓ tt/𝑚4

Figure 5.1: Semantics of imperative programs

Remark: I write the application of the primitive function set in the form “set 𝑙 𝑣”, as
if set was a function of two arguments. However, it is simpler for the proof to view
set as a function of one argument that expects a pair of values, as this avoids the
need to consider partially-applied primitive functions.

A memory store, written 𝑚, maps locations to program values. The reduction
judgment takes the form 𝑡/𝑚 ⇓ 𝑣′/𝑚′ , asserting that the evaluation of the term 𝑡 in
a store 𝑚 terminates and returns a value 𝑣′ in a store 𝑚′. The definition of this
big-step judgment is standard. In the rules shown in Figure 5.1, 𝑚[𝑙] denotes the
value stored in 𝑚 at location 𝑙, 𝑚[𝑙 ↦→ 𝑣] describes a memory update at location 𝑙
and 𝑚⊎ [𝑙 ↦→ 𝑣] describes a memory allocation at location 𝑙. More generally, 𝑚1⊎𝑚2

denotes the disjoint union of two stores 𝑚1 and 𝑚2.

90 CHAPTER 5. GENERALIZATION TO IMPERATIVE PROGRAMS

5.1.2 Extension of weak-ML

In this section, I extend the definitions of the type system weak-ML to add support
for imperative features. One of the key feature of weak-ML is that all locations
admit a constant type, called loc, instead of a type of the form ref 𝜏 that carries
the type associated with the corresponding memory cell. The grammar of weak-ML
types is thus extended as follows.

𝑇 := . . . | loc

The erasure operation from ML types into weak-ML types maps all types of the
form ref 𝜏 to the constant type loc.

⟨ref 𝜏⟩ ≡ loc

The notion of typed term and of typed value immediately extend to the imperative
setting. Due to the value restriction, only variables immediately bound to a value
may receive a polymorphic type. This restriction means that the grammar of typed
terms includes bindings of the form “ let𝑥 = Λ𝐴. 𝑣1 in 𝑡2” as well as bindings of the
form “ let𝑥 = 𝑡1 in 𝑡2”, but not the general form “ let𝑥 = Λ𝐴. 𝑡1 in 𝑡2”.

The typing judgment for imperative weak-ML programs takes the form ∆ ⊢ 𝑡.
Contrary to the traditional ML typing judgment, the weak-ML typing judgment does
not involve a store typing. Such an oracle is not needed because all locations admit
the constant type loc. The typing judgment for imperative weak-ML programs thus
directly extend the typing judgment for pure programs that was presented earlier
on (§4.3.3), with the exception of the typing rule for let-bindings which is replaced
by two rules so as to take into account the value restriction. The new rules appear
next.

∆ ⊢ 𝑙 loc

∆ ⊢ 𝑡1
unit ∆ ⊢ 𝑡2

𝑇

∆ ⊢ (𝑡1
unit ; 𝑡2

𝑇)𝑇
∆ ⊢ 𝑡1

𝑇1 ∆, 𝑥 : 𝑇1 ⊢ 𝑡2
𝑇2

∆ ⊢ (let𝑥 = 𝑡1
𝑇1 in 𝑡2𝑇2)𝑇2

∆, 𝐴 ⊢ 𝑣1
𝑇1 ∆, 𝑥 : ∀𝐴.𝑇1 ⊢ 𝑡2

𝑇2

∆ ⊢ (let𝑥 = Λ𝐴. 𝑣1
𝑇1 in 𝑡2𝑇2)𝑇2

∆ ⊢ 𝑡1
bool ∆ ⊢ 𝑡2

unit

∆ ⊢ (while 𝑡1bool do 𝑡2unit)unit

∆ ⊢ 𝑣1
int ∆ ⊢ 𝑣2

int ∆, 𝑖 : int ⊢ 𝑡3
unit

∆ ⊢ (for 𝑖 = 𝑣1
int to 𝑣2int do 𝑡3unit)unit

Two additional typing definitions are explained next. First, all primitive functions
admit the type func, just like all other functions. Second, the value null, which is a
particular location, admits the type loc. Observe that, since applications are uncon-
strained in weak-ML, applications of primitive functions for manipulating references
are also unconstrained. This is how weak-ML accommodates strong updates.

In Coq, I introduce an abstract type called Loc for describing locations. The
weak-ML type loc is reflected as the Coq type Loc. Note that a source program

5.2. SPECIFICATION OF LOCATIONS AND HEAPS 91

∅ ≡ ∅
𝑙 →𝒯 𝑉 ≡ [𝑙 := (𝒯 , 𝑉)]

ℎ1 + ℎ2 ≡ ℎ1 ∪ ℎ2

ℎ1 ⊥ ℎ2 ≡ (dom(ℎ1) ∩ dom(ℎ2) = ∅)

Figure 5.2: Construction of heaps in terms of operations on finite maps

does not contain any location, so decoding locations is not needed for computing
the characteristic formula of a program.

VlocW ≡ Loc

5.2 Specification of locations and heaps

5.2.1 Representation of heaps

I now explain how memory stores are described in the logic as values of type Heap.
Whereas a memory store 𝑚 maps locations to Caml values, a heap ℎ maps locations
to Coq values. Moreover, whereas a store describes the entire memory state, a heap
may describe only a fragment of a memory state. Intuitively, a heap ℎ is a Coq
value that describes a piece of a memory store 𝑚 if, for every location 𝑙 from the
domain of ℎ, the value stored in ℎ at location 𝑙 is the Coq value that corresponds
to the Caml value stored in 𝑚 at location 𝑙. The connection between heaps and
memory states is formalized later on, in Chapter 7. At this point, I only discuss the
representation and specification of heaps.

The data type Loc represents locations. It is isomorphic to natural numbers. The
data type Heap represent heaps. Heaps are represented as finite maps from locations
to values of type Dyn, where Dyn is the type of pairs whose first component is a type
𝒯 and whose second component is a value 𝑉 of type 𝒯 .

Heap ≡ Fmap Loc Dyn
Dyn ≡ Σ𝒯 𝒯

Note: in Coq, finite map can be represented using logical functions. More precisely,
the datatype Heap is defined as the set of functions of type Loc → option Dyn that
return a value different from None only for a finite number of arguments. Technically,
Heap ≡ {𝑓 : (Loc → option Dyn) | ∃(𝐿 : list loc). ∀(𝑥 : loc). 𝑓 𝑥 ̸= None ⇒ 𝑥 ∈ 𝐿}.

Operations on heaps are defined in Figure 5.2 and explained next. The empty
heap, written ∅, is a heap built on the empty map. Similarly, a singleton heap,
written 𝑙 →𝒯 𝑉 , is a heap built on a singleton map binding the location 𝑙 to the
Coq value 𝑉 of type 𝒯 . The union of two heaps, written ℎ1 + ℎ2, returns the union
of the two underlying finite maps. We are only concerned with disjoint unions, so
it does not matter how the union operator is defined for maps with overlapping

92 CHAPTER 5. GENERALIZATION TO IMPERATIVE PROGRAMS

[] ≡ 𝜆ℎ. ℎ = ∅
[𝒫] ≡ 𝜆ℎ. ℎ = ∅ ∧ 𝒫 (where 𝒫 is any proposition)
𝑙 →˓𝒯 𝑉 ≡ 𝜆ℎ. ℎ = (𝑙 →𝒯 𝑉)
𝐻1 *𝐻2 ≡ 𝜆ℎ. ∃ℎ1 ℎ2. (ℎ1 ⊥ ℎ2) ∧ ℎ = ℎ1 + ℎ2 ∧ 𝐻1 ℎ1 ∧ 𝐻2 ℎ2
∃∃𝑥.𝐻 ≡ 𝜆ℎ. ∃𝑥.𝐻 ℎ (where 𝑥 is bound in 𝐻)

Figure 5.3: Combinators for heap descriptions

domains. Finally, two heaps are said to be disjoint, written ℎ1 ⊥ ℎ2, when their
underlying maps have disjoint domains. Note that the definition of heaps and of all
predicates on heaps is entirely formalized in Coq.

5.2.2 Predicates on heaps

I now describe predicates for specifying heaps in Separation Logic style, closely
following the definitions used in Ynot [17]. Heap predicates are simply predicates
over values of type Heap. I use the letter 𝐻 to range over heap predicates. For
convenience, the type of such predicates is abbreviated as Hprop.

Hprop ≡ Heap → Prop

One major contribution of Separation Logic [77] is the separating conjunction
(also called spatial conjunction). 𝐻1*𝐻2 describes a heap made of two disjoint parts
such that the first one satisfies 𝐻1 and the second one satisfies 𝐻2. Compared with
expressing properties on heaps directly in terms of heap representations, 𝐻1 * 𝐻2

concisely captures the disjointedness of the two heaps involved. Apart from the
setting up of the core definition and lemmas of the CFML library, I always work in
terms of heap predicates and never refer to heap representations directly.

Heap combinators, which are defined in Coq, appear in Figure 5.3. Empty heaps
are characterized by the predicate []. A singleton heap binding a location 𝑙 to a
value 𝑉 of type 𝒯 is characterized by the predicate 𝑙 →˓𝒯 𝑉 . Since the type 𝒯 can
be deduced from the value 𝑉 , I often drop the type and write 𝑙 →˓ 𝑉 . The predicate
𝐻1 * 𝐻2 holds of a disjoint union of a heap satisfying 𝐻1 and of a heap satisfying
𝐻2. In order to describe local invariants of data structures, propositions are lifted
as heap predicates. More precisely, the predicate [𝒫] holds of an empty heap only
when the proposition 𝒫 is true. Similarly, existential quantifiers are lifted: ∃∃𝑥.𝐻
holds of a heap ℎ if there exists a value 𝑥 such that 𝐻 holds of that heap.1

1The formal definition for existentials properly handles binders. It actually takes the form
hexists 𝐽 , where 𝐽 is a predicate on the value 𝑥. Formally:

hexists (𝐴 : Type) (𝐽 : 𝐴 → Hprop) ≡ 𝜆(ℎ : Heap). ∃(𝑥 : 𝐴). 𝐽 𝑥 ℎ

5.3. LOCAL REASONING 93

I recall next the syntactic sugar introduced for post-conditions (§3.1). The post-
condition #𝐻 describes a term that returns the unit value tt and produces a heap
satisfying 𝐻. So, #𝐻 is a shortcut for 𝜆_ : unit. 𝐻. The spatial conjunction of
a post-condition 𝑄 with a heap satisfying 𝐻 is written 𝑄 ⋆ 𝐻, and is defined as
𝜆𝑥. 𝑄𝑥 *𝐻.

Finally, I rely on an entailment relation, written 𝐻1 B 𝐻2, to capture that any
heap satisfying 𝐻1 also satisfies 𝐻2.

𝐻1 B 𝐻2 ≡ ∀ℎ. 𝐻1 ℎ ⇒ 𝐻2 ℎ

I also define a corresponding entailment relation for post-conditions. The proposition
𝑄1 I 𝑄2 asserts that for any output value 𝑥 and any output heap ℎ, if 𝑄1 𝑥ℎ holds
then 𝑄2 𝑥ℎ also holds. Entailment between post-conditions can be formally defined
in terms of entailment on heap descriptions, as follows.

𝑄1 I 𝑄2 ≡ ∀𝑥. 𝑄1 𝑥 B 𝑄2 𝑥

5.3 Local reasoning

In the introduction, I have suggested how to define a predicate called “frame” that
applies to a characteristic formula and allows for applications of the frame rule while
reasoning on that formula. In this section, I explain how to generalize the predicate
“frame” into a predicate called “ local” that also supports the rule of consequence as
well as garbage collection. I then present elimination rules establishing that “ localℱ”
is a formula where the frame rule, the rule of consequence and the rule of garbage
collection can be applied an arbitrary number of times, in any order, before reasoning
on the formula ℱ itself.

5.3.1 Rules to be supported by the local predicate

The predicate “ local” aims at simulating possible applications of the three following
reasoning rules, which are presented using Hoare triples. In the frame rule, 𝐻 * 𝐻 ′

extends the pre-condition 𝐻 with a heap satisfying 𝐻 ′ and 𝑄⋆ 𝐻 ′ symmetrically ex-
tends the post-condition 𝑄 with a heap satisfying 𝐻 ′. The rule for garbage collection
allows discarding a piece of heap 𝐻 ′ from the pre-condition, as well as discarding
a piece of heap 𝐻 ′′ from the post-condition. The rule of consequence involves the
entailment relation on heap predicates (B) for strengthening the pre-condition and
involve the entailment relation on post-conditions (I) for strengthening the post-
condition.

{𝐻} 𝑡 {𝑄}
{𝐻 *𝐻 ′} 𝑡 {𝑄 ⋆ 𝐻 ′}

frame
{𝐻} 𝑡 {𝑄 ⋆ 𝐻 ′′}
{𝐻 *𝐻 ′} 𝑡 {𝑄}

gc

𝐻 B 𝐻 ′ {𝐻 ′} 𝑡 {𝑄′} 𝑄′ I 𝑄

{𝐻} 𝑡 {𝑄}
consequence

94 CHAPTER 5. GENERALIZATION TO IMPERATIVE PROGRAMS

The first step towards the construction of the predicate local consists in combin-
ing the three rules into one. This is achieved through the rule shown next. In this
rule, 𝐻 and 𝑄 describe the outer pre- and post-condition, 𝐻𝑖 and 𝑄𝑓 describe the
inner pre- and post-condition, 𝐻𝑘 correspond to the piece of heap being framed out,
and 𝐻𝑔 correspond to the piece of heap being discarded. Here and throughout the
rest of the thesis, i stands for initial, f for final, k for kept aside, and g for garbage.

𝐻 B 𝐻𝑖 *𝐻𝑘 {𝐻𝑖} 𝑡 {𝑄𝑓} 𝑄𝑓 ⋆ 𝐻𝑘 I 𝑄 ⋆ 𝐻𝑔

{𝐻} 𝑡 {𝑄}
combined

One can check that this combined rule simulates the three previous rules.2

5.3.2 Definition of the local predicate

The predicate local corresponds to the predicate-transformer presentation of the
combined reasoning rule, in the sense that the proposition “ localℱ 𝐻 𝑄” holds if
one can find instantiations of 𝐻𝑖, 𝐻𝑘, 𝐻𝑔 and 𝑄𝑓 such that the premises of the
combined rule are satisfied, with the premise “{𝐻𝑖} 𝑡 {𝑄𝑓}” being replaced with
“ localℱ 𝐻𝑖𝑄𝑓 ”. A first unsuccessful attempt at defining the predicate local is shown
next, under the name local′.

local′ℱ ≡ 𝜆𝐻 𝑄. ∃𝐻𝑖𝐻𝑘 𝐻𝑔 𝑄𝑓 .

𝐻 B 𝐻𝑖 *𝐻𝑘

ℱ 𝐻𝑖𝑄𝑓

𝑄𝑓 ⋆ 𝐻𝑘 I 𝑄 ⋆ 𝐻𝑔

I explain soon afterwards why this definition is not expressive enough because it
does not allow extracting existentials and propositions out of pre-conditions. For
the time being, let me focus on explaining how to patch the definition of local′ to
obtain the correct definition of local. The idea is that we need to quantify over the
heap ℎ that satisfies the pre-condition 𝐻 before quantifying existentially over the
variables 𝐻𝑖, 𝐻𝑘, 𝐻𝑔 and 𝑄𝑓 . So, the proposition “ localℱ 𝐻 𝑄” holds if, for any
input heap ℎ that satisfies the pre-condition 𝐻, the three following properties hold:

1. There exists a decomposition of the heap ℎ as the disjoint union of a heap
satisfying a predicate 𝐻𝑖 and of a heap satisfying a predicate 𝐻𝑘.

2. The formula ℱ holds of the pre-condition 𝐻𝑖 and of some post-condition 𝑄𝑓 .

3. The post-condition 𝑄𝑓 ⋆𝐻𝑘 entails the post-condition 𝑄⋆𝐻𝑔 for some predicate
𝐻𝑔.

The formal definition of the predicate local appears next. It applies to a formula ℱ
with a type of the form Hprop → (𝐵 → Hprop) → Prop for some type 𝐵. Recall

2For the frame rule, instantiate 𝐻𝑔 as the empty heap predicate. For the rule of consequence,
instantiate both 𝐻𝑘 and 𝐻𝑔 as the empty heap predicate. Finally, for the rule of garbage collection,
instantiate 𝐻𝑖 as 𝐻, 𝐻𝑘 as 𝐻 ′, 𝑄𝑓 as 𝑄 *𝐻 ′′, and 𝐻𝑔 as 𝐻 ′ *𝐻 ′′.

5.3. LOCAL REASONING 95

that 𝐻𝑖 is the “initial” heap, 𝑄𝑓 describes the “final” post-condition, 𝐻𝑘 is the heap
being “kept aside”, and 𝐻𝑔 is the “garbage” heap.

localℱ ≡ 𝜆𝐻 𝑄. ∀ℎ. 𝐻 ℎ ⇒ ∃𝐻𝑖𝐻𝑘 𝐻𝑔 𝑄𝑓 .

(𝐻𝑖 *𝐻𝑘)ℎ
ℱ 𝐻𝑖𝑄𝑓

𝑄𝑓 ⋆ 𝐻𝑘 I 𝑄 ⋆ 𝐻𝑔

Notice that the definition of local refers to a heap representation ℎ. This heap
representation never needs to be manipulated directly in proofs, as all the work can
be conducted through the high-level elimination lemmas that are explained in the
rest of this section.

Remark: the definition of the predicate local shows some similarities with the
definition of the “STsep” monad from Hoare Type Theory [61], in the sense that
both aim at baking the Separation Logic frame condition into a system defined in
terms of heaps describing the whole memory.

5.3.3 Properties of local formulae

The first useful property about the predicate transformer local is that it may be
ignored during reasoning. More precisely, if the goal is to prove “ localℱ 𝐻 𝑄”, then
it suffices to prove “ℱ 𝐻 𝑄”. (To check this implication, instantiate 𝐻𝑖 as 𝐻, 𝑄𝑓 as
𝑄, and 𝐻𝑘 and 𝐻𝑔 as the empty heap predicate.) Formally:

∀𝐻 𝑄. ℱ 𝐻 𝑄 ⇒ localℱ 𝐻 𝑄

Another key property of local is its idempotence: iterated applications of local are
redundant. In other words, a proposition of the form “ local (localℱ)𝐻 𝑄” is al-
ways equivalent to the proposition “ localℱ 𝐻 𝑄”. With predicate extensionality, the
idempotence property can be stated very concisely, as follows.

∀ℱ . localℱ = local (localℱ)

It remains to explain how to exploit the predicate local in reasoning on char-
acteristic formulae. Let me start with the case of the frame rule. The following
statement is a direct consequence of the definition of the predicate local.

ℱ 𝐻1𝑄1 ⇒ localℱ (𝐻1 *𝐻2) (𝑄1 ⋆ 𝐻2)

Yet, applying this lemma would result in consuming the occurrence of local at the
head of the formula, preventing us from subsequently applying other rules. Fortu-
nately, thanks to the idempotence of the predicate local, it is possible to derive a
lemma where the local modifier is preserved.

localℱ 𝐻1𝑄1 ⇒ localℱ (𝐻1 *𝐻2) (𝑄1 ⋆ 𝐻2)

In practice, I have found it more convenient with respect to tactics to reformulate
the lemma in the following form.

is_localℱ ∧ ℱ 𝐻1𝑄1 ⇒ ℱ (𝐻1 *𝐻2) (𝑄1 ⋆ 𝐻2)

96 CHAPTER 5. GENERALIZATION TO IMPERATIVE PROGRAMS

where the proposition “ is_localℱ” captures the fact that the formula ℱ is equivalent
to “ localℱ”. Formally,

is_localℱ ≡ (ℱ = localℱ)

A formula that satisfies the predicate is_local is called a local formula. Observe
that, due to the idempotence of local, any proposition of the form “ localℱ” is a local
formula. This result is formally stated as follows.

∀ℱ . is_local (localℱ)

To summarize, I have just established that any local formula supports applica-
tions of the frame rule. Similarly, I have proved in Coq that local formulae support
applications of the rule of consequence and of rule of garbage collection. For the
sake of readability, those results are presented as inference rules.

is_localℱ ℱ 𝐻 𝑄

ℱ (𝐻 *𝐻 ′) (𝑄 ⋆ 𝐻 ′)
frame

is_localℱ ℱ 𝐻 (𝑄 ⋆ 𝐻 ′′)

ℱ (𝐻 *𝐻 ′)𝑄
gc

is_localℱ 𝐻 B 𝐻 ′ ℱ 𝐻 ′𝑄′ 𝑄′ I 𝑄

ℱ 𝐻 𝑄
consequence

More generally, local formulae admit the following general elimination rule.

is_localℱ 𝐻 B 𝐻𝑖 *𝐻𝑘 ℱ 𝐻𝑖𝑄𝑓 𝑄𝑓 ⋆ 𝐻𝑘 I 𝑄 ⋆ 𝐻𝑔

ℱ 𝐻 𝑄
combined

5.3.4 Extraction of invariants from pre-conditions

Another crucial property of local formulae is the ability to extract propositions and
existentially-quantified variables from pre-conditions. To understand when such ex-
tractions are involved, consider the expression “ let 𝑎 = ref 2 in get 𝑎”, and assume we
have specified the term “ref 2” by saying that it returns a fresh location pointing to-
wards an even integer, that is, through the post-condition “𝜆𝑎.∃∃𝑛. 𝑎 →˓ 𝑛* [even𝑛]”.
Now, to reason on the term “get 𝑎”, we need to prove the following proposition, where
𝑄 is some post-condition.

∀𝑎. Jget 𝑎K (∃∃𝑛. 𝑎 →˓ 𝑛 * [even𝑛])𝑄

In order to read at the location 𝑎, we need a pre-condition of the form 𝑎 →˓ 𝑛. So,
we need to extract the existential quantification on 𝑛 and the invariant “even𝑛”, so
as to change the goal to:

∀𝑎. ∀𝑛. even𝑛 ⇒ Jget 𝑎K (𝑎 →˓ 𝑛)𝑄

5.4. SPECIFICATION OF IMPERATIVE FUNCTIONS 97

Extrusion of the existentially-quantified variables and of propositions is precisely
the purpose of the two following extraction lemmas3, which are derivable from the
definition of the predicate local. Similar extraction lemmas have appeared in previous
work on Separation Logic (e.g., [2]).

extract-prop
is_localℱ (𝒫 ⇒ ℱ 𝐻 𝑄)

ℱ ([𝒫] *𝐻)𝑄

extract-exists
is_localℱ (∀𝑥. ℱ (𝐻 ′ *𝐻)𝑄)

ℱ ((∃∃𝑥.𝐻 ′) *𝐻)𝑄

The flawed predicate local′ defined earlier on does not involve a quantification on
the heap representation ℎ that satisfies the pre-condition 𝐻. This predicate local′

allows deriving the frame rule, the rule of consequence and the rules of garbage
collection, however it does not allow proving an extraction result such as extract-
exists. Intuitively, there is a problem related to the commutation of an existential
quantifiers with a universal quantifier. In the definition local′, the universal quantifi-
cation on the input heap ℎ is implicitly contained in the proposition 𝐻 B 𝐻𝑖 *𝐻𝑘,
so the quantification on ℎ comes after the existential quantification on 𝐻𝑖. On the
contrary, in the definition of local, the universal quantification of ℎ comes before the
existential quantification on 𝐻𝑖.

5.4 Specification of imperative functions

I now focus on the specification of functions, defining the predicates AppReturns
and Spec, and then generalizing those predicates to curried n-ary functions. Note:
through the rest of this chapter, I write Coq values in lowercase and no longer in
uppercase, for the sake of readability.

5.4.1 Definition of the predicates AppReturns and Spec

In an imperative setting, the evaluation formula takes the form AppEval 𝑓 𝑣 ℎ 𝑣′ ℎ′,
asserting that the application of a Caml function whose decoding is 𝑓 to a value
whose decoding is 𝑣 in a store represented as ℎ terminates and returns a value
decoded as 𝑣′ in a store represented as ℎ′. Note that the arguments ℎ and ℎ′

of AppEval here describe the entire memory store in which the evaluation of the
application of 𝑓 to 𝑣 takes place, and not just the piece of memory involved for
reasoning on that application. Here again, AppEval is an axiom upon which the
CFML library is built. Its type is as follows.

AppEval : ∀𝐴𝐵. Func → 𝐴 → Heap → 𝐵 → Heap → Prop

3The Coq statement of the rule extract-exists is as follows, where the definition of hexists is
that given in a footnote in §5.2.2.

is_localℱ ⇒ (∀𝑥. ℱ ((𝐽 𝑥) *𝐻)𝑄) ⇒ ℱ ((hexists𝐽) *𝐻)𝑄

98 CHAPTER 5. GENERALIZATION TO IMPERATIVE PROGRAMS

The definition of AppReturns1 in terms of AppEval is slightly more involved for
imperative programs than for purely-functional ones, mainly because of the need to
quantify over the piece of heap that is framed out during the reasoning on a function
application, and of the need to take into account the fact that pieces of heap might
be discarded after the execution of a function. Recall the type of AppReturns1, which
is as follows.

AppReturns1 : ∀𝐴𝐵. Func → 𝐴 → Hprop → (𝐵 → Hprop) → Prop

The proposition “AppReturns1 𝑓 𝑣 𝐻 𝑄” states that, if the input heap can be decom-
posed as the disjoint union of a heap ℎ𝑖 that satisfies the pre-condition 𝐻 and of
another heap ℎ𝑘, then the application of 𝑓 to 𝑣 returns a value 𝑣′ in a output heap
that can be decomposed in three disjoint parts ℎ𝑓 , ℎ𝑘 and ℎ𝑔 such that 𝑄𝑣′ ℎ𝑓 holds.
The heap ℎ𝑘 describes the piece of store that is being framed out and the heap ℎ𝑔
describes the piece of heap being discarded. In the formal definition that appears
next, “ℎ𝑓 ⊥ ℎ𝑘 ⊥ ℎ𝑔” denotes the pairwise disjointedness of the three heaps ℎ𝑓 , ℎ𝑘
and ℎ𝑔.

AppReturns1 𝑓 𝑣 𝐻 𝑄 ≡

∀ℎ𝑖 ℎ𝑘.
®

ℎ𝑖 ⊥ ℎ𝑘
𝐻 ℎ𝑖

⇒ ∃𝑣′ ℎ𝑓 ℎ𝑔.

ℎ𝑓 ⊥ ℎ𝑘 ⊥ ℎ𝑔
AppEval 𝑓 𝑣 (ℎ𝑖 + ℎ𝑘) 𝑣′ (ℎ𝑓 + ℎ𝑘 + ℎ𝑔)
𝑄𝑣′ ℎ𝑓

Note that this definition is formalized in Coq, since only the predicate AppEval is
taken as axiom in the CFML library.

A central result is that the predicate “AppReturns1 𝑓 𝑣” is a local formula, for any
𝑓 and 𝑣.

∀𝑓 𝑣. is_local (AppReturns1 𝑓 𝑣)

In particular, this result implies that AppReturns1 is compatible with the frame
rule, in the sense that the proposition AppReturns1 𝑓 𝑣 𝐻1𝑄1 implies the proposition
AppReturns1 𝑓 𝑣 (𝐻1 *𝐻2) (𝑄1 ⋆ 𝐻2).

The definition of Spec1 in terms of AppReturns1 is very similar to the one involved
in a purely-functional setting.

Spec1 𝑓 𝐾 ≡ is_spec1𝐾 ∧ ∀𝑥.𝐾 𝑥 (AppReturns1 𝑓 𝑥)

The main difference is the type of specifications. Here, the specification 𝐾 takes the
form 𝐴 → ‹𝐵 → Prop, where the shortand ‹𝐵 is defined as follows.‹𝐵 ≡ Hprop → (𝐵 → Hprop) → Prop

The definition of is_spec1𝐾 asserts that, for any argument 𝑥, the predicate 𝐾 𝑥 is co-
variant. Covariance is captured by a generalized version of the predicate Weakenable,
shown next.

Weakenable 𝐽 ≡ ∀𝑅𝑅′. 𝐽 𝑅 ⇒ (∀𝐻𝑄. 𝑅𝐻 𝑄 ⇒ 𝑅′𝐻 𝑄) ⇒ 𝐽 𝑅′

5.4. SPECIFICATION OF IMPERATIVE FUNCTIONS 99

5.4.2 Treatment of n-ary applications

The next step consists in defining AppReturns𝑛 and Spec𝑛. As suggested earlier
on, the treatment of curried functions in an imperative setting is trickier than in a
purely-functional setting because every partial application might induce a side-effect.

Consider a program that contains an application of the form “𝑓 𝑥 𝑦”. From
only looking at this piece of code, we do not know whether the evaluation of the
partial application “𝑓 𝑥” modifies the store. So, we have to assume that it might
do so. One way to deal with curried applications is to name every intermediate
result with a let-binding during the normalization process, e.g., changing “𝑓 𝑥 𝑦” into
“ let 𝑔 = 𝑓 𝑥 in 𝑔 𝑦”. However, this approach would not be practical at all. Instead,
I wanted to preserve the nice and simple rule that was devised for pure programs,
where J𝑓 𝑥1 . . . 𝑥𝑛K is defined as “AppReturns𝑛 𝑓 𝑥1 . . . 𝑥𝑛”.

A simple and effective way to find appropriate definition of AppReturns𝑛 in an
imperative setting is to exploit the fact that a term “𝑓 𝑥 𝑦” admits exactly the same
behavior as the term “ let 𝑔 = 𝑓 𝑥 in 𝑔 𝑦”. Indeed, since characteristic formulae are
sound and complete descriptions of program behaviors, the characteristic formulae
of two terms that admit the same behavior must be logically equivalent. So, the
characteristic formula of “𝑓 𝑥 𝑦”, which is “AppReturns2 𝑓 𝑥 𝑦”, should be logically
equivalent to the characteristic formula of “ let 𝑔 = 𝑓 𝑥 in 𝑔 𝑦”.

The characteristic formula of “ let 𝑔 = 𝑓 𝑥 in 𝑔 𝑦”, shown next, is a local formula
that states that one needs to find an intermediate post-condition 𝑄′ for the applica-
tion of 𝑓 to 𝑥 such that, for any 𝑔, the predicate “𝑄′ 𝑔” is an appropriate pre-condition
for the application of 𝑔 to 𝑦.

local
Ç
𝜆𝐻𝑄. ∃𝑄′.

®
local (AppReturns1𝑓 𝑥)𝐻 𝑄′

∀𝑔. local (AppReturns1𝑔 𝑦) (𝑄′ 𝑔)𝑄

å
Since a predicate of the form “AppReturns1𝑓 𝑣” is already a local formula, it does not
change the meaning of the above formula to remove the applications of the predicate
local that occur in front of AppReturns1. What then remains is a suitable definition
for the predicate “AppReturns2 𝑓 𝑥 𝑦”.

This analysis suggests the following formal definition for AppReturns𝑛.

AppReturns𝑛 𝑓 𝑥1 . . . 𝑥𝑛 ≡

local
Ç
𝜆𝐻𝑄. ∃𝑄′.

®
AppReturns1 𝑓 𝑥1𝐻 𝑄′

∀𝑔. AppReturns𝑛−1 𝑔 𝑥2 . . . 𝑥𝑛 (𝑄′ 𝑔)𝑄

å
Note that, by construction, a formula of the form AppReturns𝑛 𝑓 𝑣1 . . . 𝑣𝑛 is always
a local formula.

5.4.3 Specification of n-ary functions

The predicate Spec𝑛 captures the specification of n-ary functions that are syntac-
tically of the form 𝜆𝑥1 . . . 𝑥𝑛. 𝑡. Such functions do not perform any side effects on
partial applications. Remark: a function of 𝑛 arguments that is not syntactically

100 CHAPTER 5. GENERALIZATION TO IMPERATIVE PROGRAMS

is_spec1𝐾 ≡ ∀𝑥.Weakenable (𝐾 𝑥)
is_spec𝑛𝐾 ≡ ∀𝑥. is_spec𝑛−1 (𝐾 𝑥)

Spec1 𝑓 𝐾 ≡ is_spec1𝐾 ∧ ∀𝑥.𝐾 𝑥 (AppReturns1 𝑓 𝑥)
Spec𝑛 𝑓 𝐾 ≡ is_spec𝑛𝐾 ∧ ∀𝑥. AppPure 𝑓 𝑥 (𝜆𝑔. Spec𝑛−1 𝑔 (𝐾 𝑥))

In the figure, 𝑛 > 1 and (𝑓 : Func) and (𝐾 : 𝐴1 → . . . 𝐴𝑛 → ‹𝐵 → Prop).

Figure 5.4: Formal definition of the imperative version of Spec𝑛

of the form 𝜆𝑥1 . . . 𝑥𝑛. 𝑡 can be specified in terms of AppReturns𝑛 b u t cannot be
specified using the predicate Spec𝑛.

To express that the application of a function 𝑓 to an argument 𝑥 is pure, we could
try to define Spec2 𝑓 𝐾 as “∀𝑥. AppReturns1 𝑓 𝑥 [] (𝜆𝑔. [Spec1 𝑔 (𝐾 𝑥)])”. However,
this definition does not work out because it does not allow proving the introduction
lemma and the elimination lemma for Spec𝑛, which capture the following equivalence
(side conditions are omitted).

Spec𝑛 𝑓 𝐾 ⇐⇒
Ä
∀𝑥1 . . . 𝑥𝑛. 𝐾 𝑥1 . . . 𝑥𝑛 (AppReturns𝑛 𝑓 𝑥1 . . . 𝑥𝑛)

ä
To prove this result, we would need to know that the partial application of a func-
tion 𝑓 to an argument 𝑥 always returns the same function 𝑔. Yet, a predicate form
AppReturns1 𝑓 𝑥 [] (𝜆𝑔. [𝑃 𝑔]) does not capture this property, because the exact ad-
dresses of the locations allocated during the evaluation of the application of 𝑓 to 𝑥
may depend on the addresses allocated in the piece of heap that has been framed
out.4 Intuitively, the problem is that the proposition AppReturns1 𝑓 𝑥 [] (𝜆𝑔. [𝑃 𝑔])
does not disallow side-effects, whereas the development of introduction and elimina-
tion lemmas for curried n-ary functions requires the knowledge that partial applica-
tions do not involve side-effects. To work around this problem, I introduce a more
precise predicate, called AppPure, for describing applications that are completely
pure.

The proposition AppPure 𝑓 𝑣 𝑃 asserts that the application of 𝑓 to 𝑣 returns a
value 𝑣′ satisfying the predicate 𝑃 , without reading, writing, nor allocating in the
store. The predicate AppPure is defined in terms of AppEval, using a proposition of
the form “AppEval 𝑓 𝑣 ℎ 𝑣′ ℎ”, where the output heap ℎ is exactly the same as the
input heap ℎ.

AppPure 𝑓 𝑣 𝑃 ≡ ∃𝑣′. 𝑃 𝑣′ ∧ (∀ℎ. AppEval 𝑓 𝑣 ℎ 𝑣′ ℎ)

Note that the result 𝑣′ produced by the evaluation of “𝑓 𝑣” does not depend on the
input heap ℎ, which is universally-quantified after the existential quantification of 𝑣′.

4To illustrate the argument, consider the function 𝜆𝑥. let 𝑙 = ref 3 in𝜆𝑦. 𝑙, which allocates a
memory cell and then returns a constant function that always returns the allocated location. This
function satisfies the property AppReturns1 𝑓 𝑥 [] (𝜆𝑔. [Spec1 𝑔 (𝜆𝑦 𝑅.True)]) for any argument 𝑥.
However, two successive applications of 𝑓 to 𝑥 return two different functions.

5.5. CHARACTERISTIC FORMULAE FOR IMPERATIVE PROGRAMS 101

The predicate Spec2 can now be defined in terms of AppPure and Spec1. Com-
pared with the definition of Spec2 from the purely-functional setting, the only dif-
ference is the replacement of the predicate AppReturns with the predicate AppPure.

Spec2 𝑓 𝐾 ≡ is_spec2𝐾 ∧ ∀𝑥. AppPure 𝑓 𝑥 (𝜆𝑔. Spec1 𝑔 (𝐾 𝑥))

The general definitions of Spec𝑛 and of is_spec𝑛 appear in Figure 5.4.

5.5 Characteristic formulae for imperative programs

5.5.1 Construction of characteristic formulae

The algorithm for constructing characteristic formulae for imperative programs ap-
pears in Figure 5.5, and are explained next. For the sake of clarity, contexts and
decoding of values are left implicit. I have set up a notation layer for pretty-printing
characteristic formulae for imperative programs, in a very similar way as described
in the previous chapter for purely-functional programs. I omit the details here.

As explained in the introduction, an application of the predicate local is intro-
duced at every node of a characteristic formula. A value 𝑣 admits a pre-condition
𝐻 and a post-condition 𝑄 if the current heap, which by assumption satisfies the
predicate 𝐻, also satisfies the predicate 𝑄𝑣. This entailment is written 𝐻 B 𝑄𝑣.
The application of a n-ary function is described through the predicate AppReturns𝑛.
Here, the application of local in front of AppReturns𝑛 is redundant, yet I leave it
for the sake of uniformity. The treatment of crash, of conditionals and of function
definitions is quite similar to the treatment given for the purely-functional setting.
In short, it suffices to replace occurrences of a post-condition 𝑃 with a pre-condition
𝐻 and a post-condition 𝑄. In practice, it is useful to consider a direct construction
for the characteristic formulae of terms of the form “ if 𝑡0 then 𝑡1 else 𝑡2”.

Jif 𝑡0 then 𝑡1 else 𝑡2K ≡
local (𝜆𝐻𝑄. ∃𝑄′. J𝑡0K𝐻 𝑄′ ∧ J𝑡1K (𝑄′ true)𝑄 ∧ J𝑡2K (𝑄′ false)𝑄)

One can prove that this direct formula is logically equivalent to the characteristic
formula of the term “ let𝑥 = 𝑡0 in if𝑥 then 𝑡1 else 𝑡2”.

The treatment of let-bindings has already been described in the introduction.
In a term “ let𝑥 = 𝑡1 in 𝑡2”, the post-condition 𝑄′ of 𝑡1 is quantified existentially,
and then 𝑄′ 𝑥 describes the pre-condition for 𝑡2. Sequences are a particular case of
let-bindings, where the result of 𝑡1 is of type unit and thus need not be named.

For a polymorphic let-binding, the bound term must be a syntactic value, due to
the value restriction. Consider the typed term “ let𝑥 = �̂�1 in 𝑡2”, where �̂�1 stands for
a possibly-polymorphic value. The construction of the corresponding characteristic
formula is formally described as follows.

Jlet𝑥 = �̂�1 in 𝑡2KΓ ≡ local (𝜆𝐻𝑄. ∀𝑋. 𝑋 = ⌈�̂�1⌉ ⇒ J𝑡2K(Γ,𝑥 ↦→𝑋)𝐻 𝑄)

If 𝑆 denotes the type of �̂�1, then the formula universally quantifies over a value 𝑋 of
type V𝑆W, and provides the assumption “𝑋 = ⌈�̂�1⌉”, which asserts that the logical

102 CHAPTER 5. GENERALIZATION TO IMPERATIVE PROGRAMS

J𝑣K ≡
local (𝜆𝐻𝑄. 𝐻 B 𝑄𝑣)

J𝑓 𝑣1 . . . 𝑣𝑛K ≡
local (𝜆𝐻𝑄. AppReturns𝑛 𝑓 𝑣1 . . . 𝑣𝑛𝐻 𝑄)

JcrashK ≡
local (𝜆𝐻𝑄. False)

Jif 𝑣 then 𝑡1 else 𝑡2K ≡
local (𝜆𝐻𝑄. (𝑣 = true ⇒ J𝑡1K𝐻 𝑄) ∧ (𝑣 = false ⇒ J𝑡2K𝐻 𝑄))

Jlet𝑥 = 𝑡1 in 𝑡2K ≡
local (𝜆𝐻𝑄. ∃𝑄′. J𝑡1K𝐻 𝑄′ ∧ ∀𝑥. J𝑡2K (𝑄′ 𝑥)𝑄)

J𝑡1 ; 𝑡2K ≡
local (𝜆𝐻𝑄. ∃𝑄′. J𝑡1K𝐻 𝑄′ ∧ J𝑡2K (𝑄′ tt)𝑄)

Jlet𝑥 = 𝑤1 in 𝑡2K ≡
local (𝜆𝐻𝑄. ∀𝑥. 𝑥 = 𝑤1 ⇒ J𝑡2K𝐻 𝑄)

Jlet rec 𝑓 = 𝜆𝑥1 . . . 𝑥𝑛. 𝑡1 in 𝑡2K ≡
local (𝜆𝐻𝑄. ∀𝑓. ℋ ⇒ J𝑡2K𝐻 𝑄)

with ℋ ≡ ∀𝐾. is_spec𝑛𝐾 ∧ (∀𝑥1 . . . 𝑥𝑛. 𝐾 𝑥1 . . . 𝑥𝑛 J𝑡1K) ⇒ Spec𝑛 𝑓 𝐾

Jwhile 𝑡1 do 𝑡2K ≡
local (𝜆𝐻𝑄. ∀𝑅. is_local𝑅 ∧ ℋ ⇒ 𝑅𝐻 𝑄)

with ℋ ≡ ∀𝐻 ′𝑄′. Jif 𝑡1 then (𝑡2 ; |𝑅|) else ttK𝐻 ′𝑄′ ⇒ 𝑅𝐻 ′𝑄′

Jfor 𝑖 = 𝑎 to 𝑏 do 𝑡K ≡
local (𝜆𝐻𝑄. ∀𝑆. is_local1 𝑆 ∧ ℋ ⇒ 𝑆 𝑎𝐻 𝑄)

with ℋ ≡ ∀𝑖𝐻 ′𝑄′. Jif 𝑖 ≤ 𝑏 then (𝑡 ; |𝑆 (𝑖 + 1)|) else ttK𝐻 ′𝑄′ ⇒ 𝑆 𝑖𝐻 ′𝑄′

Figure 5.5: Characteristic formula generator for imperative programs

5.6. EXTENSIONS 103

variable 𝑋 corresponds to the program value �̂�1. When 𝑆 is a polymorphic type,
the equality “𝑋 = ⌈�̂�1⌉” relates two functions from the logic (recall that I assume
the target logic to include functional extensionality). For example, if �̂�1 is the value
nil (the empty Caml list), then 𝑋 is equal to Nil (the empty Coq list), where both
𝑋 and Nil admit the Coq type “∀𝐴. list𝐴”.

The characteristic formulae of while-loops and of for-loops are stated using an
anti-quotation operator, written |𝑅|, used to refer to Coq predicates inside the com-
putation of the characteristic formula of a term. This operator is such that J |𝑅| K
is equal to 𝑅. Recall that “ is_local𝑅” asserts that 𝑅 is a local predicate and that
“ is_local1 𝑆” asserts that “𝑆 𝑖” is a local predicate for every argument 𝑖.

Primitive functions for manipulating references have been explained in Chap-
ter 3. I recall their specification, and give the specification of the function cmp that
compares two pointers.

∀𝐴. Spec1 ref (𝜆𝑣 𝑅. 𝑅 [] (𝜆𝑙. 𝑙 →˓𝐴 𝑣))
∀𝐴. Spec1 get (𝜆𝑙 𝑅. ∀𝑣. 𝑅 (𝑙 →˓𝐴 𝑣) (\= 𝑣 ⋆ (𝑙 →˓𝐴 𝑣)))
∀𝐴. Spec2 set (𝜆𝑙 𝑣 𝑅. ∀𝑣′. 𝑅 (𝑙 →˓𝐴 𝑣′) (# (𝑙 →˓𝐴 𝑣)))

Spec2 cmp (𝜆𝑙 𝑙′𝑅. 𝑅 [] (𝜆𝑏. [𝑏 = true ⇔ 𝑙 = 𝑙′]))

5.5.2 Generated axioms for top-level definitions

The current implementation only supports top-level definitions of values and func-
tions. It does not yet support general top-level declaration of the form “ let𝑥 = 𝑡”,
but this should be added soon. For the time being, CFML can be used to verify
imperative functions and, in particular, imperative data structures.

5.6 Extensions

The treatment of mutually-recursive functions and of pattern-matching developed
in the previous chapter can be immediately adapted to an imperative setting. It
suffices to replace every application of a formula to a post-condition 𝑃 with the
application of the same formula to a pre-condition 𝐻 and to a post-condition 𝑄.
However, the treatment of assertions in an imperative setting is different because
assertions might perform side effects. Some systems require assertions not to perform
any side effects, nevertheless it can be useful to allow assertions to use local effects,
i.e. effects that are used to evaluate the assertion but that are not observable by
the rest of the program. In this section, I describe a treatment of assertions that
ensures that programs remain correct regardless of whether assertions are executed
or not. I then explain how to support null pointers and strong updates.

5.6.1 Assertions

In an imperative setting, an assertion expression takes the form “assert 𝑡”. If 𝑡 returns
the boolean value true, then the term “assert 𝑡” returns the unit value. Otherwise,

104 CHAPTER 5. GENERALIZATION TO IMPERATIVE PROGRAMS

if 𝑡 returns false, then the program crashes. In general, assertions are allowed to
access and even modify the store, as asserted by the reduction rule for assertions.

𝑡/𝑚 ⇓ true/𝑚′

(assert 𝑡)/𝑚 ⇓ tt/𝑚′

Let me first give a characteristic formula that corresponds closely to this re-
duction rule. Let 𝐻 be a pre-condition and 𝑄 be a post-condition for the term
“assert 𝑡”. The term 𝑡 is evaluated in a heap satisfying 𝐻. It must return a value
equal to the boolean true, that is, satisfying the predicate (= true). The output heap
should satisfy the predicate “𝑄 tt”. So, the post-condition for 𝑡 is \= true ⋆ (𝑄 tt). To
summarize, the characteristic formulae associated with an assertion may be built as
follows.

Jassert 𝑡K ≡ 𝜆𝐻𝑄. J𝑡K𝐻 (\= true ⋆ (𝑄 tt))

The above formula only asserts that the program is correct when assertions are
executed. Yet, most programmers expect their code to be correct regardless of
whether assertions are executed or not. I next explain how to build a characteristic
formula for assertions that properly captures the irrelevance of assertions, while still
allowing assertions to access and modify the store, as this possibility can be useful
in general.

To that end, I impose that the execution of the assertion “assert 𝑡” produces
an output heap that satisfies the same invariant as the input heap it receives. If 𝐻
denotes the pre-condition of the term 𝑡, then the post-condition of 𝑡 is \= true⋆𝐻. The
post-condition 𝑄 of the term “assert 𝑡” describes the same heap as 𝐻, so the predicate
𝐻 should entail the predicate “𝑄 tt”. The appropriate characteristic formula for
assertions is thus as follows.

Jassert 𝑡K ≡ 𝜆𝐻𝑄. J𝑡K𝐻 (\= true ⋆ 𝐻) ∧ 𝐻 B 𝑄𝑡𝑡

With such a characteristic formula, although an assertion cannot break the in-
variants satisfied by the heap, it may modify values stored in the heap. For example,
the expression “assert (set𝑥 4 ; true)” updates the heap at location 𝑥, but it does
not break an invariant asserting that the location 𝑥 contains an even integer, e.g.
“∃∃𝑛. 𝑥 →˓ 𝑛 * [even𝑛]”. So, technically, the final result computed by a program may
depend on whether assertions are executed or not. However, this result always sat-
isfies the specification of the program, regardless of whether assertions are executed
or not.

5.6.2 Null pointers and strong updates

Motivation The ML type system guarantees type soundness: a well-typed pro-
gram can never crash or get stuck. In particular, if a program involves a location 𝑙 of
type ref 𝜏 , then the store indeed contains a value of type 𝜏 at location 𝑙. To achieve
this soundness result, ML gives up on at least two popular features from C-like lan-
guages: null pointers and strong updates. Null pointers are typically used to encode

5.6. EXTENSIONS 105

empty data structures. In Caml, an explicit option type is generally used to trans-
late C programs using null pointers, and this encoding has a small but measurable
cost in terms of execution speed and memory consumption. Strong updates allow
reusing a same memory location at several types, which is again a useful feature for
saving some memory space. Strong updates are also convenient for initializing cyclic
data structures. In this section, I explain how to recover null pointers and strong
update in Caml while still being able to prove programs correct using characteristic
formulae.

Null pointers To support null pointers, I introduce a constant location null in the
programming language, implemented as the memory address 0. I also introduce in
the logic a corresponding constant of type Loc, called Null. The decoding operation
for locations is such that ⌈null⌉ is equal to Null.

A singleton heap predicate of the form “𝑙 →˓𝒯 𝑉 ” should imply that 𝑙 is not a
null pointer. To that end, I update the definition of the singleton heap predicate
with an assumption 𝑙 ̸= Null, as follows.

𝑙 →˓𝒯 𝑉 ≡ 𝜆ℎ. ℎ = (𝑙 →𝒯 𝑉) ∧ 𝑙 ̸= Null

With this new definition, the specification of ref, recalled next, ensures that the
location 𝑙 being returned by a call to ref is distinct from the null location.

∀𝐴. Spec1 ref (𝜆𝑣 𝑅. 𝑅 [] (𝜆𝑙. 𝑙 →˓𝐴 𝑣))

The pointer comparison function cmp can be used to test at runtime whether a
given pointer is null. For example, one can define a function is_null that expects a
location 𝑙 and returns a boolean 𝑏 that is true if and only if the location 𝑙 is the null
location. The specification of is_null appears below.

Spec1 is_null (𝜆𝑙 𝑅. 𝑅 [] (𝜆𝑏. [𝑏 = true ⇔ 𝑙 = Null]))

Strong updates Characteristic formulae accommodate strong updates quite nat-
urally because the type of memory cells is not carried by the type of pointers, since
all pointers admit the constant type loc in weak-ML. Instead, the type of the con-
tents of a memory cell appears in a heap predicate of the form 𝑙 →˓𝒯 𝑉 , which asserts
that the location 𝑙 contains a Caml value that corresponds to the Coq value 𝑉 of
type 𝒯 . Remark: earlier work on the logic of Bunched Implication [42], a precursor
of Separation Logic [77], has pointed out the fact that working with heap predicates
allows reasoning on strong updates [9]. This possibility was exploited in Hoare Type
Theory [61], which builds upon Separation Logic.

To support strong updates, it therefore suffices to generalize the specification of
the primitive function set, allowing the type 𝐴 of the argument to differ from the
type 𝐴′ of the previous contents of the location. This generalized specification is
formally stated as follows.

∀𝐴. Spec2 set (𝜆 𝑙 𝑣 𝑅. ∀𝐴′. ∀(𝑣′ : 𝐴′). 𝑅 (𝑙 →˓𝐴′ 𝑣′) (# (𝑙 →˓𝐴 𝑣)))

106 CHAPTER 5. GENERALIZATION TO IMPERATIVE PROGRAMS

When the type of memory cells is allowed to evolve through the execution of a
program, it is generally useful to be able to cast a pointer from a type to another. A
subtyping rule of the form “ref 𝜏 ≤ ref 𝜏 ′” would here make sense. This subtyping rule
is obviously unsound in ML, but it does not break the soundness of characteristic
formulae because both the type ref 𝜏 and the type ref 𝜏 ′ are reflected in the logic
as the type Loc. To encode the subtyping rule in Caml, I introduce a coercion
function called cast, of type “ref 𝜏 → ref 𝜏 ′”, which behaves like the identity function.
Applications of the function cast are eliminated on-the-fly by the CFML generator,
immediately after type-checking.

Implementation in Caml Null references and strong references can be imple-
mented in Caml with the help of the primitive function Obj.magic, of type ’a ->
’b. This function allows fooling the type system by arbitrarily changing the type of
expressions. Remark: this encoding of strong references and null pointers in Caml
is a standard trick.

Figure 5.6 contains the signature and the implementation of a library for C-
style manipulation of pointers. The module includes functions sref and sget and
sset for manipulating a Caml reference at a different type than that carried by the
pointer. It also includes the function cmp for comparing pointers of different types,
the function cast for changing the type of a pointer, the constant null which denotes
the null reference, and the function is_null which is a specialization of the comparison
function cmp for testing whether a given pointer is null.

Remark: it is also possible to build a library where all pointers admit a constant
type called sref. For example, in this setting, the function ref admits the type
∀𝐴.𝐴 → sref and the function get admits the type ∀𝐴. sref → 𝐴. This alternative
presentation can be more convenient in some particular developments, however it
seems that, in general, the use of a constant type for pointers requires a greater
number of type annotation in source code than the use of type-carrying pointers.

To conclude, characteristic formulae allow for a safe and practical integration of
advanced pointer manipulations in a high-level programming language like Caml.

5.7 Additional tactics for the imperative setting

In this section, I describe the tactics for manipulating characteristic formulae that are
specific to the imperative setting. I start with a core tactic that helps proving heap
entailment relations. I then explain how the frame rule is automatically applied by
the tactic that handles reasoning about applications. Finally, I give a brief overview
of the other tactics involved.

5.7.1 Tactic for heap entailment

The tactic hsimpl helps proving goals of the form 𝐻1 B 𝐻2. It works modulo associa-
tivity and commutativity of the separating conjunction, and it is able to instantiate

5.7. ADDITIONAL TACTICS FOR THE IMPERATIVE SETTING 107

module type PointerSig = sig
val sref : ’b -> ’a ref
val sget : ’a ref -> ’b
val sset : ’a ref -> ’b -> unit
val cmp : ’a ref -> ’b ref -> bool
val cast : ’a ref -> ’b ref
val null : ’a ref
val is_null : ’a ref -> bool

end

module Pointer : PointerSig = struct
let sref x = magic (ref x)
let sget p = !(magic p)
let sset p x = (magic p) := x
let cmp p1 p2 = ((magic p1) == p2)
let cast p = magic p
let null = magic (ref ())
let is_null p = cmp (magic null) p

end

Figure 5.6: Signature and implementation of advanced pointer manipulations

the existential quantifiers occurring in 𝐻2 by exploiting information available in 𝐻1.
For example, consider the following goal, in which ?V and ?H denote Coq unification
variables.

(x ˜> T X) * (l ˜> Mlist T L) * (h ˜̃ > y)
==> (Hexists L’, l ˜> Mlist L’) * (h ˜̃ > ?V) * [y = ?V] * (?H)

The tactic hsimpl solves this goal as follows. First, it introduces a Coq unification
variable ?L’ in place of the existentially-quantified variable L’. (Alternatively, one
may explicitly provide an explicit witness for L’ as argument of hsimpl.) Second,
the tactic tries to cancel out heap predicates from the left-hand side with those from
the right-hand side. This process unifies ?L’ with L and ?V with y. The embedded
proposition [y = ?V] is extracted as a subgoal. Since ?V has been instantiated as
y, the subgoal is trivial to prove. After simplification, the remaining goal is x˜> T X
==> ?H. At this point, ?H is unified with the predicate x˜> T X, and the goal is solved.

The tactic hsimpl expects the right hand-side of the goal to be free of existentials
and of embedded propositions. The purpose of the tactic hextract is to set the goal
in that form, by pulling existential quantifiers and embedded propositions out of the
goal and putting them in the context. Documentation and examples can be found
in the Coq development for additional details.

108 CHAPTER 5. GENERALIZATION TO IMPERATIVE PROGRAMS

5.7.2 Automated application of the frame rule

The tactic xapp enables one to exploit the specification of a function for reasoning
on an application of that function. It automatically applies the frame rule on the
heap predicates that are not involved in the reasoning on the function application.
The implementation of the tactic relies on a corollary of the elimination lemma for
the predicate Spec, shown next.®

Spec 𝑓 𝐾
∀𝑅. is_local𝑅 ⇒ 𝐾 𝑥𝑅 ⇒ 𝑅𝐻 𝑄

⇒ AppReturns 𝑓 𝑥𝐻 𝑄

Let me illustrate the working of xapp on an example. Consider an application of
the function incr to a pointer x, under a pre-condition asserting that x is bound to
the value 3 in memory and that another pointer y is bound to the value 7. Assume
that the post-condition is a unification variable called ?Q. Note that post-conditions
are generally reduced to a unification variable because we try to infer as much
information as possible. The goal then takes the following form.

AppReturns incr x (x ˜̃ > 3 * y ˜̃ > 7) ?Q

I am going to explain in detail how the tactic xapp exploits the specification of
the function incr for discharging the goal and in the same time infer that the post-
condition ?Q should be instantiated as “# (x ˜̃ > 4) * (y ˜̃ > 7)”. Recall the
specification of incr expressed in terms of the predicate Spec. It is stated next (not
using the notation associated with Spec).

spec_1 incr (fun r R => forall n, R (r ˜̃ > n) (# r ˜̃ > n+1))

Applying the lemma mentioned earlier on to that specification leaves:

forall R, is_local R ->
(forall n, R (x ˜̃ > n) (# x ˜̃ > n+1)) ->
R (x ˜̃ > 3 * y ˜̃ > 7) ?Q

At this point, the tactic xapp instantiates the hypothesis “forall n, R (x ˜̃ > n)
(# x ˜̃ > n+1)” with unification variables. Let ?N denote the Coq unification vari-
able that instantiaties n. The hypothesis becomes as follows.

R (x ˜̃ > ?N) (# x ˜̃ > ?N+1)

The tactic xapp then exploits the hypothesis “is_local R” by applying the frame
rule (technically, the frame rule combined with the rule of consequence) to the
conclusion “R (x ˜̃ > 3 * y ˜̃ > 7) ?Q”. This application leaves three subgoals.

1) R ?H1 ?Q1
2) x ˜̃ > 3 * y ˜̃ > 7 ==> ?H1 * ?H2
3) ?Q1 *+ ?H2 ==> ?Q

5.7. ADDITIONAL TACTICS FOR THE IMPERATIVE SETTING 109

The first goal is solved using the hypothesis “R (x ˜̃ > ?N) (# x ˜̃ > ?N+1)”, in-
stantiating ?H1 as (x ˜̃ > ?N) and ?Q1 as (# x ˜̃ > ?N+1). Two subgoals remain.

2) (x ˜̃ > 3) * (y ˜̃ > 7) ==> (x ˜̃ > ?N) * ?H2
3) (# x ˜̃ > ?N+1) *+ ?H2 ==> ?Q

The tactic hsimpl is invoked on goal (2). It unifies ?N with the value 3 and ?H2
with (y ˜̃ > 7). Calling hsimpl on goal (3) then unifies the post-condition ?Q with
“(# x ˜̃ > 3+1) *+ (y ˜̃ > 7)”, which is equivalent to the expected instantiation
of ?Q.

To summarize, the tactic xapp is able to exploit a known specification as well
as the information available in the pre-condition for inferring the post-condition of
a function application. In particular, the application of the frame rule is entirely
automated. In the example presented above, the instantiation of the ghost variable
n could be inferred. However, there are cases where ghost variables need to be
explicitly provided. So, the tactic xapp accepts a list of arguments that can be
exploited for instantiating ghost variables.

5.7.3 Other tactics specific to the imperative setting

All the tactics described in this section apply to a goal of the form ℱ 𝐻 𝑄, where ℱ is
a predicate that satisfies the predicate is_local, and where 𝐻 and 𝑄 denote a pre- and
a post-condition, respectively. The predicate ℱ is typically a characteristic formula,
but it may also be a universally-quantified predicate coming from the characteristic
formula of a loop or from the specification of a function such as iter.

The tactic xseq is a specialized version of xlet for reasoning on sequences.
The tactics xfor and xwhile are used to reason on loops using the characteristic
formulae that support local reasoning. The tactics xfor_inv and xwhile_inv apply
a lemma for replacing the general form of the characteristic formula for a loop with
a specialized characteristic formula based on an invariant. The loop invariant to be
used may be directly provided as argument to those tactics.

The tactic xextract pulls the existential quantifiers and the embedded propo-
sitions out of a pre-condition. The tactic xframe allows applying the frame rule
manually, which might be useful for example to reason on a local let-binding. The
tactic xchange helps applying a focus or an unfocus lemma. The tactic takes as argu-
ment a partially-instantiated lemma whose conclusion is a heap entailment relation,
and exploits it to rewrite the pre-condition. The tactic xchange_post performs a
similar task on the post-condition. The tactic xgc enables discarding some heap
predicates from the pre-condition, and the tactic xgc_post enables discarding heap
predicates from the post-condition.

Chapter 6

Soundness and completeness

In this chapter, I prove that characteristic formulae for pure programs
are sound and complete. The soundness theorem states that if one can
prove that the characteristic formula of a term 𝑡 holds of a post-condition
𝑃 then the term 𝑡 terminates and returns a value that satisfies 𝑃 . Char-
acteristic formulae are built from the source code in a compositional way
and that they can even be displayed in a way that closely resemble source
code, thus, intuitively, proving the soundness of a characteristic formula
with respect to the source code it describes should be relatively direct.
The syntactic soundness proof that I give is indeed quite simple.

The completeness theorem states that if a term 𝑡 evaluates to a value
𝑣 then the characteristic formula for 𝑡 holds of the most-general spec-
ification for 𝑣. If the value 𝑣 does not contain any first-class function,
then its most-general specification is simply the predicate “being equal
to 𝑣”. The case where 𝑣 contains functions is slightly more subtle, since
characteristic formulae only allow specifying the extensional behavior of
functions and do not enable stating properties about the source code of
a function closure. In this chapter, I explain how to take that restriction
into account in the statement of the completeness theorem.

The last part of this chapter is concerned with justifying the soundness
of the treatment of polymorphism. In characteristic formulae, I quantify
type variables over the sort Type, which corresponds to the set of all Coq
types, instead of restricting the quantification to the set of Coq types
that correspond to some weak-ML type. It is more convenient in practice
to quantify over Type because it is the default sort in Coq. I explain in
this chapter why the quantification over Type is correct.

110

6.1. ADDITIONAL DEFINITIONS AND LEMMAS 111

6.1 Additional definitions and lemmas

6.1.1 Interpretation of Func

To justify the soundness of characteristic formulae, I give a concrete interpretation
to the type Func and to the predicate AppEval. I interpret Func as the set of all well-
typed function closures. Let is_well_typed_closure be a predicate that characterizes
well-typed values of the form 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡. The type Func is then constructed as
dependent pairs made of a value 𝑣 and of a proof that 𝑣 satisfies the predicate
is_well_typed_closure.

Func ≡ Σ𝑣(is_well_typed_closure 𝑣)

Observe that Func is a type built upon the syntax of source code from the program-
ming language. So, a Coq realization of Func would involve a deep embedding of the
source language. This indirection through syntax avoids the circularity traditionally
associated with models of higher-order stores, where heaps contain functions and
functions are interpreted in terms of heaps.

To prove interesting properties about characteristic formulae, I need a decoder
for function closures that are created at runtime. Recall that decoders are only
applied to well-typed values. I define the decoding of a well-typed function closure
as the function closure itself, viewed as a value of type Func. A well-typed function
closure 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡 can indeed be viewed as a value of the type Func, because Func
denotes the set of all well-typed function closures. The formal definition is as follows.

⌈𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡⌉Γ ≡ (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡, ℋ) : Func
where ℋ is a proof of “ is_well_typed_closure 𝑣”

Note that the context Γ is ignored as function closures are always closed values.

6.1.2 Reciprocal of decoding: encoding

In the proofs, I rely on the fact that the decoding operator yields a bijection between
the set of all well-typed Caml values and the set of all Coq values that admit a type
of the form V𝑇W. To show that decoding is bijective, I give the inverse translation,
called encoding. In this section, I describe the translation from (a subset of) Coq
types into weak-ML types, written T𝒯 U, and the translation of Coq values into typed
program values, written ⌊𝑉 ⌋. (Recall that 𝒯 denotes a Coq type of the form V𝑇W.)

The definition of the inverse translation T·U is as simple as that of the translation
V·W. Note that T·U describes a partial function in the sense that not all Coq types
are the image of some weak-ML type.

T𝐴U ≡ 𝐴

TIntU ≡ int
T𝐶 𝒯 U ≡ 𝐶 T𝒯 U
TFuncU ≡ func
T∀𝐴.𝒯 U ≡ ∀𝐴. T𝒯 U

112 CHAPTER 6. SOUNDNESS AND COMPLETENESS

The reciprocal of the decoding operation is called encoding. The encoding of a
Coq value 𝑉 of type 𝒯 , written ⌊𝑉 ⌋, produces a typed program value 𝑣 of type T𝒯 U.
In the definition of the encoding operator, shown below, values on the left-hand side
are closed Coq values, given with their type, and values on the right-hand side are
closed program values, which are annotated with weak-ML types.

⌊𝑛 : Int⌋ ≡ 𝑛int

⌊𝐷 𝒯 (𝑉1, . . . , 𝑉𝑛) : 𝐶 𝒯 ⌋ ≡ 𝐷 T𝒯 U (⌊𝑉1⌋, . . . , ⌊𝑉𝑛⌋)
⌊(𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡, ℋ) : Func⌋ ≡ 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡

⌊𝑉 : ∀𝐴. 𝑇 ⌋ ≡ Λ𝐴. ⌊𝑉 𝐴⌋

The encoding operation is presented here as a meta-level operation, whose be-
havior depends on the type of its argument. If this operation were to be defined in
Coq, it would rather be presented as a family of operators ⌊𝑉 ⌋, indexed with the
type of the argument 𝑉 .1

By construction, T·U is the inverse function of V·W, defined in §4.3.4, and ⌊·⌋ is
the inverse function of ⌈·⌉, defined in §4.3.5. Those results are formalized through
the following lemma.

Lemma 6.1.1 (Inverse functions)

T V𝑇W U = 𝑇 where 𝑇 is a weak-ML type
V T𝒯 U W = 𝒯 where 𝒯 is a Coq type of the form V𝑇W
⌊ ⌈𝑣⌉ ⌋ = 𝑣 where 𝑣 is a well-typed weak-ML value
⌈ ⌊𝑉 ⌋ ⌉ = 𝑉 where 𝑉 is Coq value with a type of the form V𝑇W

Proof The treatment of functions and of polymorphism are not immediate.
First, consider a well-typed function closure 𝑣 of the form 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡. Its de-

coding is a pair made of 𝑣 and of a proof ℋ asserting that 𝑣 is a well-typed function
closure. The encoding of that pair gives back the function closure. Reciprocally, let
𝑉 be a value of type Func. This value must be a pair of a value 𝑣 and of a proof ℋ
asserting that 𝑣 is a well-typed function closure, so the encoding of 𝑉 is the value 𝑣,
which is well-typed. The decoding of 𝑣 gives back a pair made of 𝑣 and of a proof
ℋ′ asserting that 𝑣 is a well-typed function closure. This pair is equal to 𝑉 because
the proof ℋ′ is equal to the proof ℋ. Indeed, by the proof-irrelevance property of
the logic, two proofs of a same proposition are equal.

Second, consider a polymorphic value Λ𝐴. 𝑣 of type ∀𝐴.𝑇 . The decoding of
that value is the Coq value 𝜆𝐴. ⌈𝑣⌉ of type ∀𝐴. V𝑇W. The encoding of that Coq
value is written ⌊𝜆𝐴. ⌈𝑣⌉⌋. By definition of the encoding operator, it is equal to
Λ𝐴. ⌊(𝜆𝐴. ⌈𝑣⌉) 𝐴⌋. This value is equal to Λ𝐴. ⌊⌈𝑣⌉⌋, and it therefore the same as
the value Λ𝐴. 𝑣, from which we started. Reciprocally, let 𝑉 be a value of type ∀𝐴.𝒯 .

1My earlier work on a deep embedding of Caml in Coq [15] involves a tool that, for every type
constructor involved in a source Caml program, automatically generates the Coq definition of the
encoding operator associated with that type.

6.1. ADDITIONAL DEFINITIONS AND LEMMAS 113

The encoding of 𝑉 is Λ𝐴. ⌊𝑉 𝐴⌋. The decoding of this value, ⌈Λ𝐴. ⌊𝑉 𝐴⌋⌉ is equal
to 𝜆𝐴. ⌈⌊𝑉 𝐴⌋⌉, which is the same as 𝜆𝐴. (𝑉 𝐴). The latter is an eta-expansion of
𝑉 , so it is equal to 𝑉 , the value which we started from (recall that the target logic
is assumed to feature functional extensionality). �

6.1.3 Substitution lemmas for weak-ML

Weak-ML does not enjoy type soundness, however the usual type-substitution and
term-substitution lemmas hold. More precisely, typing derivations are preserved
through instantiation of a type variable by a particular type, and they are preserved
by substitution of a variable with a value of the appropriate type.

Lemma 6.1.2 (Type-substitution in weak-ML) Let 𝑡 be a typed term (or a
typed value), let 𝑇 be a type, and let ∆ and ∆′ be two typing contexts. Let 𝐴 be
a list of type variables, and let 𝑇 be a list of types.

∆, 𝐴,∆′ ⊢ 𝑡𝑇 ⇒ ∆, ([𝐴 → 𝑇] ∆′) ⊢ ([𝐴 → 𝑇] 𝑡)([𝐴→𝑇]𝑇)

Proof Straightforward by induction on the typing derivation. �

Lemma 6.1.3 (Term-substitution in weak-ML) Let 𝑡 be a typed term (or a
typed value), let 𝑇 be a type, let �̂� be a polymorphic typed value of type 𝑆, and let
∆ be a typing context.

∆, 𝑥 : 𝑆 ⊢ 𝑡𝑇 ∧ ∆ ⊢ �̂�𝑆 ⇒ ∆ ⊢ ([𝑥 → �̂�] 𝑡)𝑇

Proof By induction on the typing derivation. The interesting case occurs when 𝑡 is
the variable 𝑥 applied to some types 𝑇 . Let Λ𝐴. 𝑣 be the form of �̂� and let ∀𝐴.𝑇 ′

be the form of 𝑆. The hypothesis ∆ ⊢ �̂�𝑆 implies ∆, 𝐴 ⊢ 𝑣𝑇
′ . The assumption

∆, 𝑥 : ∀𝐴.𝑇 ′ ⊢ (𝑥𝑇)𝑇 implies that 𝑇 is equal to [𝐴 → 𝑇]𝑇 ′. The goal is to prove
∆ ⊢ ((Λ𝐴. 𝑣)𝑇)𝑇 , which is the same as ∆ ⊢ ([𝐴 → 𝑇] 𝑣)([𝐴→𝑇]𝑇 ′). This result
follows from the type-substitution lemma applied to ∆, 𝐴 ⊢ 𝑣𝑇

′ . �

6.1.4 Typed reductions

In this section, I introduce a reduction judgment for typed terms, written 𝑡 ⇓: 𝑣.
Let me start by explaining why this judgment is needed.

Characteristic formulae are generated from typed values, and the strength of the
hypotheses provided by characteristic formulae depend on the types, especially for
functions. Consider the identity function “ let rec 𝑓 = 𝜆𝑥. 𝑥”. If this function is typed
as a function from integers to integers, written “ let rec 𝑓 = Λ.𝜆𝑥int.𝑥”, then the body
description of that function is:

∀(𝑋 : int).∀(𝑃 : int → Prop). 𝑃 𝑋 ⇒ AppReturns𝐹 𝑋 𝑃

114 CHAPTER 6. SOUNDNESS AND COMPLETENESS

However, it the function is typed as a polymorphic function, written “ let rec 𝑓 =
Λ𝐴.𝜆𝑥𝐴.𝑥”, then the body description is a strictly stronger assertion:

∀𝐴. ∀(𝑋 : 𝐴).∀(𝑃 : 𝐴 → Prop). 𝑃 𝑋 ⇒ AppReturns𝐹 𝑋 𝑃

This example suggests that the soundness and the completeness of characteristic
formulae is strongly dependent on the types annotating the source code. The proofs
of soundness and completeness relate a characteristic formula with a reduction judg-
ment. In order to keep track of types in the proofs, I introduce a typed version of
the reduction judgment, written 𝑡 ⇓: 𝑣. A derivation tree for a typed reduction 𝑡 ⇓: 𝑣
consists of a derivation tree describing not only the reduction steps involved but also
the type of all the values involved throughout the execution.

The inductive rules, shown below, directly extend the rules defining the untyped
reduction judgment “𝑡 ⇓ 𝑣”. When reducing a let-binding of the form “ let𝑥 =
Λ𝐴. 𝑡1 in 𝑡2”, the evaluation of 𝑡1 produces a typed value 𝑣1, and then the value 𝑥 is
replaced in 𝑡2 by the polymorphic value ∀𝐴.𝑣1. When reducing a function definition
“ let rec 𝑓 = Λ𝐴.𝜆𝑥.𝑡1 in 𝑡2”, the variable 𝑓 is replaced in 𝑡2 with the function closure
“𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1”. Finally, consider a beta-redex of the form “(𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1) 𝑣2”. This
function reduces to the body 𝑡1 of the function in which the variable 𝑥 is instantiated
as 𝑣2, and the variable 𝑓 is instantiated as a closure itself. Moreover, because
applications are unconstrained in weak-ML, the typed reduction rule for beta-redexes
includes hypotheses enforcing that the type of the argument 𝑣2 is an instance of the
type 𝑇0 of the argument 𝑥 and that the type 𝑇 of the entire redex is an instance
of the type 𝑇1 of the body of the function 𝑡1. The appropriate instantiation of the
types 𝐴 is uniquely determined by the other types involved, as established further
on (Lemma 6.1.7). The reduction rules for conditionals are straightforward, so I do
not show them.

Definition 6.1.1 (Typed reduction judgment)

𝑡1 ⇓: 𝑣1 ([𝑥 → Λ𝐴. 𝑣1] 𝑡2) ⇓: 𝑣

(let𝑥 = Λ𝐴. 𝑡1 in 𝑡2) ⇓: 𝑣

([𝑓 → 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1] 𝑡2) ⇓: 𝑣

(let rec 𝑓 = Λ𝐴.𝜆𝑥.𝑡1 in 𝑡2) ⇓: 𝑣 𝑣 ⇓: 𝑣

𝑇2 = [𝐴 → 𝑇]𝑇0 𝑇 = [𝐴 → 𝑇]𝑇1 ([𝑓 → 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1] [𝑥 → 𝑣2] [𝐴 → 𝑇] 𝑡1) ⇓: 𝑣

((𝜇𝑓.Λ𝐴.𝜆𝑥𝑇0 .𝑡1
𝑇1)func (𝑣2

𝑇2))𝑇 ⇓: 𝑣

The next two lemmas relate the untyped reduction judgment for ML programs
with the typed reduction judgment for weak-ML programs. A third lemma then es-
tablishes that the typed reduction of a well-typed term always produces a well-typed
value of the same type, and a fourth lemma establishes that the typed reduction
judgment is deterministic.

Lemma 6.1.4 (From typed reductions to untyped reductions) Let 𝑡 be a
typed term and 𝑣 be a typed value, both carrying weak-ML type annotations. Let 𝑡

6.1. ADDITIONAL DEFINITIONS AND LEMMAS 115

and 𝑣 be the terms obtained by stripping types out of 𝑡 and 𝑣, respectively.

𝑡 ⇓: 𝑣 ⇒ 𝑡 ⇓ 𝑣

Proof Removing the type annotation and the type substitutions from the rules
defining the typed reduction judgment give exactly the rules defining the untyped
reduction judgment. �

Lemma 6.1.5 (From untyped reductions to typed reductions, in ML)
Consider a well-typed ML term, fully annotated with ML types. Let 𝑡 be the corre-
sponding term where ML type annotations are turned into weak-ML type annotations,
by application of the operator ⟨·⟩, and let 𝑡 be the corresponding term in which all
type annotations are removed. Assume there exists a value 𝑣 such that 𝑡 reduces to 𝑣,
that is, such that 𝑡 ⇓ 𝑣. Then, there exists a typed value 𝑣, annotated with weak-ML
types, that corresponds to the value 𝑣 and such that 𝑡 ⇓: 𝑣.

Proof Let �̊� denote a term annotated with ML types. Following the subject reduc-
tion proof for ML, one can show that the untyped reduction sequence 𝑡 ⇓ 𝑣 can
be turned into a typed reduction sequence �̊� ⇓ �̊�, which is a judgment defined like
𝑡 ⇓: 𝑣 except that it involves terms and values are annotated with ML types instead
of weak-ML types. Then, applying the operator ⟨·⟩ to the entire derivation �̊� ⇓: �̊�
produces exactly the required derivation 𝑡 ⇓: 𝑣. �

Lemma 6.1.6 (Typed reductions preserve well-typedness) Let 𝑡 be a typed
term, let 𝑣 be a typed value, let 𝑇 be a type and let 𝐵 denote a set of free type
variables.

𝐵 ⊢ 𝑡𝑇 ∧ 𝑡 ⇓: 𝑣 ⇒ 𝐵 ⊢ 𝑣𝑇

Proof By induction on the typed-reduction derivation. I only show the proof case
for let-bindings, to illustrate the kind of arguments involved, as well as the proof
case for the beta-reduction rule, which is the only one specific to weak-ML.

∙ Case 𝑡 is of the form (let𝑥 = Λ𝐴. 𝑡1
𝑇1 in 𝑡2𝑇2)𝑇2 and reduces to 𝑣. The premises

assert that 𝑡1 ⇓: 𝑣1 and ([𝑥 → Λ𝐴. 𝑣1] 𝑡2) ⇓: 𝑣 hold. By hypothesis, 𝑡1
𝑇1 is well-

typed in the context (𝐵,𝐴) and 𝑡2
𝑇2 is well-typed in the context (𝐵, 𝑥 : ∀𝐴.𝑇1).

By induction hypothesis, 𝑣1𝑇1 is also well-typed in that context So, Λ𝐴. 𝑣1 admits
the type ∀𝐴.𝑇1 in the context 𝐵. By the substitution lemma applied to the typing
assumption for 𝑡2

𝑇2 , the term ([𝑥 → Λ𝐴. 𝑣1] 𝑡2
𝑇2) also admits the type 𝑇2 in the

context 𝐵. Therefore, by induction hypothesis, 𝑣 admits the type 𝑇2 in the context
𝐵.

∙ Case 𝑡 is of the form (𝜇𝑓.Λ𝐴.𝜆𝑥𝑇0 .𝑡1
𝑇1 (𝑣2

𝑇2))𝑇 and reduces to 𝑣. The premises
assert that the propositions 𝑇2 = [𝐴 → 𝑇]𝑇0 and 𝑇 = [𝐴 → 𝑇]𝑇1 hold and that
[𝑓 → 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1] [𝑥 → 𝑣2] [𝐴 → 𝑇] 𝑡1 reduces to 𝑣. The goal is to prove that the
typed term ([𝑓 → 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1] [𝑥 → 𝑣2] [𝐴 → 𝑇] 𝑡1)

𝑇 is well-typed in the context
𝐵. By inversion on the typing rule for applications, we obtain the fact that both
𝑣2

𝑇2 and (𝜇𝑓.Λ𝐴.𝜆𝑥𝑇0 .𝑡1
𝑇1)func are well-typed. By inversion on the typing rule for

116 CHAPTER 6. SOUNDNESS AND COMPLETENESS

function closures, we obtain the typing assumption “𝐵,𝐴, 𝑓 : func, 𝑥 : 𝑇0 ⊢ 𝑡1
𝑇1”.

By the type substitution lemma, this implies “𝐵, 𝑓 : func, 𝑥 : ([𝐴 → 𝑇]𝑇0) ⊢
([𝐴 → 𝑇] 𝑡1)

([𝐴→𝑇]𝑇1)”. Exploiting the two assumptions 𝑇2 = [𝐴 → 𝑇]𝑇0 and 𝑇 =
[𝐴 → 𝑇]𝑇1, we can rewrite this proposition as “𝐵, 𝑓 : func, 𝑥 : 𝑇2 ⊢ ([𝐴 → 𝑇] 𝑡1)

𝑇 ”.
The conclusion, which is “𝐵 ⊢ ([𝑓 → 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1] [𝑥 → 𝑣2] [𝐴 → 𝑇] 𝑡1)

𝑇 ”, can then
be deduced by applying the substitution lemma twice, once for 𝑥 and once for 𝑓 . �

Lemma 6.1.7 (Determinacy of typed reductions) Let 𝑡 be a typed term, and
let 𝑣1 and 𝑣2 be two typed values.

𝑡 ⇓: 𝑣1 ∧ 𝑡 ⇓: 𝑣2 ⇒ 𝑣1 = 𝑣2

Proof By induction on the first hypothesis and case analysis on the second one.
The nontrivial case is that of applications, for which we need to establish that the
list of types 𝑇 is uniquely determined. Consider a list 𝑇 such that 𝑇2 = [𝐴 → 𝑇]𝑇0

and 𝑇 = [𝐴 → 𝑇]𝑇1, and another list 𝑇 ′ such that 𝑇2 = [𝐴 → 𝑇 ′]𝑇0 and 𝑇 = [𝐴 →
𝑇 ′]𝑇1. Then, [𝐴 → 𝑇]𝑇0 = [𝐴 → 𝑇 ′]𝑇0 and [𝐴 → 𝑇]𝑇1 = [𝐴 → 𝑇 ′]𝑇1. Since the
free variables 𝐴 are included in the union of the set of free type variables of 𝑇0 and
of that of 𝑇1, the list 𝑇 ′ must be equal to the list 𝑇 . �

6.1.5 Interpretation and properties of AppEval

Recall that AppEval is the low-level predicate in terms of which AppReturns is defined.
In this section, I give an interpretation of AppEval in terms of the typed semantics
of the source language. The type of AppEval is recalled next.

AppEval : ∀𝐴𝐵. Func → 𝐴 → 𝐵 → Prop

The proposition AppEval𝐹 𝑉 𝑉 ′ asserts that the application of a Caml function
reflected as 𝐹 in the logic to a value reflected as 𝑉 in the logic terminates and returns
a Caml value reflected as 𝑉 ′ in the logic. This can be reformulated using encoders,
saying that the application of the encoding of 𝐹 to the encoding of 𝑉 terminates and
returns the encoding of 𝑉 ′. Hence the following definition of the predicate AppEval.

Definition 6.1.2 (Definition of AppEval) Let 𝐹 be a value of type Func, 𝑉 is a
value of type 𝒯 and 𝑉 ′ is a value of type 𝒯 ′.

AppEval𝐹 𝑉 𝑉 ′ ≡ (⌊𝐹 ⌋ ⌊𝑉 ⌋) ⇓: ⌊𝑉 ′⌋

Remark: one can also present this definition as an inductive rule, as follows.

(𝑓 𝑣) ⇓: 𝑣′

AppEval ⌈𝑓⌉ ⌈𝑣⌉ ⌈𝑣′⌉

The semantics of the source language is assumed to be deterministic. Since
AppEval lifts the semantics of function application to the level of Coq values, for
every function 𝐹 and argument 𝑉 there is at most one result value 𝑉 ′ for which
the relation AppEval𝐹 𝑉 𝑉 ′ holds. This property is formally captured through the
following lemma.

6.1. ADDITIONAL DEFINITIONS AND LEMMAS 117

Lemma 6.1.8 (Determinacy of AppEval) For any types 𝒯 and 𝒯 ′, for any Coq
value 𝐹 of type Func, any Coq value 𝑉 of type 𝒯 , and any two Coq values 𝑉 ′

1 and
𝑉 ′
2 of type 𝒯 ′,

AppEval𝐹 𝑉 𝑉 ′
1 ∧ AppEval𝐹 𝑉 𝑉 ′

2 ⇒ 𝑉 ′
1 = 𝑉 ′

2

Proof By definition of AppEval, the hypotheses are equivalent to (⌊𝐹 ⌋ ⌊𝑉 ⌋) ⇓: ⌊𝑉 ′
1⌋

and (⌊𝐹 ⌋ ⌊𝑉 ⌋) ⇓: ⌊𝑉 ′
2⌋. By determinacy of typed reductions (Lemma 6.1.7), ⌊𝑉 ′

1⌋ is
equal to ⌊𝑉 ′

2⌋. The equality between 𝑉 ′
1 and 𝑉 ′

2 then follows from the injectivity of
encoders. �

Remark: ideally, the soundness theorem for characteristic formulae should be
proved without exploiting the determinacy assumption on the source language. How-
ever, the proof appears to become slightly more complicated when this assumption
is not available. For this reason, I leave the generalization of the soundness proof to
a non-deterministic language for future work.

6.1.6 Substitution lemmas for characteristic formulae

The substitution lemma for characteristic formulae is used both in the proof of
soundness and in the proof of completeness. It explains how a substitution of a
value for a variable in a term commutes with the computation of the characteristic
formula for that term. The proof of the substitution lemma involves a corresponding
substitution lemma for the decoding operator. It also relies on two type-substitution
lemmas, one for characteristic formulae and one for the decoding operator, presented
next.

Lemma 6.1.9 (Type-substitution lemmas) Let 𝑣 be a well-typed value and 𝑡
be a well-typed term in a context (∆, 𝐴). Let Γ be a decoding context with types
corresponding to those in ∆. Let 𝑇 be a list of weak-ML types of the same arity as
𝐴.

⌈[𝐴 → 𝑇] 𝑣⌉Γ = [𝐴 → V𝑇W] ⌈𝑣⌉Γ

J [𝐴 → 𝑇] 𝑡 KΓ = [𝐴 → V𝑇W] J 𝑡 KΓ

Proof By induction on the structure of 𝑣 and 𝑡. �

A useful corollary to the type-substitution lemma for decoders describes the applica-
tion of the decoding of a polymorphic value. Recall that �̂� ranges over polymorphic
values. I use the notation �̂� 𝑇 to denote the type application of �̂� to the types 𝑇 :
if �̂� is of the form Λ𝐴. 𝑣, then �̂� 𝑇 is equal to [𝐴 → 𝑇] 𝑣. Using this notation, the
commutation of decoding with type applications of polymorphic values is formalized
as follows.

Lemma 6.1.10 (Application of the decoding of polymorphic value)
Let �̂� be a closed polymorphic value of type ∀𝐴.𝑇 , and let 𝑇 be a list of types of the
same arity as 𝐴.

⌈�̂� 𝑇 ⌉ = ⌈�̂�⌉ V𝑇W

118 CHAPTER 6. SOUNDNESS AND COMPLETENESS

Proof Let Λ𝐴. 𝑣 be the form of �̂�. The left-hand side is equal to ⌈[𝐴 → 𝑇] 𝑣⌉. The
right-hand side is equal to “(𝜆𝐴. ⌈𝑣⌉) V𝑇W”, which is the same as [𝐴 → V𝑇W] ⌈𝑣⌉.
The conclusion then follows from the type-substitution lemma (Lemma 6.1.9). �

Lemma 6.1.11 (Substitution lemma for decoding) Let 𝑣 be a value of type 𝑇
with a free variable 𝑥 of type 𝑆, let �̂� be a closed value of type 𝑆, and let Γ be a
decoding context. Then,

⌈ [𝑥 → �̂�] 𝑣 ⌉Γ = ⌈ 𝑣 ⌉(Γ,𝑥 ↦→⌈�̂�⌉)

Proof By induction on the structure of 𝑣. The interesting case is when 𝑣 is an
occurrence of the variable 𝑥. An occurrence of 𝑥 in 𝑣 take the form of a type
application 𝑥𝑇 . On the left-hand side, the substitution of 𝑥 by �̂� gives �̂� 𝑇 . This
value is then decoded as ⌈�̂� 𝑇 ⌉. On the right-hand side, 𝑥𝑇 is directly decoded as
⌈�̂�⌉ V𝑇W, since 𝑥 is mapped to ⌈�̂�⌉ is the decoding context (Γ, 𝑥 ↦→ ⌈�̂�⌉). Using the
previous lemma, we can conclude that both sides yield equal values. �.

Lemma 6.1.12 (Substitution lemma for characteristic formulae) Let 𝑡 be a
well-typed term with a free variable 𝑥 of type 𝑆, and let �̂� be a closed typed value of
type 𝑆. Then,

J [𝑥 → �̂�] 𝑡 KΓ = J 𝑡 K(Γ,𝑥 ↦→⌈�̂�⌉)

Proof By induction on the structure of 𝑡, invoking the previous lemma when reach-
ing values. �

6.1.7 Weakening lemma

The following weakening lemma is involved in the proof of completeness.

Lemma 6.1.13 (Weakening for characteristic formulae)
For any well-typed term 𝑡, for any post-conditions 𝑃 and 𝑃 ′, and for any context Γ,

(∀𝑋. 𝑃 𝑋 ⇒ 𝑃 ′𝑋) ∧ J 𝑡 KΓ 𝑃 ⇒ J 𝑡 KΓ 𝑃 ′

Proof By induction on 𝑡. The only nontrivial case is that for applications, where,
given a function 𝐹 and an argument 𝑉 , we must show that AppReturns𝐹𝑉 𝑃 implies
AppReturns𝐹𝑉 𝑃 ′. By definition of AppReturns, the assumption ensures the existence
of a value 𝑉 ′ such that AppEval𝐹 𝑉 𝑉 ′ and 𝑃 𝑉 ′. Therefore, the same value 𝑉 ′ is
such that AppEval𝐹 𝑉 𝑉 ′ and 𝑃 ′ 𝑉 ′. Thus the proposition AppReturns𝐹𝑉 𝑃 ′ holds.
�

6.1.8 Elimination of n-ary functions

For the sake of verifying programs in practice, I have introduced a direct treatment of
n-ary functions, with the predicate Spec. However, for the sake of conducting proofs,
it is much simpler to consider only unary functions, with characteristic formulae

6.1. ADDITIONAL DEFINITIONS AND LEMMAS 119

expressed directly in terms of AppReturns. In this section, I formally justify that the
equivalence between the two presentations.

For functions of arity one, I show the equivalence between the body description
of a function “ let rec 𝑓 = 𝜆𝑥. 𝑡” stated in terms of Spec1 and the body description
of that same function stated in terms of AppReturns1. In the corresponding lemma,
shown below, (𝐺𝑥) denotes the characteristic formula of the body 𝑡 of the function
“ let rec 𝑓 = 𝜆𝑥. 𝑡” (the characteristic formula of 𝑡 indeed depends on the variable 𝑥).

Lemma 6.1.14 (Spec1-to-AppReturns1)

(∀𝐾. is_spec1𝐾 ∧ (∀𝑥. 𝐾 𝑥 (𝐺𝑥)) ⇒ Spec1𝑓𝐾)
⇐⇒ (∀𝑥𝑃. (𝐺𝑥)𝑃 ⇒ AppReturns1 𝑓 𝑥𝑃)

Proof The proof is not entirely straightforward, so I have also carried it out in
Coq. To prove the proposition “AppReturns1 𝑓 𝑣 𝑃 ” under the assumption “(𝐺𝑣)𝑃 ”,
we instantiate 𝐾 as “𝜆𝑥𝑅. 𝑥 = 𝑣 ⇒ 𝑅𝑃 ” and we are left proving is_spec1𝐾,
which holds because 𝐾 is covariant in 𝑅, as well as “∀𝑥. 𝐾 𝑥 (𝐺𝑥)”, which is
equivalent to “𝑥 = 𝑣 ⇒ (𝐺𝑥)𝑃 ”. The latter directly follows from the assump-
tion “(𝐺𝑣)𝑃 ”. Reciprocally, we need to prove “Spec1𝑓𝐾” under the assumptions
“ is_spec1𝐾” and “∀𝑥. 𝐾 𝑥 (𝐺𝑥)” and “∀𝑥𝑃. (𝐺𝑥)𝑃 ⇒ AppReturns1 𝑓 𝑥𝑃 ”. By
definition of Spec1, and given that is_spec1𝐾 is true by assumption, it suffices to
prove “∀𝑥. 𝐾 𝑥 (AppReturns1 𝑓 𝑥)”. The hypothesis “ is_spec1𝐾” asserts that 𝐾 is
covariant in its second argument. So, exploiting the assumption “∀𝑥. 𝐾 𝑥 (𝐺𝑥)”, it
remains to prove “∀𝑥𝑃. (𝐺𝑥)𝑃 ⇒ AppReturns1 𝑓 𝑥𝑃 ”, which corresponds exactly
to one of the assumptions. �

For a function of arity two, I show the equivalence between the body description
of a function “ let rec 𝑓 = 𝜆𝑥 𝑦. 𝑡” and the body description of the function “ let rec 𝑓 =
𝜆𝑥. (let rec 𝑔 = 𝜆𝑦. 𝑡 in 𝑦)”. This encoding of n-ary functions as unary function can be
easily extended to higher arities. In the corresponding lemma, shown below, (𝐺𝑥𝑦)
denotes the characteristic formula of the body 𝑡.

Lemma 6.1.15 (Spec2-to-AppReturns1)

(∀𝐾. is_spec2𝐾 ∧ (∀𝑥 𝑦. 𝐾 𝑥 𝑦 (𝐺𝑥𝑦)) ⇒ Spec2𝑓𝐾)
⇐⇒ (∀𝑥𝑃. (∀𝑔. ℋ ⇒ 𝑃 𝑔) ⇒ AppReturns1 𝑓 𝑥𝑃)

where ℋ ≡ (∀𝑦 𝑃 ′. (𝐺𝑥𝑦)𝑃 ′ ⇒ AppReturns1 𝑔 𝑦 𝑃 ′)

The proof of this lemma is even more technical than the previous one because it
involves exploiting the determinacy of partial applications. So, I do not show the
details and refer the reader to the Coq proof for further details. Note that the
treatment of arities higher than two does not involve further difficulties. It simply
involves additional proof steps for reasoning on iterated partial applications.

120 CHAPTER 6. SOUNDNESS AND COMPLETENESS

6.2 Soundness

6.2.1 Soundness of characteristic formulae

The soundness theorem states that if the characteristic formula of a well-typed term
𝑡 holds of a post-condition 𝑃 , then there exists a value 𝑣 such that 𝑡 evaluates to 𝑣
and such that the decoding of 𝑣 satisfies 𝑃 . Note that representation predicates are
defined in Coq and their properties are proved in Coq, so they are not involved at
any point in the soundness proof.

Theorem 6.2.1 (Soundness) Let 𝑡 be a closed typed term, let 𝑇 be the type of 𝑡,
and let 𝑃 be a predicate of type V𝑇W → Prop.

⊢ 𝑡 ∧ J 𝑡 K∅ 𝑃 ⇒ ∃𝑣. 𝑡 ⇓: 𝑣 ∧ 𝑃 ⌈𝑣⌉

Proof The proof goes by induction on the size of 𝑡. The size of a term is defined
as the number of nodes from the grammar of terms. Any value contained in a
term is considered to have size one. In particular, a function closure has size one,
even though its body is a term whose size may be greater than one. Note that
this non-standard definition of the size of the term plays a crucial role in the proof.
Indeed, the standard definition of the size of the term would not enable the induction
principle to be applied because 𝛽-reduction may cause terms to grow in size.

∙ Case 𝑡 = 𝑣. The assumption J 𝑡 K∅ 𝑃 is equivalent to “𝑃 ⌈𝑣⌉”. The conclusion
follows immediately, since 𝑣 ⇓: 𝑣.

∙ Case 𝑡 = (((𝑓 func) (𝑣′𝑇
′
))𝑇). The assumption coming from the characteristic

formula is “AppReturns ⌈𝑓⌉ ⌈𝑣′⌉𝑃 ”. The goal is to find a value 𝑣 such that (𝑓 𝑣′) ⇓: 𝑣
and “𝑃 ⌈𝑣⌉”. The assumption asserts the existence of a value 𝑉 of type V𝑇W such
that “𝑃 𝑉 ” holds and such that “AppEval ⌈𝑓⌉ ⌈𝑣′⌉𝑉 ” holds. By definition of the
predicate AppEval, we have (𝑓 𝑣′) ⇓: ⌊𝑉 ⌋. To conclude, I instantiate 𝑣 as ⌊𝑉 ⌋. So,
𝑉 is equal to ⌈𝑣⌉, the proposition “𝑃 ⌈𝑣⌉” follows from “𝑃 𝑉 ”.

∙ Case 𝑡 = crash. The assumption is False, so there is nothing to prove.
∙ Case 𝑡 = if ⌈𝑣⌉ then 𝑡1 else 𝑡2. The assumption is as follows.

(⌈𝑣⌉ = true ⇒ J𝑡1K𝑃) ∧ (⌈𝑣⌉ = false ⇒ J𝑡2K𝑃)

The value 𝑣 is of type bool, so it is either equal to true or to false. Assume that 𝑣
is equal to true. The first part of the assumption gives J𝑡1K𝑃 . The conclusions then
directly follow from the induction hypothesis applied to that fact. The case where
𝑣 is equal to false is symmetrical.

∙ Case 𝑡 = (let rec 𝑓 = Λ𝐴.𝜆𝑥𝑇0 .𝑡1
𝑇1 in 𝑡2𝑇2). I start with the case where

the function is not polymorphic, that is, when 𝐴 is empty. The generalization
to polymorphic functions is given afterwards. The assumption is the proposition
∀𝐹. ℋ ⇒ J𝑡2K(𝑓 ↦→𝐹) 𝑃 , where ℋ stands for:

∀𝑋.∀𝑃 ′. J𝑡1K(𝑥↦→𝑋,𝑓 ↦→𝐹) 𝑃 ′ ⇒ AppReturns𝐹 𝑋 𝑃 ′

6.2. SOUNDNESS 121

I instantiate the assumption with 𝐹 as ⌈𝜇𝑓.𝜆𝑥.𝑡1⌉. According to the assumption, ℋ
implies J𝑡2K(𝑓 ↦→𝐹) 𝑃 . The plan is to prove that ℋ holds, so as to later exploit the
hypothesis J𝑡2K(𝑓 ↦→𝐹) 𝑃 .

To prove ℋ, consider some arbitrary arguments 𝑋 and 𝑃 ′. The hypothesis
is (J𝑡1K(𝑥 ↦→𝑋,𝑓 ↦→𝐹) 𝑃 ′). The goal consists in proving AppReturns𝐹 𝑋 𝑃 ′. Since 𝑋
has type V𝑇0W, we can consider its encoding. Let 𝑣2 denote the value ⌊𝑋⌋, which
has type 𝑇0. We know that 𝑋 is equal to ⌈𝑣2⌉ and that 𝑋 has type V𝑇0W. So, the
assumption becomes (J𝑡1K(𝑥 ↦→⌈𝑣2⌉,𝑓 ↦→⌈𝜇𝑓.𝜆𝑥.𝑡1⌉) 𝑃 ′), which, by the substitution lemma,
gives (J[𝑓 → 𝜇𝑓.𝜆𝑥.𝑡1] [𝑥 → 𝑣2] 𝑡1K∅ 𝑃 ′).

By induction hypothesis applied to the term “[𝑓 → 𝜇𝑓.𝜆𝑥.𝑡1] [𝑥 → 𝑣2] 𝑡1”, of type
𝑇1, there exists a value 𝑣′ such that the term considered reduces to 𝑣′ and such that
“𝑃 ′ ⌈𝑣′⌉” holds. We can deduce the typed reduction judgment “((𝜇𝑓.𝜆𝑥.𝑡1) 𝑣2) ⇓: 𝑣′”.
Exploiting the definition of AppEval, we deduce AppEval ⌈𝜇𝑓.𝜆𝑥.𝑡1⌉ ⌈𝑣2⌉ ⌈𝑣′⌉. The
conclusion of ℋ, namely AppReturns𝐹 𝑋 𝑃 ′, follows from the latter proposition and
from the assumption “𝑃 ′ ⌈𝑣′⌉”.

Finally, it remains to exploit the assumption J𝑡2K(𝑓 ↦→𝐹) 𝑃 in order to conclude.
By the substitution lemma, this fact can be reformulated as J [𝑓 → 𝜇𝑓.𝜆𝑥.𝑡1] 𝑡2 K∅ 𝑃 .
The conclusion follows from the induction hypothesis applied to that fact.

∙ Case “𝑡 = (let𝑥 = Λ𝐴. 𝑡1 in 𝑡2)”. Let 𝑇1 denote the type of 𝑡1. I start by giving
the proof in the particular case where 𝑥 has a monomorphic type, that is, when 𝐴
is empty. The characteristic formula asserts that there exists a predicate 𝑃 ′ of type
“V𝑇1W → Prop” such that “J𝑡1K∅ 𝑃 ′” and such that, for any X of type V𝑇1W satisfying
the predicate 𝑃 ′, the proposition “J𝑡2K(𝑥 ↦→𝑋) 𝑃 ” holds. The goal is to find a value
𝑣1 and a value 𝑣 such that 𝑡1 reduces to 𝑣1 and “[𝑥 → 𝑣1] 𝑡2” reduces to 𝑣, and such
that “𝑃 ⌈𝑣⌉” holds.

By induction hypothesis applied to “J𝑡1K∅ 𝑃 ′”, there exists a value 𝑣1 such that
𝑡1 ⇓: 𝑣1 and 𝑃 ′ ⌈𝑣1⌉. Because typed reduction preserves typing, the value 𝑣1 has the
same type as 𝑡1, namely 𝑇1. Instantiating the variable 𝑋 from the assumption with
the value ⌈𝑣1⌉ gives “J𝑡2K(𝑥 ↦→⌈𝑣1⌉) 𝑃 ”. By the substitution lemma, this proposition
is equivalent to “J[𝑥 → 𝑣1] 𝑡2K∅ 𝑃 ”. Note that the term [𝑥 → 𝑣1] 𝑡2 is well-typed by
the substitution lemma. The application of the induction hypothesis to the term
[𝑥 → 𝑣1] 𝑡2 asserts the existence of a value 𝑣 of type 𝑇 such that ([𝑥 → 𝑣1] 𝑡2) ⇓: 𝑣
and such that 𝑃 ⌈𝑣⌉, as required.

Generalization to polymorphic let-bindings Let 𝑆 be a shorthand for ∀𝐴.𝑇1,
which is the type of 𝑥. The characteristic formula asserts that there exists a predicate
𝑃 ′ of type “∀𝐴.(V𝑇1W → Prop)” such that “∀𝐴. J𝑡1K∅ (𝑃 ′𝐴)” holds, and such that,
for any X of type V𝑆W satisfying the proposition “∀𝐴. (𝑃 ′𝐴 (𝑋 𝐴))”, the proposition
“J𝑡2K(𝑥 ↦→𝑋) 𝑃 ” holds. The goal is to find a value 𝑣1 and a value 𝑣 such that 𝑡1 reduces
to 𝑣1 and “[𝑥 → Λ𝐴. 𝑣1] 𝑡2” reduces to 𝑣, and such that “𝑃 ⌈𝑣⌉” holds.

Let 𝐴 be some type variables. The induction hypothesis for “J𝑡1K∅ (𝑃 ′𝐴)” asserts
there exists a value 𝑣1 of type 𝑇1 such that 𝑡1 ⇓: 𝑣1 and (𝑃 ′𝐴) ⌈𝑣1⌉. Now, I instantiate
the variable 𝑋 from the assumption with the polymorphic value ⌈Λ𝐴. 𝑣1⌉, of type

122 CHAPTER 6. SOUNDNESS AND COMPLETENESS

∀𝐴.V𝑇1W. Note that, by definition of the decoding of polymorphic values, 𝑋 is also
equal to 𝜆𝐴. ⌈𝑣1⌉.

At this point, we need to prove the premise “∀𝐴. (𝑃 ′𝐴) (𝑋 𝐴)”. Let 𝒯 be some
type variables. The goal is to prove “(𝑃 ′ 𝒯) (𝑋 𝒯)”. Substituting 𝐴 with 𝒯 in the
proposition (𝑃 ′𝐴) ⌈𝑣1⌉ gives (𝑃 ′ 𝒯) ([𝐴 → 𝒯] ⌈𝑣1⌉). To conclude, it suffices to prove
that 𝑋 𝒯 is equal to [𝐴 → 𝒯] ⌈𝑣1⌉. This fact holds because 𝑋 is equal to 𝜆𝐴. ⌈𝑣1⌉.

Now that we have proved the premise “∀𝐴. (𝑃 ′𝐴) (𝑋 𝐴)”, we need to find the
value 𝑣 to which “[𝑥 → Λ𝐴. 𝑣1] 𝑡2” reduces. Given the instantiation of 𝑋, the
assumption “J𝑡2K(𝑥 ↦→𝑋) 𝑃 ” is equivalent to “J𝑡2K(𝑥 ↦→⌈Λ𝐴. 𝑣1⌉) 𝑃 ”. By the substitution
lemma, this proposition is equivalent to “J[𝑥 → Λ𝐴. 𝑣1] 𝑡2K∅ 𝑃 ”. The conclusion then
follows from the application of the induction hypothesis to the term [𝑥 → Λ𝐴. 𝑣1] 𝑡2.

Generalization to polymorphic functions This proof directly generalizes that
given for non-polymorphic functions. As before, the term 𝑡 is of the form (let rec 𝑓 =
Λ𝐴.𝜆𝑥𝑇0 .𝑡1

𝑇1 in 𝑡2𝑇2). The assumption is the proposition ∀𝐹. ℋ ⇒ J𝑡2K(𝑓 ↦→𝐹) 𝑃 ,
where ℋ stands for:

∀𝐴.∀𝑋.∀𝑃 ′. J𝑡1K(𝑥 ↦→𝑋,𝑓 ↦→𝐹) 𝑃 ′ ⇒ AppReturns𝐹 𝑋 𝑃 ′

I instantiate the assumption with 𝐹 as ⌈𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1⌉. According to the assumption,
ℋ implies J𝑡2K(𝑓 ↦→𝐹) 𝑃 . The plan is to prove that ℋ holds, so as to later exploit the
hypothesis J𝑡2K(𝑓 ↦→𝐹) 𝑃 .

To prove ℋ, consider some arbitrary arguments 𝒯 , 𝑋 and 𝑃 ′. Let 𝑇 be a short-
hand for T𝒯 U. The hypothesis is (J[𝐴 → 𝑇] 𝑡1K(𝑥 ↦→𝑋,𝑓 ↦→𝐹) 𝑃 ′). The goal consists in
proving AppReturns𝐹 𝑋 𝑃 ′, where 𝑋 has type V[𝐴 → 𝑇]𝑇0W and 𝑃 ′ has type V[𝐴 →
𝑇]𝑇1W → Prop. Let 𝑣2 denote the value ⌊𝑋⌋. Since 𝑋 has type V[𝐴 → 𝑇]𝑇0W, the
value 𝑣2 has type [𝐴 → 𝑇]𝑇0. We know that 𝑋 is equal to ⌈𝑣2⌉ and that 𝑋 has type
V𝑇0W. The assumption becomes (J[𝐴 → 𝑇] 𝑡1K(𝑥 ↦→⌈𝑣2⌉,𝑓 ↦→⌈𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1⌉) 𝑃 ′), which, by
the substitution lemma, gives (J[𝑓 → 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1] [𝑥 → 𝑣2] [𝐴 → 𝑇] 𝑡1K∅ 𝑃 ′).

By induction hypothesis applied to the term “[𝑓 → 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1] [𝑥 → 𝑣2] [𝐴 →
𝑇] 𝑡1”, of type [𝐴 → 𝑇]𝑇1, there exists a value 𝑣′ such that the term considered
reduces to 𝑣′ and such that “𝑃 ′ ⌈𝑣′⌉” holds. We can deduce the typed reduc-
tion judgment “((𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1) 𝑣2) ⇓: 𝑣′”, because the argument 𝑣2 has the type
[𝐴 → 𝑇]𝑇0 and the result 𝑣′ is of type [𝐴 → 𝑇]𝑇1. Exploiting the definition
of AppEval, we can deduce AppEval ⌈𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1⌉ ⌈𝑣2⌉ ⌈𝑣′⌉. The conclusion of ℋ,
namely AppReturns𝐹 𝑋 𝑃 ′, follows from the latter proposition and from the assump-
tion “𝑃 ′ ⌈𝑣′⌉”. The remaining of the proof is like in the case of non-polymorphic
functions. �

Corollary 6.2.1 (Soundness for integer results) Let 𝑡 be a closed typed term
of type int and let 𝑛 be an integer. Let 𝑡 denote the term obtained by stripping type
annotations out of 𝑡.

J 𝑡 K∅ (= 𝑛) ⇒ 𝑡 ⇓ 𝑛

6.2. SOUNDNESS 123

Proof Apply the soundness theorem with 𝑃 instantiated as the predicate (= 𝑛),
and use the fact that typed reductions entail untyped reductions. �

6.2.2 Soundness of generated axioms

The proof of soundness of the generated axioms involves Hilbert’s epsilon operator.
Let me recall how it works. Given a predicate 𝑃 of type 𝐴 → Prop, where the type 𝐴
is inhabited, Hilbert’s epsilon operator returns a value of type 𝐴. This value satisfies
the predicate 𝑃 if there exists at least one value of type 𝐴 satisfying 𝑃 . Otherwise,
if no value of type 𝐴 satisfy 𝑃 , then the value returned by the epsilon operator is
unspecified.

Lemma 6.2.1 (Soundness of the axioms generated for values) Consider
a top-level Caml definition “ let𝑥 = 𝑡𝑆”. The generated axiom X and the axiom X_cf
admit a sound interpretation.

Proof To start with, assume 𝑆 is a monomorphic type. I realize the axiom X by
picking a value 𝑉 of type V𝑇W such that the evaluation of 𝑡 terminates and returns
the encoding of 𝑉 .

Definition X : V𝑇W := 𝜖.
Ä
𝜆𝑉. 𝑡 ⇓: ⌊𝑉 ⌋

ä
.

Remark: the epsilon operator can be applied because the type V𝑇W has been proved
to be inhabited through the generated lemma X_safe. Note that if the term 𝑡 does
not terminate, then the value of X is unspecified.

It remains to justify the axiom X_cf. The goal is the proposition ∀𝑃. J𝑡K∅ 𝑃 ⇒
𝑃 X. To prove this implication, consider a particular post-condition 𝑃 and assume
J𝑡K∅ 𝑃 . The goal is to prove 𝑃 X. By the soundness theorem, J𝑡K∅ 𝑃 implies the
existence of a value 𝑣 such that 𝑃 ⌈𝑣⌉ and 𝑡 ⇓: 𝑣. Thus, there exists at least one
value 𝑉 , namely ⌈𝑣⌉, such that the proposition 𝑡 ⇓: ⌊𝑉 ⌋ holds. Indeed, the value
⌊𝑉 ⌋ is equal to 𝑣. As a consequence, the epsilon operator returns a value 𝑋 such
that the proposition 𝑡 ⇓: ⌊𝑋⌋ holds. By determinacy of typed reductions, ⌊𝑋⌋ is
equal to 𝑣. So, 𝑋 is equal to ⌈𝑣⌉. The conclusion 𝑃 𝑋 is therefore derivable from
𝑃 ⌈𝑣⌉.

Generalization to polymorphic definitions The proof in this case generalizes
the previous proof by adding quantification over polymorphic type variables. Let
∀𝐴.𝑇 be the form of 𝑆. The type scheme V𝑆W takes the form ∀𝐴.V𝑇W.

Definition X : V𝑆W := 𝜆𝐴. 𝜖. (𝜆(𝑉 : V𝑇W). 𝑡 ⇓: ⌊𝑉 ⌋).

Recall that the value 𝑋 is specified through monomorphic instances of a predicate
𝑃 of type ∀𝐴.(V𝑇W → Prop). To justify the axiom X_cf, the goal is to prove:

∀𝑃. ∀𝐴. J𝑡K∅ (𝑃 𝐴) ⇒ (𝑃 𝐴) (X𝐴)

124 CHAPTER 6. SOUNDNESS AND COMPLETENESS

Consider some arbitrary types 𝒯 , and let 𝑇 denote T𝒯 U. The goal is to prove that
the assumption “J [𝐴 → 𝑇] 𝑡 K∅ (𝑃 𝒯)” implies the proposition “(𝑃 𝒯) (X 𝒯)”.

The soundness theorem applied to the term [𝐴 → 𝑇] 𝑡 of type [𝐴 → 𝑇]𝑇 gives
the existence of a value 𝑣 of type [𝐴 → 𝑇]𝑇 such that 𝑃 𝒯 ⌈𝑣⌉ and [𝐴 → 𝑇] 𝑡 ⇓: 𝑣.
Therefore, there exists at least one value 𝑉 , namely ⌈𝑣⌉, such that the proposition
𝑡 ⇓: ⌊𝑉 ⌋ holds. As a consequence, the definition of X 𝒯 , shown below, yields a value
𝑉 ′ such that the proposition [𝐴 → 𝑇] 𝑡 ⇓: ⌊𝑉 ′⌋ holds.

X 𝒯 = 𝜖. (𝜆(𝑉 : V[𝐴 → 𝑇]𝑇W). ([𝐴 → 𝑇] 𝑡) ⇓: ⌊𝑉 ⌋)

Hence, [𝐴 → 𝑇] 𝑡 ⇓: ⌊X 𝒯 ⌋. By determinacy of typed reductions, ⌊X 𝒯 ⌋ is equal to 𝑣.
So X 𝒯 is equal to ⌈𝑣⌉. The conclusion 𝑃 𝒯 (X 𝒯) thus follows from the fact 𝑃 𝒯 ⌈𝑣⌉,
which comes from the earlier application of the soundness theorem. �

Lemma 6.2.2 (Soundness of the axioms generated for functions) Consider
a top-level Caml function defined as follows “ let rec 𝑓 = Λ𝐴.𝜆𝑥1 . . . 𝑥𝑛.𝑡”. The gen-
erated axiom F and the axiom F_cf admit a sound interpretation.

Proof I show that the generated axioms are consequences of the axioms gener-
ated for the equivalent definition “ let 𝑓 = (let rec 𝑓 = Λ𝐴.𝜆𝑥1 . . . 𝑥𝑛.𝑡 in 𝑓)”, for
which the previous soundness lemma applies. The goal is to prove the proposi-
tion “body𝐴 𝐹 𝑋1 . . . 𝑋𝑛 = J 𝑡 K(𝑓 ↦→F,𝑥𝑖 ↦→𝑋𝑖)”. To that end, I exploit the axiom
generated for the declaration “ let 𝑓 = (let rec 𝑓 = 𝜆𝑥1 . . . 𝑥𝑛. 𝑡 in 𝑓)”, which is the
proposition “∀𝑃. Jlet rec 𝑓 = 𝜆𝑥1 . . . 𝑥𝑛. 𝑡 in 𝑓K∅ 𝑃 ⇒ 𝑃 𝐹 ”. I apply this assumption
with 𝑃 instantiated as

𝜆𝐺. body𝐴 𝐺 𝑋1 . . . 𝑋𝑛 = J 𝑡 K(𝑓 ↦→G,𝑥𝑖 ↦→𝑋𝑖)

It remains to prove the premise “Jlet rec 𝑓 = 𝜆𝑥1 . . . 𝑥𝑛. 𝑡 in 𝑓K∅ 𝑃 ”. By definition
of the characteristic formula of a function definition, this proposition unfolds to
“∀𝐹 ′. (body𝐴 𝐹 ′ 𝑋1 . . . 𝑋𝑛 = J 𝑡 K(𝑓 ↦→F’,𝑥𝑖 ↦→𝑋𝑖)) ⇒ 𝑃 𝐹 ′”, which, given the defini-
tion of 𝑃 , can be reformulated as the tautology “∀𝐹 ′. 𝑃 𝐹 ′ ⇒ 𝑃 𝐹 ′”. �

6.3 Completeness

From a high-level point of view, the completeness theorem asserts that any correct
program can be proved correct using characteristic formulae. More precisely, the
theorem asserts that characteristic formulae are always precise and expressive enough
to formally establish the behavior of any Caml program. For example, if a given
Caml program computes an integer 𝑛, then one can prove that the characteristic
formula of that program holds of the post-condition (= 𝑛). More generally, the
characteristic formula of a program always holds of the most-general specification of
its output, a notion formalized in this section.

6.3. COMPLETENESS 125

6.3.1 Labelling of function closures

The CFML library is built upon three axioms: the constant Func, the predicate
AppEval, and a lemma asserting that AppEval is deterministic. In the proof of sound-
ness, I have given a concrete interpretation of those axioms. However, to establish
completeness, those axioms must remain abstract because the end-user cannot ex-
ploit any assumption about them. Since the interpretation of the type Func can no
longer be used to relate values of type Func with the function closure they describe, I
rely on a notion of correct labelling for relating values of type Func with the function
closures they correspond to. The notions of labelling and of correct labelling are
explained in what follows.

Consider a function definition (let rec 𝑓 = Λ𝐴.𝜆𝑥.𝑡 in 𝑡′). The body description
associated with the definition of 𝑓 is recalled next.

∀𝐴. ∀𝑋.∀𝑃. (J 𝑡 K(𝑥↦→𝑋,𝑓 ↦→𝐹) 𝑃) ⇒ AppReturns𝐹 𝑋 𝑃

This proposition is the only available assumption for reasoning about applications of
the function 𝑓 in the term 𝑡′. The notion of labelling is used to relate this assumption,
which is expressed in terms of a constant 𝐹 of type Func, with the function closure
𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡, which gets substituted in the continuation 𝑡′ during the execution of the
program. In short, I tag the function closure 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡 with the label 𝐹 , writing
(𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡){𝐹} to denote this association, and I then define the decoding of the
value (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡){𝐹} as the constant 𝐹 . This labelling technique makes it possible
to exploit the substitution lemma when reasoning on function definitions, through
the following equality.

J 𝑡′ K(𝑓 ↦→𝐹) = J [𝑓 → (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡){𝐹}] 𝑡′ K∅

Labelled terms are like typed terms except that every function closure is labelled
with a value of type Func. I let 𝑡 stand for a copy of a typed term 𝑡 in which all
function closures are labelled. Similarly I use the notation 𝑣 for labelled values. The
formal grammars are shown next.

Definition 6.3.1 (Labelled terms and values)

𝑣 := 𝑥𝑇 | 𝑛 | 𝐷𝑇 (𝑣, . . . , 𝑣) | (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡){𝐹}

�̃� := Λ𝐴. 𝑣

𝑡 := 𝑣 | 𝑣 𝑣 | crash | if 𝑣 then 𝑡 else 𝑡 |
let𝑥 = Λ𝐴. 𝑡 in 𝑡 | let rec 𝑓 = Λ𝐴.𝜆𝑥.𝑡 in 𝑡

Given a labelled term 𝑡, one can recover the corresponding typed term 𝑡 by strip-
ping the labels out of function closures. Formally, the stripping function is called
strip_labels, so the typed term 𝑡 associated with 𝑡 is written strip_labels 𝑡.

The decoding of a labelled function closure is formally defined as shown below.
Note that the decoding context Γ is ignored, since a function closure is always closed.

126 CHAPTER 6. SOUNDNESS AND COMPLETENESS

Definition 6.3.2 (Decoding of a labelled function) Let (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡){𝐹} be a
function closure labelled with a constant 𝐹 be a constant of type Func, and let Γ be
a decoding context.

⌈(𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡){𝐹}⌉Γ ≡ 𝐹

The construction of characteristic formulae involves applications of the decoding
operators. Since decoding now applies to labelled values, characteristic formulae
need to be applied to labelled terms. So, in the proof of completeness, characteristic
formulae take the form J 𝑡 K.

The central invariant of the proof of completeness is the notion of correct labelling.
A function (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡){𝐹} is said to be correctly labelled if the body description of
that function, in which the function is being referred to as 𝐹 , has been provided as
assumption at a previous point in the characteristic formula. The notion of correct
labelling is formalized through the definition of the predicate called body, as shown
next.

Definition 6.3.3 (Correct labelling of a function)

body (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡){𝐹} ≡ (∀𝐴. ∀𝑋.∀𝑃. J 𝑡 K(𝑥 ↦→𝑋,𝑓 ↦→𝐹) 𝑃 ⇒ AppReturns𝐹 𝑋 𝑃)

A labelled term 𝑡 is then said to be correctly labelled if, for any function closure
(𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)

{𝐹} that occurs in 𝑡, the proposition “body (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)
{𝐹}” does

hold. Moreover, the term 𝑡 is said to be correctly labelled with values from a set
𝐸 when 𝑡 is correctly labelled and all the labels involved in 𝑡 belong to the set 𝐸.
The ability to quantify over all the labels occurring in a labelled term is needed for
the proofs. The correct labelling of 𝑡 with values from the set 𝐸 is captured by the
proposition “ labels 𝐸 𝑡”, defined next.2

Definition 6.3.4 (Correct labelling of a term) Let 𝑡 be a labelled term and let
𝐸 be a set of Coq values of type Func.

labels 𝐸 𝑡 ≡
Ç

For any labelled function (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)
{𝐹} occuring in 𝑡,

𝐹 ∈ 𝐸 ∧ body (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)
{𝐹}

å
The same definition may be applied to values. For example, “ labels 𝐸 𝑣” indicates
that the value 𝑣 is correctly labelled with constants from the set 𝐸.

A few immediate properties about the predicate labels are used in proofs. First,
a source program 𝑡 does not contain any closure, so “ labels ∅ 𝑡” holds. Second,
“ labels 𝐸 𝑡” is preserved when the set 𝐸 grows into a bigger set. Third, if “ labels 𝐸 𝑡”
holds then, for any subterm 𝑡′ of 𝑡, “ labels 𝐸 𝑡′” holds as well. Finally, the notion
of correct labelling is stable through substitution: if “ labels 𝐸 𝑡” and “ labels 𝐸 �̃�”
holds, then “ labels 𝐸 ([𝑥 → �̃�] 𝑡)” holds as well.

2The definition of the predicate labels is stated using a meta-level quantification of the form “for
any labelled function occurring in 𝑡”. Alternatively, this meta-level quantification could be replaced
with an inductive definition that follows the structure of 𝑡.

6.3. COMPLETENESS 127

6.3.2 Most-general specifications

The next step towards stating and proving the completeness theorem is the definition
of the notion of most-general specification of a value. Characteristic formulae allow
to specify the result 𝑣 of the evaluation of a term 𝑡 with utmost accuracy, except
for the functions that are contained in 𝑣. Indeed, the best knowledge that can be
gathered about a function from a characteristic formula is the body description of
that function. In particular, it is not possible to state properties about the source
code of a function closure.

So, the most-general specification of a typed value 𝑣 of type 𝑇 is a predicate of
type “V𝑇W → Prop”, written mgs 𝑣, that describes the shape of the value 𝑣, except
for the functions it contains. Functions are instead described using the predicate
labels introduced in the previous section. More precisely, the predicate “mgs 𝑣” holds
of a Coq value 𝑉 if there exist a set 𝐸 of Coq values of type Func and a labelling
𝑣 of 𝑣 such that 𝑣 is correctly labelled with constants from 𝐸 and 𝑉 is equal to the
decoding of ⌈𝑣⌉.

Definition 6.3.5 (Most-general specification of a value) Let 𝑣 be a well-typed
value.

mgs 𝑣 ≡ 𝜆𝑉. ∃𝐸. ∃𝑣. 𝑣 = strip_labels 𝑣 ∧ labels 𝐸 𝑣 ∧ 𝑉 = ⌈𝑣⌉

For example, the most general specification of the Caml value (3, id(int→int)),
which is made of a pair of the integer 3 and of the identity function for integers
(𝜇𝑓.Λ.𝜆𝑥int.𝑥int), is defined as:

𝜆(𝑉 : int×Func). ∃𝐸. ∃𝑣. strip_labels 𝑣 = (3, id(int→int)) ∧ labels 𝐸 𝑣 ∧ 𝑉 = ⌈𝑣⌉

The labelled valued 𝑣 must be of the form (3, id(int→int){𝐹}) for some constant 𝐹 that
belongs to 𝐸. The assumption “ labels 𝐸 𝑣” is equivalent to body (𝜇𝑓.𝜆𝑥int.𝑥int){𝐹}.
Since the set 𝐸 need not contain any constant other than 𝐹 , the most-general
specification of the value (3, id(int→int)) can be simplified by quantifying directly on
𝐹 , as shown next.

𝜆(𝑉 : int × Func). ∃(𝐹 : Func). body (𝜇𝑓.𝜆𝑥int.𝑥int){𝐹} ∧ 𝑉 = (3, 𝐹)

Thus, the most-general specification of the Caml value (3, id) holds of a Coq value
𝑉 if and only if 𝑉 is of the form (3, 𝐹) for some constant 𝐹 of type Func that
admits the body description of the identity function for integers. Note that 𝐹 is
not specified as being equal to be the identity function. In fact, the statement “𝐹
is equal to (𝜇𝑓.Λ.𝜆𝑥int.𝑥int)” is not even well-formed, because Func is here viewed
as an abstract data type. The value 𝐹 is only specified extensionally, through the
predicate AppReturns involved in the definition of the predicate body.

128 CHAPTER 6. SOUNDNESS AND COMPLETENESS

6.3.3 Completeness theorem

Theorem 6.3.1 (Completeness in terms of most-general specifications)
Let 𝑡 be a closed, well-typed term of type 𝑇 that does not contain any function closure,
and let 𝑣 be a value.

𝑡 ⇓: 𝑣 ⇒ J 𝑡 K∅ (mgs 𝑣)

Proof I prove by induction on the derivation of the typed reduction judgment 𝑡 ⇓: 𝑣
that, for any correct labelling 𝑡 of 𝑡 using constants for some set 𝐸, under the
assumption that 𝑡 is well-typed, the characteristic formula of 𝑡 holds of the most-
general specification of 𝑣.

𝑡 ⇓: 𝑣 ⇒ ∀𝐸. ∀𝑡. 𝑡 = strip_labels 𝑡 ∧ labels 𝐸 𝑡 ∧ (⊢ 𝑡) ⇒ J 𝑡 K∅ (mgs 𝑣)

There is one proof case for each possible reduction rule. In each proof case, I describe
the form of the term 𝑡 and the premises of the assumption 𝑡 ⇓: 𝑣.

∙ Case 𝑡 = 𝑣. By hypothesis, there exists a labelling 𝑡 of the term 𝑡 such that
“ labels 𝐸 𝑡” holds. Since 𝑡 is equal to 𝑣, there also exists a labelling 𝑣 of the value 𝑣
such that “ labels 𝐸 𝑣” holds. The goal is (mgs 𝑣) ⌈𝑣⌉. By definition, this proposition
is equivalent to the following proposition, which is true.

∃𝐸. ∃𝑣. strip_labels 𝑣 = 𝑣 ∧ labels 𝐸 𝑣 ∧ ⌈𝑣⌉ = ⌈𝑣⌉

∙ Case 𝑡 = (let rec 𝑓 = Λ𝐴.𝜆𝑥.𝑡1 in 𝑡2), with a premise asserting that the term
“[𝑓 → 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1] 𝑡2” reduces to 𝑣. By hypothesis, there exists a set 𝐸, a la-
belling 𝑡1 of 𝑡1 and a labelling 𝑡2 of 𝑡2 such that the propositions “ labels 𝐸 𝑡1” and
“ labels 𝐸 𝑡2” hold. The proof obligation is “∀𝐹. ℋ ⇒ J𝑡2K(𝑓 ↦→𝐹) (mgs 𝑣)”, where
ℋ, the body description of the function, corresponds exactly to the proposition
body (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)

{𝐹}.
Given a particular variable 𝐹 of type Func, the goal simplifies to

body (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)
{𝐹} ⇒ J𝑡2K(𝑓 ↦→𝐹) (mgs 𝑣)

Since the decoding of (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)
{𝐹} is equal to 𝐹 , the substitution lemma

(adapted to labelled terms) allows us to rewrite the formula J𝑡2K(𝑓 ↦→𝐹) into J[𝑓 →
(𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)

{𝐹}] 𝑡2K∅.
It remains to invoke the induction hypothesis on the reduction sequence [𝑓 →

𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1] 𝑡2 ⇓: 𝑣. To that end, it suffices to check that [𝑓 → (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)
{𝐹}] 𝑡2

is correctly labelled with values from the set 𝐸∪{𝐹}. Indeed, a label occurring in the
term [𝑓 → (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)

{𝐹}] 𝑡2 either occurs in 𝑡1, which is labelled with constants
from 𝐸, or occurs in 𝑡2, which is also labelled with constants from 𝐸, or is equal to
the label 𝐹 .

∙ Case 𝑡 = ((𝜇𝑓.Λ𝐴.𝜆𝑥𝑇0 .𝑡1
𝑇1) (𝑣2

𝑇2))𝑇 , with a premise asserting that the term
“[𝑓 → 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1] [𝑥 → 𝑣2] [𝐴 → 𝑇] 𝑡1” reduces to 𝑣, and two premises relating
types: 𝑇2 = [𝐴 → 𝑇]𝑇0 and 𝑇 = [𝐴 → 𝑇]𝑇1. Let 𝑡 be the labelling of 𝑡. The
hypothesis “ labels 𝐸 𝑡” implies that there exist a set 𝐸, a value 𝐹 from that set,

6.3. COMPLETENESS 129

and two labellings 𝑡1 and 𝑣2 such that the following facts are true: (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)
is labelled with 𝐹 in 𝑡, the proposition body (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)

{𝐹} holds, “ labels 𝐸 𝑡1”
holds, and “ labels 𝐸 𝑣2” holds.

Since the decoding of the labelled value (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)
{𝐹} is the constant 𝐹 ,

the goal J 𝑡 K∅ (mgs 𝑣) is equivalent to “AppReturns𝐹 ⌈𝑣2⌉ (mgs 𝑣)”. To prove this
goal, I apply the assumption body (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)

{𝐹}, which asserts the following
proposition.

∀𝐴. ∀𝑋.∀𝑃. (J𝑡1K(𝑥↦→𝑋,𝑓 ↦→𝐹) 𝑃) ⇒ AppReturns𝐹 𝑋 𝑃

The types 𝐴 are instantiated as V𝑇W, 𝑋 is instantiated as ⌈𝑣2⌉ and 𝑃 is instanti-
ated as (mgs 𝑣). It remains to prove the premise, which is the proposition “J[𝐴 →
𝑇] 𝑡1K(𝑥 ↦→⌈𝑣2⌉,𝑓 ↦→𝐹) (mgs 𝑣)”. Through the substitution lemma, it becomes “J[𝑓 →
(𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)

{𝐹}] [𝑥 → 𝑣2] [𝐴 → 𝑇] 𝑡1K∅ (mgs 𝑣)”. This proposition follows from the
induction hypothesis applied to the typed term “[𝑓 → 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1] [𝑥 → 𝑣2] [𝐴 →
𝑇] 𝑡1”. This term is well-typed and admits the type 𝑇 because the type of 𝑣2 is equal
to [𝐴 → 𝑇]𝑇0 and because 𝑇 is equal to [𝐴 → 𝑇]𝑇1. Note that the set of labels
occurring in “[𝑓 → (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)

{𝐹}] [𝑥 → 𝑣2] [𝐴 → 𝑇] 𝑡1” is included in the set of
labels occurring in 𝑡, which is of the form ((𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)

{𝐹} 𝑣2).
∙ Case 𝑡 = (if 𝑣 then 𝑡1 else 𝑡2). Because 𝑡 is well-typed, the value 𝑣 has type bool,

so it is either equal to true or false. In both cases, the conclusion follows from the
induction hypothesis.

∙ Case 𝑡 = (let𝑥 = Λ𝐴. 𝑡1 in 𝑡2), with two premises asserting “𝑡1 ⇓: 𝑣1” and
“([𝑥 → Λ𝐴. 𝑣1] 𝑡2) ⇓: 𝑣”. By hypothesis, there exist a set 𝐸, a labelling 𝑡1 of 𝑡1 and
a labelling 𝑡2 of 𝑡2 such that the propositions “ labels 𝐸 𝑡1” and “ labels 𝐸 𝑡2” hold.
Let me start with the case where 𝑥 admits a monomorphic type, that is, assuming
𝐴 to be empty. In this case, the goal is:

∃𝑃 ′. J𝑡1K∅ 𝑃 ′ ∧ (∀𝑋. 𝑃 ′𝑋 ⇒ J𝑡2K(𝑥 ↦→𝑋) (mgs 𝑣))

To prove this goal, I instantiate 𝑃 ′ as the predicate mgs 𝑣1. The first subgoal,
“J𝑡1K∅ (mgs 𝑣1)”, follows from the induction hypothesis applied to the reduction “𝑡1 ⇓:

𝑣1” and to the set 𝐸.
It remains to prove the second subgoal. Let 𝑇1 be the type of the variable 𝑥,

and let 𝑋 be a value of type V𝑇1W such that “mgs 𝑣1𝑋” holds. By definition of
mgs, there exists a set 𝐸′ and a labelling 𝑣1 of 𝑣1 such that “ labels 𝐸′ 𝑣1” and
“𝑋 = ⌈𝑣1⌉”. The goal is to prove J𝑡2K(𝑥 ↦→𝑋) (mgs 𝑣). By the substitution lemma,
the formula “J𝑡2K(𝑥 ↦→𝑋)” is equivalent to “J[𝑥 → 𝑣1] 𝑡2K∅”. So it remains to prove
“J[𝑥 → 𝑣1] 𝑡2K∅ (mgs 𝑣)”. This proposition follows from the induction hypothesis
applied to the reduction derivation “([𝑥 → 𝑣1] 𝑡2) ⇓: 𝑣” and to the 𝐸 ∪𝐸′, which we
know correctly labels the term [𝑥 → 𝑣1] 𝑡2 thanks to the hypotheses “ labels 𝐸′ 𝑣1”
and “ labels 𝐸 𝑡2”.

130 CHAPTER 6. SOUNDNESS AND COMPLETENESS

Generalization to polymorphic let-bindings The variable 𝑥 admits the poly-
morphic type ∀𝐴. 𝑇1. The goal is:

∃𝑃 ′.

®
∀𝐴. J 𝑡1 K∅ (𝑃 ′𝐴)

∀𝑋. (∀𝐴. (𝑃 ′𝐴 (𝑋 𝐴))) ⇒ J 𝑡2 K(𝑥 ↦→𝑋) (mgs 𝑣)

I instantiate 𝑃 ′ as 𝜆𝐴.mgs 𝑣1, which admits the type ∀𝐴.(V𝑇1W → Prop), as ex-
pected. For the first subgoal, let 𝒯 be some arbitrary types and let 𝑇 denote the
list T𝑇U. We have to prove J [𝐴 → 𝑇] 𝑡1 K∅ (𝑃 ′ 𝒯). The post-condition 𝑃 ′ 𝒯 is equal
to [𝐴 → 𝒯] (mgs 𝑣1). It is straightforward to show that this proposition is equal
to mgs ([𝐴 → 𝑇] 𝑣1). The proof obligation J [𝐴 → 𝑇] 𝑡1 K∅ (mgs ([𝐴 → 𝑇] 𝑣1)), is
obtained by applying the induction hypothesis to “([𝐴 → 𝑇] 𝑡1) ⇓: ([𝐴 → 𝑇] 𝑣1)”,
which is a direct consequence of the hypothesis “𝑡1 ⇓: 𝑣1”.

The second proof obligation is harder to establish. Let 𝑋 be a Coq value of
type ∀𝐴. V𝑇1W that satisfies the proposition ∀𝐴. (𝑃 ′𝐴 (𝑋 𝐴)). The goal is to prove
J 𝑡2 K(𝑥 ↦→𝑋) (mgs 𝑣). The difficulty comes from the fact that we do not have an as-
sumption about the polymorphic value 𝑋, but instead have different assumptions
for every monomorphic instances of 𝑋. For this reason, the proof involves reasoning
separately on each of the occurrences of the polymorphic variable 𝑥 in the term
𝑡2. So, let 𝑡′2 be a copy of 𝑡2 in which the occurrences of 𝑥 have been renamed
using a finite set of names 𝑥𝑖, such that each 𝑥𝑖 occurs exactly once in 𝑡′2. The
goal becomes “J 𝑡′2 K(𝑥1 ↦→𝑋,...,𝑥𝑛 ↦→𝑋) (mgs 𝑣)”. The plan is to build an family of la-
bellings (𝑣𝑖1)𝑖∈[1..𝑛] for the value 𝑣1 such that the goal can be rewritten in the form
“J[𝑥𝑖 → 𝑣𝑖1] 𝑡

′
2K∅ (mgs 𝑣)”.

Consider a particular occurrence of the variable 𝑥𝑖 in 𝑡′2. It takes the form of
a type application “𝑥𝑖 𝑇 ”, for some types 𝑇 . The decoding of this occurrence gives
“𝑋 𝑇 ”. Let 𝒯 stand for the list of Coq types V𝑇W. Instantiating the hypothesis
about 𝑋 on the types 𝒯 gives (𝑃 ′ 𝒯) (𝑋 𝒯). By definition of 𝑃 ′, the value 𝑋 𝒯 thus
satisfies the predicate [𝐴 → 𝒯] (mgs 𝑣1), which is the same as mgs ([𝐴 → 𝑇] 𝑣1). So,
there exist a set 𝐸𝑖 and a labelling 𝑣𝑖1 of the value 𝑣1 such that “ labels 𝐸𝑖 𝑣

𝑖
1” holds

and such that 𝑋 𝒯 is equal to ⌈𝑣𝑖1⌉.
To summarize the reasoning of the previous paragraph, the decoding of the

occurrence of the variable 𝑥𝑖 in the context (𝑥1 ↦→ 𝑋, . . . , 𝑥𝑛 ↦→ 𝑋) is the same
as the decoding of the labelled value 𝑣𝑖1 in the empty context. It follows that the
characteristic formula “J 𝑡′2 K(𝑥1 ↦→𝑋,...,𝑥𝑛 ↦→𝑋)” can be rewritten into “J[𝑥𝑖 → 𝑣𝑖1] 𝑡

′
2K∅”.

Furthermore, there exists a family of sets (𝐸𝑖)𝑖∈[1..𝑛] such that “ labels 𝐸𝑖 𝑣
𝑖
1” holds

for every index 𝑖.
It remains to prove “J[𝑥𝑖 → 𝑣𝑖1] 𝑡

′
2K∅ (mgs 𝑣)”. This conclusion follows from the

induction hypothesis applied to the term [𝑥 → Λ𝐴. 𝑣1] 𝑡2 and to the set 𝐸 ∪ (
⋃

𝑖𝐸𝑖).
Indeed, the term [𝑥𝑖 → Λ𝐴. 𝑣𝑖1] 𝑡

′
2 is a labelling of the term [𝑥 → Λ𝐴. 𝑣1] 𝑡2. Also,

a label that occurs in the labelled term [𝑥𝑖 → 𝑣𝑖1] 𝑡
′
2 belongs to the set 𝐸 ∪ (

⋃
𝑖𝐸𝑖).

Indeed such a label occurs either in 𝑡2 (which contains the same labels as 𝑡′2) or in
one of the labelled values 𝑣𝑖1, and we have “ labels 𝐸 𝑡2” as well as “ labels 𝐸𝑖 𝑣

𝑖
1” for

every index 𝑖. �

6.4. QUANTIFICATION OVER TYPE 131

6.3.4 Completeness for integer results

A simpler statement of the completeness theorem can be devised for a program that
produces an integer. If a term 𝑡 evaluates to an integer 𝑛 that satisfies a predicate
𝑃 , then the characteristic formula of 𝑡 holds of 𝑃 .

Corollary 6.3.1 (Completeness for integer results) Consider a program well-
typed in ML and that admits the type int. Let 𝑡 be the term obtained by replacing ML
type annotations with the corresponding weak-ML type annotations in that program,
and let 𝑡 denote the corresponding raw term. Let 𝑛 be an integer and let 𝑃 be a
predicate on integers. Then,

𝑡 ⇓ 𝑛 ∧ 𝑃 𝑛 ⇒ J 𝑡 K∅ 𝑃

Proof The reduction 𝑡 ⇓ 𝑛 starts on a term well-typed in ML, So there exists a
corresponding typed reduction 𝑡 ⇓: 𝑛. The completeness theorem applied to this
assumption gives “J 𝑡 K∅ (mgs 𝑛)”. To show “J 𝑡 K∅ 𝑃 ”, I apply the weakening lemma
for characteristic formulae. I remains to show that, for any value 𝑉 of type int, the
proposition “mgs 𝑛𝑉 ” implies “𝑃 𝑉 ”. By definition of mgs, there exists a set 𝐸 and
a labelling �̃� of 𝑛 such that labels 𝐸 �̃� and 𝑉 = 𝑛. Since 𝑛 is an integer, the labelling
can be ignored completely. So, 𝑉 = ⌈𝑛⌉ and the conclusion “𝑃 𝑉 ” then follows from
the hypothesis 𝑃 𝑛. �

6.4 Quantification over Type

Polymorphism has been treated by quantifying over logical type variables. I have
not yet discussed what exactly is the sort of these variables in the logic. A tempting
solution would be to assign them the sort Type. In Coq, Type is the sort of all types
from the logic. However, type variables used to represent polymorphism are only
meant to range over reflected types, i.e. types of the form V𝑇W. Thus, it seems that
one ought to assign type variables the sort RType, defined as {𝐴 : Type | ∃𝑇.𝐴 =
V𝑇W }.

Of course, I would provide RType as an abstract definition, since the fact that
types correspond to reflected types need not be exploited in proofs. A question
naturally arises: since RType is an abstract type, would it remain sound and complete
to use the sort Type instead of the sort RType as a sort for type variables? The answer
is positive. The purpose of this section is to justify this claim.

6.4.1 Case study: the identity function

To start with, I consider an example suggesting how replacing the quantification over
RType with a quantification over Type affects characteristic formulae. Consider the
identity function id, defined as 𝜆𝑥. 𝑥. This function is polymorphic: it admits the
type “∀𝐴.𝐴 → 𝐴” in Caml. Hence, the assumption provided by a characteristic

132 CHAPTER 6. SOUNDNESS AND COMPLETENESS

formula for this function involves a universal quantification over the type 𝐴.

∀(𝐴 : RType). ∀(𝑋 : 𝐴). ∀(𝑃 : 𝐴 → Prop). 𝑃 𝑋 ⇒ AppReturns id𝑋 𝑃

For the sake of studying this formula, let me reformulate it into the following equiv-
alent proposition3, which is expressed in terms of the predicate AppEval instead of
the high-level predicate AppReturns.

∀(𝐴 : RType). ∀(𝑋 : 𝐴). AppEval id𝑋𝑋

Is this statement still sound if we change the sort of 𝐴 from RType to Type?
Let me first recall why the statement with RType is sound. Let 𝐴 be a type of

sort RType and let 𝑋 be a Coq value of type 𝐴. The goal is to prove AppEval id𝑋𝑋.
By definition of AppEval, it is equivalent to the proposition (⌊id⌋ ⌊𝑋⌋) ⇓: ⌊𝑋⌋. The
encoding of 𝑋, written ⌊𝐴⌋, is a well-typed program value 𝑣. Thus, ⌊𝑋⌋ is equal
to 𝑣. The goal then simplifies to ((𝜆𝑥. 𝑥) 𝑣) ⇓: 𝑣, which is correct according to the
semantics.

Now, if 𝐴 is of sort Type and 𝑋 is an arbitrary Coq value of type 𝐴, then there
does not necessarily exist a program value 𝑣 that corresponds to 𝑋. Intuitively,
however, it would make sense to say that applying the identify function to some
exotic object returns the exact same object. The object in question is not a real
program value, but this is not a problem because it is never inspected in any way by
the polymorphic identity function. The purpose of the next section is to formally
justify this intuition.

6.4.2 Formalization of exotic values

I extend the grammar of program values with exotic values, in such a way as to
obtain a bijection between the set of all Coq values and the set of all well-typed
program values, for a suitably-defined notion of typing of exotic values. First, the
grammar of values is extended with exotic values, written “exoT𝑉 ”, where T stands
for a Coq type and 𝑉 is a Coq value of type T. Note that T ranges over all Coq
types, whereas 𝒯 only ranges over Coq types of the form V𝑇W. The grammar of
weak-ML types is extended with exotic types, written “ExoticT”.

𝑣 := . . . | exoT𝑉
𝑇 := . . . | ExoticT

A Coq type T is said to be exotic, written “ is_exoticT”, if the head constructor of
𝐴 does not correspond to a type constructor that exists in weak-ML. Let C denote

3Given the definition of AppReturns, the equivalence to be established is

AppEval id𝑋𝑋 ⇐⇒ (∀𝑃. 𝑃 𝑋 ⇒ (∃𝑌.AppEval id𝑋 𝑌 ∧ 𝑃 𝑌))

From left to right, instantiate 𝑌 as 𝑋. From right to left, instantiate 𝑃 as 𝜆𝑌. (𝑌 = 𝑋).

6.4. QUANTIFICATION OVER TYPE 133

the set of type constructors introduced through algebraic data type definitions. The
definition of is_exotic is formalized as follows.4

is_exoticT ≡

T ̸= Int
T ̸= Func
∀𝐶 ∈ C . ∀T. T ̸= 𝐶 T

An exotic value “exoT𝑉 ” admits the type “ExoticT” if and only if the Coq type T
is exotic.

is_exoticT
∆ ⊢ (exoT𝑉)(ExoticT)

Let T be an exotic Coq type. The programming language type “ExoticT” is
reflected in the logic as the type T. The decoding of an exotic value “exoT𝑉 ” is 𝑉 ,
and, reciprocally, the encoding of a Coq value 𝑉 of some exotic type T is the exotic
value “exoT𝑉 ”.

VExoticTW ≡ T
TTU ≡ ExoticT
⌈exoT𝑉 ⌉ ≡ 𝑉

⌊𝑉 : T⌋ ≡ exoT𝑉

 when “ is_exoticT” holds

Observe that the side-condition “ is_exoticT” ensures that the definition of TTU
and of ⌊𝑉 : T⌋ do not overlap with existing definitions. The soundness of the
introduction of exotic values is captured through the following lemma.

Lemma 6.4.1 (Inverse functions with exotic values) Under the definitions ex-
tended with exotic types and exotic values, the operator T·U is the inverse of V·W and
⌊·⌋ is the inverse of ⌈·⌉.

Proof Follows directly from the definitions of the operations on exotic types and
exotic values. �

To summarize, the treatment of exotic values described in this section allows
for a bijection to be established between the set of all Coq types and the set of
all weak-ML types, and between the set of all Coq values and the set of all typed
program values. This bijection justifies the quantification over the sort Type of the
type variables that occur in characteristic formulae.

4Technically, one should also check that the type constructors are applied to list of types of the
appropriate arity. Partially-applied type constructors are also treated as exotic values.

Chapter 7

Proofs for the imperative setting

Through the previous chapter, I have established the soundness and com-
pleteness of characteristic formulae for pure programs. The matter of this
chapter is the generalization of those results to the case of imperative
programs. To that end, the theorems need to be extended with heap
descriptions. Two additional difficulties related to the treatment of mu-
table state arise. Firstly, the statement of the soundness theorem needs
to quantify over the pieces of heap that have been framed out before
reasoning on a given characteristic formula. Secondly, the statement of
the completeness theorem needs to account for the fact that characteris-
tic formulae do not reveal the actual address of the memory cells being
allocated. The most general post-condition that can be proved from a
characteristic formula is thus a specification of the output value and of
the output heap up to renaming of locations.

7.1 Additional definitions and lemmas

7.1.1 Typing and translation of memory stores

Reasoning on characteristic formulae involves the notion of typed memory store,
written �̂�, and that of well-typed memory stores. I define those notions next, and
then describe the bijection between the set of well-typed memory stores and the set
of values of type Heap.

A memory store 𝑚 is a map from locations to closed values. A typed store �̂�
is a map from locations to typed values. So, if 𝑙 is a location in the domain of �̂�,
then �̂�[𝑙] denotes the typed value stored in �̂� at that location. A typed store �̂� is
said to be well-typed in weak-ML, written ⊢ �̂�, if all the values stored in �̂� are
well-typed. Formally,

(⊢ �̂�) ≡ ∀𝑙 ∈ dom(�̂�). (⊢ �̂�[𝑙])

A well-typed memory store �̂� can be decoded into a value of type Heap. To that
end, it suffices to decode each of the values stored in �̂�. Reciprocally, a value of

134

7.1. ADDITIONAL DEFINITIONS AND LEMMAS 135

type Heap can be encoded into a well-typed memory store by encoding all the values
that it contains. The formalization of this definition is slightly complicated by the
fact that Heap is actually a map from locations to dependent pairs made of a Coq
type and of a Coq value of that type. The formal definition is shown next. Note
that the decoding of typed stores only applies to well-typed stores.

Definition 7.1.1 (Decoding and encoding of memory stores)

⌈�̂�⌉ ≡ ℎ where
®

dom(ℎ) = dom(�̂�)
�̂�[𝑙] = 𝑣𝑇 ⇒ ℎ[𝑙] = (V𝑇W, ⌈𝑣𝑇 ⌉)

⌊ℎ⌋ ≡ �̂� where
®

dom(�̂�) = dom(ℎ)
ℎ[𝑙] = (𝒯 , 𝑉 : 𝒯) ⇒ �̂�[𝑙] = ⌊𝑉 ⌋

It is straightforward to check that ⌊⌈�̂�⌉⌋ is equal to �̂� for any well-typed memory
store �̂�, and that ⌈⌊ℎ⌋⌉ is equal to ℎ for any heap ℎ.

Remark: for the presentation to be complete, the decoding and the encoding
operations needs to be extended to locations, as follows.

VlocW ≡ Loc
TLocU ≡ loc

⌈𝑙loc⌉ ≡ (𝑙 : Loc)

⌊𝑙 : Loc⌋ ≡ 𝑙loc

7.1.2 Typed reduction judgment

The typed version of the reduction judgment is defined in a similar manner as in
the purely functional setting, except that it now involves typed memory stores. The
judgment takes the form 𝑡/�̂� ⇓: 𝑣′/�̂�′ , asserting that the evaluation of the typed 𝑡
in the typed store �̂� terminates and returns the typed value 𝑣′ in the typed store
�̂�′. The inductive rules appear in Figure 7.1. Observe that the semantics of the
primitive functions ref, get and set consists in reading and writing typed values in a
typed store. The reduction rule for get includes a premise asserting that the value
at location 𝑙 in the store has the same type as the term “get 𝑙”.

As before, the typed reduction judgment is deterministic and preserves typing.

Lemma 7.1.1 (Determinacy of typed reductions)

𝑡/�̂� ⇓: 𝑣′1/�̂�′
1

∧ 𝑡/�̂� ⇓: 𝑣′2/�̂�′
2

⇒ 𝑣′1 = 𝑣′2 ∧ �̂�′
1 = �̂�′

2

Proof Similar proof as in the purely-functional setting (Lemma 6.1.7). �

Lemma 7.1.2 (Typed reductions preserve typing) Let 𝑡 be a typed term,
let 𝑣 be a typed value, let �̂� and �̂� be two typed stores, let 𝑇 be a type and let
𝐵 denote a list of free type variables.

𝐵 ⊢ 𝑡𝑇 ∧ ⊢ �̂� ∧ 𝑡/�̂� ⇓: 𝑣/�̂�′ ⇒ 𝐵 ⊢ 𝑣𝑇 ∧ ⊢ �̂�′

136 CHAPTER 7. PROOFS FOR THE IMPERATIVE SETTING

𝑣/�̂� ⇓: 𝑣/�̂�

𝑡1/�̂�1
⇓: 𝑣1/�̂�2

([𝑥 → 𝑣1] 𝑡2)/�̂�2
⇓: 𝑣/�̂�3

(let𝑥 = 𝑡1 in 𝑡2)/�̂�1
⇓: 𝑣/�̂�3

([𝑥 → �̂�1] 𝑡2)/�̂� ⇓: 𝑣/�̂�′

(let𝑥 = �̂�1 in 𝑡2)/�̂� ⇓: 𝑣/�̂�′

([𝑓 → 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1] 𝑡2)/�̂� ⇓: 𝑣/�̂�′

(let rec 𝑓 = Λ𝐴.𝜆𝑥.𝑡1 in 𝑡2)/�̂� ⇓: 𝑣/�̂�′

𝑇2 = [𝐴 → 𝑇]𝑇0 𝑇 = [𝐴 → 𝑇]𝑇1

([𝑓 → 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1] [𝑥 → 𝑣2] [𝐴 → 𝑇] 𝑡1)/�̂� ⇓: 𝑣/�̂�′

((𝜇𝑓.Λ𝐴.𝜆𝑥𝑇0 .𝑡1
𝑇1)func (𝑣2

𝑇2))𝑇 /�̂� ⇓: 𝑣/�̂�′

𝑙 = 1 + max(dom(�̂�))

(ref 𝑣)loc
/�̂� ⇓: (𝑙 loc)/�̂�⊎[𝑙 ↦→𝑣]

𝑙 ∈ dom(�̂�) 𝑣𝑇 = �̂�[𝑙]

(get (𝑙 loc))𝑇 /�̂� ⇓: 𝑣𝑇 /�̂�

𝑙 ∈ dom(�̂�)

(set (𝑙 loc) 𝑣)unit
/�̂� ⇓: tt unit

/(�̂�[𝑙 ↦→𝑣])

Figure 7.1: Typed reduction judgment for imperative programs

Proof The proof is similar to that of the purely-functional setting (Lemma 6.1.6),
except when the store is involved in the reduction.

∙ Case (ref 𝑣)loc
/�̂� ⇓: (𝑙 loc)/�̂�⊎[𝑙 ↦→𝑣]. By assumption, 𝑣 and �̂� are well-typed, so

the extended store �̂� ⊎ [𝑙 ↦→ 𝑣] is also well-typed.
∙ Case (get (𝑙 loc))𝑇 /�̂� ⇓: 𝑣𝑇 /�̂�, where 𝑣𝑇 = �̂�[𝑙]. From the premise (⊢ �̂�), we

get (⊢ �̂�[𝑙]). Since 𝑣𝑇 is equal to �̂�[𝑙], the value 𝑣𝑇 is well-typed in the empty
context.

∙ Case (set (𝑙 loc) 𝑣)unit
/�̂� ⇓: tt unit

/(�̂�[𝑙 ↦→𝑣]) By assumption, 𝑣 and �̂� are well-typed,
so the updated store �̂�[𝑙 ↦→ 𝑣] is also well-typed. �

To state the soundness and the completeness theorem, I introduce the convenient
notation 𝑡/ℎ ⇓: 𝑣′/ℎ′ , which asserts that the term 𝑡 in a store equal to the encoding
of the heap ℎ evaluates to a value 𝑣′ in a store equal to the encoding of the heap ℎ′.

Definition 7.1.2 (Typed reduction judgment on heaps)

(𝑡/ℎ ⇓: 𝑣′/ℎ′) ≡ (𝑡/⌊ℎ⌋ ⇓: 𝑣′/⌊ℎ′⌋)

7.1.3 Interpretation and properties of AppEval

The proposition AppEval𝐹 𝑉 ℎ𝑉 ′ ℎ′ captures the fact that application of the en-
coding of 𝐹 to the encoding of 𝑉 in the store described by the heap ℎ terminates
and returns the encoding of 𝑉 ′ in the store described by the heap ℎ′. The type of
AppEval is recalled next.

AppEval : ∀𝐴𝐵. Func → 𝐴 → Heap → 𝐵 → Heap → Prop

The axiom AppEval is interpreted as follows.

7.1. ADDITIONAL DEFINITIONS AND LEMMAS 137

Definition 7.1.3 (Definition of AppEval) Let 𝐹 be a value of type Func, 𝑉 be a
value of type 𝒯 , 𝑉 ′ be a value of type 𝒯 ′, and ℎ and ℎ′ be two heaps.

AppEval𝒯 ,𝒯 ′ 𝐹 𝑉 ℎ𝑉 ′ ℎ ≡ (⌊𝐹 ⌋ ⌊𝑉 ⌋)/⌊ℎ⌋ ⇓: ⌊𝑉 ′⌋/⌊ℎ′⌋

Remark: one can also present this definition as an inductive rule, as follows.

(𝑓 𝑣)/�̂� ⇓: 𝑣′/�̂�′

AppEval ⌈𝑓⌉ ⌈𝑣⌉ ⌈�̂�⌉⌈𝑣′⌉⌈�̂�′⌉

The determinacy lemma associated with the definition of AppEval follows directly
from the determinacy of typed reductions.

Lemma 7.1.3 (Determinacy) For any types 𝒯 and 𝒯 ′, for any Coq value 𝐹 of
type Func, any Coq value 𝑉 of type 𝒯 , any two Coq values 𝑉 ′

1 and 𝑉 ′
2 of type 𝒯 ′,

any heap ℎ and any two heaps ℎ′1 and ℎ′2.

AppEval𝐹 𝑉 ℎ𝑉 ′
1 ℎ

′
1 ∧ AppEval𝐹 𝑉 ℎ𝑉 ′

2 ℎ
′
2 ⇒ 𝑉 ′

1 = 𝑉 ′
2 ∧ ℎ′1 = ℎ′2

7.1.4 Elimination of n-ary functions

In the previous chapter, I have exploited the fact that the characteristic formula of a
n-ary application is equivalent to the characteristic formula of the encoding of that
application in terms of unary applications. I could thereby eliminate reference to
Spec𝑛 and work entirely in terms of AppReturns1. This result is partially broken by
the introduction of the predicate AppPure which is used to handle partial applica-
tions. In short, when describing a function of two arguments, the predicate Spec2
from the imperative setting captures a stronger property than a proposition stated
only in terms of AppReturns1, because Spec2 forbids any modification to the store
on the application of the first argument.

The direct characteristic formula for imperative n-ary functions gives a stronger
hypothesis about functions than a description in terms of unary functions, so it
leads to a logically-weaker characteristic formula. So, some work is needed in the
proof of the soundness theorem for justifying the correctness of the assumption given
for n-ary functions. The following lemma, proved in Coq, explains how the body
description for the function “ let rec 𝑓 = 𝜆𝑥𝑦. 𝑡”, expressed in terms of Spec2, can be
related to a combination of AppPure and AppReturns1, which is quite similar to the
body description associated with the function “ let rec 𝑓 = 𝜆𝑥. (let rec 𝑔 = 𝜆𝑦. 𝑡 in 𝑔)”.

Lemma 7.1.4 (Spec2-to-AppPure-and-AppReturns1)

(∀𝐾. is_spec2𝐾 ∧ (∀𝑥 𝑦. 𝐾 𝑥 𝑦 (𝐺𝑥𝑦)) ⇒ Spec2𝑓𝐾)
⇐⇒ (∀𝑥𝑃. (∀𝑔. ℋ ⇒ 𝑃 𝑔) ⇒ AppPure𝑓𝑥𝑃)

where ℋ ≡ (∀𝑦 𝐻 ′𝑄′. (𝐺𝑥𝑦)𝐻 ′𝑄′ ⇒ AppReturns1 𝑔 𝑦 𝐻 ′𝑄′)

138 CHAPTER 7. PROOFS FOR THE IMPERATIVE SETTING

However, there is no further complication in the completeness theorem, because
what can be proved with a given assumption about functions can also be proved
with a stronger assumption about functions. The following lemma states that the
body description for the function “ let rec 𝑓 = 𝜆𝑥𝑦. 𝑡”, is strictly stronger than that
of “ let rec 𝑓 = 𝜆𝑥. (let rec 𝑔 = 𝜆𝑦. 𝑡 in 𝑔)”. Below, ℋ stands for the same proposition
as in the previous lemma.

Lemma 7.1.5 (Spec2-to-AppReturns1)

(∀𝐾. is_spec2𝐾 ∧ (∀𝑥 𝑦. 𝐾 𝑥 𝑦 (𝐺𝑥𝑦)) ⇒ Spec2𝑓𝐾)
⇒ (∀𝑥𝐻 𝑄. (∀𝑔. ℋ ⇒ 𝐻 B 𝑄𝑔) ⇒ AppPure𝑓𝑥𝐻𝑄)

In summary, the proofs in this chapter need only be concerned with unary func-
tions except for one proof case in the soundness theorem, in which I prove the
correctness of the body description “∀𝑥𝑃. (∀𝑔. ℋ ⇒ 𝑃 𝑔) ⇒ AppPure𝑓𝑥𝑃 ”, which
describes a functions of arity two. The treatment of higher arities does not raise any
further difficulty.

7.2 Soundness

A simple statement of the soundness theorem can be given for complete executions.
Assume that a term 𝑡 is executed in an empty memory store and that its charac-
teristic formula satisfies a post-condition 𝑄. Then, the term 𝑡 produces a value 𝑣
and a heap of the form ℎ + ℎ′ such that the proposition “𝑄 ⌈𝑣⌉ℎ” holds. The heap
ℎ′ corresponds to the data that has been allocated and then discarded during the
reasoning.

Theorem 7.2.1 (Soundness for complete executions) Let 𝑡 be a term carry-
ing weak-ML type annotations, let 𝑇 be the type of 𝑡, and let 𝑄 be a post-condition
of type V𝑇W → Hprop.

⊢ 𝑡 ∧ J𝑡K∅ [] 𝑄 ⇒ ∃𝑣 ℎ ℎ′. 𝑡/∅ ⇓: 𝑣/(ℎ+ℎ′) ∧ 𝑄 ⌈𝑣⌉ ℎ

Remark: the assumption ⊢ 𝑡 and the conclusion 𝑡/∅ ⇓: 𝑣/(ℎ+ℎ′) ensure that the
output value 𝑣 is well-typed and admits the same type as 𝑡.

Here again, representation predicates are defined in Coq and their properties are
proved in Coq, so they are not involved at any point in the soundness proof. Indeed,
all heap predicates of the form 𝑥 𝑆 𝑋 are ultimately defined in terms of heap
predicates of the form 𝑙 →˓ 𝑣. Only the latter appear in the proof of soundness,
which follows.

The general statement of soundness, upon which the induction is conducted,
relies on an intermediate definition. The proposition “sound 𝑡ℱ” asserts that the
formula ℱ is a correct description of the behavior of the term 𝑡. The definition of the
predicate “sound” involves a reduction sequence of the form 𝑡/ℎ𝑖+ℎ𝑘

⇓: 𝑣/ℎ𝑓+ℎ𝑘+ℎ𝑔
,

where ℎ𝑖 and ℎ𝑓 correspond to the initial and final heap which are involved in the

7.2. SOUNDNESS 139

specification of the term 𝑡, where ℎ𝑘 corresponds to the pieces of heap that have
been framed out, and where ℎ𝑔 corresponds to the piece of heap being discarded
during the reasoning on the execution of the term 𝑡.

Definition 7.2.1 (Soundness of a formula) Let 𝑡 be a well-typed term of type 𝑇 ,
and let ℱ be a predicate of type “Hprop → (V𝑇W → Hprop) → Prop”.

sound 𝑡ℱ ≡ ∀𝐻 𝑄ℎ𝑖 ℎ𝑘.

ℱ 𝐻 𝑄
ℎ𝑖 ⊥ ℎ𝑘
𝐻 ℎ𝑖

⇒ ∃𝑣 ℎ𝑓 ℎ𝑔.

ℎ𝑓 ⊥ ℎ𝑘 ⊥ ℎ𝑔
𝑡/ℎ𝑖+ℎ𝑘

⇓: 𝑣/ℎ𝑓+ℎ𝑘+ℎ𝑔

𝑄 ⌈𝑣⌉ ℎ𝑓

The soundness theorem then asserts that the characteristic formula of a well-
typed term is a correct description of the behavior of that term, in the sense that
the proposition “sound 𝑡 J 𝑡 K∅” holds. Before proving the soundness theorem, I first
establish a lemma explaining how to eliminate the application of the predicate local
that appears at the head of the characteristic formula J 𝑡 K∅.

Lemma 7.2.1 (Elimination of local) Let 𝑡 be a well-typed term of type 𝑇 , and
let ℱ be a predicate of type “Hprop → (V𝑇W → Hprop) → Prop”. Then,

sound 𝑡ℱ ⇒ sound 𝑡 (localℱ)

Proof To prove the lemma, let 𝐻 and 𝑄 be pre- and post-conditions such that
“ localℱ 𝐻 𝑄” holds and let ℎ𝑖 and ℎ𝑘 be two disjoint heaps such that 𝐻 ℎ𝑖 holds.
The goal is to find the 𝑣, ℎ𝑓 and ℎ𝑔.

Unfolding the definition of local in the assumption “ localℱ 𝐻 𝑄” and specializing
the assumption to the heap ℎ𝑖, which satisfies 𝐻, we obtain some predicates 𝐻𝑖, 𝐻𝑘,
𝐻𝑔 and 𝑄𝑓 such that (𝐻𝑖 *𝐻𝑘) holds of the heap ℎ𝑖 and such that the propositions
“ℱ 𝐻𝑖𝑄𝑓 ” and “𝑄𝑓 ⋆𝐻𝑘 I 𝑄⋆𝐻𝑔” hold. By definition of the separating conjunction,
the heap ℎ𝑖 can be decomposed into two disjoint heaps ℎ′𝑖 and ℎ′𝑘 such that ℎ′𝑖 satisfies
𝐻𝑖 and ℎ′𝑘 satisfies 𝐻𝑘 and ℎ𝑘 = ℎ′𝑖 + ℎ′𝑘.

The application of the hypothesis “sound 𝑡ℱ” to the heap ℎ′𝑖 satisfying 𝐻𝑖 and to
the heap (ℎ𝑘 +ℎ′𝑘) give the existence of a value 𝑣 and two heaps ℎ′𝑓 and ℎ′𝑔 satisfying
the following properties.

𝑡/ℎ′
𝑖+ℎ𝑘+ℎ′

𝑘
⇓: 𝑣/ℎ′

𝑓
+ℎ𝑘+ℎ′

𝑘
+ℎ′

𝑔
∧ 𝑄𝑓 ⌈𝑣⌉ ℎ′𝑓

The property 𝑄𝑓 ⌈𝑣⌉ ℎ′𝑓 can be exploited with the hypothesis “𝑄𝑓 ⋆𝐻𝑘 I 𝑄⋆𝐻𝑔”.
Since the heap (ℎ′𝑓 +ℎ′𝑘) satisfies the heap predicate ((𝑄𝑓 ⌈𝑣⌉) *𝐻𝑘), the same heap
also satisfies the predicate ((𝑄 ⌈𝑣⌉) *𝐻𝑔). By definition of separating conjunction,
there exist two heaps ℎ𝑓 and ℎ′′𝑔 such that “𝑄 ⌈𝑣⌉ ℎ𝑓 ” holds and such that the fact
𝐻𝑔 ℎ

′′
𝑔 and the equality ℎ′𝑓 + ℎ′𝑘 = ℎ𝑓 + ℎ′′𝑔 are satisfied.

To conclude, I instantiate ℎ𝑔 as ℎ′𝑔+ℎ′′𝑔 . It remains to prove 𝑡/ℎ𝑖+ℎ𝑘
⇓: 𝑣/ℎ𝑓+ℎ𝑘+ℎ𝑔

.
Given the typed reduction sequence obtained earlier on, it suffices to check the
equalities ℎ𝑖 = ℎ′𝑖 + ℎ′𝑘 and ℎ′𝑓 + ℎ′𝑘 + ℎ′𝑔 = ℎ𝑓 + ℎ𝑔. �

140 CHAPTER 7. PROOFS FOR THE IMPERATIVE SETTING

Theorem 7.2.2 (Soundness) Let 𝑡 be a typed term.

⊢ 𝑡 ⇒ sound 𝑡 J 𝑡 K∅

Proof The proof goes by induction on the size of the term 𝑡. Here again, all values
have size one. Given a typed term 𝑡 of type 𝑇 , its characteristic formula takes the
form localℱ . I have proved in the previous lemma that, to establish the soundness
of localℱ , it suffices to establish the soundness of ℱ . It therefore remains to study
the formula ℱ , whose shape depends on the term 𝑡.

Let 𝐻 be a pre-condition and 𝑄 be a post-condition for 𝑡. For each form that 𝑡
might take, we consider two disjoint heaps ℎ𝑖 and ℎ𝑘 such that the proposition 𝐻 ℎ𝑖
holds. The assumption ℱ 𝐻 𝑄 depends on the shape of 𝑡. The particular form of
the assumption is stated in every proof case. The goal is to find a value 𝑣 and two
heaps ℎ𝑓 and ℎ𝑔 satisfying 𝑡/ℎ𝑖+ℎ𝑘

⇓: 𝑣/ℎ𝑓+ℎ𝑘+ℎ𝑔
and 𝑄 ⌈𝑣⌉ ℎ𝑓

∙ Case “𝑡 = 𝑣”. The assumption is 𝐻 B 𝑄 ⌈𝑣⌉. Instantiate 𝑣 as 𝑣, ℎ𝑓 as ℎ𝑖 and ℎ𝑔
as the empty heap. It is immediate to check the first conclusion 𝑣/ℎ𝑖+ℎ𝑘

⇓: 𝑣/ℎ𝑖+ℎ𝑘
.

The second conclusion, 𝑄 ⌈𝑣⌉ ℎ𝑖 is obtained by applying the assumption 𝐻 B 𝑄 ⌈𝑣⌉
to the assumption “𝐻 ℎ𝑖”.

∙ Case “𝑡 = ((𝑓 func))(𝑣′𝑇
′
)𝑇 ”. The assumption coming from the characteristic

formula is AppReturnsV𝑇 ′W,V𝑇W ⌈𝑓⌉ ⌈𝑣′⌉𝐻 𝑄. Unfolding the definition of AppReturns
and exploiting it on the heaps ℎ𝑖 and ℎ𝑘 gives the existence of a value 𝑉 of type
V𝑇W and of two heaps ℎ𝑓 and ℎ𝑔 satisfying the next two properties.

AppEvalV𝑇 ′W,V𝑇W ⌈𝑓⌉ ⌈𝑣⌉ (ℎ𝑖 + ℎ𝑘)𝑉 (ℎ𝑓 + ℎ𝑘 + ℎ𝑔) ∧ 𝑄𝑉 ℎ𝑓

Let 𝑣 denote ⌊𝑉 ⌋. The value 𝑉 is equal to ⌈𝑣⌉. So, 𝑄 ⌈𝑣⌉ℎ𝑓 holds. Moreover, by
definition of AppEval, the reduction (𝑓 𝑣′)/(ℎ𝑖+ℎ𝑘) ⇓

: 𝑣/(ℎ𝑓+ℎ𝑘+ℎ𝑔) holds.
∙ Case “𝑡 = (let𝑥 = 𝑡1 in 𝑡2)”. The assumption coming from the characteristic

formula is
∃𝑄′. J𝑡1K𝐻 𝑄′ ∧ ∀𝑋. J𝑡2K(𝑥 ↦→𝑋) (𝑄′𝑋)𝑄

Consider a particular post-condition 𝑄′. The induction hypothesis applied to 𝑡1
asserts the existence of a value 𝑣1 and of two heaps ℎ′𝑓 and ℎ′𝑔 satisfying 𝑡1/ℎ𝑖+ℎ𝑘

⇓:

𝑣1/ℎ′
𝑓
+ℎ𝑘+ℎ′

𝑔
and 𝑄 ⌈𝑣1⌉ ℎ′𝑓 .

I then exploit the second hypothesis by instantiating 𝑋 as ⌈𝑣1⌉ I obtaining the
proposition J𝑡2K(𝑥 ↦→⌈𝑣1⌉) (𝑄′ ⌈𝑣1⌉)𝑄. By the substitution lemma, this is equivalent to
J[𝑥 → 𝑣1] 𝑡2K∅ (𝑄′ ⌈𝑣1⌉)𝑄. I apply the induction hypothesis on the heap ℎ′𝑓 , which
satisfies the precondition 𝑄′ ⌈𝑣1⌉, and to the heap ℎ𝑘 + ℎ′𝑔, obtaining the existence
of a value 𝑣 and of two heaps ℎ𝑓 and ℎ′′𝑔 satisfying 𝑡2/ℎ′

𝑓
+ℎ𝑘+ℎ′

𝑔
⇓: 𝑣/ℎ𝑓+ℎ𝑘+ℎ′

𝑔+ℎ′′
𝑔

and
𝑄 ⌈𝑣⌉ ℎ𝑓 . Instantiating ℎ𝑔 as ℎ𝑘 + ℎ𝑔 gives the derivation “𝑡/ℎ𝑖+ℎ𝑘

⇓: 𝑣/ℎ𝑓+ℎ𝑘+ℎ𝑔
”.

∙ Case “𝑡 = (𝑡1 ; 𝑡2)”. A sequence can be viewed as a let-binding of the form
“ let𝑥 = 𝑡1 in 𝑡2” for a fresh name 𝑥. The soundness of the treatment of let-bindings
can therefore be deduced from the previous proof case.

7.2. SOUNDNESS 141

∙ Case “𝑡 = (let𝑥 = �̂�1 in 𝑡2)”. The assumption coming from the characteristic
formula is

∀𝑋. 𝑋 = ⌈�̂�1⌉ ⇒ J𝑡2K(𝑥 ↦→𝑋)𝐻 𝑄

I instantiate 𝑋 with ⌈�̂�1⌉. The premise is immediately verified and the conclusion
gives J𝑡2K(𝑥 ↦→⌈�̂�1⌉)𝐻 𝑄. By the substitution lemma, this proposition is equivalent
to J[𝑥 → �̂�1] 𝑡2K∅𝐻 𝑄. The conclusion then follows directly from the induction
hypothesis.

∙ Case “𝑡 = crash”. Like in the purely-functional setting.
∙ Case “𝑡 = if ⌈𝑣⌉ then 𝑡1 else 𝑡2”. Similar proof as in the purely-functional setting.
∙ Case “𝑡 = (let rec 𝑓 = Λ𝐴.𝜆𝑥.𝑡1 in 𝑡2)”. The assumption of the theorem is

“∀𝐹. ℋ ⇒ J 𝑡2 K(𝑓 ↦→𝐹)𝐻 𝑄”, where ℋ is

∀𝐴𝑋𝐻 ′𝑄′. J 𝑡1 K(𝑥 ↦→𝑋,𝑓 ↦→𝐹)𝐻 ′𝑄′ ⇒ AppReturns𝐹 𝑋 𝐻 ′𝑄′.

I instantiate the assumption with 𝐹 as ⌈𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1⌉. So, ℋ implies J𝑡2K(𝑓 ↦→𝐹) 𝑃 .
The next step consists in proving that ℋ holds. Consider particular values for

𝒯 , 𝑋, 𝐻 ′ and 𝑄′, let 𝑇 denote T𝒯 U, and assume J [𝐴 → 𝑇] 𝑡1 K(𝑥 ↦→𝑋,𝑓 ↦→𝐹)𝐻 ′𝑄′.
The goal is AppReturns𝐹 𝑋 𝐻 ′𝑄′. Let 𝑣1 denote ⌊𝑋⌋. So, ⌈𝑣1⌉ is equal to 𝑋.
By the substitution lemma, the assumption J 𝑡1 K(𝑥 ↦→𝑋,𝑓 ↦→𝐹)𝐻 ′𝑄′ is equivalent to
J [𝑓 → 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1] [𝑥 → 𝑣1] [𝐴 → 𝑇] 𝑡1 K∅𝐻 ′𝑄′. Thereafter, let 𝑡′ denote the term
[𝑓 → 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1] [𝑥 → 𝑣1] [𝐴 → 𝑇] 𝑡1. The assumption becomes J𝑡′K∅𝐻 ′𝑄′.

By definition of AppReturns, the goal AppReturns𝐹 𝑋 𝐻 ′𝑄′ is equivalent to:

∀ℎ′𝑖 ℎ′𝑘. (ℎ′𝑖 ⊥ ℎ′𝑘) ∧ 𝐻 ′ ℎ′𝑖 ⇒
∃𝑉 ′ ℎ′𝑓 ℎ

′
𝑔. AppEval𝐹 𝑋 (ℎ′𝑖 + ℎ′𝑘)𝑉 ′ (ℎ′𝑓 + ℎ′𝑘 + ℎ′𝑔) ∧ 𝑄′ 𝑉 ′ ℎ′𝑓

Given particular heaps ℎ′𝑖 and ℎ′𝑘, I invoke the induction hypothesis on them and
on the hypothesis J𝑡′K∅𝐻 ′𝑄′. This gives the existence of a value 𝑣′ of type 𝑇 ′ and
of two heaps ℎ′𝑓 and ℎ′𝑔 satisfying 𝑡′/ℎ′

𝑖+ℎ′
𝑘
⇓: 𝑣′/ℎ′

𝑓
+ℎ′

𝑘
+ℎ′

𝑔
and 𝑄′ ⌈𝑣′⌉ ℎ′𝑓 . I then

instantiate 𝑉 ′ as ⌈𝑣′⌉. The proof obligation 𝑄′ 𝑉 ′ ℎ′𝑓 is immediately solved. There
remains to establish the following fact.

AppEval ⌈𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1⌉ ⌈𝑣1⌉ (ℎ′𝑖 + ℎ′𝑘) ⌈𝑣′⌉ (ℎ′𝑓 + ℎ′𝑘 + ℎ′𝑔)

By definition of AppEval, this fact is “((𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1) 𝑣1)/ℎ′
𝑖+ℎ′

𝑘
⇓: 𝑣′/ℎ′

𝑓
+ℎ′

𝑘
+ℎ′

𝑔
”.

The reduction holds because contraction of the redex “((𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1) 𝑣1)” is equal
“(𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1) 𝑣1”, which reduces towards 𝑡′.

Now that we have proved the premise ℋ, we can conclude using the assumption
J 𝑡2 K(𝑓 ↦→𝐹)𝐻 𝑄. By the substitution lemma, we get J [𝑓 → 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1] 𝑡2 K∅𝐻 𝑄.
The conclusion follow from the induction hypothesis applied to that fact.

∙ Case “𝑡 = (let rec 𝑓 = Λ𝐴.𝜆𝑥𝑦.𝑡1 in 𝑡2)”. As explained earlier on (§7.1.4), I
have to prove the soundness of the body description generated for functions of two
arguments. Let 𝑓 denote the function closure “𝜇𝑓.Λ𝐴.𝜆𝑥𝑦.𝑡1”, which is the same

142 CHAPTER 7. PROOFS FOR THE IMPERATIVE SETTING

as “𝜇𝑓.Λ𝐴.𝜆𝑥.(let rec 𝑔 = 𝜆𝑦. 𝑡1 in 𝑔)”. The body description of 𝑓 is equivalent to
“∀𝐴𝑋𝑃. (∀𝐺. ℋ ⇒ 𝑃 𝐺) ⇒ AppPure⌈𝑓⌉𝑋𝑃 ”, where

ℋ ≡ (∀𝑌 𝐻 ′𝑄′. J𝑡1K(𝑥 ↦→𝑋,𝑦 ↦→𝑌)𝐻 ′𝑄′ ⇒ AppReturns1𝐺𝑌 𝐻 ′𝑄′)

Let 𝒯 be somes types, and let 𝑇 denote T𝒯 U. Let 𝑋 be a given argument and
let 𝑃 be a given predicate of type Func → Prop such that “∀𝐺. ℋ ⇒ 𝑃 𝐺”. The
goal is to prove AppPure⌈𝑓⌉𝑋𝑃 . By definition of AppPure, the goal unfolds to
“∃𝑉. (∀ℎ.AppEval ⌈𝑓⌉𝑋 ℎ𝑉 ℎ) ∧ 𝑃 𝑉 ”. In what follows, let 𝑔 denote the function
“𝜇𝑔.Λ.𝜆𝑦.[𝑥 → 𝑣] [𝐴 → 𝑇] 𝑡1”. I instantiate 𝑉 as ⌈𝑔⌉.

Let ℎ be a heap and �̂� denote ⌊ℎ⌋. Let 𝑣 denote ⌊𝑋⌋. So, 𝑋 is equal to ⌈𝑣2⌉. The
proposition “AppEval ⌈𝑓⌉𝑋 ℎ𝑉 ℎ” is equivalent to “AppEval ⌈𝑓⌉ ⌈𝑣2⌉ ⌈�̂�⌉ ⌈𝑔⌉ ⌈�̂�⌉”,
and it follows from the typed reduction sequence:

((𝜇𝑓.Λ𝐴.𝜆𝑥.(let rec 𝑔 = Λ.𝜆𝑦.𝑡1 in 𝑔)) 𝑣2)/�̂� ⇓: (𝜇𝑔.Λ.𝜆𝑦.[𝑥 → 𝑣2] [𝐴 → 𝑇] 𝑡1)/�̂�

It remains to prove 𝑃 ⌈𝑔⌉. To that end, I apply the assumption “∀𝐺. ℋ ⇒ 𝑃 𝐺”.
The goal to be established is “[𝐺 → ⌈𝑔⌉]ℋ”. Let 𝑡′1 stand for the term [𝑥 → 𝑣] [𝐴 →
𝑇] 𝑡1. Using the substitution lemma, the goal can be rewritten as:

∀𝑌 𝐻 ′𝑄′. J 𝑡′1 K(𝑦 ↦→𝑌)𝐻 ′𝑄′ ⇒ AppReturns1 ⌈𝜇𝑔.Λ.𝜆𝑦.𝑡′1⌉𝑌 𝐻 ′𝑄′

This proposition is exactly the body description of the unary function 𝑔. The sound-
ness of body description for unary functions has already been established in the
previous proof case.

∙ Case “𝑡 = (while 𝑡1 do 𝑡2)”. The assumption given by the characteristic formula
is the proposition “∀𝑅. is_local𝑅 ∧ℋ ⇒ 𝑅𝐻 𝑄”, where

ℋ ≡ ∀𝐻 ′𝑄′. Jif 𝑡1 then (𝑡2 ; |𝑅|) else ttK𝐻 ′𝑄′ ⇒ 𝑅𝐻 ′𝑄′

We know that ℎ𝑖 be a heap satisfying 𝐻, and the goal is to find two heaps ℎ𝑓 and
ℎ𝑔 such that 𝑡/ℎ𝑖+ℎ𝑘

⇓: tt/ℎ𝑓+ℎ𝑘+ℎ𝑔
and 𝑄 tt ℎ𝑓 .

The soundness of a while-loop relies on the soundness of its encoding as a recur-
sive function, called 𝑡′. It is straightforward to check that the term 𝑡′, shown next,
has exactly the same semantics as 𝑡.

𝑡′ ≡ (let rec 𝑓 = 𝜆_. (if 𝑡1 then (𝑡2 ; 𝑓 tt) else tt) in 𝑓 tt)

So, the goal reformulates as 𝑡′/ℎ𝑖+ℎ𝑘
⇓: tt/ℎ𝑓+ℎ𝑘+ℎ𝑔

and 𝑄 tt ℎ𝑓 . The induction
hypothesis applied to 𝑡′ asserts that the proposition J 𝑡′ K∅𝐻 𝑄 is a sufficient condition
for proving this goal. It thus remains to establish that the characteristic formula for
𝑡 is stronger than the characteristic formula for 𝑡′.

A partial computation of the formula J 𝑡′ K∅𝐻 𝑄 gives the proposition “∀𝑓. ℋ′ ⇒
AppReturns 𝑓 tt 𝐻 𝑄”, where

ℋ′ ≡ ∀𝐻 ′𝑄′. Jif 𝑡1 then (𝑡2 ; 𝑓 tt) else ttK∅𝐻 ′𝑄′ ⇒ AppReturns 𝑓 tt 𝐻 ′𝑄′

7.2. SOUNDNESS 143

Let 𝑓 be a Coq value of type func satisfying ℋ′. To prove AppReturns 𝑓 tt 𝐻 𝑄, I apply
the assumption “∀𝑅. is_local𝑅∧ℋ ⇒ 𝑅𝐻 𝑄” with 𝑅 instantiated as AppReturns𝑓 tt .
Note that 𝑅 is then a local predicate, as required. There remains to prove the
proposition [𝑅 → AppReturns𝑓 tt]ℋ. This proposition is exactly the assumption
ℋ′, since J |AppReturns𝑓 tt | K is the same as AppReturns𝑓 tt . After all, the fact that
[𝑅 → AppReturns𝑓 tt]ℋ matches the assumption ℋ′ follows from the design of the
characteristic formula of a while loop as (a simplified version of) the characteristic
formula of its recursive encoding.

∙ Case “𝑡 = (for𝑥 = 𝑛 to𝑛′ do 𝑡1)”. The proof of soundness for for-loops is very
similar to that given for while-loops, so I only give the main steps. The characteristic
formula for 𝑡 is “∀𝑆. is_local1 𝑆 ∧ ℋ ⇒ 𝑆 𝑎𝐻 𝑄”, where

ℋ ≡ ∀𝑖𝐻 ′𝑄′. Jif 𝑖 ≤ 𝑏 then (𝑡 ; |𝑆 (𝑖 + 1)|) else ttK𝐻 ′𝑄′ ⇒ 𝑆 𝑖𝐻 ′𝑄′

The term 𝑡′ that corresponds to the encoding of 𝑡 is defined as follows.

𝑡′ ≡ (let rec 𝑓 = 𝜆𝑖. (if 𝑖 ≤ 𝑏 then (𝑡1 ; 𝑓 (𝑖 + 1)) else tt) in 𝑓 𝑎)

The characteristic formula of 𝑡′ is “∀𝑓. ℋ′ ⇒ AppReturns 𝑓 𝑎𝐻 𝑄”, where

ℋ′ ≡ ∀𝑖𝐻 ′𝑄′. Jif 𝑖 ≤ 𝑏 then (𝑡1 ; 𝑓 (𝑖 + 1)) else ttK∅𝐻 ′𝑄′ ⇒ AppReturns 𝑓 𝑖𝐻 ′𝑄′

To prove the characteristic formula of 𝑡′ using that of 𝑡, it suffices to prove that ℋ′

implies ℋ, which is obtained by instantiating 𝑆 as AppReturns 𝑓 .

There remains to prove the soundness of the specification of the primitive func-
tions.

∙ Case ref. The specification is “Spec ref (𝜆𝑉 𝑅. 𝑅 [] (𝜆𝐿.𝐿 →˓𝒯 𝑉))”, where 𝒯
is the type of the argument 𝑉 . Considering the definition of Spec, this is equivalent
to showing that the relation “AppReturns𝒯 ,Loc ref𝑉 [] (𝜆𝐿.𝐿 →˓𝒯 𝑉)” holds for any
value 𝑉 of type 𝒯 . By definition of AppReturns, the goal is to show

∀ℎ𝑖 ℎ𝑘. (ℎ𝑖 ⊥ ℎ𝑘) ∧ []ℎ𝑖 ⇒ ∃𝐿ℎ𝑓 ℎ𝑔.
AppEval𝒯 ,Loc ref𝑉 (ℎ𝑖 + ℎ𝑘)𝐿 (ℎ𝑓 + ℎ𝑘 + ℎ𝑔) ∧ (𝐿 →˓𝒯 𝑉)ℎ𝑓

The hypothesis []ℎ𝑖 asserts that ℎ𝑖 is empty, meaning that the evaluation of ref
takes place in a heap ℎ𝑘. Let 𝑣 be equal to ⌊𝑉 ⌋. So, 𝑉 is equal to ⌈𝑣⌉. The reduction
rule for ref asserts that (ref 𝑣)Loc

/ℎ𝑘
⇓: 𝑙 loc

/ℎ𝑘⊎[𝑙 ↦→⌈𝑣⌉] holds for some location 𝑙 fresh
from the domain of ℎ𝑘. To conclude, it suffices to instantiate 𝐿 as ⌈𝑙⌉, ℎ𝑓 as the
singleton heap (𝐿 →𝒯 𝑉) and ℎ𝑔 as the empty heap.

∙ Case get. “Spec get (𝜆𝐿𝑅. ∀𝑉. 𝑅 (𝐿 →˓𝒯 𝑉) (\=𝑉 ⋆ (𝐿 →˓𝒯 𝑉)))” is the
specification, where 𝒯 is the type of 𝑉 . Considering the definition of Spec, it suffices
to prove that “AppReturnsLoc,𝒯 get𝐿 (𝐿 →˓𝒯 𝑉) (\=𝑉 ⋆ (𝐿 →˓𝒯 𝑉))” holds for any
location 𝐿 and any value 𝑉 . Let 𝐿 be a particular location and 𝑉 be a particular

144 CHAPTER 7. PROOFS FOR THE IMPERATIVE SETTING

value of type 𝒯 . By definition of AppReturns, the goal is:

∀ℎ𝑖 ℎ𝑘. (ℎ𝑖 ⊥ ℎ𝑘) ∧ (𝐿 →˓𝒯 𝑉)ℎ𝑖 ⇒

∃𝑉 ′ ℎ𝑓 ℎ𝑔.

AppEvalLoc,𝒯 get𝐿 (ℎ𝑖 + ℎ𝑘)𝑉 ′ (ℎ𝑓 + ℎ𝑘 + ℎ𝑔)

𝑉 ′ = 𝑉
(𝐿 →˓𝒯 𝑉)ℎ𝑓

To prove the goal, I instantiate 𝑉 ′ as 𝑉 , ℎ𝑓 as ℎ𝑖 and ℎ𝑔 as the empty heap.
There remains to prove AppEval get𝐿 (ℎ𝑖 + ℎ𝑘)𝑉 (ℎ𝑖 + ℎ𝑘). The hypothesis (𝐿 →˓𝒯
𝑉)ℎ𝑖 asserts that ℎ𝑖 is a singleton heap of the form (𝑙 →𝒯 𝑉). Let 𝑙 denote the
location ⌊𝐿⌋ and let 𝑣 denote the value ⌊𝑉 ⌋. The value 𝑣 has type T𝒯 U, which is
written 𝑇 in what follows. The goal can be reformulated as the following statement:
AppEvalLoc,V𝑇W get ⌈𝑙⌉ ((𝑙 → 𝑉) + ℎ𝑘) ⌈𝑣⌉ ((𝑙 → 𝑉) + ℎ𝑘). By definition of AppEval,
it suffices to prove (get 𝑙)𝑇 /(𝑙→⌈𝑣⌉)+ℎ𝑘

⇓: 𝑣𝑇 /(𝑙→⌈𝑣⌉)+ℎ𝑘
. This proposition follows

directly from the reduction rule for get.
∙ Case set. “Spec set (𝜆(𝐿, 𝑉)𝑅. ∀𝑉 ′. 𝑅 (𝐿 →˓𝒯 ′ 𝑉 ′) (# (𝐿 →˓𝒯 𝑉)))” is the

specification. The goal is to prove that “AppReturns(Loc×𝒯),Unit get (𝐿, 𝑉) (𝐿 →˓𝒯 ′

𝑉 ′) (# (𝐿 →˓𝒯 𝑉))” holds for any location 𝐿 and for any values 𝑉 and 𝑉 ′. Given
such parameters, the goal is equivalent to:

∀ℎ𝑖 ℎ𝑘. (ℎ𝑖 ⊥ ℎ𝑘) ∧ (𝐿 →˓𝒯 ′ 𝑉 ′)ℎ𝑖 ⇒

∃𝑉 ′′ ℎ𝑓 ℎ𝑔.

AppEval(Loc×𝒯),unit set (𝐿, 𝑉) (ℎ𝑖 + ℎ𝑘)𝑉 ′′ (ℎ𝑓 + ℎ𝑘 + ℎ𝑔)

𝑉 ′′ = tt
(𝐿 →˓𝒯 𝑉)ℎ𝑓

I instantiate 𝑉 ′′ as ⌈tt⌉, ℎ𝑓 as (𝐿 →𝑇 𝑉) and ℎ𝑔 as the empty heap. Let 𝑙 denote
⌊𝐿⌋, 𝑣 denote ⌊𝑉 ⌋ and 𝑣′ denote ⌊𝑉 ′⌋. The assumption (𝐿 →˓𝒯 ′ 𝑉 ′)ℎ𝑖 asserts that
ℎ𝑖 is of the form (𝑙 →𝒯 ′ 𝑣′). There remains to prove the following proposition:
AppEval set ⌈(𝑙, 𝑣)⌉ ((𝑙 → 𝑣′) + ℎ𝑘) ⌈tt⌉ ((𝑙 → 𝑣) + ℎ𝑘). This proposition follows from
the reduction rule for set, since (set 𝑙 𝑣)unit

/(𝑙→𝑣′)+ℎ𝑘
⇓: tt unit

/(𝑙→𝑣)+ℎ𝑘
.

∙ Case cmp. The proof is straightforward since cmp does not involve any reason-
ing on the heap.

7.3 Completeness

The proof of completeness of characteristic formulae for imperative programs in-
volves two additional ingredients compared with the corresponding proof from the
purely functional setting. First, it involves the notion of most-general heap spec-
ification, which asserts that, for every value stored in the heap, the most-general
specification of that value can be assumed to hold. Second, the definition of most-
general specifications needs to take into account the fact that the exact memory
address of a location cannot be deduced from characteristic formulae. Indeed, the
specification of the allocation function ref simply describes the creation of one fresh
location, but without revealing its address. As a consequence, the heap can only be

7.3. COMPLETENESS 145

specified up to renaming. The practical implication is that all the predicates become
parameterized by a finite map from program locations to program locations, written
𝛼, whose purpose is to rename all the locations occurring in values, terms and heaps.

7.3.1 Most-general specifications

The notion of labelling of terms and the definition of correct labelling with respect
to a set 𝐸 of values of type Func are the same as in the previous chapter. The
definition of body description is also the the same as before, except that it includes
a pre-condition.

Definition 7.3.1 (Body description of a labelled function)

body (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡){𝐹} ≡
∀𝐴. ∀𝑋.∀𝐻.∀𝑄. (J 𝑡 K(𝑥 ↦→𝑋,𝑓 ↦→𝐹)𝐻 𝑄) ⇒ AppReturns𝐹 𝑋 𝐻 𝑄

The most-general specification predicate from the previous chapter is recalled
next. The predicate mgs 𝑣 holds of a value 𝑉 if there exists a correct labelling 𝑣 of
the value 𝑣 with constants from some set 𝐸, such that 𝑉 is equal to the decoding
of 𝑣.

Definition 7.3.2 (Most-general specification of a value, old version) Let 𝑣
be a well-typed value.

mgs 𝑣 ≡ 𝜆𝑉. ∃𝐸. ∃𝑣. 𝑣 = strip_labels 𝑣 ∧ labels 𝐸 𝑣 ∧ 𝑉 = ⌈𝑣⌉

The definition used in this chapter extends it with a renaming map for locations,
that is, a finite map binding locations to locations. Let locs(𝑣) denote the set of
locations occurring in the value 𝑣. Let “𝛼 𝑣” denote the renaming of the locations
occurring in 𝑣 according to the map 𝛼. The new specification predicate, written
mgv 𝛼 𝑣, corresponds to the most-general specification of the value (𝛼 𝑣).

Definition 7.3.3 (Most-general specification of a value) Let 𝑣 be a well-typed
value, and 𝛼 be a map from locations to locations.

mgv 𝛼 𝑣 ≡ 𝜆𝑉. mgs (𝛼 𝑣)𝑉 ∧ locs(𝑣) ⊆ dom(𝛼)

The definition of mgv also includes a side-condition to ensure that the domain of
𝛼 covers all the locations occurring in the value 𝑣. The role of this side-condition
is to guarantee that the meaning of the predicate mgv 𝛼 𝑣 is preserved through an
extension of the map 𝛼. Indeed, when all the locations of 𝑣 are covered by 𝛼, then
for any 𝛼′ extends 𝛼, the value (𝛼′ 𝑣) is equal to the value (𝛼 𝑣).

The expression “𝛼 �̂�” denotes the application of the renaming 𝛼 both to the
domain of the map �̂� and to the values in the range of �̂�. The predicate “mgh𝛼 �̂�”
describes the most-general specification of a typed store �̂� with respect to a renam-
ing map 𝛼. If ℎ is a heap, then the proposition “mgh𝛼 �̂�ℎ” holds at the following

146 CHAPTER 7. PROOFS FOR THE IMPERATIVE SETTING

two conditions. First, the domain of ℎ should correspond to the renaming of the
domain of �̂� with respect to 𝛼. Second, for every value 𝑣 stored at the location 𝑙 in
�̂�, the value 𝑉 stored at the corresponding location 𝛼 𝑙 in ℎ should satisfy the most-
general specification of 𝑣 with respect to 𝛼. Technically, the proposition “mgv 𝛼 𝑣𝑉 ”
should hold. In the definition of mgh shown next, the value 𝑣 is being referred to as
�̂�[𝑙], and the value ℎ[𝛼 𝑙] contained in the heap ℎ is a dependent pair made of the
type 𝒯 and of the value 𝑉 of type 𝒯 .

Definition 7.3.4 (Most-general specification of a store) Let 𝑚 be a well-
typed store and let 𝛼 be a renaming map for locations.

mgh𝛼 �̂� ≡ 𝜆ℎ.

dom(ℎ) = dom(𝛼 �̂�)
∀𝑙 ∈ dom(�̂�). mgv 𝛼 (�̂�[𝑙])𝑉

where (𝒯 , 𝑉) = ℎ[𝛼 𝑙]
locs(�̂�) ⊆ dom(𝛼)

Again, a side-condition is involved to assert that all the locations occurring in the
domain or in the range of �̂� are covered by the renaming 𝛼.

It remains to define the notion of most-general post-condition of a term. The
proposition “mgp 𝛼 𝑣 �̂�” describes the most-general post-condition that can be as-
signed to a term whose evaluation returns the typed value 𝑣 in a typed memory state
�̂�. The predicate mgp 𝛼 𝑣 �̂� holds of a value 𝑉 and of the heap ℎ if there exists a
map 𝛼′ that extends 𝛼 such that the value 𝑉 satisfies the most-general specifica-
tion of the value 𝑣 modulo 𝛼′ and such that the heap ℎ satisfies the most-general
specification of the store �̂� modulo 𝛼′.

Definition 7.3.5 (Most-general post-condition) Let 𝑣 be a well-typed value, let
�̂� be a well-typed store, and let 𝛼 be a renaming map for locations.

mgp 𝛼 𝑣 �̂� ≡ 𝜆𝑉. 𝜆ℎ. ∃𝛼′. 𝛼′ ⊒ 𝛼 ∧ mgv 𝛼′ 𝑣 𝑉 ∧ mgh𝛼′ �̂� ℎ

Remark: the predicate “mgp 𝛼 𝑣 �̂�” can also be formulated with heap predicates, as
shown next.

mgp 𝛼 𝑣 �̂� = 𝜆𝑉. ∃∃𝛼′. [𝛼′ ⊒ 𝛼] * [mgv 𝛼′ 𝑣 𝑉] * (mgh𝛼′ �̂�)

The renaming map 𝛼 is extended every time a new location is being allocated.
The following lemma explains that the predicates mgv and mgh are covariant in the
argument 𝛼 and that the predicate mgp is contravariant in its argument 𝛼.

Lemma 7.3.1 (Preservation through extension of the renaming) Let 𝛼 and
𝛼′ be two renamings for locations.

𝛼′ ⊒ 𝛼 ∧ mgv 𝛼 𝑣 𝑉 ⇒ mgv 𝛼′ 𝑣 𝑉

𝛼′ ⊒ 𝛼 ∧ mgh𝛼 �̂�ℎ ⇒ mgh𝛼′ �̂� ℎ

𝛼 ⊒ 𝛼′ ∧ mgp 𝛼 𝑣 �̂� 𝑉 ℎ ⇒ mgp 𝛼′ 𝑣 �̂� 𝑉 ℎ

7.3. COMPLETENESS 147

Proof For mgv, the assumption locs(𝑣) ⊆ dom(𝛼) implies that (𝛼′ 𝑣) is equal to
(𝛼 𝑣). For mgh, the assumption locs(�̂�) ⊆ dom(𝛼) implies that (𝛼′ �̂�) is equal to
(𝛼 �̂�) and that for any location 𝑙 in the domain of 𝑚, (𝛼′ 𝑙) is equal to (𝛼 𝑙). For
mgp, the hypothesis mgp 𝛼 𝑣 �̂� 𝑉 ℎ asserts the existence of some map 𝛼′′ such that
𝛼′′ ⊒ 𝛼 and mgv 𝛼′′ 𝑣 𝑉 and mgh𝛼′′ �̂� ℎ. To prove the conclusion mgp 𝛼′ 𝑣 �̂� 𝑉 ℎ, it
suffices to observe that the map 𝛼′′ extends the map 𝛼 and that the map 𝛼 extends
the map 𝛼′, so by transitivity 𝛼′′ extends 𝛼′. �

7.3.2 Completeness theorem

Theorem 7.3.1 (Completeness for full, well-typed executions) Let 𝑡 be a
closed term that does not contain any location nor any function closure, let 𝑣 be a
typed value, let �̂� be a typed store.

⊢ 𝑡 ∧ 𝑡/∅ ⇓: 𝑣/�̂� ⇒ J 𝑡 K∅ [] (𝜆𝑉.∃∃𝛼. [mgv 𝛼 𝑣 𝑉] * (mgh𝛼 �̂�))

Proof I prove by induction on the derivation of the reduction judgment that if a
term 𝑡 in a store �̂� reduces to a value 𝑣 in a store �̂�′, then for any correct labelling 𝑡 of
𝑡 and for any renaming of locations 𝛼, the characteristic formula of (𝛼 𝑡) holds of the
pre-condition that corresponds to the most-general specification of the store �̂� and
of the post-condition that corresponds to the most-general specification associated
with the value 𝑣 and the store �̂�′. The formal statement, which follows, includes
side-conditions asserting that the domain of the renaming map for locations 𝛼 should
correspond exactly to the domain of the store �̂�, and that the locations occurring
in the term 𝑡 are actually allocated in the sense that they belong to the domain of
the store �̂�.

𝑡/�̂� ⇓: 𝑣/�̂�′ ⇒

∀𝑡 𝛼𝐸.

⊢ 𝑡
⊢ �̂�

𝑡 = strip_labels 𝑡
labels 𝐸 (𝛼 𝑡)
dom(𝛼) = dom(�̂�)

locs(𝑡) ⊆ dom(�̂�)

⇒ J𝛼 𝑡 K∅ (mgh𝛼 �̂�) (mgp 𝛼 𝑣 �̂�′)

There is one case per possible reduction rule. In each case, the characteristic
formula starts with the predicate local, which I directly eliminate (recall that ℱ 𝐻 𝑄
always implies localℱ 𝐻 𝑄). Henceforth, I refer to the pre-condition “mgh𝛼 �̂�” as
𝐻 and to the post-condition “mgp 𝛼 𝑣 �̂�′” as 𝑄.

∙ Case 𝑣/�̂� ⇓: 𝑣/�̂�. The term 𝑡 labels the term 𝑣. Let 𝑣 denote the labelling of
the value 𝑣. The goal is to prove 𝐻 B 𝑄 ⌈𝛼 𝑣⌉, which unfolds to:

∀ℎ. mgh𝛼 �̂�ℎ ⇒ ∃𝛼′. 𝛼′ ⊒ 𝛼 ∧ mgv 𝛼′ 𝑣 ⌈𝛼 𝑣⌉ ∧ mgh𝛼′ �̂� ℎ

The conclusion is obtained by instantiating 𝛼′ as 𝛼. The proposition mgh𝛼 �̂�ℎ
holds by assumption, and the proposition “mgv 𝛼 𝑣 ⌈𝛼 𝑣⌉” holds by definition of mgv,
using the fact that “ labels 𝐸 (𝛼 𝑣)” holds.

148 CHAPTER 7. PROOFS FOR THE IMPERATIVE SETTING

∙ Case (let𝑥 = 𝑡1 in 𝑡2)/�̂� ⇓: 𝑣/�̂�′ with 𝑡1/�̂� ⇓: 𝑣1/𝑚′′ and ([𝑥 → 𝑣1] 𝑡2)/𝑚′′ ⇓:

𝑣/�̂�′ . Let 𝑡1 and 𝑡2 be the labelled subterms associated with 𝑡1 and 𝑡2, respectively.
Let 𝑇1 denote the type of 𝑥. The goal is:

∃𝑄′. J𝛼 𝑡1 K∅𝐻 𝑄′ ∧ ∀𝑋. J𝛼 𝑡2 K(𝑥↦→𝑋) (𝑄′𝑋)𝑄

To prove this goal, I instantiate 𝑄′ as the predicate mgp 𝛼 𝑣1𝑚
′′. The first subgoal

is “J𝛼 𝑡1 K∅𝐻 (mgp 𝛼 𝑣1𝑚
′′)”. It follows from the induction hypothesis.

For the second subgoal, let 𝑋 be a value of type V𝑇1W. We need to establish the
proposition “J𝛼 𝑡2 K(𝑥 ↦→𝑋) (𝑄′𝑋)𝑄”. By unfolding the definition of 𝑄′ and applying
the extraction rules for local predicates, the goal becomes:

∀𝛼′′. 𝛼′′ ⊒ 𝛼 ∧ mgv 𝛼′′ 𝑣1𝑋 ⇒ J𝛼 𝑡2 K(𝑥 ↦→𝑋) (mgh𝛼′′𝑚′′)𝑄

Let 𝛼′′ be a renaming map that extends 𝛼. By definition of mgv, there exists a
set 𝐸′ and a labelling 𝑣1 of 𝑣1 such that “ labels 𝐸′ (𝛼′′ 𝑣1)” and such that 𝑋 is
equal to ⌈𝛼′′ 𝑣1⌉, moreover satisfying the inclusion “ locs(𝑣1) ⊆ dom(𝛼′′)”. From the
pre-condition (mgh𝛼′′𝑚′′), we can extract the hypothesis that dom(𝛼′′) is equal to
dom(𝑚′′). This fact is used later on.

By the substitution lemma, the formula “J𝛼 𝑡2 K(𝑥 ↦→𝑋)” is equivalent to “J [𝑥 →
𝛼′′ 𝑣1] (𝛼 𝑡2) K∅”. Since locs(𝑡2) ⊑ dom(𝛼) and 𝛼′′ ⊒ 𝛼, the (𝛼 𝑡2) is equal to (𝛼′′ 𝑡2).
So, it remains to prove the following proposition.

J𝛼′′ ([𝑥 → 𝑣1] 𝑡2) K∅ (mgh𝛼′′𝑚′′) (mgp 𝛼 𝑣 �̂�′)

Since mgp is contravariant in the renaming map, and since the map 𝛼′′ extends
the map 𝛼, the post-condition “mgp 𝛼 𝑣 �̂�′” can be strengthened by the rule of
consequence into the post-condition “mgp 𝛼′′ 𝑣 �̂�′”.

The strengthened goal then follows from the induction hypothesis. The premises
can be checked as follows. First, the set 𝐸 ∪ 𝐸′ correctly labels the term (𝛼′′ ([𝑥 →
𝑣1] 𝑡2)) because both “ labels 𝐸′ (𝛼′′ 𝑣1)” and “ labels 𝐸 (𝛼 𝑡2)” are true and because
(𝛼 𝑡2) is equal to (𝛼′′ 𝑡2). Second, the locations of the term [𝑥 → 𝑣1] 𝑡2 are included
in the domain of �̂�′′ because the inclusions “ locs(𝑣1) ⊆ dom(�̂�′′)” and “ locs(𝑡2) ⊆
dom(�̂�)” and “dom(�̂�) ⊆ dom(�̂�′′)” hold. (The latter is a consequence of the fact
that the store can only grow through time.)

∙ Case (𝑡1 ; 𝑡2)/�̂� ⇓: 𝑣/�̂�′ . The treatment of sequences is a simplified version of
the treatment of non-polymorphic let-bindings.

∙ Case (let𝑥 = �̂�1 in 𝑡2)/�̂� ⇓: 𝑣/�̂�′ with ([𝑥 → �̂�1] 𝑡2)/𝑚′′ ⇓: 𝑣/�̂�′ . Let 𝑆1 be the
type of 𝑥. Let �̃�1 and 𝑡2 be the subterms corresponding to �̂�1 and 𝑡2, respectively.
The goal is:

∀𝑋. 𝑋 = ⌈𝛼 �̃�1⌉ ⇒ J𝛼 𝑡2 K(𝑥 ↦→𝑋)𝐻 𝑄

Let 𝑋 be a value of type V𝑆1W such that 𝑋 is equal to ⌈𝛼 �̃�1⌉. The goal can be
rewritten as “J𝛼 𝑡2 K(𝑥 ↦→⌈𝛼 �̃�1⌉)𝐻 𝑄”. By the substitution lemma, this proposition is
equivalent to “J𝛼 ([𝑥 → �̃�1] 𝑡2) K∅𝐻 𝑄”. The conclusion then follows directly from
the induction hypothesis.

7.3. COMPLETENESS 149

∙ Case (let rec 𝑓 = Λ𝐴.𝜆𝑥.𝑡1 in 𝑡2)/�̂� ⇓: 𝑣/�̂�′ with ([𝑓 → 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1] 𝑡2)/�̂� ⇓:

𝑣/�̂�′ . Let 𝑡1 and 𝑡2 be the subterms of 𝑡 corresponding to the labelling of the subterms
𝑡1 and 𝑡2. The proof is very similar to that of the purely-functional setting, so I give
only the key steps. The goal is to prove:

body (𝜇𝑓.Λ𝐴.𝜆𝑥.(𝛼 𝑡1))
{𝐹} ⇒ J𝛼 𝑡2 K(𝑓 ↦→𝐹)𝐻 𝑄

By the substitution lemma, the characteristic formula J𝛼 𝑡2 K(𝑓 ↦→𝐹) is equal to J [𝑓 →
(𝜇𝑓.Λ𝐴.𝜆𝑥.(𝛼 𝑡1))

{𝐹}] (𝛼 𝑡2) K∅. So, the goal can be reformulated as J (𝛼 ([𝑓 →
(𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)

{𝐹}] 𝑡2) K∅𝐻 𝑄. This proposition follows from the induction hypothesis
applied to the set 𝐸 ∪ {𝐹}.

∙ Case (𝜇𝑓.Λ𝐴.𝜆𝑥𝑇0 .𝑡1
𝑇1 (𝑣2

𝑇2))𝑇 /�̂� ⇓: 𝑣/�̂�′ , where ([𝑓 → 𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1] [𝑥 →
𝑣2] [𝐴 → 𝑇] 𝑡1)/�̂� ⇓: 𝑣/�̂�′ , and the assumptions 𝑇2 = [𝐴 → 𝑇]𝑇0 and 𝑇 = [𝐴 →
𝑇]𝑇1 hold. Again, the structure of the proof is similar to that of the purely-function
setting. Let 𝑡1 and 𝑣2 be the labelled subterms associated with 𝑡1 and 𝑣2, respec-
tively. By hypothesis, the function 𝜇𝑓.Λ𝐴.𝜆𝑥.𝛼 𝑡1 is labelled with some constant
𝐹 such that the proposition body (𝜇𝑓.Λ𝐴.𝜆𝑥.𝛼 𝑡1)

{𝐹} holds. The goal is to prove
“AppReturns𝐹 ⌈𝛼 𝑣2⌉𝐻 𝑄”. This proposition is proved by application of the body
hypothesis. The premise to be established is “J [𝐴 → 𝑇] (𝛼 𝑡1) K(𝑥 ↦→⌈𝛼𝑣2⌉,𝑓 ↦→𝐹)𝐻 𝑄”.
By application of the substitution lemma, and by factorizing the renaming 𝛼, the
proposition can be reformulated as “J𝛼 ([𝑓 → (𝜇𝑓.Λ𝐴.𝜆𝑥.𝑡1)

{𝐹}] [𝑥 → 𝑣2] [𝐴 →
𝑇] 𝑡1) K∅𝐻 𝑄”, which is provable directly from the induction hypothesis.

∙ Case (if true then 𝑡1 else 𝑡2)/�̂� ⇓: 𝑣/�̂�′ with 𝑡1/�̂� ⇓: 𝑣/�̂�′ . The goal is:

(true = true ⇒ J𝛼 𝑡1 K∅𝐻 𝑄) ∧ (true = false ⇒ J𝛼 𝑡2 K∅𝐻 𝑄)

Thus, it suffices to prove the proposition “J𝛼 𝑡1 K∅𝐻 𝑄”. The proposition follows di-
rectly from the induction hypothesis. The case where the argument of the condition
is the value false is symmetrical.

∙ Case (for𝑥 = 𝑛 to𝑛′ do 𝑡1)/�̂� ⇓: tt/�̂�′ . There are two cases. Either 𝑛 > 𝑛′ and
the loop does not execute. In this case, the goal is to prove 𝐻 B 𝑄 tt . It suffices to
instantiate 𝛼′ as 𝛼 and to check that “mgv 𝛼 tt ⌈tt⌉” holds. Otherwise, 𝑛 ≤ 𝑛′. In
this case, I prove the characteristic formula for for-loops stated in terms of a loop
invariant. This formula is indeed a sufficient condition for establishing the general
characteristic formula that supports local reasoning.

The execution of the loop goes through several intermediate states, call them
(�̂�𝑖)𝑖∈[𝑛,𝑛′+1], such that �̂�𝑛 = �̂� and �̂�𝑛′+1 = �̂�′. The goal is to find an invariant 𝐼
that satisfies the three following conjuncts, in which 𝑁 stands for ⌈𝑛⌉ and 𝑁 ′ stands
for ⌈𝑛′⌉.

𝐻 B 𝐼 𝑁
𝐼 (𝑁 ′ + 1) B 𝑄 ⌈tt⌉
∀𝑋 ∈ [𝑁,𝑁 ′]. J 𝑡1 K(𝑥 ↦→𝑋) (𝐼 𝑋) (# 𝐼 (𝑋 + 1))

Let 𝐼 be the predicate “𝜆𝑖. ∃∃𝛼′. [𝛼′ ⊒ 𝛼] * (mgh𝛼′ �̂�𝑖)”. For the first conjunct,
the heap predicate 𝐻 is equal to (mgh𝛼 �̂�𝑛), so 𝐻 B 𝐼 𝑁 holds. For the second

150 CHAPTER 7. PROOFS FOR THE IMPERATIVE SETTING

conjunct, the heap predicate 𝐼 (𝑁 ′ +1) is equivalent to “∃∃𝛼′. [𝛼′ ⊒ 𝛼]* (mgh𝛼′ �̂�′)”.
It thus entails “𝑄 ⌈tt⌉”, which is defined as “mgp tt �̂�′ ⌈tt⌉”.

For the third conjunct, let 𝑋 be a Coq integer in the range [𝑁,𝑁 ′]. Let 𝑝 be
the corresponding program integer, in the sense that ⌈𝑝⌉ is equal to 𝑋. By the
substitution lemma, the goal “J 𝑡1 K(𝑥 ↦→𝑋) (𝐼 𝑋) (# 𝐼 (𝑋 + 1))” simplifies to “J [𝑥 →
𝑝] 𝑡1 K∅ (𝐼 ⌈𝑝⌉) (# 𝐼 (𝑋 + 1))”. Since the characteristic formula is a local predicate,
we can extract from the pre-condition 𝐼 ⌈𝑝⌉ the assumption that there exists a map
𝛼′′ that extends 𝛼 and such that “J [𝑥 → 𝑝] 𝑡1 K∅ (mgh𝛼′′ �̂�𝑝) (# 𝐼 (𝑋 + 1))” does
hold. The induction hypothesis applied to ([𝑥 → 𝑝] 𝑡1)/�̂�𝑝

⇓: tt/�̂�𝑝+1
gives “J [𝑥 →

𝑝] 𝑡1 K∅ (mgh𝛼′′ �̂�𝑝) (mgp 𝛼′′ tt �̂�𝑝+1)”.
It remains to invoke the rule of consequence and check that the post-condition

“mgp 𝛼′′ tt �̂�𝑝+1” entails the post-condition # 𝐼 (⌈𝑝⌉+1). The former post-condition
asserts the existence of a map 𝛼′ that extends 𝛼′′ such that the heap satisfies
“mgh𝛼′ �̂�𝑝+1”. The latter asserts the existence of a map 𝛼′′′ that extends 𝛼 such
that the heap satisfies “mgh𝛼′′′ �̂�𝑝+1”. To prove it, it suffices to instantiate 𝛼′′′ as
𝛼′ and to check that 𝛼′ extends 𝛼. This fact can be obtained by transitivity, since
𝛼′ extends 𝛼′′ and 𝛼′′ extends 𝛼.

∙ Case (while 𝑡1 do 𝑡2)/�̂� ⇓: tt/�̂�′ . The proof of completeness of characteristic
formulae for while-loops generalizes the proof given for for-loops. Again, I rely on a
loop invariant. The evaluation of the loop “(while 𝑡1 do 𝑡2)” goes through a sequence
of intermediate typed states:

�̂� = �̂�0, �̂�′
0, �̂�1, �̂�′

1, �̂�2, �̂�′
2, . . . , �̂�𝑛, �̂�′

𝑛 = �̂�′

where the evaluation of the loop condition 𝑡1 takes from a state �̂�𝑖 to the state �̂�′
𝑖

and the evaluation of the loop body 𝑡2 takes from a state �̂�′
𝑖 to the state �̂�𝑖+1. So,

�̂�𝑖 describes a state before the evaluation of the loop condition 𝑡1 and �̂�′
𝑖 describes

the corresponding state right after the evaluation of 𝑡1. Thanks to the bijection
between well-typed memory stores and heaps, I can define a sequence of heaps ℎ𝑖
and ℎ′𝑖 that correspond to �̂�𝑖 and �̂�′

𝑖.
In the characteristic formula for while-loops expressed with loop invariants, I

instantiate 𝐴 as the type Heap, and I instantiate ≺ as a binary relation such that
ℎ𝑖 ≺ ℎ𝑗 holds if and only if 𝑖 is greater than 𝑗. Moreover, I instantiate the predicates
𝐼 and 𝐽 as follows.

𝐼 ≡ 𝜆ℎ. ∃∃𝑖. [ℎ = ℎ𝑖] * ∃∃𝛼′. [𝛼′ ⊒ 𝛼] * (mgh𝛼′ �̂�𝑖)
𝐽 ≡ 𝜆ℎ𝑏.∃∃𝑖. [ℎ = ℎ𝑖] * ∃∃𝛼′. [𝛼′ ⊒ 𝛼] * (mgh𝛼′ �̂�′

𝑖) * [𝑏 = true ⇔ 𝑖 < 𝑛]

It remains to establish the following facts.

well-founded(≺)
∃𝑋0. 𝐻 B 𝐼 𝑋0

∀𝑋. J𝑡1K (𝐼 𝑋) (𝐽 𝑋)

∀𝑋. J𝑡2K (𝐽 𝑋 true) (#∃∃𝑌. (𝐼 𝑌) * [𝑌 ≺ 𝑋])
∀𝑋. 𝐽 𝑋 false B 𝑄 ⌈tt⌉

7.3. COMPLETENESS 151

(1) The relation ≺ is well-founded because no two memory states �̂�𝑖 and �̂�𝑗 can
be equal when 𝑖 ̸= 𝑗. Otherwise, if two states were equal, then the while-loop would
run as an infinite loop, contradicting the assumption that the execution of the term
𝑡 does terminate.

(2) The value 𝑋0, of type Heap, can be instantiated as ℎ0. By hypothesis, this
heap satisfies “mgh𝛼 �̂�0”, so it satisfies the heap predicate 𝐼 ℎ0 (take 𝑖 = 0 and
𝛼′ = 𝛼 in the definition of 𝐼).

(3) Let 𝑋 be a heap. Consider the goal J𝑡1K (𝐼 𝑋) (𝐽 𝑋). Let ℎ be another name
for 𝑋. Unfolding the definition of 𝐼 and exploiting the fact that J𝑡1K is a local
predicate, it suffices to prove:

∀𝑖. ∀𝛼′. ℎ = ℎ𝑖 ∧ 𝛼′ ⊒ 𝛼 ⇒ J𝑡1K (mgh𝛼′ �̂�𝑖) (𝐽 ℎ)

By definition of the heaps �̂�𝑖 and �̂�′
𝑖, the reduction 𝑡1/�̂�𝑖

⇓: ⌊𝑟⌋/�̂�′
𝑖

holds, where
𝑟 is a boolean such that “𝑟 = true ⇔ 𝑖 < 𝑛”. By induction hypothesis, 𝑡1 admits
the post-condition “mgp 𝑏 �̂�′

𝑖 ”, which is equivalent to “𝜆𝑏.∃∃𝛼′′. [𝛼′′ ⊒ 𝛼′] * [𝑏 =
𝑟] * (mgh𝛼′′ �̂�′

𝑖)”. One can check that this post-condition entails 𝐽 ℎ (instantiate 𝑖
as 𝑖, 𝛼′ and 𝛼′′ and in the definition of 𝐽).

(4) Let 𝑋 be a heap. Consider the goal J𝑡2K (𝐽 𝑋 true) (#∃∃𝑌. (𝐼 𝑌) * [𝑌 ≺ 𝑋]).
By definition of 𝐽 , 𝑋 is equal to a heap ℎ𝑖 with 𝑖 < 𝑛. Moreover, there exists a
map 𝛼′ that extends 𝛼 such that the input heap satisfies mgh𝛼′ �̂�′

𝑖. The induction
hypothesis applied to the reduction sequence 𝑡2/�̂�′

𝑖
⇓: tt/�̂�𝑖+1

gives the proposi-
tion “J 𝑡2 K∅ (mgh𝛼′ �̂�′

𝑖) (mgp 𝛼′ tt �̂�𝑖+1)”. The post-condition “mgp 𝛼′ tt �̂�𝑖+1” as-
serts the existence of a map 𝛼′′ that extends 𝛼′ such that the output heap satisfies
mgh𝛼′′ �̂�𝑖+1. So, this post-condition entails target post-condition # ∃∃𝑌. (𝐼 𝑌)*[𝑌 ≺
𝑋]. Indeed, it suffices to instantiate 𝑌 as ℎ𝑖+1, which is indeed smaller than
ℎ𝑖 with respect to ≺. The heap predicate 𝐼 𝑌 is then equivalent to “∃∃𝛼′. [𝛼′ ⊒
𝛼] * (mgh𝛼′ �̂�𝑖+1)”, which follows from mgh𝛼′′ �̂�𝑖+1 by instantiating 𝛼′ as 𝛼′′. The
relation 𝛼′′ ⊒ 𝛼 is obtained by transitivity.

(5) It remains to prove “𝐽 𝑋 false B 𝑄 tt” for any heap 𝑋. By definition of 𝐽 ,
there exists an index 𝑖 such that 𝑋 is equal to ℎ𝑖 and 𝑖 is not smaller than 𝑛. Hence,
𝑋 must be equal to ℎ𝑛. So, 𝐽 𝑋 false is equivalent to ∃∃𝛼′. [𝛼′ ⊒ 𝛼] *mgh𝛼′ �̂�′

𝑖. This
heap predicate is indeed equivalent to 𝑄 tt , by definition of 𝑄.

∙ Case (ref 𝑣)loc
/�̂� ⇓: 𝑙 loc

/�̂�′ where 𝑙 is a location fresh from the domain of �̂� and
�̂�′ is the heap �̂� ⊎ [𝑙 ↦→ 𝑣]. Let 𝑇 denote the type of 𝑣, and let 𝒯 denote the Coq
type V𝑇W. Let 𝑣 be the labelled value associated with 𝑣, and let 𝑉 be a shorthand
for ⌈𝛼 𝑣⌉ The goal is to prove “AppReturns𝒯 ,loc ref ⌈𝛼 𝑣⌉𝐻 𝑄”.

The specification of ref gives “AppReturns𝒯 ,loc ref𝑉 [] (𝜆𝐿.𝐿 →˓𝒯 𝑉)”. The frame
rule then gives “AppReturns𝒯 ,loc ref𝑉 𝐻 (𝜆𝐿. (𝐿 →˓𝒯 𝑉)*𝐻)”. The goal follows from
the rule of consequence applied to this fact. It remains to establish that, for any
location 𝐿, the heap predicate “(𝐿 →˓𝒯 𝑣) * 𝐻” is stronger than 𝑄𝐿. The heap
predicate 𝑄𝐿 is equivalent to:

∃∃𝛼′. [𝛼′ ⊒ 𝛼] * [mgv 𝛼′ 𝑙 𝐿] * (mgh𝛼′ �̂�′)

152 CHAPTER 7. PROOFS FOR THE IMPERATIVE SETTING

Let 𝐿 be a location and ℎ′ be a heap satisfying the predicate (𝐿 →˓𝒯 𝑣)*𝐻. The
goal is to prove that the above heap predicate also applies to ℎ′. Then, to prove the
goal, I instantiate 𝛼′ as 𝛼 ⊎ [𝑙 ↦→ ⌊𝐿⌋]. The first subgoal 𝛼′ ⊒ 𝛼 holds by definition
of 𝛼′. The second subgoal “mgv 𝛼′ 𝑙 𝐿” simplifies to “𝐿 = 𝛼′ 𝑙”, which is also true by
definition of 𝛼′. It remains to prove the third subgoal, which asserts that ℎ′ satisfies
the heap predicate (mgh𝛼′ �̂�′).

Because ℎ′ satisfies (𝐿 →˓𝒯 𝑣) *𝐻, the heap ℎ′ decomposes as a singleton heap
satisfying (𝐿 →˓𝒯 𝑣) and as a heap ℎ satisfying 𝐻, which was defined as “mgh𝛼 �̂�”.
The assumptions given by “mgh𝛼 �̂�ℎ” are as follows.

dom(ℎ) = dom(𝛼 �̂�)
∀𝑙′ ∈ dom(�̂�). mgv 𝛼 (�̂�[𝑙′])𝑉 ′ where (𝒯 ′, 𝑉 ′) = ℎ[𝛼 𝑙′]
locs(�̂�) ⊆ dom(𝛼)

To prove (mgh𝛼′ �̂�′ ℎ′), we need to establish the following facts.
dom(ℎ′) = dom(𝛼′ �̂�′)
∀𝑙′ ∈ dom(�̂�′). mgv 𝛼′ (�̂�′[𝑙′])𝑉 ′ where (𝒯 ′, 𝑉 ′) = ℎ′[𝛼′ 𝑙′]
locs(�̂�′) ⊆ dom(𝛼′)

The first and the third facts are easy to verify. For the second fact, let 𝑙′ be a
location in the domain of �̂�′. If 𝑙′ is equal to 𝑙, then (𝛼 𝑙′) is equal to 𝐿 and
the goal is “mgv 𝛼′ (�̂�′[𝑙])𝑉 ”. The proposition simplifies to “mgv 𝛼′ 𝑣 (𝛼 𝑣)”, which
follows from the tautology “mgv 𝛼 𝑣 (𝛼 𝑣)”, by covariance of mgs in the 𝛼-renaming
map. Otherwise, if 𝑙′ is not equal to 𝑙, then 𝑙′ belongs to the domain of �̂� and the
covariance of mgv in the 𝛼-renaming map can be used to derive “mgv 𝛼′ (�̂�[𝑙′])𝑉 ′”
from “mgv 𝛼 (�̂�[𝑙′])𝑉 ′”.

∙ Case (get 𝑙)𝑇 /�̂� ⇓: 𝑣𝑇 /�̂� where 𝑣𝑇 = �̂�[𝑙]. Let 𝒯 stand for V𝑇W and let 𝐿
stand for ⌈𝛼 𝑙⌉. The goal is “AppReturnsloc,𝒯 get𝐿 (mgh𝛼 �̂�) (mgp 𝛼 𝑣 �̂�)”. We could
use the frame rule like in the previous proof case to prove this goal, however the
proof is simpler when we directly unfold the definition of AppReturns and work with
the predicate AppEval. The goal then reformulates as follows.

∀ℎ𝑖 ℎ𝑘. mgh𝛼 �̂�ℎ𝑖 ⇒ ∃𝑉 ℎ𝑓 ℎ𝑔.

®
AppEval get𝐿 (ℎ𝑖 + ℎ𝑘)𝑉 (ℎ𝑓 + ℎ𝑘 + ℎ𝑔)
mgp 𝛼 𝑣 �̂� 𝑉 ℎ𝑓

From the specification of get applied to the location 𝐿, we get:

∀𝑉. AppReturnsloc,𝒯 get𝐿 (𝐿 →˓𝒯 𝑉) (𝜆𝑉 ′. [𝑉 ′ = 𝑉] * (𝐿 →˓𝒯 𝑉))

Reformulating this proposition in terms of AppEval gives:

∀𝑉 ℎ′𝑖 ℎ
′
𝑘. (𝐿 →˓𝒯 𝑉)ℎ′𝑖 ⇒ ∃𝑉 ′ ℎ′𝑓 ℎ

′
𝑔.

AppEval get𝐿 (ℎ′𝑖 + ℎ′𝑘)𝑉 ′ (ℎ′𝑓 + ℎ′𝑘 + ℎ′𝑔)

𝑉 ′ = 𝑉
(𝐿 →˓𝒯 𝑉 ′)ℎ′𝑓

7.3. COMPLETENESS 153

It remains to find the suitable instantiations for proving the goal by exploit-
ing the above proposition. Since 𝑙 belongs to the domain of �̂� and since the hy-
pothesis mgh𝛼 �̂�ℎ𝑖 holds, we know that 𝐿 belongs to the domain of ℎ𝑖 and that
mgv 𝛼 (�̂�[𝑙]) (ℎ𝑖[𝑙]) holds. Let 𝑉 stand for the value ℎ𝑖[𝑙]. The assertion reformulates
as mgv 𝛼 𝑣 𝑉 . Moreover, there exists a heap ℎ𝑟 such that the heap ℎ𝑖 decomposes as
the disjoint union of the singleton heap 𝐿 →𝒯 𝑉 and of ℎ𝑟. Let ℎ′𝑖 be instantiated
as 𝐿 →𝒯 𝑉 , and let ℎ′𝑘 be instantiated as ℎ𝑟 + ℎ𝑘. The union ℎ′𝑖 + ℎ′𝑘 equal to the
union ℎ𝑖 + ℎ𝑘.

We can check the premise (𝐿 →˓𝒯 𝑉)ℎ′𝑖, and obtain the existence of 𝑉 ′, ℎ′𝑓 and
ℎ′𝑔 satisfying the three conclusions derived from the specification of get. The sec-
ond conclusion ensures that 𝑉 ′ is equal to 𝑉 . The third conclusion, (𝐿 →˓𝒯 𝑉)ℎ′𝑓
asserts that ℎ′𝑓 is a singleton heap of the form 𝐿 →𝒯 𝑉 , so it is the same as ℎ′𝑖.
In particular, the union ℎ′𝑓 + ℎ′𝑘 is equal to the union ℎ𝑖 + ℎ𝑘. The first conclu-
sion, AppEval get𝐿 (ℎ′𝑖 + ℎ′𝑘)𝑉 ′ (ℎ′𝑓 + ℎ′𝑘 + ℎ′𝑔), is then equivalent to the proposition
AppEval get𝐿 (ℎ𝑖 + ℎ𝑘)𝑉 (ℎ𝑖 + ℎ𝑘 + ℎ′𝑔).

To conclude, it remains to instantiate 𝑉 as 𝑉 , ℎ𝑓 as ℎ𝑖, ℎ𝑔 as ℎ′𝑔, and to
prove mgp 𝛼 𝑣 �̂� 𝑉 ℎ𝑖. Instantiating 𝛼′ as 𝛼 in this proposition, we have to prove
mgh 𝛼�̂�ℎ𝑖, which holds by assumption, and to prove mgv 𝛼 𝑣 𝑉 , a fact which has
been extracted earlier on from the assumption mgh𝛼 �̂�ℎ𝑖.

∙ Case (set 𝑙 𝑣)unit
/�̂� ⇓: tt unit

/�̂�′ where 𝑙 belongs to the domain of 𝑙 and �̂�′ stands
for �̂�[𝑙 ↦→ 𝑣]. Let 𝑇 be the type of 𝑣 and let 𝒯 stand for V𝑇W. By assumption, there
exists a labelled value 𝑣 that corresponds to 𝑣, such that labels 𝐸 𝑣. Let 𝑉 stand
for ⌈𝛼 𝑣⌉, and let 𝐿 stand for ⌈𝛼 𝑙⌉. The goal is:

AppReturns(loc×𝒯),unit set (𝐿, 𝑉) (mgh𝛼 �̂�) (mgp 𝛼 tt �̂�)

As in the previous proof case, we can rewrite this goal in terms of AppEval. The
statement shown next takes into account the fact that the return value is the unit
value.

∀ℎ𝑖 ℎ𝑘. mgh𝛼 �̂�ℎ𝑖 ⇒ ∃ℎ𝑓 ℎ𝑔.
®

AppEval set (𝐿, 𝑉) (ℎ𝑖 + ℎ𝑘) tt (ℎ𝑓 + ℎ𝑘 + ℎ𝑔)
mgp 𝛼 tt �̂�′ ⌈tt⌉ℎ𝑓

From the specification of set applied to the location 𝐿, we get:

∀𝑉 𝒯 ′ 𝑉 ′. AppReturns(loc×𝒯),unit set (𝐿, 𝑉) (𝐿 →˓𝒯 ′ 𝑉 ′) (# (𝐿 →˓𝒯 ′ 𝑉))

Reformulating this proposition in terms of AppEval gives:

∀𝑉 𝒯 ′ 𝑉 ′ ℎ′𝑖 ℎ
′
𝑘.

(𝐿 →˓𝒯 ′ 𝑉 ′)ℎ′𝑖
⇒ ∃ℎ′𝑓 ℎ′𝑔.

®
AppEval set (𝐿, 𝑉) (ℎ′𝑖 + ℎ′𝑘) tt (ℎ′𝑓 + ℎ′𝑘 + ℎ′𝑔)

(𝐿 →˓𝒯 𝑉)ℎ′𝑓

It remains to find the suitable instantiations. Since 𝑙 belongs to the domain of �̂�
and since the hypothesis mgh𝛼 �̂�ℎ𝑖 holds, we know that 𝐿 belongs to the domain
of ℎ𝑖 and that mgv 𝛼 (�̂�[𝑙]) (ℎ𝑖[𝑙]). Let 𝑉 ′ denote the value ℎ𝑖[𝑙]. There exists a heap
ℎ𝑟 such that the heap ℎ𝑖 decomposes as the disjoint union of the singleton heap

154 CHAPTER 7. PROOFS FOR THE IMPERATIVE SETTING

𝐿 →𝒯 ′ 𝑉 ′ and of ℎ𝑟. Let ℎ′𝑖 be instantiated as 𝐿 →𝒯 ′ 𝑉 ′, and let ℎ′𝑘 be instantiated
as ℎ𝑟 + ℎ𝑘. The union ℎ′𝑖 + ℎ′𝑘 equal to the union ℎ𝑖 + ℎ𝑘.

We can check the premise (𝐿 →˓𝒯 ′ 𝑉 ′) (𝐿 →𝒯 ′ 𝑉 ′), and obtain the existence
of ℎ′𝑓 and ℎ′𝑔 satisfying the two conclusions derived from the specification of set.
The second conclusion, (𝐿 →˓𝒯 𝑉)ℎ′𝑓 asserts that ℎ′𝑓 is a singleton heap of the
form 𝐿 →𝒯 𝑉 . Let ℎ𝑓 be instantiated as ℎ′𝑓 + ℎ𝑟. In particular, the union
ℎ′𝑓 + ℎ′𝑘 is equal to the union ℎ𝑓 + ℎ𝑘. Moreover, let ℎ𝑔 be instantiated as ℎ′𝑔.
The first conclusion, AppEval get𝐿 (ℎ′𝑖 + ℎ′𝑘)𝑉 ′ (ℎ′𝑓 + ℎ′𝑘 + ℎ′𝑔) is then equivalent to
AppEval get𝐿 (ℎ𝑖 + ℎ𝑘)𝑉 (ℎ𝑓 + ℎ𝑘 + ℎ𝑔).

It remains to prove mgp 𝛼 tt �̂�′ ⌈tt⌉ℎ𝑓 . Instantiating 𝛼′ as 𝛼 in this predicate,
it remains to prove mgv 𝛼 tt tt , which is true, and mgh𝛼 �̂�′ ℎ𝑓 . To prove the latter,
let 𝑙′ be a location in the domain of �̂�′, which is the same as the domain of �̂�. We
have to prove mgv 𝛼 (�̂�[𝑙′]) (ℎ𝑓 [⌈𝛼 𝑙′⌉]). There are two cases. If 𝑙′ is not the location
𝑙, then �̂�′[𝑙′] is equal to �̂�[𝑙′] and ℎ𝑓 [⌈𝛼 𝑙′⌉] is equal to ℎ𝑖[⌈𝛼 𝑙′⌉], so the assumption
“mgh𝛼 �̂�ℎ𝑖” can be used to conclude. Otherwise, if 𝑙′ is the location 𝑙, then �̂�′[𝑙]
is equal to 𝑣 and ℎ[⌈𝛼 𝑙⌉] is equal to 𝑉 (because 𝑉 stands for ℎ[𝐿] and 𝐿 has been
defined as ⌈𝛼 𝑙⌉), so the goal is to prove mgv 𝛼 𝑣 𝑉 , which holds because 𝑉 has been
defined ⌈𝛼 𝑣⌉ and labels 𝐸 𝑣 holds by assumption.

∙ Case (cmp 𝑙 𝑘′)/�̂� ⇓: �̂�bool
/�̂�. The proof is straightforward since cmp does not

involve any reasoning on the heap. �

7.3.3 Completeness for integer results

A simpler statement of the completeness theorem can be given in the case of a
program that admits the type int in ML. To lighten the presentation, I identify
Caml integers with Coq integers.

Theorem 7.3.2 (Completeness for ML programs with integer results)
Consider a closed ML program of type int. Let 𝑡 denote the corresponding term typed
in weak-ML, and let 𝑡 denote the corresponding raw term. Let 𝑛 be an integer, let 𝑃
be a Coq predicate on integers, and let 𝑚 be a memory store.

𝑡/∅ ⇓ 𝑛/𝑚 ∧ 𝑃 𝑛 ⇒ J 𝑡 K∅ [] (𝜆𝑛. [𝑃 𝑛])

Proof Since the term 𝑡 is well-typed in ML, the reduction derivation 𝑡/∅ ⇓ 𝑛/𝑚 can
be turned into a typed reduction derivation 𝑡int

/∅ ⇓: 𝑛int
/�̂�. By the completeness

theorem applied to that derivation, there exists a renaming 𝛼 such that:

J 𝑡 K∅ [] (𝜆𝑉.∃∃𝛼. [mgv 𝛼𝑛𝑉] * (mgh𝛼𝑚))

The characteristic formula is a local predicate, so we can apply the rule of garbage
collection to ignore the post-condition about the final store 𝑚. It gives:

J 𝑡 K∅ [] (𝜆𝑉.∃∃𝛼. [mgv 𝛼𝑛𝑉])

7.3. COMPLETENESS 155

To prove the conclusion, we apply the rule of consequence, and there remains to
establish an implication between the post-conditions:

∀𝑉. (∃𝛼.mgv 𝛼𝑛𝑉) ⇒ 𝑃 𝑉

The hypothesis “mgv 𝛼𝑛𝑉 ” asserts the existence of a correct labelling �̃� of 𝑛 such
that 𝑉 = ⌈𝛼 �̃�⌉. Since the integer 𝑛 does not contain any function nor any location,
the hypothesis simplifies to 𝑉 = 𝑛. The conclusion 𝑃 𝑉 then follows directly from
the assumption 𝑃 𝑛. �

Chapter 8

Related work

The discussion of related work is organized around five sections. The
first one is concerned with the origins of characteristic formulae and
the comparison with the program logics developed by Honda, Berger,
and Yoshida. In a second part, I focus on Separation Logic. I then
discuss approaches based on Verification Condition Generators (VCG),
approaches based on shallow embeddings, and approaches based on deep
embeddings.

8.1 Characteristic formulae

Characteristic formulae in process calculi The notion of characteristic for-
mula originates in process calculi. The characterization theorem [70, 57] states that
two processes are bisimilar if and only if they satisfy the same set of formulae in
Hennessy-Milner logic [35]. In this context, a formula 𝐹 is said to be the characteris-
tic formula of a process 𝑝 if the set of processes that satisfy 𝐹 matches exactly the set
of processes that are bisimilar to 𝑝. Graf and Sifakis [32] described an algorithm for
constructing the characteristic formulae of a process from the syntactic definition of
that process. More precisely, they explained how to build a modal logic formula that
characterizes the equivalence class of a given CCS process (for processes that do not
involve recursion). Aceto and Ingólfsdóttir [1] later described a similar generation
algorithm for translating regular CCS processes into their characteristic formulae,
which are there expressed in Hennessy-Milner logic extended with recursion.

The behavioral equivalence or dis-equivalence of two processes can be established
by comparing their characteristic formulae. Such proofs can be conducted in a high-
level temporal logic rather than through reasoning on the syntactic definition of
the processes. Somewhat similarly, the characteristic formulae developed in this
thesis allow reasoning on a program to be conducted on higher-order logic formulae,
without referring to the source code of that program at any time.

156

8.1. CHARACTERISTIC FORMULAE 157

Total characteristic assertion pairs The first development of a program-logic
counterpart to process-logic characteristic formulae is due to recent work by Honda,
Berger and Yoshida [40]. This work originates in the study of a correspondence
between process logics and program logics [38], where Honda showed how an encod-
ing of a high-level programming language into the 𝜋-calculus can be used to turn
a logic for the 𝜋-calculus with linear types into a compositional program logic for
a higher-order functional programming language. This program logic, which is de-
scribed in detail in [41], was later extended to an imperative programming language
with global state [10], and then further extended to support reasoning on aliasing
[39] and reasoning on local state [87].

In the logics for higher-order imperative programs, the specification judgment
take the form of a Hoare triple {𝐶} 𝑡 :𝑥{𝐶 ′}, where 𝑡 is a term, 𝐶 and 𝐶 ′ are
assertions about the initial heap and the final heap, and 𝑥 is a bound name used to
refer to the result produced by 𝑡 in the post-condition 𝐶 ′. So, the interpretation of
the judgment {𝐶} 𝑡 :𝑥{𝐶 ′} is essentially the same as that of the triple {𝐶} 𝑡 {𝜆𝑥.𝐶 ′},
which follows the presentation that I have used so far. The specification of functions
and higher-order functions involves a ternary predicate, called evaluation formula
and written “𝑣1 ∙ 𝑣2 == 𝑣3”, which asserts that the application of the value 𝑣1 to the
value 𝑣2 returns the value 𝑣3. The specification thus takes place in a first-order logic
extended with this ad-hoc evaluation predicate. Another specificity of the assertion
logic is that its values are the values of the programming language (i.e., PCF values),
including in particular non-terminating functions. Moreover, in the assertion logic,
equality is interpreted as observational equivalence. All those constructions make
the assertion logic nonstandard, making it difficult to reuse existing proof tools.

The series of work on program logics by Honda, Berger and Yoshida culminated
in the development of total characteristic assertion pairs [40], abbreviated as TCAP,
which corresponds to the notion of most-general Hoare triple. A most-general Hoare
triple, also called most-general formula, is made of the weakest pre-condition, which
corresponds to the minimal requirement for safe execution, and of the strongest post-
condition, which precisely relates the output heap to the input heap. Most-general
formulae were introduced by Gorelick in 1975 [31] for establishing a completeness
result for Hoare logic. Yet, this theoretical result does not help verify programs in
practice, because most-general formulae were there expressed in terms of the syntax
and the semantics of the source program. The total characteristic assertion pairs
(TCAPs) developed by Honda, Berger and Yoshida [40] precisely solve that problem,
as TCAPs express the weakest pre-condition and the strongest post-condition in the
assertion logic, without any reference to program syntax. Moreover, the TCAP of a
program can be constructed automatically by application of a simple algorithm.

As those researchers point out, TCAPs suggest a new approach to proving that
a program satisfies a given specification. Indeed, rather than building a derivation
using the reasoning rules of the Hoare program logic, one may simply prove that
the pre-condition of the specification implies the weakest pre-condition and that
the post-condition of the specification is implied by the strongest post-condition.
The verification of those two implications can be conducted entirely at the logical

158 CHAPTER 8. RELATED WORK

level. Yet, this appealing idea was never implemented, mainly because the treatment
of first-class functions and of evaluation formulae in the assertion logic makes the
logic nonstandard and precludes the use of a standard theorem prover. A central
contribution of this thesis has been to show how to reconcile first-class functions
and evaluation formulae with a standard logic, by representing functions in the logic
through the deep embedding of their code (with the type Func) and by defining an
evaluation formula (the predicate AppEval) in terms of the deep embedding of the
semantics of the source programming language.

The presentation of characteristic formulae that I build also differ in several
ways from TCAPs. First, characteristic formulae rely on existential quantification
of intermediate specifications and loop invariants. This was not the case in TCAPs,
which are expressed in first-order logic. Second, I have shown that characteristic
formulae could be pretty-printed just like source code. This possibility was not
pointed out in the work on TCAPs, even though, in principle, it should be possible
to apply a similar notation system to TCAPs. Third, TCAPs rely on a reachability
predicate for reasoning on dynamic allocation, whereas I have based on my work
upon standard technique from Separation Logic, whose effectiveness has already
been demonstrated. In particular, I introduced the predicate local to integrate the
frame rule directly inside characteristic formulae.

8.2 Separation Logic

Tight specifications and the frame rule Separation Logic has been developed
initially by Reynolds [77] and by O’Hearn and Yang [67, 86], and subsequently by
many others. It builds on earlier work by Burstall [14], on work by Bornat [12],
and on the logic of Bunched Implications developed by O’Hearn, Ishtiaq and Pym
[66, 42]. The starting point of Separation Logic is the tight interpretation of Hoare
triples. The tight interpretation of a triple {𝐻} 𝑡 {𝑄} asserts that the execution of
the term 𝑡 is only allowed to modify memory cells that are described by the pre-
condition 𝐻. This interpretation is the key to the soundness of the frame rule, which
enables local reasoning.

Following the traditional presentation of Hoare logic, Separation Logic allows the
local variables of a program to be modified, even though it does not require local
variables to be described with an assertion of the form 𝑥 →˓ 𝑣. In other words, in
Separation Logic assertions, the name of a local variable is confused with the current
value of that variable. For this reason, the frame rule is usually presented with a
side-condition, as shown below. In this rule, 𝑐 denotes a command, and 𝑝, 𝑞 and 𝑟
are assertions about the heap.

{𝑝} 𝑐 {𝑞}
{𝑝 * 𝑟} 𝑐 {𝑞 * 𝑟}

Ç
where no variable occurring
free in 𝑟 is modified by 𝑐.

å
Characteristic formulae require a frame rule without side condition because they

cannot refer to program syntax. As observed by O’Hearn [68], the side-condition is

8.2. SEPARATION LOGIC 159

not needed in a language such as Caml, where mutation is only allowed for heap-
allocated data. More generally, it would suffice to distinguish the name of local
variables from their contents in order to avoid the side-condition in the frame rule.

Separation Logic tools A number of verification tools have been built upon ideas
from Separation Logic. For example, Smallfoot, developed by Berdine, Calcagno and
O’Hearn [8], is an automated verification tool specialized for programs manipulating
linked data structures. Also, Yang et al [85] have developed an automated tool for
verifying dozens of thousands of lines of source code for device drivers, which mainly
involve linked lists.

Because fully-automated tools are inherently limited in scope, other researchers
have investigated the possibility to exploit Separation Logic inside interactive proof
assistants. The first such embedding of Separation Logic appears to be the one
by Marti and Affeldt [52, 53]. Yet, these researchers conducted their Coq proofs
by unfolding the definition of the separating conjunction, which breaks the nice
level of abstraction brought by this operator. Appel [2] has shown how to build
reasoning tactics that do not break the abstraction layer, obtaining significantly-
shorter proof scripts. Further Separation Logic tactics were subsequently developed
in many research projects, e.g., [24, 82, 62, 17, 55, 59].

Most of those tactics exploit an hypothesis of the form 𝐻 ℎ for proving a goal
of the form 𝐻 ′ ℎ. One exception is a recent version of Ynot [17], where the tactics
directly handles goals of the form 𝐻 B 𝐻 ′, without involving a heap variable ℎ in
the proof. This approach allows working entirely at the level of heap predicates and
it allows for the development of more efficient tactics. This is why I have followed
that approach in the implementation of my tactic hsimpl (§5.7.1).

Local reasoning and while loops The traditional Hoare logic reasoning rule for
while loops is expressed using loop invariants. This rule can be used in the context
of Separation Logic. However, it does not take full advantage of local reasoning (as
explained in §3.3). I came accross the limitation of loop-invariants, found a way to
address it, and then learnt that Tuerk had made the same observation and discussed
it in a workshop paper [83]. I present his solution and then compare it with mine.

In Tuerk’s presentation, the deduction rule that does involve a loop invariant is
as shown below. In this partial-correctness reasoning rule, 𝑏 is a boolean condition,
𝑐 is a set of commands, and 𝐼 is an invariant.

{𝑏 ∧ 𝐼} 𝑐 {𝐼}
{𝐼} (while 𝑏 do 𝑐) {¬𝑏 ∧ 𝐼}

His generalized rule is shown next. There, 𝑃 denotes a predicate (the invariant
becomes parameterized by an index), and 𝑥 and 𝑦 denote indices for 𝑃 . Observe
that the premise involves a quantification over all the programs 𝑐′ that admit a given
specification. The variable 𝑐′ intuitively denotes the remaining iterations of the loop.

160 CHAPTER 8. RELATED WORK

So, the sequence (𝑐 ; 𝑐′) corresponds to the execution of the first iteration followed
with that of the remaining iterations.

∀𝑥. ∀𝑐′.
Ä
∀𝑦. {𝑃 𝑦} 𝑐′ {¬𝑏 ∧ 𝑃 𝑦}

ä
⇒ {𝑏 ∧ 𝑃 𝑥} (𝑐 ; 𝑐′) {¬𝑏 ∧ 𝑃 𝑥}

∀𝑥. {𝑃 𝑥} (while 𝑏 do 𝑐) {¬𝑏 ∧ 𝑃 𝑥}

The rule involves a negative occurrence of a Hoare triple, so it cannot be used as
an inductive definition. Instead, the reasoning rule is presented as a lemma proved
correct with respect to the operational semantics of the source language.

The quantification over 𝑐′ plays a very similar role as the quantification over a
variable 𝑅 involved in the characteristic formulae for while loops. My formulation is
slightly more concise because I quantify directly over a given behavior 𝑅 instead of
quantifying over all the programs 𝑐′ that admit a given behavior. It is not surprising
that my solution shares strong similarities with Tuerk’s solution, since we both used
an encoding of while loops as recursive functions as a starting point for deriving a
local-reasoning–friendly version of the reasoning rule for loops.

8.3 Verification Condition Generators

A VCG is a tool that, given a program annotated with its specification and its
invariants, extracts a set of proof obligations that entails the correctness of the pro-
gram. The generation of proof obligations typically relies on the computation of
weakest pre-conditions Following this approach pioneered by Floyd [29], Hoare [36]
and Dijkstra [22], a large number of VCGs targeting various programming languages
have been implemented in the last decades, including VCGs for full-blown industrial
programming languages. For example, Spec-# [5] supports verification of properties
about C# programs. Programs are translated into the Boogie [4] intermediate lan-
guage, from which proof obligations are generated. The SMT solver Z3 [21] is then
used to discharge those proof obligations. Most SMT solvers only cope with first-
order logic, thus the specification language does not benefit from the expressiveness,
modularity, and elegance of higher-order logic. Several researchers have investigated
the possibility of extending the VCG approach to a specification language based on
higher-order logic. Three notable lines of work are described next.

The Why platform The tool Why, developed by Filliâtre [26], is an intermedi-
ate purely-functional language annotated with higher-order logic specification and
invariants, on which weakest pre-conditions can be computed for generating proof
obligations. The tool is intended to be used in conjunction with a front-end, like
Caduceus [27] for C programs or Krakatoa [51] for Java programs. Proof obligations
that are not verified automatically by at an SMT solver can be discharged using an
interactive proof assistant such as Coq.

However, in practice, those proof obligations are often large and clumsy. This
is in part due to the memory model, which does not take advantage of Separation
Logic. Moreover, interactive proofs of verification conditions are generally quite

8.3. VERIFICATION CONDITION GENERATORS 161

brittle because the proof obligations are quite sensitive to changes in either the source
code or its invariants. So, although interactive verification of programs with higher-
order logic specifications is made possible by the tool Why, it involves a significant
cost. As a consequence, the verification of large programs with Why appears to be
well-suited only for programs that require a small number of interactive proofs.

With characteristic formulae, a slightly smaller degree of automation is achiev-
able than with a VCG, however proof obligations always remain tidy and can be
easily related to the point of the program they arise from. Characteristic formulae
offer some possibility for partially automating the reasoning, through calls to the
tactic xgo and through the invokation of decision procedures from Coq. When rea-
soning on the code becomes more involved and requires a lot of intervention from the
user, the verification of the code can be conducted step-by-step in a fully-interactive
manner. Moreover, by investing a little extra effort in explicitly naming the hy-
potheses that need to be referred to in the proof scripts, one can build very robust
proof scripts.

Jahob The tool Jahob [88], mainly developed by Zee, Kuncak and Rinard, targets
the verification of programs written in a subset of Java, and accommodates specifi-
cations expressed in higher-order logic. The tool has been successfully employed to
verify mutable linked data structures, such as lists and trees. For discharging proof
obligations, Jahob relies on a translation from (a subset of) higher-order logic into
first order logic, as well as on automated theorem provers extended with specialized
decision procedures for reasoning on lists, trees, sets and maps.

A key feature of Jahob is its integrated proof language, which allows including
proof hints directly inside the source code. Those hints are used to guide automated
theorem provers, in particular by indicating how existential variables should be
instantiated. Although it is not clear how this approach would extend beyond the
verification of list and set data structures for which powerful decision procedures
can be devised, the programs verified in Jahob exhibit both high-level specifications
and an impressive degree of automation.

Yet, the impressively-small number of hints written in a program often covers up
the extensive amount of time required for coming up with the appropriate hints. The
development process involves running the tool, waiting for the output of automated
theorem provers, reading the proof obligations to try and understand why proof
obligations could not be discharged automatically, and finally starting over with a
slightly different proof hint. This process turns out to be quite time-consuming.
Moreover, guessing what hints may work seems to require a good understanding of
the working of the automated theorem provers and of the encoding of higher-order
logic that is applied before the provers are called.

Carrying out interactive proofs using characteristic formulae certainly also re-
quires some expertise with the interactive theorem prover and its proof-search fea-
tures. However, interactive proofs give near-instantaneous feedback, saving overall
a lot of time in the verification process. In the end, an interactive proof script might

162 CHAPTER 8. RELATED WORK

involve more lines than the integrated proof hints of Jahob, however those lines
might take a lot less time to come up with.

Pangolin Pangolin, developed by Régis-Gianas and Pottier [76] is the first VCG
tool that targets a higher-order, purely-functional programming language. The key
innovation of this work is the treatment of first-class functions: a function gets
reflected in the logic as the pair of its pre-condition and of its post-condition. More
recently, the tool Who [44], by Kanig and Filliâtre, builds upon the same idea for
extending Why [26] with imperative higher-order functions. I have followed a very
different approach to lifting functions to the logical level. In my work, functions are
represented as values of the abstract data type Func and specified using the abstract
predicate AppReturns. This approach has three benefits compared with representing
functions as pairs of a pre- and a post-condition.

Firstly, the predicate AppReturns allows assigning several specifications to the
same functions, whereas in Pangolin the specification of a function is hooked into the
type of the function. Assigning multiple specifications to a same function turns out
to be particularly useful for higher-order functions, which typically admit a complex
most-general specification and a series of simpler, specialized specifications.

Secondly, the fact that functions are uniformly represented as a data type Func
rather than as a pair of a pre- and a post-condition makes it simpler to reason about
functions stored in data-structures. For example, in my approach a list of functions
is reflected as the type “List Func” while in Pangolin the same list would have a type
of the form “List (∃𝐴𝐵. (𝐴 → Prop) × (𝐵 → Prop))”, involving dependent types.

Thirdly, specification of functions through the predicate AppReturns interacts
better with ghost variables, as the reflection of a function 𝑓 as a logical value of type
“(𝐴 → Prop) × (𝐵 → Prop)” does not take ghost variables into account. Although
Pangolin offers syntactic sugar for specifying functions with ghost variables, this
syntactic sugar has to be ultimately eliminated, leading to duplication of hypotheses
in pre- and post-conditions or in proof obligations.

8.4 Shallow embeddings

Program verification with a shallow embedding consists in relating the source code
of the program that is executed with a program written in the logic of a theorem
prover. This approach can take several forms.

Programming in type theory with ML types Leroy’s formally-verified C
compiler [47] is, for the most part, programmed directly in Coq. The extraction
mechanism of Coq is used to obtain OCaml source code out of the Coq definitions.
This translation is mainly a matter of adapting the syntax. Because the logic of
Coq includes only pure total functions, the compiler is implemented without any
imperative data structure, and the termination of all the recursive functions involved
is justified through a simple syntactic criteria. Although those restrictions appeared

8.4. SHALLOW EMBEDDINGS 163

acceptable for writing a program such as a compiler, there are many programs that
cannot accommodate such restrictions.

The source code of Leroy’s compiler involves only basic ML types. Typically, a
data structure is represented using algebraic types, and the properties of a value of
type 𝑇 are specified through a predicate of type 𝑇 → Prop. There exists another
style of programming, detailed next, which consists in using dependent types to
enforce invariants of values, for example relying on the type “ list𝑛” to describe lists
of length 𝑛.

Programming in type theory with dependent types Programming with de-
pendent types has been investigated in particular in Epigram [54], Adga [19] and
Russell [81]. The latter is an extension to Coq, which behaves as a permissive source
language which elaborates into Coq terms. In Russell, establishing invariants, jus-
tifying termination of recursive functions and proving the inaccessibility of certain
branches from a pattern matching can be done through interactive Coq proofs.
Those features make it easier in particular to write programs featuring nontrivial
recursion (even though the proofs about such dependently-typed functions might
turn out to be more technical).

When dependent types are used, Coq functions manipulate values and proofs in
the same time. So, the work of the extraction mechanism is more involved than when
programming with ML types, because the proof-specific entities need to be separated
from the values with computational content. Recognizing proof-specific elements is
far from trivial. With the current implementation of Coq, some ghost variables
might fail to be recognized as computationally irrelevant. Such variables remain
in the extracted code, leading to runtime inefficiencies and, possibly to incorrect
asymptotic complexity [81]. The Implicit Calculus of Constructions [6] could solve
that problem, as it allows tagging ghost variables manually, however this system is
not yet implemented.

Hoare Type Theory and Ynot The two approaches described so far do not sup-
port imperative features. The purpose of Hoare Type Theory (HTT) [61, 63], devel-
oped by Nanevski, Morrisett and Birkedal, is precisely to extend the programming
language from the logic with an axiomatic monad for describing impure features such
as side-effects and non-termination. HTT is implemented in a tool called Ynot [17]
and it has been recently re-implemented by Nanevksi et al [64]. Both developments,
implemented in Coq, allow for the extraction of code that performs side effects. The
type of the monad involved takes the form “ST𝑃 𝑄”, which is a partial-correctness
Hoare triple asserting that a term of that type admits the pre-condition 𝑃 and the
post-condition 𝑄. On top of the monadic type ST is built a Separation Logic-style
monad, of type “STsep𝑃 𝑄”, which supports local reasoning.

In HTT, verification proofs thus take the form of Coq typing derivations for
the source code. So, program verification is done at the same time as writing the
source code. This is a significant difference with characteristic formulae, which

164 CHAPTER 8. RELATED WORK

allow verifying programs after they have been written, without requiring the source
code to be modified in any way. Moreover, characteristic formulae can target an
existing programming language, whereas the Ynot programming language has to fit
into the logic it is implemented in. For example, supporting handy features such as
alias-patterns and when-clauses would be a real challenge for Ynot, because pattern
matching is so deeply hard-wired in Coq that it is not straightforward to extend it.

Another technical difficulty faced by HTT is the treatment of ghost variables.
A specification of the form “ST𝑃 𝑄” does not naturally allow for ghost variables to
be used for sharing information between the pre- and the post-condition. Indeed, if
𝑃 and 𝑄 both refer to a ghost variable 𝑥 quantified outside of the type “ST𝑃 𝑄”,
then 𝑥 is considered as a computationally-relevant value and thus it appears in the
extracted code (indeed, 𝑥 is typically not of type Prop). Ynot [17] relies on a hack for
simulating the Implicit Calculus of Constructions [6], which, as mentioned earlier on,
allows to tag ghost variables explicitly. A danger of this approach is that forgetting
to tag a variable as ghost does not produce any warning yet results in the extracted
code being inefficient. HTT [63, 64] takes a different approach and implements post-
conditions as predicate over both the input heap and the output heap. This makes
it possible to eliminate ghost variables by duplicating the pre-condition inside the
post-condition. Typically, “∀𝑥. ST𝑃 𝑄” gets encoded as “ST (∃𝑥. 𝑃) (∀𝑥. 𝑃 ⇒ 𝑄)”.
Tactics are then developed to avoid the duplication of proof obligations, however
the duplication remains visible in specifications. It might be possible to also hide
the duplication in specifications with a layer of notation, however such a notation
system does not appear to have been implemented.

Translation of code into logical definitions The extraction mechanism in-
volved in the aforementioned approaches take a program described as a logical defi-
nition and translate it into a conventional programming language. It is also possible
to consider a translation that goes instead in the other direction, from a piece of
code towards a higher-order logic definition.

The LOOP compiler [43] takes Java programs and compiles them into PVS
definitions. It supports a fairly large fragment of the Java language and features ad-
vanced PVS tactics for reasoning on generated definitions. In particular, it includes
a weakest-precondition calculus mechanism that allows achieving a high degree of
automation, despite being limited in the size of the fragment of code that can be
automatically verified. However, interactive proofs require a lot of expertise from
the user: LOOP requires not only to master the PVS tool but also to understand the
compilation scheme involved [43]. By contrast, the tactics manipulating character-
istic formulae appear to allow conducting interactive proofs of correctness without
detailed knowledge on the construction of those formulae.

Myreen and Gordon [60, 58] decompile machine code into HOL4 functions. The
lemmas proved interactively about the generated HOL4 functions can then be auto-
matically transformed into lemmas about the behavior of the corresponding pieces
of machine code. This approach has been applied to verify a complete LISP inter-

8.4. SHALLOW EMBEDDINGS 165

preter implemented in machine code. The translation into HOL4 is possible only
because the functional translation of a while loop is a tail-recursive function. In-
deed, tail-recursive functions can be accepted as logical definitions in HOL4 without
compromising the soundness of the logic, even when the function is non-terminating
[50]. Without exploiting this peculiarity of tail-recursive functions, the automated
translation of source code into HOL4 would not be possible. For this reason, it
seems hard to apply this decompilation-based approach to the verification of code
featuring general recursion and higher-order functions.

SeL4 The goal of the seL4 project [46, 45] is the machine-checked verification of
the seL4 microkernel. The microkernel is implemented in a subset of C, and also
includes lines of assembly code. The development involves two layers of specifica-
tion. First, abstract logical specifications, describing the high-level invariants that
the microkernel should satisfy, have been stated in Isabelle/HOL. Second, a model
of the microkernel has been implemented in a subset of Haskell. This executable
specification is automatically translated into Isabelle/HOL definitions, via a shallow
embedding.

The proof of correcteness is two-step. First, it involves relating the translation of
the executable Haskell specification with a deep embedding of the C code. This task
can be partially automated with the help of specialized tactics. Second, the proof
involves relating the abstract specification with the translation of the executable
specification. This task is mostly carried out at the logical level, and thus does not
involve referring to the low-level representation of data-structures such as doubly-
linked lists.

To summarize, this two-step approach involves a shallow embedding of some
source code. This code is not the low-level C code that is ultimately compiled, but
rather the source code of an abstract version of that code, expressed in a higher-level
programming language, namely Haskell. The shallow embedding approach applies
well in seL4 because the code of the executable specification was written in such
a way as to avoid any nontrivial recursion [45]. Overall, the approach is fairly
similar to that of Myreen and Gordon [60, 58], except that the low-level code is not
decompiled automatically but instead decompiled by hand, and this decompilation
is proved correct using semi-automated tactics.

The KeY system The KeY system [7] is a fairly successful approach to the
verification of Java programs. Contrary to the aforementioned approaches, the KeY
system does not target a standard mathematical logic, but instead relies on a logic
specialized for reasoning on imperative programs, called Dynamic Logic. Dynamic
Logic [33] is a particular kind of modal logic in which program code appears inside
modalities such as the mix-fix operator ⟨·⟩. For example, “𝐻1 → ⟨𝑡⟩𝐻2” is a Dynamic
Logic formula asserting that, in any heap satisfying 𝐻1, the sequence of commands 𝑡
terminates and produces a heap satisfying 𝐻2. This formula thus has the same
interpretation as the proposition “J𝑡K𝐻1 (#𝐻2)”. Reasoning rules of Dynamic Logic

166 CHAPTER 8. RELATED WORK

enable symbolic execution of source code that appears inside a modality. Reasoning
on loops and recursive functions can be conducted by induction. Local reasoning is
supported in the KeY methodology thanks to the recent addition of a feature called
Dynamic Frames [79].

Despite being based on very different logics, the characteristic formulae approach
and the KeY approach to program verification show a lot of similarities regarding the
high-level interactions between the user and the system. Indeed, KeY features a GUI
interface where the user can view the current formula and make progress by writing
a proof script made of tactics (called “taclets”). It also relies on existential variables
for delaying the instantiations of particular intermediate invariants. Thanks to those
similarities, the approach based on characteristic formulae can presumably leverage
on the experience acquired through the KeY project and take inspiration from the
nice features developed for the KeY system. In the same time, by being implemented
in terms of a mainstream theorem prover rather than a custom one, characteristic
formulae can leverage on the fast development of that theorem prover and benefit
from the mathematical libraries that are developed for it.

8.5 Deep embeddings

A fourth approach to formally reasoning on programs consists in describing the
syntax and the semantics of a programming language in the logic of a proof assistant,
using inductive definitions. In theory, the deep embedding approach can be used to
verify programs written in any programming language, and without any restriction
in terms of expressiveness (apart from those of the proof assistant).

Proof of concept by Mehta and Nipkow Mehta and Nipkow [56] have set
up the first proof-of-concept of program verification through a deep embedding in
a general-purpose theorem prover. The authors axiomatized the syntax and the
semantics of a basic procedural language in Isabelle/HOL. Then, they proved Hoare-
style reasoning rules correct with respect to the semantics of that language. Finally,
they implemented in ML a VCG tactic for automatically applying the reasoning
rules. The VCG tactic, when applied to a source code annotated with specification
and invariants, produces a set of proof obligations that entails the correctness of
the source code. The approach was validated through the verification of a short yet
complex program, the Schorr-Waite graph-marking algorithm. Although Mehta and
Nipkow’s work is conducted inside a theorem prover, it remains fairly close to the
traditional VCG-based approach.

To reason about data that are chained in the heap, Mehta and Nipkow adapted
a technique from Bornat [12]. They defined a predicate “List𝑚𝑙𝐿” to express the
fact that, in a memory store 𝑚, there exists a path that goes from the location 𝑙
to the value null by traversing the locations mentioned in the list 𝐿. Mehta and
Nipkow observed that the definition of the predicate List allows for some form of
local reasoning, in the sense that the proposition “List𝑚𝑙𝐿” remains true when

8.5. DEEP EMBEDDINGS 167

modifying a pointer that does not belong to the list 𝐿. However, the predicate List
refers to the entire heap 𝑚, so it does not support application of the frame rule.

The frameworks XCAP and SCAP The frameworks XCAP [65] and SCAP
[25], developed by Shao et al, rely on deep embeddings for reasoning in Coq about
assembly programs. They support reasoning on advanced patterns such as strong
updates, embedded code pointers, or longjump/setjump. Those frameworks have
been used to verify short but complex assembly routines, whose proof involves hun-
dreds of lines per instruction.

One of the long-term goals of the Flint project headed by Shao is to develop the
techniques required to formally prove correct the kernel of an operating system. Such
a development involves reasoning at different abstraction levels. Typically, a thread
scheduler or a garbage collector needs to have a lower-level view of memory, whereas
threads that are executed by the scheduler and that use the garbage collection facility
might have a much higher-level view of memory. So, it makes sense to develop various
logics for reasoning at each abstraction layer. Yet, at some point, all those logics
must be related to each other.

As Shao et al have argued, the key benefits of using a deep embedding is that
it allows for a foundational approach to program verification, in which all those
logics are ultimately defined in terms of the semantics of machine code. In this
thesis, I have focused on reasoning on programs written in a high-level programming
language, so the challenge is quite different. Applying such a foundational approach
to characteristic formulae would involve establishing a formal connection between a
characteristic formula generator and a formally-verified compiler.

From a deep embedding of pure-Caml to characteristic formulae The
development of the characteristic formulae presented in this thesis originates in an
investigation of the use of a deep embedding for proving purely-functional programs.
In the development of this deep embedding, I did formalize in Coq the syntax and the
semantics of the pure fragment of Caml. The specification predicate took the form
“𝑡 ⇓|𝑃 ”, asserting that the execution of the term 𝑡 terminates and returns a value
satisfying the predicate 𝑃 . The reasoning rules, which take the form of lemmas
proved correct with respect to the axiomatized semantics, were used to establish
judgments of the form “𝑡 ⇓|𝑃 ”.

I relied on tactics to help applying those reasoning rules. Those tactics behaved
in a similar way as the x-tactics developed for characteristic formulae, although
the implementation of those tactics was much more involved (I explain why further
on). With this deep embedding, I was able to verify the implementation of the
list library of OCaml and to prove correct a bytecode compiler and interpreter for
mini-ML. The resulting verification proof scripts were actually quite similar to those
involved when working with characteristic formulae. Further details can be found
in the corresponding technical report [15]. I next explain how the deep embedding
reasoning rules led to characteristic formulae, an what improvements were brought

168 CHAPTER 8. RELATED WORK

by characteristic formulae.
When verifying a program through a deep embedding, the reasoning rule are

applied in a very systematic manner. For example, whenever reaching a let-node,
the reasoning rules for let-bindings, shown next, needs to be applied.

(𝑡1 ⇓|𝑃 ′) ∧ (∀𝑥. 𝑃 ′ 𝑥 ⇒ 𝑡2 ⇓|𝑃) ⇒ ((let𝑥 = 𝑡1 in 𝑡2) ⇓|𝑃)

The intermediate specification 𝑃 ′, which does not appear in the goal, typically needs
to be provided at the time of applying the rule. The introduction of an existential
quantifier allows applying the rule by delaying the instantiation of 𝑃 ′. The updated
reasoning rule for let-bindings is as follows.Ä

∃𝑃 ′. (𝑡1 ⇓|𝑃 ′) ∧ (∀𝑥. 𝑃 ′ 𝑥 ⇒ 𝑡2 ⇓|𝑃)
ä

⇒ ((let𝑥 = 𝑡1 in 𝑡2) ⇓|𝑃)

This new reasoning rule is now entirely goal-directed, so it can be applied in a
systematic manner, following the source code of the program. This led to the char-
acteristic formula for let-bindings, recalled next. Observe that “J𝑡K𝑃 ” has exactly
the same interpretation as “𝑡 ⇓|𝑃 ”, since both assert that the term 𝑡 returns a value
satisfying 𝑃 .

Jlet𝑥 = 𝑡1 in 𝑡2K𝑃 ≡
Ä
∃𝑃 ′. J𝑡1K𝑃 ′ ∧ (∀𝑥. 𝑃 ′ 𝑥 ⇒ J𝑡2K𝑃)

ä
In addition to automating the application of reasoning rules, another major

improvement brought by characteristic formulae concerns the treatment of program
values. With characteristic formulae, a list of integers “3 :: 2 :: nil” occurring in a
Caml program is described as the corresponding Coq list of integers. However, with
the deep embedding, the same value is represented as:

vconstr2 cons (vint 3) (vconstr2 cons (vint 2) (vconstr0 nil))

where vconstr is the constructor from the grammar of values used to represent the
application of data constructors (the index that annotates vconstr indicates the arity
of the data constructor), and where vint is the constructor from the grammar of
values used to represent program integers. I did develop an effective technique for
avoiding to pollute specifications and reasoning with such a low-level representation.
For every Coq type 𝐴, I generated the Coq definition of its associated encoder, which
is a total function of type 𝐴 → Val, where Val denotes the type of Caml values in
the deep embedding. The actual specification judgment in the deep embedding
took the form “𝑡 ⇓𝐴 |𝑃 ”, where 𝐴 is a type for which there exists an encoder of
type “𝐴 → Val”, and where 𝑃 is a predicate of type “𝐴 → Prop”. The proposition
“𝑡 ⇓𝐴 |𝑃 ” asserts that the evaluation of the term 𝑡 returns the encoding of a value
𝑉 of type 𝐴 such that 𝑃 𝑉 holds. With this predicate, program verification through
a deep embedding could be conducted almost entirely at the logical level.

From my experience of developing a framework both for a deep embedding and
for characteristic formulae, I conclude that moving to characteristic formulae brings
at least three major improvements. First, characteristic formulae do not need to

8.5. DEEP EMBEDDINGS 169

represent and manipulate program syntax. Thus, they avoid many technical diffi-
culties, in particular those associated with the representation of binders. Moreover,
I observed that the repeated computations of substitutions that occur during the
verification of a deeply-embedded program can lead to the generation of proof terms
of quadratic size, which can be problematic for scaling up to larger programs.

Second, with characteristic formulae there is no need to apply reasoning rules
of the program logic, because the applications of those rules is automatically done
through the construction of the characteristic formulae. In particular, characteristic
formulae saves the need to compute reduction contexts. With a deep embedding,
to prove a goal of the form “𝑡 ⇓ |𝑃 ”, one must first rewrite the goal in the form
“𝐶[𝑡1] ⇓ |𝑃 ”, where 𝐶 is a reduction context and where 𝑡1 is the subterm of 𝑡 in
evaluation position. More generally, by moving to characteristic formulae, tactics
could be given a much simpler and a much more efficient implementation.

Third and last, characteristic formulae, by lifting values at the logical level once
and for all at the time of their construction, completely avoid the need to refer to
the relationship between program values and logical values. Contrary to the deep
embedding approach, characteristic formulae do not require encoders to be involved
in specifications and proofs; encoders are only involved in the proof of soundness
of characteristic formulae. The removal of encoders leads to simpler specifications,
simpler reasoning rules, and simpler tactics.

The fact that characteristic formulae outperform deep embeddings is after all not
a surprise: characteristic formulae can be seen as an abstract layer built on the top
of a deep embedding, so as to hide details related to the representation of values and
to retain only the essence of the reasoning rules supported by the deep embedding.

Chapter 9

Conclusion

This last chapter begins with a summary of how the various approaches
to program verification try to avoid referring to program syntax. I then
recall the main ingredients involved for constructing a practical verifi-
cation tool upon the idea of characteristic formulae. Finally, I discuss
directions for future research, and conclude.

9.1 Characteristic formulae in the design space

The correctness of a program ultimately refers to the semantics of the programming
language in which that program is written. The reduction judgment describing the
semantics, written 𝑡/𝑚 ⇓ 𝑣′/𝑚′ in the thesis, directly refers to the input memory
state 𝑚 and to the output memory state 𝑚′. Hoare-triples, here written {𝐻} 𝑡 {𝑄},
allow for abstraction in specifications. While a memory state 𝑚 describes exactly
what values lie in memory, the heap descriptions involved in Hoare triples allow to
state properties about the values stored in memory, without necessarily revealing the
exact representation of those values. Separation Logic later suggested an enhanced
interpretation of Hoare triples, according to which any allocated memory cell that is
not mentioned in the pre-condition of a term is automatically guaranteed to remain
unchanged through the evaluation of that term. Separation Logic thereby allows for
local reasoning, in the sense that the verification of a program component can be
conducted independently of the pieces of state owned by other components.

By moving from a judgment of the form 𝑡/𝑚 ⇓ 𝑣′/𝑚′ to a judgment of the form
{𝐻} 𝑡 {𝑄}, Hoare logic and Separation Logic avoid a direct reference to the mem-
ory states 𝑚 and 𝑚′. However, the reference to the source code 𝑡 still remains. In
the traditional VCG approach, this is not an issue: when the code is annotated
with sufficiently-many specifications and invariants, it is possible to automatically
extract a set of verification conditions. Proving the verification condition then en-
sures that the program satisfies its specification. Although the VCG approach works
smoothly when the verification conditions can be discharged by fully-automated the-
orem provers, verification conditions are not as well-suited for interactive proofs.

170

9.2. SUMMARY OF THE KEY INGREDIENTS 171

One alternative to building Hoare-logic derivations automatically consists in
building them by hand, through interactive proofs. To build the derivation of a
Hoare triple {𝐻} 𝑡 {𝑄} manually, one has to refer to the source code 𝑡 explicitly.
The description of source code in the logic involves a deep embedding of the program-
ming language. Program verification through a deep embedding is possible, however
it requires a significant effort, mainly because values from the programming language
needs to be explicitly lifted at the logical level, and because reasoning on reduction
steps involves computing substitutions in the deep embedding of the source code.

The main motivation for verifying programs with a shallow embedding is pre-
cisely to avoid the reference to programming language syntax. There are several
ways in which a shallow embedding can be exploited in program verification, but
they all rely on the same idea: building a logical definition that corresponds to the
source code of the program to be verified. These techniques relies on the fact that
the logic of a theorem prover actually contains a small programming language. Yet,
the shallow embedding approach suffers from restrictions related to the fact that
some features of the host logical language are carved in stone.

I have followed a different approach to removing direct reference to the source
code of the program to be verified. It consists in generating a logical formula that
characterizes the behavior of the source code. This concept of characteristic formulae
is not new: it was first developed in process calculi [70, 57] and was later adapted
to PCF programs by Honda, Berger and Yoshida [40]. Yet, those characteristic
formulae for PCF programs work did not lead to a practical verification system,
because the specification language relied on a nonstandard logic.

In this thesis, I have shown how to construct characteristic formulae expressed in
a standard higher-order logic. The characteristic formula of a term 𝑡 is a predicate,
written J𝑡K, such that J𝑡K𝐻 𝑄 implies that the term 𝑡 admits 𝐻 as pre-condition
and 𝑄 as post-condition. I have implemented a tool for generating Coq character-
istic formulae for Caml programs, and I have developed a Coq library that includes
definitions, lemmas and tactics for proving programs through their characteristic
formula. Finally, I have applied this tool for specifying and verifying nontrivial pro-
grams. The key ingredients involved for turning the idea of characteristic formulae
into a practical verification system are summarized next.

9.2 Summary of the key ingredients

Characteristic formulae The starting point of this thesis is the notion of char-
acteristic formula, which is a higher-order logic formulae that characterizes the set
of total-correctness specifications that a given program admits. A characteristic for-
mula is built compositionally from the source code of the program it describes, and
it has a size linear in that of the program. The program does not need to be an-
notated with specification and invariants, as unknown specifications and invariants
get quantified existentially in characteristic formulae.

172 CHAPTER 9. CONCLUSION

Notation layer If ℱ is the characteristic formula of a term 𝑡, the proof obligation
takes the form “ℱ 𝐻 𝑄”, where 𝐻 is the pre-condition and 𝑄 is the post-condition.
I have devised a system of notation for pretty-printing characteristic formulae in
a way that closely resemble the source code that the formula describes. So, the
proof obligation “ℱ 𝐻 𝑄” reads like the term 𝑡 being applied to the pre- and the
post-conditions, in the form “𝑡𝐻 𝑄”. Since characteristic formulae are built compo-
sitionally, the ability to easily read proof obligations applies not only to the initial
term 𝑡 but also to all of its subterms.

Reflection of values The values involved in the execution of a program are spec-
ified using values from the logic. For example, if a Caml function expects a list of
integers, then its pre-condition is a predicate about Coq list of integers. This reflec-
tion of Caml values as Coq values works for all values except for functions, because
Coq functions can only describe total functions. I have introduced the abstract type
Func to represent functions, as well as the abstract predicate AppEval for specifying
the behavior of function applications. In the soundness proof, a value of type Func
is interpreted as the deep embedding of the source code of some function. This
interpretation avoids the need to rely on a nonstandard logic, as done in the work
of Honda, Berger and Yoshida [40].

Ghost variables The specification of a function generally involves ghost vari-
ables, in particular for sharing information between the pre-condition and the post-
condition. In order to state general lemmas about function specifications, such as
the induction lemma which inserts an induction hypothesis into given specification,
I have introduced the predicate Spec. The proposition Spec𝑓𝐾 asserts that the
function 𝑓 admits the specification 𝐾, where 𝐾 is an higher-order predicate able to
capture the quantification over an arbitrary number of ghost variables.

N-ary functions Caml programs typically define functions of several arguments
in a curried fashion. Partial applications are commonplace, and over-applications
are also possible. In theory, a function of two arguments can always be specified as
a function of one argument that returns another function of one argument. Yet, a
higher-level predicate that captures the specification of a function of two arguments
in a more direct way is a must-have for practical verification. For that purpose, I
have defined a family of predicates AppReturns𝑛 and Spec𝑛, which are all ultimately
defined in terms of the core predicate AppReturns.

Heap predicates Characteristic formulae, which were first set up for purely func-
tional programs, could easily be extended to an imperative setting by adding heap
descriptions. I exploited the techniques of Separation Logic for describing heaps
in a concise way, and followed the Coq definitions of Separation Logic connectives
developed in Ynot [17]. In particular, heap predicates of the form 𝐿 →˓𝒯 𝑉 support
reasoning on strong updates. One novel ingredient for handling Separation Logic in

9.2. SUMMARY OF THE KEY INGREDIENTS 173

characteristic formulae is the definition of the predicate local, which is inserted at
every node of a characteristic formula, thereby allowing for application of the frame
rule at any time.

Bounded recursive ownership The use of representation predicates is a stan-
dard technique for relating imperative data structures with their mathematical
model. I have extended this technique to polymorphic representation predicates: a
representation predicate for a container takes as argument the representation pred-
icate describing the elements stored in that container. Depending on the represen-
tation predicate given for the elements, one can describe either a situation where
the container owns its elements, or a situation where the container does not own its
elements and simply views them as base values.

Weak-ML ML types greatly help in program verification because they allow re-
flecting basic Caml values directly as their Coq counterpart. Yet, for the sake of type
soundness, the ML type system keeps track of the type of functions, and it enforces
the invariant that a location of type ref 𝜏 contains a value of type 𝜏 at any time.
Since program verification is a much more accurate analysis than ML type-checking,
it need not suffer from the restrictions imposed by ML. The introduction of the type
system weak-ML serves two purposes. First, it relaxes the restrictions associated
with ML, in particular through a totally-unconstrained typing rule for applications.
Second, it simplifies the proof of soundness of characteristic formulae, by allowing to
establish a bijection between well-typed weak-ML values and a subset of Coq values,
and by avoiding the need to involve a store typing oracle.

High-level tactics I have developed a set of tactics for reasoning on character-
istic formulae in Coq. Those tactics not only shorten proof scripts, they also make
it possible to verify programs without knowledge of the details of the construction
of characteristic formulae. The end-user only needs to learn the various syntaxes
for CFML tactics, in particular the optional arguments for specifying how variables
and hypotheses should be named. Furthermore, in the verification of imperative
programs, tactics play a key role by supporting application of lemmas modulo asso-
ciativity and commutativity of the separating conjunction, and by automating the
application of the frame rule on function calls.

Implementation The CFML generator parses Caml code and produces Coq def-
initions. It reuses the parser and the type-checker of the OCaml compiler, and
involves about 3, 000 lines of OCaml for constructing characteristic formulae. The
CFML library contains notations, lemmas and tactics for manipulating characteris-
tic formulae. It is made of about 4, 000 lines of Coq. Note that the CFML library
would have been significantly easier to implement if Coq did feature a slightly more
evolved tactic language.

174 CHAPTER 9. CONCLUSION

9.3 Future work

Formal verification of characteristic formulae Defenders of a foundational
approach to program verification argue that we ought to try and reduce the trusted
computing base as much as possible. There are at least two ways of proceeding.
The first one involves building a verified characteristic formula generator and then
conducting a machine-checked proof of the soundness theorem for characteristic
formulae. An alternative approach consists in developing a program that, instead
of generating axioms to reflect every top-level declaration from the source Caml
program, directly generates lemmas and their proofs. Those proofs would be carried
out in terms of a deep embedding of the source program. Note that the program
generating the lemmas and their proofs would not need to be itself proved correct,
because its output would be validated by the Coq proof-checker. I expect both of
those approaches to involve a lot of effort if a full-blown programming language is
to be supported.

Non-determinism In this thesis, I have assumed the source language to be deter-
ministic. This assumption makes definitions and proofs slightly simpler, in particular
for the treatment of partial functions and polymorphism, however it does not seem to
be essential to the development. One could probably replace the predicate AppEval
with two predicates: a deterministic predicate describing only the evaluation of par-
tial applications of curried functions, and a non-deterministic predicate describing
the evaluation of general function applications.

Exceptions It should be straightforward to add support for throwing and catching
of exceptions. Currently, a post-condition has the type “𝐴 → Hprop”, describing both
the result value of type 𝐴 and the heap produced. Support for exceptions can be
added by generalizing the result type to “(𝐴 + exn) → Hprop”, where exn denotes
the type of exceptions. Such a treatment of exceptions has been implemented for
example in Ynot [17]. Characteristic formulae would then involve a left injection to
describe a normal result and involve a right injection to describe the throwing of an
exception.

Arithmetic So far, I have completely avoided the difficulties related to fixed-
size representations of numbers: I have assumed arbitrary-precision integers and
I have not provided any support for floating-point numbers. One way to obtain
correct programs without wasting time reasoning on modulo arithmetic consists in
representing all integers using the BigInt library. Alternatively, one could target
fixed-size integers, yet at the cost of proving side-conditions for every arithmetic
operation involved in the source program. For floating-point numbers, the problem
appears to be harder. Nevertheless, it should be possible to build upon the recent
breakthroughs in formal reasoning on numerical routines [11, 3] and achieve a high
degree of automation.

9.3. FUTURE WORK 175

Fields as arrays The frame rule can be made even more useful if the ownership
of an array of records can be viewed as the ownership of a record of arrays. Such a
re-organization of memory allows to invoke the frame rule on particular fields of a
record. One can then obtain for free the property that a function that needs only
access one field of a record does not modify the other fields. It should be possible
to define heap predicates that capture the field-as-array methodology.

Hidden state Modules can be used to abstract the definition of the invariants
of private pieces of heap. One may want to go further and hide altogether the
existence of such a private piece of state. This is precisely the purpose of the anti-
frame rule developed by Pottier [75, 80]. For example, assume that a module exports
a heap predicate 𝐼 of type Hprop and a function 𝑓 that admits the pre-condition
𝐻 * 𝐼 and the post-condition 𝑄⋆ 𝐼. Assume that the module also contains a private
initialization code that allocates a piece of heap satisfying the invariant 𝐼. Then,
the module can be viewed from the outside world as simply exporting a function 𝑓
that admits the pre-condition 𝐻 and the post-condition 𝑄, removing any reference
to the invariant 𝐼. Integrating the anti-frame rule would allow exporting cleaner
specifications for modules such as a random-number generator, a hash-consing data
structure, a memoization module, and, more generally, for any imperative data
structure that exposes a purely-functional interface.

Concurrency The verification of concurrent programs is a obvious direction for
future research. A natural starting point would be to try and extend characteristic
formulae with the reasoning rules developed for Concurrent Separation Logic, which
was initially devised by O’Hearn and Brookes [13, 68], and later also developed by
other researchers [72, 37].

Module systems In the experimental support for modules and systems, I have
mapped Caml modules to Coq modules. However, limitations in the current module
system of Coq make it difficult to verify nontrivial Caml functors. The enhancement
of modules for Coq is a largely-open problem. In fact, one may argue that even the
module system of Caml is not entirely satisfying. I hope that, in the near future,
an expressive and practical module system that fits both Caml and Coq will be
proposed. Such a common module system would be very helpful for carrying out
modular verification of modular programs without having to hack around several
limitations.

Low-level languages It would be very interesting to implement a characteristic
formula generator for a lower-level programming language such as C or assembly.
Features such as pointer arithmetic should not be too difficult to handle. The treat-
ment of general “goto” instructions may be tricky to handle, however the treatment
of “break” and “continue” instructions appears to be straightforward to integrate

176 CHAPTER 9. CONCLUSION

in the characteristic formulae for loops. Characteristic formulae for low-level pro-
grams should also bring strong guarantees about total collection, ensuring that all
the memory allocated by a program is freed at some point.

Object-oriented languages It would also be worth investigating how charac-
teristic formulae may be adapted to an object-oriented programming language like
Java or C#. The object presentation naturally encourages ghost variables, which
describes the mathematical model of an object, to be laid out as ghost fields. This
treatment may reduce the number of existentially-quantified variables and thereby
allow more goals to be solved by automated theorem provers. Yet, a number of
difficult problems arise when moving to an object-oriented language, in particular
with respect to the specification of collaborating classes and thus need to share a
common invariant, and with respect to the inheritance of specifications. It would
be interesting to see whether characteristic formulae can integrate the notion of
dynamic specification that has been developed by Parkinson and Bierman [71] to
handle inheritance in Java.

Partial correctness The characteristic formulae that I have developed target
total correctness, which offers a stronger guarantee than partial correctness. Yet,
some programs, such as web-servers, are not intended to terminate. A partial-
correctness Hoare triple whose post-condition is the predicate False asserts that
a program diverges, because the program is proved never to crash and never to
terminate. Divergence cannot be specified in a total correctness setting. So, one
could be interested in trying to build characteristic formulae that target partial
correctness, possibly reusing ideas developed by Honda et al [40].

Lazy evaluation The treatment of lazy evaluation that I relied on for verifying
Okasaki’s data structures is quite limited. Indeed, verifying a program by remov-
ing all the lazy keywords for the source code is sound but not complete. I have
started to work on an explicit treatment of suspended computations, aiming for a
proper model of the implementation of laziness in Caml. More challenging would be
the reasoning on Haskell programs, where laziness is implicit. The specification of
Haskell programs would probably involve the specification of partially-defined data
structures, as suggested by Danielsson et al [20].

Complexity analysis One could generalize characteristic formulae into predicates
that, in addition to a pre- and a post-condition, also applies to a bound on the
number of reduction steps. Proof obligations would then take the form “ℱ 𝑁 𝐻 𝑄”,
where ℱ is a characteristic formula and 𝑁 is a natural number. Another possible
approach, suggested by Pottier, consists in keeping proof obligations in the form
“ℱ 𝐻 𝑄” and adding an artificial heap predicate of the form “credit𝑁 ”, which denotes
the ownership of “the right to perform 𝑁 reduction steps”. Note that a credit of the
form “credit (𝑁+𝑀)” can be split at any time into a conjunction “credit𝑁*credit𝑀 ”.

9.4. FINAL WORDS 177

This suggestion has been studied by Pilkiewicz and Pottier [74] in a type system
that extends the type system developed by Pottier and myself [16]. It should not
be difficult to modify characteristic formulae so as to impose that atomic operations
consume exactly one credit, in the sense that they expect “credit 1” in the pre-
condition and do not give this credit back in the post-condition. Combined with a
treatment of laziness, this approach based on credits would presumably enable the
formalization of the advanced complexity analyses involved in Okasaki’s book [69].

9.4 Final words

I would like to conclude by speculating on the role of interactive theorem provers in
future developments of program verification. Research on artificial intelligence has
had limited success in automated theorem proving, and, in spite of the impressive
progress made by SMT solvers, the verification of nontrivial programs still requires
a good amount of user intervention in addition to the writing of specifications.
Being established that some form of interaction between the user and the machine
is required, proof assistants appear as a fairly effective way for users to provide
the high-level arguments of a proof and for the system to give real-time feedback.
My thesis has focused on the development of characteristic formulae, which aim at
smoothly integrating program verification within proof assistants. Proof assistants
have undergone tremendous improvements in the last decade. Undoubtedly, they
will continue to be improved, making interactive proofs, and, in particular, program
verification, more largely applicable and more accessible.

Bibliography

[1] L. Aceto and A. Ingolfsdottir. Characteristic formulae: from automata to logic.
Bulletin of the European Association for Theoretical Computer Science, 91:57,
2007. Columns: Concurrency.

[2] Andrew W. Appel. Tactics for separation logic. Unpublished draft,
http://www.cs.princeton.edu/appel/papers/septacs.pdf, 2006.

[3] Ali Ayad and Claude Marché. Multi-prover verification of floating-point pro-
grams. In Jürgen Giesl and Reiner Hähnle, editors, International Joint Con-
ference on Automated Reasoning, Lecture Notes in Artificial Intelligence, Edin-
burgh, Scotland, 2010. Springer.

[4] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-
tan M. Leino. Boogie: A modular reusable verifier for object-oriented programs.
In Formal Methods for Components and Objects (FMCO) 2005, Revised Lec-
tures, volume 4111 of LNCS, pages 364–387, New York, NY, 2006. Springer-
Verlag.

[5] Mike Barnett, Rob DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wol-
fram Schulte. Verification of object-oriented programs with invariants. Journal
of Object Technology, 3(6), 2004.

[6] Bruno Barras and Bruno Bernardo. The implicit calculus of constructions as a
programming language with dependent types. In Roberto M. Amadio, editor,
FoSSaCS, volume 4962 of LNCS, pages 365–379. Springer, 2008.

[7] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verification of Object-
Oriented Software: The KeY Approach, volume 4334 of LNCS. Springer-Verlag,
Berlin, 2007.

[8] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular
automatic assertion checking with separation logic. In International Symposium
on Formal Methods for Components and Objects, volume 4111 of LNCS, pages
115–137. Springer, 2005.

[9] Josh Berdine and Peter W. O’Hearn. Strong update, disposal, and encapsula-
tion in bunched typing. In Mathematical Foundations of Programming Seman-

178

BIBLIOGRAPHY 179

tics, volume 158 of Electronic Notes in Theoretical Computer Science, pages
81–98. Elsevier Science, 2006.

[10] Martin Berger, Kohei Honda, and Nobuko Yoshida. A logical analysis of aliasing
in imperative higher-order functions. In ACM International Conference on
Functional Programming (ICFP), pages 280–293, 2005.

[11] Sylvie Boldo and Jean-Christophe Filliâtre. Formal verification of floating-point
programs. In IEEE Symposium on Computer Arithmetic, pages 187–194. IEEE
Computer Society, 2007.

[12] Richard Bornat. Proving pointer programs in Hoare logic. In International
Conference on Mathematics of Program Construction (MPC), volume 1837 of
LNCS, pages 102–126. Springer, 2000.

[13] Stephen D. Brookes. A semantics for concurrent separation logic. In Philippa
Gardner and Nobuko Yoshida, editors, CONCUR, volume 3170 of LNCS, pages
16–34. Springer, 2004.

[14] R. M. Burstall. Some techniques for proving correctness of programs which alter
data structures. In B. Meltzer and D. Mitchie, editors, Machine Intelligence 7,
pages 23–50. Edinburgh University Press, Edinburgh, Scotland., 1972.

[15] Arthur Charguéraud. Verification of call-by-value functional
programs through a deep embedding. 2009. Unpublished.
http://arthur.chargueraud.org/research/2009/deep/.

[16] Arthur Charguéraud and François Pottier. Functional translation of a calculus
of capabilities. In ACM International Conference on Functional Programming
(ICFP), 2008.

[17] Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan
Wisnesky. Effective interactive proofs for higher-order imperative programs. In
ACM International Conference on Functional Programming (ICFP), 2009.

[18] The Coq Development Team. The Coq Proof Assistant Reference Manual, Ver-
sion 8.2, 2009.

[19] Thierry Coquand. Alfa/agda. In Freek Wiedijk, editor, The Seventeen Provers
of the World, Foreword by Dana S. Scott, volume 3600 of LNCS, pages 50–54.
Springer, 2006.

[20] Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy Gibbons.
Fast and loose reasoning is morally correct. In ACM Symposium on Principles
of Programming Languages (POPL), pages 206–217, 2006.

[21] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools
and Algorithms for the Construction and Analysis (TACAS), volume 4963 of
LNCS, pages 337–340, Berlin, 2008. Springer-Verlag.

180 BIBLIOGRAPHY

[22] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[23] Manuel Fähndrich and Robert DeLine. Adoption and focus: practical linear
types for imperative programming. In ACM Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 13–24, 2002.

[24] Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. On the relationship between
concurrent separation logic and assume-guarantee reasoning. In Rocco De
Nicola, editor, ESOP, volume 4421 of LNCS, pages 173–188. Springer, 2007.

[25] Xinyu Feng, Zhong Shao, Alexander Vaynberg, Sen Xiang, and Zhaozhong Ni.
Modular verification of assembly code with stack-based control abstractions.
In ACM Conference on Programming Language Design and Implementation
(PLDI), pages 401–414, 2006.

[26] Jean-Christophe Filliâtre. Verification of non-functional programs using inter-
pretations in type theory. Journal of Functional Programming, 13(4):709–745,
2003.

[27] Jean-Christophe Filliâtre and Claude Marché. Multi-prover verification of C
programs. In Formal Methods and Software Engineering, 6th ICFEM 2004,
volume 3308 of LNCS, pages 15–29. Springer-Verlag, 2004.

[28] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The
essence of compiling with continuations. In ACM Conference on Programming
Language Design and Implementation (PLDI), pages 237–247, 1993.

[29] R. W. Floyd. Assigning meanings to programs. In Mathematical Aspects of
Computer Science, volume 19 of Proceedings of Symposia in Applied Mathe-
matics, pages 19–32. American Mathematical Society, 1967.

[30] Georges Gonthier and Assia Mahboubi. A small scale reflection extension for
the Coq system. Research Report 6455, Institut National de Recherche en
Informatique et en Automatique, Le Chesnay, France, 2008.

[31] G. A. Gorelick. A complete axiomatic system for proving assertions about recur-
sive and non-recursive programs. Technical Report 75, University of Toronto,
1975.

[32] Susanne Graf and Joseph Sifakis. A modal characterization of observational
congruence on finite terms of CCS. Information and Control, 68(1-3):125–145,
1986.

[33] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. The MIT Press,
Cambridge, Massachusetts, 2000.

[34] Eric C. R. Hehner. Specified blocks. In Bertrand Meyer and Jim Woodcock,
editors, VSTTE, volume 4171 of LNCS, pages 384–391. Springer, 2005.

BIBLIOGRAPHY 181

[35] M. C. B. Hennesy and R. Milner. Algebraic laws for nondeterminism and
concurrency. Journal of the ACM, 32(1):137–161, 1985.

[36] C. A. R. Hoare. An axiomatic basis for computer programming. Communica-
tions of the ACM, 12(10):576–580, 583, 1969.

[37] Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. Oracle se-
mantics for concurrent separation logic. In Sophia Drossopoulou, editor, ESOP,
volume 4960 of LNCS, pages 353–367. Springer, 2008.

[38] Kohei Honda. From process logic to program logic. In Chris Okasaki and
Kathleen Fisher, editors, ICFP, pages 163–174. ACM, 2004.

[39] Kohei Honda, Martin Berger, and Nobuko Yoshida. An observationally com-
plete program logic for imperative higher-order functions. In Proceedings of
the Twentieth Annual IEEE Symposium on Logic in Computer Science (LICS),
pages 280–293, 2005.

[40] Kohei Honda, Martin Berger, and Nobuko Yoshida. Descriptive and relative
completeness of logics for higher-order functions. In M. Bugliesi, B. Preneel,
V. Sassone, and I. Wegener, editors, Automata, Languages and Programming,
33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006,
Proceedings, Part II, volume 4052 of LNCS. Springer, 2006.

[41] Kohei Honda and Nobuko Yoshida. A compositional logic for polymorphic
higher-order functions. In International ACM Conference on Principles and
Practice of Declarative Programming (PPDP), pages 191–202, 2004.

[42] Samin Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable
data structures. In ACM Symposium on Principles of Programming Languages
(POPL), pages 14–26, London, United Kingdom, 2001.

[43] Bart Jacobs and Erik Poll. Java program verification at nijmegen: Develop-
ments and perspective. In Kokichi Futatsugi, Fumio Mizoguchi, and Naoki
Yonezaki, editors, ISSS, volume 3233 of LNCS, pages 134–153. Springer, 2003.

[44] Johannes Kanig and Jean-Christophe Filliâtre. Who: a verifier for effectful
higher-order programs. In ML’09: Proceedings of the 2009 ACM SIGPLAN
workshop on ML, pages 39–48, New York, NY, USA, 2009. ACM.

[45] Gerwin Klein, Philip Derrin, and Kevin Elphinstone. Experience report: seL4:
formally verifying a high-performance microkernel. In Graham Hutton and
Andrew P. Tolmach, editors, ICFP, pages 91–96. ACM, 2009.

[46] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal
verification of an OS kernel. In Proceedings of the 22nd Symposium on Operating

182 BIBLIOGRAPHY

Systems Principles (22nd SOSP’09), Operating Systems Review (OSR), pages
207–220, Big Sky, MT, 2009. ACM SIGOPS.

[47] Xavier Leroy. Formal certification of a compiler back-end or: programming a
compiler with a proof assistant. In ACM Symposium on Principles of Program-
ming Languages (POPL), pages 42–54, 2006.

[48] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme
Vouillon. The Objective Caml system, 2005.

[49] Pierre Letouzey. Programmation fonctionnelle certifiée – l’extraction de pro-
grammes dans l’assistant Coq. PhD thesis, Université Paris 11, 2004.

[50] Panagiotis Manolios and J Strother Moore. Partial functions in ACL2. 2003.

[51] Claude Marché, Christine Paulin Mohring, and Xavier Urbain. The Krakatoa
tool for certification of Java/JavaCard programs annotated in JML. JLAP,
58(1–2):89–106, 2004.

[52] Nicolas Marti, Reynald Affeldt, and Akinori Yonezawa. Towards formal verifi-
cation of memory properties using separation logic, 2005.

[53] Nicolas Marti, Reynald Affeldt, and Akinori Yonezawa. Verification of the heap
manager of an operating system using separation logic. In Proceedings of the
Third SPACE, pages 61–72, Charleston, SC, USA, 2006.

[54] Conor McBride and James McKinna. The view from the left. Journal of
Functional Programming, 14(1):69–111, 2004.

[55] Andrew McCreight. Practical tactics for separation logic. In Stefan Berghofer,
Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, TPHOLs, vol-
ume 5674 of LNCS, pages 343–358. Springer, 2009.

[56] Farhad Mehta and Tobias Nipkow. Proving pointer programs in higher-order
logic. In Franz Baader, editor, Automated Deduction - CADE-19, 19th Inter-
national Conference on Automated Deduction Miami Beach, FL, USA, July 28
- August 2, 2003, Proceedings, volume 2741 of LNCS, pages 121–135. Springer,
2003.

[57] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[58] Magnus O. Myreen. Formal Verification of Machine-Code Programs. PhD
thesis, University of Cambridge, 2008.

[59] Magnus O. Myreen. Separation logic adapted for proofs by rewriting. In Matt
Kaufmann and Lawrence C. Paulson, editors, ITP, volume 6172 of LNCS, pages
485–489. Springer, 2010.

BIBLIOGRAPHY 183

[60] Magnus O. Myreen and Michael J. C. Gordon. Verified LISP implementations
on ARM, x86 and powerPC. In Stefan Berghofer, Tobias Nipkow, Christian
Urban, and Makarius Wenzel, editors, TPHOLs, volume 5674 of LNCS, pages
359–374. Springer, 2009.

[61] A. Nanevski and G. Morrisett. Dependent type theory of stateful higher-order
functions. Technical report, Citeseer, 2005.

[62] Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Govereau, and Lars
Birkedal. Ynot : Reasoning with the awkward squad. In ACM International
Conference on Functional Programming (ICFP), 2008.

[63] Aleksandar Nanevski, J. Gregory Morrisett, and Lars Birkedal. Hoare type
theory, polymorphism and separation. Journal of Functional Programming,
18(5-6):865–911, 2008.

[64] Aleksandar Nanevski, Viktor Vafeiadis, and Josh Berdine. Structuring the ver-
ification of heap-manipulating programs. In Manuel V. Hermenegildo and Jens
Palsberg, editors, Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2010, Madrid, Spain, January
17-23, 2010, pages 261–274. ACM, 2010.

[65] Zhaozhong Ni and Zhong Shao. Certified assembly programming with embed-
ded code pointers. In ACM Symposium on Principles of Programming Lan-
guages (POPL), 2006.

[66] Peter O’Hearn and David Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215–244, 1999.

[67] Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning about
programs that alter data structures. In Proceedings of CSL’01, volume 2142 of
LNCS, pages 1–19, Berlin, 2001. Springer-Verlag.

[68] Peter W. O’Hearn. Resources, concurrency and local reasoning. Theoretical
Computer Science, 375(1–3):271–307, 2007.

[69] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
1999.

[70] David Park. Concurrency and automata on infinite sequences. In Peter Deussen,
editor, Theoretical Computer Science: 5th GI-Conference, Karlsruhe, volume
104 of LNCS, pages 167–183, Berlin, Heidelberg, and New York, 1981. Springer-
Verlag.

[71] Matthew J. Parkinson and Gavin M. Bierman. Separation logic, abstraction
and inheritance. In George C. Necula and Philip Wadler, editors, POPL, pages
75–86. ACM, 2008.

184 BIBLIOGRAPHY

[72] Matthew J. Parkinson, Richard Bornat, and Peter W. O’Hearn. Modular ver-
ification of a non-blocking stack. In Martin Hofmann and Matthias Felleisen,
editors, POPL, pages 297–302. ACM, 2007.

[73] Benjamin C. Pierce and David N. Turner. Simple type-theoretic foundations for
object-oriented programming. Journal of Functional Programming, 4(2):207–
247, 1994.

[74] Alexandre Pilkiewicz and FranÃ§ois Pottier. The essence of monotonic state.
In Proceedings of the Sixth ACM SIGPLAN Workshop on Types in Language
Design and Implementation (TLDI’11), Austin, Texas, 2011.

[75] Fran cois Pottier. Hiding local state in direct style: A higher-order anti-frame
rule. In LICS, pages 331–340. IEEE Computer Society, 2008.

[76] Yann Régis-Gianas and François Pottier. A Hoare logic for call-by-value func-
tional programs. In International Conference on Mathematics of Program Con-
struction (MPC), 2008.

[77] John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In IEEE Symposium on Logic in Computer Science (LICS), pages 55–74, 2002.

[78] K. Rustan, M. Leino, and M. Moskal. VACID-0: Verification of Ample Cor-
rectness of Invariants of Data-structures, Edition 0. 2010.

[79] Peter H. Schmitt, Mattias Ulbrich, and Benjamin Weiß. Dynamic frames in Java
dynamic logic. In Bernhard Beckert and Claude Marché, editors, Proceedings,
International Conference on Formal Verification of Object-Oriented Software
(FoVeOOS 2010), volume 6528 of LNCS, pages 138–152. Springer, 2011.

[80] Jan Schwinghammer, Hongseok Yang, Lars Birkedal, FranÃ§ois Pottier, and
Bernhard Reus. A semantic foundation for hidden state. In C.-H. L. Ong, editor,
Proceedings of the 13th International Conference on Foundations of Software
Science and Computational Structures (FOSSACS 2010), volume 6014 of LNCS,
pages 2–17. Springer, 2010.

[81] Matthieu Sozeau. Program-ing finger trees in coq. SIGPLAN Not., 42(9):13–24,
2007.

[82] Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separation
logic. In Martin Hofmann and Matthias Felleisen, editors, POPL, pages 97–108.
ACM, 2007.

[83] Thomas Tuerk. Local reasoning about while-loops. In VSTTE LNCS, 2010.

[84] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A first
step towards automated detection of buffer overrun vulnerabilities. In NDSS.
The Internet Society, 2000.

BIBLIOGRAPHY 185

[85] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron Cook,
Dino Distefano, and Peter W. O’Hearn. Scalable shape analysis for systems
code. In Aarti Gupta and Sharad Malik, editors, CAV, volume 5123 of LNCS,
pages 385–398. Springer, 2008.

[86] Hongseok Yang and Peter W. O’Hearn. A semantic basis for local reasoning.
In Mogens Nielsen and Uffe Engberg, editors, FoSSaCS, volume 2303 of LNCS,
pages 402–416. Springer, 2002.

[87] Nobuko Yoshida, Kohei Honda, and Martin Berger. Logical reasoning for
higher-order functions with local state. In International Conference on Foun-
dations of Software Science and Computation Structures (FOSSACS), volume
4423 of LNCS, pages 361–377. Springer, 2007.

[88] Karen Zee, Viktor Kuncak, and Martin C. Rinard. An integrated proof language
for imperative programs. In Michael Hind and Amer Diwan, editors, PLDI,
pages 338–351. ACM, 2009.

