
The Optimal Fixed Point Combinator

Arthur Charguéraud

INRIA
arthur.chargueraud@inria.fr

Abstract. In this paper, we develop a general theory of fixed point
combinators, in higher-order logic equipped with Hilbert’s epsilon oper-
ator. This combinator allows for a direct and effective formalization of
corecursive values, recursive and corecursive functions, as well as func-
tions mixing recursion and corecursion. It supports higher-order recur-
sion, nested recursion, and offers a proper treatment of partial functions
in the sense that domains need not be hardwired in the definition of func-
tionals. Our work, which has been entirely implemented in Coq, unifies
and generalizes existing results on contraction conditions and complete
ordered families of equivalences, and relies on the theory of optimal fixed
points for the treatment of partial functions. It provides a practical way
to formalize circular definitions in higher-order logic.

1 Introduction

1.1 Motivation: partial corecursive functions

To the best of our knowledge, there exists, until now, no general approach to
formalizing partial corecursive functions in a simple and satisfying manner. Con-
sider for example the filter function on infinite streams. Given a predicate P of
type A→ bool (or A→ Prop), the filter function f takes a stream s and returns
a stream made of the elements of s that satisfy P . The filter function is partial
because it produces a well-defined stream only when its argument s contains
infinitely many items satisfying the predicate P .

One way to constructively formalize the definition of filter in a logic of total
functions is to have f take as extra argument a proof that its argument contains
infinitely many items satisfying the predicate P . In this approach, studied by
Bertot [4], the new filter function does not have the type streamA → streamA,
but instead admits a dependent type. Unfortunately, working with dependent
types is often associated with numerous technical difficulties, so we would rather
find a solution that does not make such a heavy use of dependent types.

A different, non-constructive approach to formalizing the filter function was
proposed by Matthews [18]. To apply his technique, the filter function first needs
to be turned into a total function, by testing explicitly whether the argument be-
longs to the domain. Let “neverP s” be a predicate that holds when the stream s
does not contain any item satisfying P . The body of the filter function can be de-
scribed through a functional F , as follows. Throughout the paper, the operator ::

denotes the consing operation on infinite streams.

F f s , let x :: s′ = s in if (neverP s) then arbitrary else
if (P s) then x :: (f s′) else f s′

The filter function f can then be defined as “Fix1 F”, where Fix1 is a combinator
that picks, using Hilbert’s epsilon operator, the unique fixed point of its argument
when it exists, and otherwise returns an arbitrary value. Here, the functional F
can be proved to admit a unique fixed point using a fixed point theorem based
on contraction conditions, devised by Matthews [18]. It follows that f satisfies
the fixed point equation f s = F f s for any stream s.

The main downside of the approach described above is that the domain of the
function needs to be hardwired in its definition. As argued in detail by Krauss
[13] for the case of recursive functions, this requirement is unsatisfactory. First,
it requires to modify the code of the functional, which is inelegant and may cause
difficulties when extracting executable code. Second, it overspecifies the output
of the function outside its domain. Third, it requires to know the domain of the
function at the time of its definition, which is not always practical (see [13]).

The central matter of this paper is to construct a fixed point combinator Fix
that truly supports partial functions. For example, Fix can be directly applied
to the functional that describes the original filter function, shown below.

F f s , let x :: s′ = s in if (P s) then x :: (f s′) else f s′

1.2 Fixed point equations with non-unique solutions

Most forms of circular definitions can be captured by (or encoded as) an equation
of the form a = F a. Yet, such a fixed point equation does not necessarily admit
a unique solution.

One typical case is that of partial functions. In a logic of total functions, a
partial function can be represented as a pair of a total function f of type A→ B
and a domain D of type A → Prop. The partial function (f,D) is said to be a
partial fixed point of a functional F of type (A→ B)→ (A→ B) if the equation
f x = F f x holds for any x satisfying D. (We postpone to §3.3 the discussion
of how circular definitions for partial functions can be expressed as equations of
the form a = F a.) A functional F typically admits several partial functions as
fixed point. Can one of them be considered the “best” fixed point for F?

The starting point of this paper is the observation that the exact answer to
this question is given by the theory of the optimal fixed point developed in 1975
by Manna and Shamir [17], which we have formalized in Coq. A fundamental idea
in this theory is that the only genuine solutions of a fixed point equation are the
partial functions that are consistent with any other fixed point (two functions are
consistent if they agree on the intersection of their domain). Such fixed points
are said to be generally-consistent. The optimal fixed point is defined as the
generally-consistent fixed point with the largest domain. In a sense, the optimal
fixed pointis the most well-defined solution that can be extracted from the fixed

point equation without making arbitrary choices. Manna and Shamir [17] proved
that any functional of type (A→ B)→ (A→ B) admits an optimal fixed point.

Another typical case where fixed point equations do not not admit unique
solutions occurs when working modulo equivalence relations. A value a is a fixed
point of F modulo (≡) if the equation x ≡ F x holds for any value x such that
x ≡ a. Moreover, a fixed point a is said to be the unique fixed point modulo (≡)
of a functional F if any other fixed point x of F is equivalent to a modulo (≡).
In this case, even though the functional F does not admit a unique solution,
it admits a unique equivalence class of solutions. Thus, any element from this
class of equivalence can be considered as representing the meaning of the the
circular definition associated with F . The interest of the definition of “fixed
point modulo” is that it allows defining recursive functions on values compared
modulo an equivalence relation without involving an explicit quotient structure.

1.3 A generic fixed point combinator

In order to unify the various forms of circular definitions, we introduce a generic
fixed point combinator. The basic idea is to pick the “best” fixed point, for a
customizable notion of “best” that depends on the kind of circular definition
being targeted. Our combinator, called Fix, takes as argument an equivalence
relation ≡, an order relation C and a functional F . It then uses Hilbert’s epsilon
operator to pick, among the set of all fixed points modulo ≡ of the functional F ,
the greatest fixed point with respect to C (not be confused with the greatest
fixed point in the sense of domain theory).

Fix (≡) (C)F , ε x. [greatest (C) (fixed point modulo (≡) F) x]

Appropriate instantiations of the binary relations ≡ and C produce a combinator
for unique fixed point and a combinator for optimal fixed point (possibly modulo
an equivalence relation).

Now, in order to exploit properties about the value returned by Fix (≡) (C)F ,
we need to prove that the functional F indeed admits a greatest fixed point. For
a very large scope of circular definitions, the existence of greatest fixed points
can be derived from one very general theorem, which is developed in this paper.
This theorem combines and generalizes several existing ideas: contraction condi-
tions [12], inductive invariants [15] and complete ordered families of equivalence
[18, 10]. Moreover, the corollaries used in the particular case of partial functions
rely on the theory of optimal fixed points [17] and involves a generalized version
of a theorem developed in the context of maximal inductive fixed points [15, 14].

The paper is organized as follows. First, we present all the ingredients that
our paper builds upon. Second, we describe our generic fixed point combinator
and its specialized versions. We then present our fixed point theorem and its
corollaries. Finally, we investigate, without formal justification, the possibility
for code extraction from circular definitions based on the combinator Fix. Due
to space limitations, several results can only be summarized. The details can be
found in the long version of this paper [8].

2 Ingredients

2.1 Contraction conditions for recursive functions

Harrison [12] used contraction conditions in order to show the existence of a
unique fixed point for functionals describing recursive functions.

Definition 1 (Contraction condition for recursive functions). Let F be
a functional of type (A→ B)→ (A→ B), and < be a well-founded relation on
values of type A. The contraction condition for F with respect to < states:

∀x f1 f2. (∀y < x. f1 y = f2 y) ⇒ F f1 x = F f2 x

This contraction condition ensures the existence of a unique fixed point for F as
soon as the codomain of the recursive function, the type B, is inhabited.

To understand why the contraction condition holds for a (simple) terminat-
ing recursive function, consider the following functional F, which describes a
function that computes the binary logarithm of its argument: F f x , if x ≤
1 then 0 else 1 + f bx

2 c. Let us prove that this functional is contractive. Given
arbitrary x, f1 and f2 and the assumption “∀y < x. f1 y = f2 y”, the proof
obligation is:

if x ≤ 1 then 0 else 1 + f1 b
x

2
c = if x ≤ 1 then 0 else 1 + f2 b

x

2
c

If x is less or equal to 1, then the goal is trivial. Otherwise, we need to show
that f1 bx

2 c and f2 bx
2 c are equal. The only way to prove this equality is to use

the assumption “∀y < x. f1 y = f2 y”. So, we have to justify the fact that bx
2 c is

less than x, which is true because x is greater than one. The inequation bx
2 c < x

indeed captures the fact that the recursive call is made on a value smaller than
the current argument x.

Contraction conditions support reasoning on higher-order recursion. They
can also be adapted to n-ary recursive functions and mutually-recursive func-
tions, which can be encoded into simple functions using products and sums,
respectively. The details of the encoding can be hidden through appropriate
reformulations of the contraction condition and of the fixed point theorem.

Moreover, contraction conditions can be easily extended so as to support
partial functions by restricting arguments to be in a given domain D. For a
functional F contractive on a domain D, the fixed point theorem guarantees the
existence of a partial fixed point f on that domain, satifying∀x.D x ⇒ f x =
F f x. Notice that the use of this theorem requires one to provide the domain D
before constructing the fixed point f of F .

2.2 Inductive invariants

As Krstić and Matthews [15] point out, the contraction condition for recursive
function fails to handle the case of nested recursion. Consider the nested zero
function, described by the functional F f x , if x = 0 then 0 else f(f(x − 1)).

Trying to prove F contractive leads to the proof obligation f1(f1(x − 1)) =
f2(f2(x− 1)). The hypothesis of the contraction condition can be used to prove
f1(x− 1) equal to f2(x− 1), because x− 1 is smaller than x. However, we have
no assumption at all on the value of f1(x− 1), so we cannot prove the equality
f1(f1(x− 1)) = f2(f1(x− 1)).

To address this limitation, Krstić and Matthews [15] introduced the notion
of inductive invariants and used it to weaken the contraction condition, thereby
obtaining a stronger fixed point theorem able to handle nested recursion.

Definition 2 (Inductive invariants). A binary relation S of type A→ B →
Prop is an inductive invariant for a functional F of type (A → B) → (A → B)
if there exists a well-founded relation < such that

∀x f. (∀y < x. S y (f y)) ⇒ S x (F f x)

The first observation to be made is that if S is an inductive invariant for F ,
then any fixed point f of F admits S as post-condition, in the sense that S x (f x)
holds for any x. Formally, the restricted contraction condition for a functional F ,
with respect to an inductive invariant S, is similar to the contraction condition
except that it includes an extra hypothesis about the function f1. This condition
guarantees the existence and uniqueness of a fixed point.

Definition 3 (Restricted contraction condition for recursive functions).

∀x f1 f2. (∀y < x. f1 y = f2 y) ∧ (∀y. S y (f1 y)) ⇒ F f1 x = F f2 x

By instantiating S as the predicate “λx r. (r = 0)”, one can prove that the nested
zero function admits a unique fixed point and always returns zero.

2.3 Complete ordered families of equivalences

The contraction conditions described so far can only deal with recursion, for
the basic reason that recursive calls must be applied to smaller values with re-
spect to a well-founded relation. In order to deal with corecursive functions,
Matthews [18] introduced a different form of contraction conditions stated in
terms of families of converging equivalence relations. Di Gianantonio and Micu-
lan [10] slightly simplified this structure, calling it complete ordered families of
equivalence, abbreviated as “c.o.f.e.”. We follow their presentation.

The contraction condition for a functional F of type (A→ A)→ A is stated

in terms of a family of equivalence relations over values of type A, written
i
≈,

indexed with values of an ordered type I. This family needs to be complete in the
sense that all coherent sequences converge to some limit. Note: the definitions of
coherence and of completeness can be skipped upon first reading.

Definition 4 (Ordered families of equivalence). The structure (A, I,≺,
i
≈)

is an ordered family of equivalences when ≺ is a well-founded transitive relation

over the type I and
i
≈ is an equivalence relation over the type A for any i of

type I. Thereafter, the intersection of all the relations
i
≈ is written ≈.

Definition 5 (Coherent sequences). A sequence ui of values of type A in-
dexed by elements of type I is said to be coherent if for any indices i and j such

that i ≺ j the values ui and uj are equivalent at level i, that is, ui
i
≈ uj. More

generally, the sequence ui is said to be coherent on the domain K, for a predicate

K of type I → Prop, when the property ui
i
≈ uj holds for any i and j satisfying

K and such that i ≺ j holds.

Definition 6 (Completeness for an ordered family of equivalences). An

ordered family of equivalences (A, I,≺,
i
≈) is said to be complete if, for any

downward-closed domain K (i.e., such that i ≺ j and K j imply K i) and for
any sequence ui coherent on the domain K, the sequence ui admits a limit l on

the domain K, in the sense that ui
i
≈ l holds for any i satisfying K.

A basic example of c.o.f.e. is the one associated with streams. In this case,

I is the set of natural numbers ordered with <. The relation
i
≈ relates any two

streams that agree up to their i-th element. The intersection ≈ of the family

of relations (
i
≈)i∈N corresponds to stream bisimilarity. This construction of a

c.o.f.e. for sterams can be easily generalized to coinductive trees.
Complete ordered families of equivalences are used to state the following

sufficient condition for the existence of a unique fixed point for F modulo ≈.

Definition 7 (Contraction condition for c.o.f.e.’s). The functional F is

contractive w.r.t. a complete ordered family of equivalences (A, I,≺,
i
≈) when

∀x y i. (∀j ≺ i. x
j
≈ y) ⇒ F x

i
≈ F y

In the particular case of streams, the contraction condition expresses the fact
that if x and y are two streams that agree up to the index i − 1, then F x and
F y agree up to the index i. More generally, the contraction condition asserts
that, given any two values x and y, the functional F is such that F x and F y
are always closer to one another than x and y are, for an appropriate distance.

Di Gianantonio and Miculan [11] have described a general theory, expressed
in categories of sheaves, in which complete ordered families of equivalences are
simply particular cases of sheaves on well-founded topologies. Their theory also
covers the case of well-founded recursion, described by functionals of type ∀x :
A. ({y | y < x} → B)→ B. However, di Gianantonio and Miculan do not cover
the important case of nested calls, nor do they explain how the contraction
condition for recursive functions described by functionals of type (A → B) →
(A→ B) fits their model.

2.4 Optimal fixed point

The combinator Fix1 for unique fixed points [18] described in the introduction
does not work for partial functions because the associated fixed point equation
typically admits several partial fixed points. One idea, put forward by Krstić

and Matthews [15] and investigated in more details by Krstić in [14], is that
there is always a “best” domain for any functional describing a terminating
recursive function, and that, on this domain, there exists a unique fixed point.
The formalization of this idea relies on the notion of inductive fixed point.

Definition 8 (Inductive fixed point). f is an inductive fixed point of a
functional F on a domain D if there exists a well-founded relation < such that:

∀g x. D x ⇒ (∀y < x. D y ⇒ f y = g y) ⇒ f x = F g x

Interestingly, an inductive fixed point on a given domain is always the unique
fixed point on that domain. Moreover, any functional admits a maximal inductive
fixed point, which is the inductive fixed point with the largest domain. This
theorem, which does not appear to have ever been mechanized, may suggest
the definition of a maximal inductive fixed point combinator. Such a combinator
would be useful for terminating functions. However, it would not accommodate
corecursive functions.

In this paper, we invoke an older and much more general theorem in order
to formalize the notion of “best” fixed point. The theorem, due to Manna and
Shamir [17], asserts the existence of an optimal fixed point for any functional de-
scribing a partial function. While it was initially designed for recursive programs,
the theorem turns out to apply to a much larger class of circular definitions.

Several definitions need to be introduced before we can state this theorem.
A partial function f̄ , written with an overline, is represented as a pair (f,D)
of a total function f of type A → B and of a domain D of type A → Prop.
We write A ↪→ B the type of partial functions from A to B. Moreover, we
write dom(f̄) the right projection of f̄ and write f (without an overline) the
left projection of f̄ . Two partial functions f̄ and f̄ ′ are said to be equivalent,
written f̄

↪→= f̄ ′, if they have the same domain and are extensionally equal on
that domain. Moreover, two partial functions f̄ and f̄ ′ are said to be consistent
if they agree on the intersection of their domains. Finally, a partial function f̄ ′

extends a partial function f̄ , written f̄ v f̄ ′, if the domain of f̄ is included in
the domain of f̄ ′ and if f and f ′ are extensionally equal on the domain of f̄ .
Note that the relation v defines a partial order (modulo ↪→=) on the set of partial
functions. The next two definitions formalize the notion of optimal fixed point.

Definition 9 (Generally-consistent fixed points). Let f̄ be a fixed point
modulo ↪→= (the equivalence between partial functions) of a functional F of type
(A ↪→ B) → (A ↪→ B). The fixed point f̄ is said to be a generally consistent,
written generally consistentF f̄ , if any other fixed point f̄ ′ of F modulo ↪→= is
consistent with f̄ .

In other words, a generally-consistent fixed point f̄ of a functional F is such
that, for any other fixed point f̄ ′ of F , the equation f ′(x) = f(x) holds for any x
that belongs both to the domain of f̄ and that of f̄ ′. The contrapositive of this
statement asserts that the domain of a generally-consistent fixed point cannot
include any point x whose image is not uniquely determined by the fixed point

equation for F . Thus, as argued by Manna and Shamir [17], generally-consistent
fixed points are the only genuine solutions of any circular function definition.

Definition 10 (Optimal fixed point). A partial function f̄ of type A ↪→ B
is the optimal fixed point of a functional F of type (A ↪→ B) → (A ↪→ B) if
it is the greatest generally-consistent fixed point of F , with respect to the partial
order v on the set of partial functions.

In short, the optimal fixed point f̄ of a functional F is the generally-consistent
fixed point of F with the largest domain. This means that every other generally-
consistent fixed point of F is a restriction of f̄ to a smaller domain.

Theorem 1 (Optimal fixed point theorem). For any functional F of type
(A ↪→ B)→ (A ↪→ B), where B is inhabited, F admits an optimal fixed point.

The optimal fixed point theorem appears to have had relatively little impact as a
theory of circular program definitions, probably because optimal fixed points are
not computable in general. Yet, as a foundation for a theory of circular logical
definitions, we find the optimal fixed point theorem to be the tool of choice.

2.5 Contributions of this paper

1. By spotting the interest of optimal fixed points for logical circular defini-
tions and by conducting the first formal development of the optimal fixed
point theorem, we obtain a proper treatment of partiality for recursive and
corecursive functions in higher-order type theory.

2. Using invariants to generalize existing results on complete ordered fami-
lies of equivalences, we provide the first general method for justifying the
well-definiteness of nested corecursive functions. The use of invariants also
supports reasoning on certain forms of corecursive values that could not be
formalized with previously-existing contraction conditions.

3. By showing that contraction conditions for recursive functions can be ob-
tained as a particular instance of contraction conditions for complete ordered
families of equivalences, even when nested calls are involved, we are able to
offer a unified presentation of a number of fixed point theorems based on
contraction conditions.

3 The greatest fixed point combinator

3.1 Definition of the greatest fixed point combinator

The combinator Fix takes as argument an equivalence relation ≡ and a partial
order C, both defined on values of an inhabited type A. It then takes a functional
F of type A→ A and returns the greatest fixed point of F modulo ≡ with respect
to C, if it exists. Its definition relies on the predicate “greatest ≺ P x”, which
asserts that x satisfies P and that x is greater than any other value satisfying P ,
with respect to ≺.

Definition 11 (The greatest fixed point combinator).

Fix (≡) (C)F , ε x. [greatest (C) (fixed point modulo (≡) F) x]

The application of the epsilon operator requires a proof that the type A is
inhabited. We encapsulate this proof using an inductive data type Inhabited, of
sort Type→ Prop. (Note that proofs of type InhabitedA need not be manipulated
explicitly, thanks to the use of Coq’s typeclass facility.) Thus, Fix has type:

∀A. (InhabitedA)→ (A→ A→ Prop)→ (A→ A→ Prop)→ (A→ A)→ A

3.2 Instantiation as a unique fixed point combinator

The unique fixed point combinator Fix1, useful for circular definitions that do
not involve partial functions, can be defined in terms of Fix. To that end, it
suffices to instantiate both ≡ and C as the equality between values of type A.

Definition 12 (Another unique fixed point combinator).

FixValF , Fix (=) (=)F

FixVal is provably equivalent to the definition ε x.(∀y. y = F y ⇐⇒ y = x).
More generally, we can construct a combinator for unique fixed point modulo

an equivalence relation ∼, simply by instantiating both ≡ and C as ∼.

Definition 13 (Combinator for unique fixed point modulo).

FixValMod (∼)F , Fix (∼) (∼)F

3.3 Instantiation as an optimal fixed point combinator

We now construct a combinator that returns the optimal fixed point of a func-
tional F of type (A → B) → (A → B). First, we need to transform F as a
functional between partial functions, of type (A ↪→ B) → (A ↪→ B), so as to
be able to invoke the theory of optimal fixed points. Second, we need to find a
suitable instantiation of the relation C to ensure that the greatest fixed point
with respect to C is exactly the optimal fixed point. We start with the first task.

Definition 14 (“Partialization” of a functional). A functional F of type
(A → B) → (A → B) can be viewed as a functional of type (A ↪→ B) →
(A ↪→ B), i.e. as a functional on partial functions, by applying the following
“partialization” operator: partializeF , λ(f,D). (F f,D).

Definition 15 (Partial fixed points). Given a functional F of type (A →
B)→ (A→ B), we say that f̄ is a partial fixed point of F if and only if it is a
fixed point of the functional “partializeF” modulo ↪→=.

Our next step is to define a relation �F over the set of fixed points of
“partializeF” so that the greatest element of �F is exactly the optimal fixed
point of F . On the one hand, the optimal fixed point is a generally-consistent
fixed point of “partializeF”, moreover it is the greatest with respect to v. On
the other hand, the combinator Fix produces a fixed point f̄ of “partializeF”
which is the greatest with respect to the relation �F , meaning that any other
fixed point f̄ ′ satisfies f̄ ′ �F f̄ . To ensure that f̄ is the optimal fixed point, we
need to ensure (1) that f̄ is generally consistent, meaning that it is consistent
with any other fixed point and (2) that f̄ extends any other generally-consistent
fixed point. These two requirements give birth to the following definition of�F .

Definition 16 (Partial order selecting the optimal fixed point).

f̄ ′ �F f̄ , consistent f̄ f̄ ′ ∧ (generally consistentF f̄ ′ ⇒ f̄ ′ v f̄)

Given a functional F of type (A → B) → (A → B), the value returned
by “Fix (↪→=) (�F) (partializeF)” is a function of type A ↪→ B. Since we are not
interested in the domain of the resulting function but only in its support, of type
A→ B, we retain only the first projection.

Definition 17 (The optimal fixed point combinator).

FixFunF , π1(Fix (↪→=) (�F) (partializeF))

The following theorem relates the definition of FixFun with that of the optimal
fixed point, thereby justifying that FixFun indeed picks an optimal fixed point.

Theorem 2 (Correctness of the optimal fixed point combinator). Given
a functional F of type (A → B) → (A → B) and a partial function f̄ of type
A ↪→ B, the following two propositions are equivalent:

1. greatest (v) (generally consistentF) f̄
2. greatest (�F) (fixed point modulo (↪→=) (partializeF)) f̄

This ends our construction of the optimal fixed point combinator. The con-
struction can be easily generalized to the case where values from the codomain B
are compared with respect to an arbitrary equivalence relation ≡ rather than
with respect to Leibniz’ equality. This construction results in a strictly more gen-
eral combinator, called FixFunMod, which is parameterized by the relation ≡.

4 The general fixed point theorem and its corollaries

4.1 A general contraction theorem for c.o.f.e.’s

Our fixed point theorem for c.o.f.e.’s strengthens the result obtained in [18]
and later refined in [10], adding, in particular, support for nested calls. Our
contraction condition generalizes the contraction condition for c.o.f.e.’s with an
invariant, in a somewhat similar way as in the restricted contraction condition.

Definition 18 (Contraction condition). Given a c.o.f.e. (A, I,≺,
i
≈), a func-

tional F of type A→ A is said to be contractive with respect to an invariant Q
of type I → A→ Prop when

∀x y i. (∀j ≺ i. x
j
≈ y ∧ Qj x ∧ Qj y) ⇒ F x

i
≈ F y ∧ Qi (F x)

Our fixed point theorem asserts that a given functional admits a unique
fixed point as soon as it is contractive with respect to a continuous invariant.
The notion of continuity that we introduce for this purpose is defined as follows.

Definition 19 (Continuity of an invariant). Given a c.o.f.e. (A, I,≺,
i
≈),

an invariant Q is said to be continuous if the following implication holds for any
downward-closed domain K, for any sequence (ui)i:I and for any limit l.

(∀i.K i⇒ ui
i
≈ l) ∧ (∀i.K i⇒ Qi (ui)) ⇒ (∀i.K i⇒ Qi l)

Theorem 3 (Fixed point theorem for c.o.f.e.’s). If (A, I,≺,
i
≈) is a c.o.f.e.

and if F is a functional of type A→ A contractive with respect to a continuous
invariant Q in this c.o.f.e., then F admits a unique fixed point x modulo ≈.
Moreover, this fixed point x is such that the invariant Qix holds for any i.

The proof of this theorem is fairly involved. The fixed point is constructed as
a limit of a sequence, defined by well-founded induction on ≺. Each element
of this sequence is itself defined in terms of a limit of the previous elements in
the sequence. Moreover, the convergence of all those limits depend on the fact
that the i-th value of the sequence satisfies the invariant at level i, that is, the
predicate Qi. The details of the proof are described in the long version [8].

4.2 Fixed point theorem for corecursive values

When F is a contractive functional modulo ≈, it admits a unique fixed point
modulo ≈ (by Theorem 3), thus “FixValMod (≈)F” satisfies the fixed point
equation for F .

Theorem 4 (Fixed point theorem for FixValMod).

x = FixValMod (≡)F

(A, I,≺,
i
≈) is a c.o.f.e.

≡ is equal to
⋂

i:I

i
≈

F is contractive w.r.t. Q
Q is continuous

⇒
{
x ≡ F x
∀i. Q i x

Compared with previous work, the use of an invariant in the contraction
condition makes it strictly more expressive. For the sake of presentation, we
consider a simple example. The circular definition associated with the functional
F s , 1 :: (filter (≥ a) s) is correct only if a ≤ 1. When this is the case, we can
prove F contractive. It suffices to define the invariant Q in such a way that
“Qi s” implies that the i first elements of s are greater than or equal to a.

4.3 Fixed point theorem for recursive functions
The goal of this section is to build a c.o.f.e. that can be used to prove that a
functional F of type (A → B) → (A → B) describing a terminating recursive
function on a domain D admits a unique fixed point of type A→ B. This rela-
tively simple construction, which allows to unify the various forms of contraction
conditions, does not seem to have appeared previously in the literature.

Theorem 5 (c.o.f.e. for recursive functions). Let ≡ be an equivalence re-
lation of type A → A → Prop, let < be a well-founded relation of type A →
A → Prop, and let D be a domain of type A → Prop. Then, the structure
(A→ B,A,<+,

x
≈) is a complete ordered family of equivalences, where (

x
≈)x:A is

a family of equivalence relations on values of type A→ B defined as follows:

f1
x
≈ f2 , ∀y <∗ x. D y ⇒ f1 y ≡ f2 y

Above, <+ is the transitive closure of < and <∗ its reflexive-transitive closure.

In this particular c.o.f.e., the contraction condition can be reformulated in
a way which, in practice, is equivalent to the conjunction of the propositions
“S is an inductive invariant for F” and “F satisfies the restricted contraction
condition with respect to S” (Definition 2 and Definition 3).

Theorem 6 (Contraction condition for recursive functions). Let D be a
domain of type A → Prop and let S be a post-condition of type A → B → Prop
compatible with ≡, in the sense that if “S x y1” holds and if “y1 ≡ y2” then
“S x y2” also holds. Then, in the c.o.f.e. for recursive functions, a functional F
is contractive w.r.t. the invariant “λx f. D x⇒ S x (f x)” as soon as F satisfies

∀x f1 f2. D x ∧ (∀y < x. D y ⇒ f1 y ≡ f2 y ∧ S y (f1 y))
⇒ F f1 x ≡ F f2 x ∧ S x (F f1 x)

A corollary, not shown here, to the general fixed point theorem (Theorem 3)
can be stated for this reformulated contraction condition. The conclusion of this
corrolary asserts the existence of a partial fixed point f modulo ≡ on the domain
D. Moreover, this fixed point f satisfies the post-condition ∀x.D x⇒ S x (f x).

The next key theorem in our development establishes that the partial fixed
point (f,D) is a generally-consistent fixed point of the functional “partializeF”.
The proof of this theorem is quite technical. It reuses and generalizes several ideas
coming from the proof that inductive fixed points are generally-consistent [14].

Combining the existence of a generally-consistent fixed point f for F on the
domain D with the existence of an optimal fixed point for F , we deduce that the
domain of the optimal fixed point of F contains D. It follows that the optimal
fixed point for F satisfies the fixed point equation on the domain D.

Theorem 7 (Specification of FixFunMod for recursive functions).
f = FixFunMod (≡)F
≡ is an equivalence
< is well-founded
S is compatible with ≡
F is contractive on D w.r.t. < and S modulo ≡

⇒
{
∀x.D x ⇒ f x ≡ F f x
∀x.D x ⇒ S x (f x)

4.4 Fixed point theorem for mixed recursive-corecursive functions

Due to space limitations, we skip the description of the c.o.f.e. for simple corecur-
sive functions and directly focus on the strictly more general c.o.f.e. for functions
mixing recursion and corecursion. Compared with the construction proposed by
Matthews [18], we have added support for partial functions and for nested calls.

Let A → B be the type of the function to be constructed and let D be
the domain on which we want to prove the function well-defined. The values
of the input type A are compared with respect to some well-founded relation,
written <. The values of the coinductive output type B are compared using an

existing c.o.f.e. (B, I,≺,
i
≈). The following result explains how to combine < and

≺ in order to construct a c.o.f.e. for the function space A→ B.

Theorem 8 (c.o.f.e. for mixed recursive-corecursive functions). The

structure (A → B, I × A,<′,
(i,x)

≈′) is a c.o.f.e., where <′ is the lexicographi-

cal order associated with the pair of relations (≺, <+) and where (
(i,x)

≈′)(i,x):I×A

is a family of equivalence relations on values of type A→ B such that

f1
(i,x)

≈′ f2 , ∀(j, y) ≤′ (i, x). D y ⇒ f1 y
j
≈ f2 y

The associated contraction condition and the fixed point theorem follow.

Theorem 9 (Contraction condition for corecursive functions). Let D
be a domain of type A → Prop. Let S be an indexed post-condition of type

I → A→ B → Prop, compatible with
i
≈ in the sense that if “S i x y1” holds and

if “∀j ≺ i. y1
j
≈ y2” holds then “S i x y2” holds. Then, in the c.o.f.e. for mixed

recursive-corecursive functions, a functional F is contractive w.r.t. the invariant
“λ(i, x) f. D x⇒ S i x (f x)” as soon as F satisfies the condition:

∀i x f1 f2. D x ∧ (∀(j, y) <′ (i, x). D y ⇒ f1 y
j
≈ f2 y ∧ S j y (f1 y) ∧ S j y (f2 y))

⇒ F f1 x
i
≈ F f2 x ∧ S i x (F f1 x)

Theorem 10 (Specification of FixFunMod for mixed functions).

f = FixFunMod (≡)F
< is a well-founded relation

(B, I,≺,
i
≈) is a c.o.f.e.

≡ is equal to
⋂

i:I

i
≈

F is contractive on D w.r.t. S

S is compatible with
i
≈

⇒
{
∀x.D x ⇒ f x ≡ F f x
∀i x.D x ⇒ S i x (f x)

Let us apply this theorem to the filter function. Let f be the function
FixFunMod (≡)F, where F is the functional defined in §1.1 and ≡ stands for

stream bisimilarity. The domain D characterizes streams that contain infinitely
many elements satisfying the predicate P . Two streams from the domain are
compared as follows: s < s′ holds if the index of the first element satisfying P
in s is less than the index of the first element satisfying P in s′. No invariant
is needed here, so we define S such that S i s s′ always holds. Let us prove F
contractive, as in [18]. Assume the argument s decomposes as x :: s′. There are

two cases. If x satisfies P , then the goal is x :: (f1 s′)
i
≈ x :: (f2 s′). This fact

is a consequence of the assumption f1 s
′ i−1
≈ f2 s

′, which we can invoke because
(i − 1, s′) is lexicographically smaller than (i, s). If x does not satisfy P , the

goal is f1 s′
i
≈ f2 s′. This fact also follows from the hypothesis of the contraction

condition, because (i, s′) is lexicographically smaller than the pair (i, s). Note
that this relation holds only because the argument s belongs to the domain D.
In conclusion, the equation f s ≡ F f s holds for any stream s in the domain D.

5 Code Extraction

Given a formal development carried out in higher-order logic, one can extract
a purely functional program by retaining only the computational content and
erasing all the proof-specific elements. The extracted code enjoys a partial cor-
rectness property with respect to the original development. Note that termi-
nation is usually not guaranteed: even a Caml program extracted from a Coq
development can diverge [3, 8]. Our definition of Fix relies on Hilbert’s epsilon
operator, a non-constructive axiom that does not admit an executable counter-
part. Nevertheless, it is still possible to translate the constant Fix into a native
“let-rec” construct from the target programming language.

Our experiments suggest that this extraction leads to efficient and correct
programs, with respect to partial correctness. However, a formal justification of
our approach is not attempted in this paper. The theory of code extraction is
already far from trivial (see, e.g. [16]) and there exists, as far as we know, no
theory able to account for the correctness of code extraction in the presence
of user-defined extraction for particular constants. Thus, we leave the proof of
correctness as a challenge to code extraction experts, and simply explain how to
set up the extraction process in practice.

In Haskell, where evaluation is lazy by default, the extraction of the constant
Fix is very simple: it suffices to translate “Fix” into “λF. letx = F x inx”. This
value has type “∀A. (A→ A)→ A”, which is appropriate given the type of Fix.
The extraction towards OCaml code is slightly trickier: due to the explicit boxing
of lazy values, we need to extract the combinator for corecursive values towards
a different constant than that used to extract functions. See [8] for details.

6 Other related work

The most closely related work has already been covered throughout §2. In this
section, we briefly mention other approaches to circular definitions. (A detailed
list of papers dealing with recursive function definitions can be found in [13].)

The package TFL developed by Slind [20] supports the definition of total re-
cursive functions for which a well-founded termination relation can be exhibited.
Building on Slind’s ideas, Krauss [13] developed the function package, which sup-
ports a very large class of partial recursive functions. It relies on the generation
of an inductive definition that captures exactly the domain of the recursive func-
tion. Contrary to our work, this approach does not support code generation for
partial functions (except tail-recursive ones) and does not support corecursion.

The technique of recursion on an ad-hoc predicate, which consists in defining
a function by structural induction on an inductive predicate that describes its
domain, was suggested by Dubois and Donzeau-Gouge [9] and developed by
Bove and Capretta [7]. Later, Barthe et al. [2] used it in the implementation
of a tool for Coq. Besides the fact that it relies heavily on programming with
dependent types, one major limitation of this approach is that the treatment of
nested recursion requires the logic to support inductive-recursive definitions, an
advanced feature absent from many theorem provers.

Another possibility for defining terminating recursive functions is to work
directly with a general recursion combinator [19], using dependently-typed func-
tionals. Balaa and Bertot [1] proved a fixed point theorem in terms of a con-
traction condition for functions of type “∀x : A. (∀y : A. R y x ⇒ B y) ⇒ B x”,
where R is some well-founded relation. More recently, Sozeau [21] implemented
facilities for manipulating subset types in Coq, including a fixed point combina-
tor for functionals of type

(
∀x : A.

(
∀y : {y : A |Ry x}. B (π1 y)

)
⇒ B x

)
⇒

∀x : A. (B x). This approach supports higher-order and nested recursion, but
only if the inductive invariant of the function appears explicitly in its type.

As mentioned in the introduction, Bertot [4] has investigated the formal-
ization of the filter function in constructive type theory. This work was later
generalized to support more general forms of mixed recursive-corecursive func-
tions [5]. More recently, Bertot and Komendantskaya [6] experimented reasoning
about non-guarded corecursive definitions by exploiting the correspondence be-
tween streams and functions over natural numbers.

7 Future work

In the future, we would like to implement a generator for automatically deriv-
ing corollaries to the general fixed point theorem, covering each possible function
arity and providing versions with and without domains and invariants. Proving
such corollaries by hand on a per-need basis is generally manageable, but having
a generator would certainly be much more convenient.
References

1. Antonia Balaa and Yves Bertot. Fix-point equations for well-founded recursion in
type theory. In Mark Aagaard and John Harrison, editors, TPHOLs, volume 1869
of LNCS, pages 1–16, 2000.

2. Gilles Barthe, Julien Forest, David Pichardie, and Vlad Rusu. Defining and rea-
soning about recursive functions: A practical tool for the Coq proof assistant. In
Masami Hagiya and Philip Wadler, editors, FLOPS, volume 3945 of LNCS, pages
114–129. Springer, 2006.

3. Gilles Barthe, Maria João Frade, E. Giménez, Luis Pinto, and Tarmo Uustalu.
Type-based termination of recursive definitions. Mathematical Structures in Com-
puter Science, 14(1):97–141, 2004.

4. Yves Bertot. Filters on coinductive streams, an application to eratosthenes’ sieve.
In Pawel Urzyczyn, editor, TLCA, volume 3461 of LNCS, pages 102–115. Springer,
2005.

5. Yves Bertot and Ekaterina Komendantskaya. Inductive and Coinductive Compo-
nents of Corecursive Functions in Coq. In Proceedings of CMCS’08, volume 203 of
ENTCS, pages 25 – 47, April 2008.

6. Yves Bertot and Ekaterina Komendantskaya. Inductive and coinductive compo-
nents of corecursive functions in coq. ENTCS, 203(5):25–47, 2008.

7. Ana Bove and Venanzio Capretta. Nested general recursion and partiality in type
theory. In Richard J. Boulton and Paul B. Jackson, editors, TPHOLs, volume 2152
of LNCS, pages 121–135. Springer, 2001.

8. Arthur Charguéraud. Long version of the current paper, 2010. http://arthur.

chargueraud.org/research/2010/fix/.
9. C. Dubois and V. Donzeau-Gouge. A step towards the mechanization of partial

functions: domains as inductive predicates. In CADE-15 Workshop on mechaniza-
tion of partial functions, 1998.

10. Pietro Di Gianantonio and Marino Miculan. A unifying approach to recursive and
co-recursive definitions. In Herman Geuvers and Freek Wiedijk, editors, Selected
Papers from 2nd Int. Wksh. on Types for Proofs and Programs, Berg en Dal, The
Netherlands, 24–28 Apr. 2002, volume 2646 of KBCS, pages 148–161. Springer-
Verlag, Berlin, 2003.

11. Pietro Di Gianantonio and Marino Miculan. Unifying recursive and co-recursive
definitions in sheaf categories. In Igor Walukiewicz, editor, FOSSACS, volume
2987 of LNCS, pages 136–150. Springer, 2004.

12. John Harrison. Inductive definitions: Automation and application. In E. Thomas
Schubert, Phillip J. Windley, and Jim Alves-Foss, editors, TPHOLs, volume 971
of LNCS, pages 200–213. Springer, 1995.

13. Alexander Krauss. Partial and nested recursive function definitions in higher-order
logic. Journal of Automated Reasoning, December 2009. To appear.

14. Sava Krstić. Inductive fixpoints in higher order logic. February 2004.
15. Sava Krstić and John Matthews. Inductive invariants for nested recursion. In

David A. Basin and Burkhart Wolff, editors, TPHOLs, volume 2758 of LNCS,
pages 253–269. Springer, 2003.

16. Pierre Letouzey. Programmation fonctionnelle certifiée :
L’extraction de programmes dans l’assistant Coq, June 01 2007.

17. Zohar Manna and Adi Shamir. The theoretical aspects of the optimal FixedPoint.
SIAM Journal on Computing, 5(3):414–426, September 1976.

18. John Matthews. Recursive function definition over coinductive types. In Yves
Bertot, Gilles Dowek, André Hirschowitz, C. Paulin, and Laurent Théry, editors,
TPHOLs, volume 1690 of LNCS, pages 73–90. Springer, 1999.

19. Bengt Nordström. Terminating general recursion. BIT, 28(3):605–619, 1988.
20. Konrad Slind. Reasoning about Terminating Functional Programs. PhD thesis,

Institut für Informatik, Technische Universität München, 1999.
21. Matthieu Sozeau. Subset coercions in Coq. In Thorsten Altenkirch and Conor

McBride, editors, TYPES, volume 4502 of LNCS, pages 237–252. Springer, 2006.

