
Program Verification Through Characteristic Formulae

Arthur Charguéraud
INRIA

arthur.chargueraud@inria.fr

Abstract
This paper describes CFML, the first program verification tool
based on characteristic formulae. Given the source code of a pure
Caml program, this tool generates a logical formula that implies
any valid post-condition for that program. One can then prove that
the program satisfies a given specification by reasoning interac-
tively about the characteristic formula using a proof assistant such
as Coq. Our characteristic formulae improve over Honda et al’s
total characteristic assertion pairs in that they are expressible in
standard higher-order logic, allowing to exploit them in practice to
verify programs using existing proof assistants. Our technique has
been applied to formally verify more than half of the content of
Okasaki’s Purely Functional Data Structures reference book.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Formal methods

General Terms Verification

1. Overview
1.1 Introduction to characteristic formulae
This paper describes an effective technique to formally specify and
verify the source code of an existing purely functional program.
The key idea is to generate, in a systematic manner, a logical
formula for each top-level definition from the source program.
Those formulae, expressed solely with standard higher-order logic
connectives, carry a precise account of what the program does.
Verification of the program can then be conducted by reasoning
on its characteristic formula using an off-the-shelf proof assistant.

For the sake of example, consider the following recursive func-
tion, which divides by two any non-negative even integer.

let rec half x =
if x = 0 then 0
else if x = 1 then fail
else let y = half (x− 2) in

y + 1

The corresponding characteristic formula appears next. Given an
argument x and a post-condition P , the characteristic formula for
half describes what needs to be proved in order to establish that the
application of half to x terminates and returns a value satisfying
the predicate P , written “AppReturns halfxP ”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’10, September 27–29, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-60558-794-3/10/09. . . $10.00

∀x.∀P.
(x = 0 ⇒ P 0)
∧ (x 6= 0 ⇒

(x = 1 ⇒ False)
∧ (x 6= 1 ⇒
∃P ′. (AppReturns half (x− 2)P ′)

∧ (∀y. (P ′ y) ⇒ P (y + 1)) ))
⇒ AppReturns halfxP

When x is equal to zero, the function half returns zero. So,
if we want to show that half returns a value satisfying P , we
have to prove “P 0”. When x is equal to one, the function half
crashes, so we cannot prove that it returns any value. The only way
to proceed is to show that the instruction fail cannot be reached.
Hence the proof obligation False. Otherwise, we want to prove that
“let y = half (x−2) in y + 1” returns a value satisfying P . To that
end, we need to exhibit a post-condition P ′ such that the recursive
call to half on the argument x − 2 returns a value satisfying P ′.
Then, for any name y that stands for the result of this recursive
call, assuming that y satisfies P ′, we have to show that the output
value y + 1 satisfies the post-condition P .

More generally, the characteristic formula JtK associated with a
term t can be used to prove that this term returns a value satisfying
a particular post-condition. For any post-condition P , the term
t terminates and returns a value satisfying P if and only if the
proposition “JtKP ” is true. The application “JtKP ” is a standard
higher-order logic proposition that can be proved using an off-the-
shelf proof assistant. Thus, characteristic formulae can be used in
practice to verify that a program satisfies its specification.

For program verification to be realistic, the proof obligation
“JtKP ” should be easy to read and manipulate. Fortunately, our
characteristic formulae can be pretty-printed in a way that closely
resemble source code. For example, the characteristic formula as-
sociated with half is displayed as follows.

LET half := Fun x 7→
If x = 0 Then Return 0
Else If x = 1 Then Fail
Else Let y := App half (x− 2) In

Return (y + 1)

At first sight, it might appear that the characteristic formula is
merely a rephrasing of the source code in some other syntax. To
some extend, this is true. A characteristic formula is a sound and
complete description of the behaviour of a program. Thus, it car-
ries no more and no less information than the source code of the
program itself. However, characteristic formulae enable us to move
away from program syntax and conduct program verification en-
tirely at the logical level. Characteristic formulae thereby avoid all
the technical difficulties associated with manipulation of program
syntax and make it possible to work directly in terms of higher-
order logic values and formulae.



1.2 Specification and verification
One of the key ingredient involved in characteristic formulae is the
predicate AppReturns, which is used to specify functions. Because
of the mismatch between program functions, which may fail or
diverge, and logical functions, which must always be total, we
cannot represent program function using logical functions. For this
reason, we introduce an abstract type, named Func, which we use
to represent program functions. Values of type Func are exclusively
specified in terms of the predicate AppReturns. The proposition
“AppReturns f xP ” states that the application of the function f to
an argument x terminates and returns a value satisfying P . Hence
the type of AppReturns, shown below.

AppReturns : ∀AB. Func→ A→ (B → Prop)→ Prop

Remark: an OCaml function f of type A→ B is described in Coq
at the type Func, regardless of what A and B might be. This is not
a problem because propositions of the form “AppReturns f xP ”
can only be derived when x has type A and P has type B → Prop.

The predicate AppReturns is used not only in the definition of
characteristic formulae but also in the statement of specifications.
One possible specification for half is the following: if x is the
double of some non-negative integer n, then the application of half
to x returns an integer equal to n. The corresponding higher-order
logic statement appears next.

∀x. ∀n. n ≥ 0 ⇒ x = 2 ∗ n ⇒ AppReturns halfx (= n)

Remark: the post-condition (= n) is a partial application of equal-
ity: it is short for “λa. (a = n)”. Here, the value n corresponds to
a ghost variable: it appears in the specification of the function but
not in its source code. The specification that we have considered
for half might not be the simplest one, however it illustrates our
treatment of ghost variables.

Our next step is to prove that the function half satisfies its spec-
ification using its characteristic formula. We first give the mathe-
matical presentation of the proof and then show the corresponding
Coq proof script. The specification is to proved by induction on x.
Let x and n be such that n ≥ 0 and x = 2∗n. We apply the charac-
teristic formula to prove “AppReturns halfx (= n)”. If x is equal
to 0, we conclude by showing that n is equal to 0. If x is equal to 1,
we show that x = 2∗n is absurd. Otherwise, x ≥ 2. We instantiate
P ′ as “= n − 1”, and prove “AppReturns half (x − 2)P ′” using
the induction hypothesis. Finally, we show that, for any y such that
y = n − 1, the proposition y + 1 = n holds. This completes the
proof. Note that, through this proof by induction, we have proved
that the function half terminates on its domain.

Formalizing the above piece of reasoning in a proof assistant
is straightforward. In Coq, a proof script takes the form of a se-
quence of tactics, each tactic being used to make some progress in
the proof. The verification of the function half could be done using
only built-in Coq tactics. Yet, for the sake of conciseness, we rely
on a few specialized tactics to factor out repeated proof patterns.
For example, each time we reason on a “if” statement, we want to
split the conjunction at the head of the goal and introduce one hy-
pothesis in each subgoal. The tactics specific to our framework can
be easily recognized: they start with the letter “x”. The verification
proof script for half appears next.

xinduction (downto 0).
xcf. introv IH Pos Eq. xcase.
xret. auto. (* x = 0 *)
xfail. auto. (* x = 1 *)
xlet. (* otherwise *)

xapp (n-1); auto. (* half (x-2) *)
xret. auto. (* return y+1 *)

The interesting steps in that proof are: the setting up of the
induction on the set of non-negative integers (xinduction), the
application of the characteristic formula (xcf), the case analysis on
the value of x (xcase), and the instantiation of the ghost variable
n with the value “n − 1” when reasoning on the recursive call
to half (xapp). The tactic auto runs a goal-directed proof search
and may also rely on a decision procedure for linear arithmetic.
The tactic introv is used to assign names to hypotheses. Such
explicit naming is not mandatory, but in general it greatly improves
readability of proof obligations and robustness of proof scripts.

When working with characteristic formulae, proof obligations
always remain very tidy. The Coq goal obtained when reaching
the subterm “let y = half (x − 2) in y + 1” is shown below. In
the conclusion (stated below the line), the characteristic formula
associated with that subterm is applied to the post-condition to be
established (= n). The context contains the two pre-conditions
n ≥ 0 and x = 2 ∗ n, the negation of the conditionals that have
been tested, x 6= 0 and x 6= 1, as well as the induction hypothesis,
which asserts that the specification that we are trying to prove for
half already holds for any non-negative argument x′ smaller than x.

x : int
IH : forall x’, 0 <= x’ -> x’ < x ->

forall n, n >= 0 -> x’ = 2 * n ->
AppReturns half x’ (= n)

n : int
Pos : n >= 0
Eq : x = 2 * n
C1 : x <> 0
C2 : x <> 1
-----------------------------------------------
(Let y := App half (x-2) in Return (1+y)) (= n)

As illustrated through the example, a verification proof script
typically interleaves applications of “x”-tactics with pieces of gen-
eral Coq reasoning. In order to obtain shorter proof scripts, we set
up an additional tactic that automates the invokation of x-tactics.
This tactic, named xgo, simply looks at the head of the character-
istic formula and applies the appropriate x-tactic. A single call to
xgo may analyse an entire characteristic formula and leave a set of
proof obligations, in a similar fashion as a Verification Condition
Generator (VCG).

Of course, there are pieces of information that xgo cannot infer.
Typically, the specification of local functions must be provided
explicitly. Also, the instantiation of ghost variables cannot always
be inferred. In our example, Coq automation is slightly too weak to
infer that the ghost variable n should be instantiated as n− 1 in the
recursive call to half. In practice, xgo will stop running whenever it
lacks too much information to go on. The user may also explicitly
tell xgo to stop at a given point in the code. Moreover, xgo accepts
hints to be exploited when some information cannot be inferred.
For example, we can run xgo with the indication that the function
application whose result is named y should use the value n − 1 to
instantiate a ghost variable. In this case, the verification proof script
for the function half is reduced to:

xinduction (downto 0). xcf. intros.
xgo~ ’y (Xargs (n-1)).

Note that automation, denoted by the tilde symbol, is able to handle
all the subgoals produced by xgo.

For simple functions like half, a single call to xgo is usually
sufficient. However, for more complex programs, the ability of xgo
to be run only on given portions of code is crucial. In particular,
it allows one to stop just before a branching point in the code in
order to establish facts that are needed in several branches. Indeed,
when a piece of reasoning needs to be carried out manually, it is



extremely important to avoid duplicating the corresponding proof
script across several branches.

To summarize, our approach allows for very concise proof
scripts whenever verifying simple pieces of code, thanks to the
automated processing done by xgo and to the good amount of au-
tomation available through the proof search mechanism and the
decision procedures that can be called from Coq. In the same time,
when verifying more complex code, our approach offers a very
fine-grained control on the structure of the proofs and it greatly
benefits from the integration in a proof assistant for proving non-
trivial facts interactively.

1.3 Implementation
Our implementation is named CFML, an acronym for Character-
istic Formulae for ML. It parses an OCaml source code and nor-
malizes its syntax, making sure that applications and function def-
initions be bound to a name. Our tool then type-checks the code
and produces a set of Coq definitions. For each type definition in
the source program, it generates the corresponding definition in the
logic. For each top-level value definition, it introduces one abstract
variable to represent the result of the evaluation of this definition,
plus one axiom stating the characteristic formula associated with
the definition. For example, for the program “letx = let y =
2 in y ∗ y”, we generate a first axiom, named x, of type int, and
a second axiom with a type of the form “∀P. [. . .] ⇒ P x”. This
characteristic formula for x describes what needs to be proved in
order to establish that x satisfies a given predicate P .

We have proved on paper that characteristic formulae are sound
with respect to the logic of Coq, by showing that those axioms
could be realized in Coq, at least in theory. (In practice, generating
actual proof terms would require a lot of effort, so we have not
implemented it.) Moreover, in order to preserve soundness, each
time we introduce an axiom to represent a value we generate a
proof that the type of this value is inhabited. For example, our tool
rejects the program definition “letx = fail” because the type ∀A.A
cannot be proved to be inhabited. Rejecting this kind of program is
not really a limitation since it would not be possible anyway to
prove that such a program returns a value.

For the time being, only purely functional programs are sup-
ported. However, we strongly believe that characteristic formulae
can be extended with heap descriptions and frame rules, without
compromising the possibility of pretty-printing characteristic for-
mulae like source code. We leave the extension to side-effects to
future work and focus in this paper on demonstrating the benefits
of characteristic formulae for reasoning on pure programs.

This paper is organized as follows. First, we explain how our
approach compares against existing program verification tech-
niques (§2). Second, we describe formalizations of purely func-
tional data structures (§3). Third, we describe the algorithm for
generating characteristic formulae (§4), and formally define our
specification predicates (§5). Finally, we discuss the soundness and
completeness of characteristic formulae (§6), and conclude (§7).

2. Comparison with related work
2.1 Characteristic formulae
The notion of characteristic formula originates in process calculi.
Given the syntactic definition of a process, the idea is to generate
a temporal logic formula that precisely describes that process [12,
17, 23]. In particular, behavioural equivalence or dis-equivalence of
two processes can be established by comparing their characteristic
formulae. Such a proof can be conducted in temporal logic rather
than through reasoning on the syntactic definition of the processes.

In a similar way, the characteristic formula of a program is a
logical formula that carries a precise description of this program,

without referring to its syntactic definition. For the sake of reason-
ing on functional correctness, programs can be studied in terms
of their most-general specification. The theoretical insight that any
program admits a most-general Hoare triple which entails all other
correct specifications is nearly as old as Hoare logic. Gorelick [9]
proved that every program admits a weakest pre-condition (the
minimum requirement to ensure safe termination) and a strongest
post-condition (the maximal amount of information that can be
gathered about the output of the program).

The suggestion that most-general specifications could be ex-
ploited to verify programs first appears, as far as we know, in recent
work by Honda, Berger and Yoshida [10]. The authors consider
a particular Hoare logic and exhibit an algorithm for constructing
the total characteristic assertion pair (TCAP) of a program, which
corresponds to most-general Hoare triple. TCAPs offer an alterna-
tive way of proving that a program satisfies a given specification:
rather than building a derivation using the reasoning rules of the
Hoare program logic, one may simply prove that the pre-condition
of the specification implies the weakest pre-condition and that the
post-condition of the specification is implied by the strongest post-
condition. The verification of those two implications can be con-
ducted entirely at the logical level. Our work builds upon a similar
idea, relying on characteristic formulae to move away from pro-
gram syntax and carry out the reasoning in the logic.

Our main contribution is to express the characteristic formula
of a program in terms of a standard higher-order logic. By contrast,
TCAPs are expressed in an ad-hoc logic. In particular, the values
from this logic are well-typed PCF values, including first-class
functions. It is not immediate to translate this logic into a standard
logic, because of this mismatch between program functions, which
may fail or diverge, and logical functions, which must always be
total. Due to the nonstandard logic it relies upon, Honda et al’s
TCAPs cannot be manipulated in an existing theorem prover. In
this work, we show how an abstract type Func can be introduced to
support the ability to refer to first-class functions from the logic.

Our characteristic formulae also improve over TCAPs in that
they are human-readable. While Honda et al’s TCAP did not fit
on a screen for a program of more than a few lines, we show
characteristic formulae can be displayed just like source code.
The ability to read charactersitic formulae is very important in
interactive proofs since the characteristic formula shows up as part
of the proof obligation that the user must discharge.

2.2 Verification Condition Generators
Tools such as Spec# [1] for C# programs, Krakatoa [14] for Java
programs, Caduceus [7] for C programs, Pangolin [24] for pure
ML programs, and Who [11] for imperative ML programs, are all
based on VCGs. They generate a set of proof obligations and rely
on automated theorem provers to discharge these obligations. In
the latter three systems, proof obligations that are not verified au-
tomatically can be discharged using an interactive proof assistant.
However, in practice, those proof obligations are often large and
clumsy, and their proofs are generally quite brittle because proof
obligations are very sensitive to changes in either the source code
or its invariants. In our approach, proof obligations remain tidy and
can be easily related to the point of the program they arise from.
Moreover, the user has the possibility to invest a little extra effort
in naming hypotheses explicitly in order to be able to build very
robust proof scripts.

The tool Jahob [26], which supports the verification of linked
data structures implemented in a subset of Java, tries to avoid as
much as possible the need for interactive proofs by annotating pro-
grams not only with their invariants but also with proof hints to
guide automated theorem provers. As acknowledged by the au-
thors, finding the appropriate hints can be very time-consuming. In



particular, one needs to compute and read the new proof obligations
after any modification of a hint. Moreover, guessing hints requires a
deep understanding of the VCG process and of the automated the-
orem provers being used. Nevertheless, there are some particular
situations where providing such hints is actually very effective. Our
approach naturally supports this proof technique, simply by giving
the appropriate hints as argument to our tactic xgo. We may also
set up Coq automation to apply a user-defined sequence of tactics
to any proof obligation satisfying a particular pattern.

Among the tools cited above, few of them support higher-order
functions: Pangolin [24] and Who [11], which combines ideas
from Caduceus [7] and Pangolin [24] to handle effectfull higher-
order programs. One notable difference with our work lies in the
way in which functions are lifted to the logical level. In Pangolin
and Who, a function is reflected in the logic as a pair of a pre-
condition and of a post-condition. Instead, we reflect a function in
the logic as a value of the abstract type Func and use AppReturns
to specify the behaviour of this value. We believe that our approach
is more appropriate when functions are given several specifications,
when functions are stored in data-structures, and when higher-order
functions are applied to functions specified with ghost variables.

2.3 Shallow embedding techniques
A radically different approach consists in programming directly
within a theorem prover and verifying properties of the code in-
teractively inside the same framework. Indeed, the logic of a proof
assistant such as Coq is so rich that it contains a purely functional
programming language. An extraction mechanism can then be used
to isolate the actual source code from proof-specific elements. The
shallow embedding approach can be applied in two very different
styles, depending on how much types are used to enforce invariants.

The first possibility is to write programs using only basic ML
types. This style is employed for instance in Leroy’s formally-
verified C compiler [13]. While it can be quite effective for some
applications, this approach also suffers from a number of severe re-
strictions that restrict its scope of use. In particular, all functions
must be total and recursive functions must satisfy a syntactical ter-
mination criteria. On the contrary, characteristic formulae can ac-
commodate various syntaxes for the source language, allowing for
the verification of existing programs. In particular, any (well-typed)
function definition can be handled: termination does not need to be
established at definition time but can be proved by induction while
reasoning on the characteristic formula (the induction may be on a
measure, on a well-founded relation or on any Coq predicate).

The second possibility is to write programs with more elabo-
rated types, relying on dependent types to carry invariants (e.g. us-
ing the type “listn” to describe lists of length n). Programming
with dependent types has been investigated in particular in Epi-
gram [15], Adga [5] and Russell [25]. The latter is an extension to
Coq, which behaves as a permissive source language which elab-
orates into Coq terms. In Russel, establishing invariants, justify-
ing termination of recursion and proving the inaccessibility of cer-
tain branches from a pattern matching can be done through interac-
tive Coq proofs. While Russel certainly manages to smoothen the
writing of dependently-typed terms, the manipulation of dependent
types remains fairly technical for non-experts. Moreover, the treat-
ment of ghost variables remains problematic in the current imple-
mentation of Coq because extraction is not sufficiently fine-grained
to erase all ghost variables. As a consequence, some ghost variables
may remain in the extracted code, leading to runtime inefficiencies
and possibly to incorrect asymptotic complexity.

Because they rely directly on Coq terms, the two shallow
embedding approaches describe above cannot support impure
programming features such as side-effects and non-termination.
HTT [19], its implementation in Ynot [4] and HTT’s new imple-

mentation [20] try to overcome this limitation by extending Coq
with a monad in order to support effects. Like in Russel, specifica-
tion appears in types. They typically take the form “STsepP Q”
where P and Q describe the pre- and the post-condition in terms
of heap descriptions. Verification proofs are constructed by appli-
cation of Coq lemmas that correspond to the reasoning rules of the
program logic. This process is partially automated through a tactic
(which is implemented by reflection). In our approach, most of this
work is performed during the generation of characteristic formu-
lae, by our external tool. In the end, although the implementation
strategies differ, similar kinds of proof obligations are generated.
Note that the trusted base of HTT is not much smaller than ours
since HTT also needs to rely on some external tool in order to ex-
tract OCaml or Haskell code from Coq scripts. Although we do not
yet support side effects, we see one main advantage that character-
istic formulae may have compared to HTT-based approaches in the
long run. Characteristic formulae can be adapted to existing pro-
gramming languages. On the contrary, following HTT’s approach
forces one to rewrite programs in terms of the language of Coq and
of the constructors of HTT’s monad. Some programming language
features cannot be handled easily by HTT. For example, because
pattern matching is deeply hard-wired in Coq, supporting handy
features such as alias-patterns and when-clauses would be a real
challenge for HTT.

A slightly different approach to shallow embeddings relies on
the definition of a translation from a programming language into
higher-order logic. Myreen et al [18] describe an effective tech-
nique for reasoning on machine code, which consists in decom-
piling machine code procedures into higher-order logic functions.
This translation is possible only because the functional translation
of a while loop is a tail-recursive function, and that nonterminating
tail-recursive functions are safely accepted as logical definitions in
HOL4. Lemmas proved interactively about the higher-order logic
functions can then be automatically transformed into lemmas about
the behaviour of the machine code. While this approach works for
reasoning on machine code, it does not seem possible to apply it to
programs featuring arbitrary recursion and higher-order functions.

2.4 Deep embedding techniques
A fourth approach to reasoning formally on programs consists in
describing the syntax and the semantics of a programming language
in the logic of a proof assistant using inductive definitions. In the-
ory, the deep embedding approach can be applied to any program-
ming language, it does not suffer from any limitation in terms ex-
pressiveness and it is compatible with the use of interactive proofs.

Mehta and Nipkow [16] have set up a proof of concept of a
deep embedding, axiomatizing a small procedural language in Is-
abelle, proving Hoare-style reasoning rules, and verifying a short
program using those reasoning rules. More recently, the frame-
works XCAP [21] and SCAP [6] rely on deep embeddings for rea-
soning in Coq about assembly programs. They support reasoning
on advanced patterns such as strong updates, embedded code point-
ers and higher-order calls. They have been used to verify short but
complex assembly routines, whose proof involves hundreds of lines
per instruction. Previoulsy, the author of the present paper has in-
vestigated the use of a deep embedding of the pure fragment of
OCaml in Coq [2]. Characteristic formulae arose from that work,
bringing major improvements.

In a deep embedding, reasoning rules of the program logic take
the form of lemmas that are proved correct with respect to the
axiomatized semantics of the source language. When verifying a
program, those reasoning rules are applied almost in a systematic
manner, following the syntax of the program. The idea that the
application of those reasoning rules could be anticipated lead to
characteristic formulae.



To illustrate this idea, consider the rule for reasoning on let-
expressions in a deep embedding. The rule reads as follows: to
show that “letx = t1 in t2” returns a value satisfying P , the
subterm t1 must be shown to return a value satisfying a post-
condition P ′, and the term t2 must be shown to return a value
satisfyingP under the assumption that x satisfiesP ′. The statement
of this rule, shown below, relies on a predicate capturing that a term
t returns a value satisfying a post-condition P , written “t ⇓ |P ”.
(For the sake of presentation, many technical details are omitted.)

t1 ⇓|P ′ ∀x. P ′ x⇒ t2 ⇓|P
(letx = t1 in t2) ⇓|P

With characteristic formulae, the proposition “Jletx = t1 in t2KP ”
captures the fact that “letx = t1 in t2” returns a value satisfying P .
This proposition is defined in terms of the characteristic formulae
Jt1K and Jt2K associated with the two subterms t1 and t2. More
precisely, “Jt1KP ′” asserts that t1 returns a value satisfying P ′ and
“Jt2KP ” asserts that t2 returns a value satisfying P . Formally:

Jletx = t1 in t2KP = ∃P ′. Jt1KP ′ ∧ ∀x. P ′ x ⇒ Jt2KP

Although this equation looks very similar to the reasoning rule,
there is one important difference. With the program logic reasoning
rule, the intermediate specification P ′ needs to be provided at the
time of applying the rule. On the contrary, characteristic formulae
are able to anticipate the application of the reasoning rule even
without any knowledge of this intermediate specification, thanks to
the existential quantification on P ′. While it may appear to be fairly
natural, this form of existential quantification of an intermediate
specification, which takes full advantage of the strength of higher-
order logic, does not seem to have been exploited in previous work.

From our experience on working on the verification of pure
OCaml programs both with a deep embedding and with charac-
teristic formulae, we conclude that moving to characteristic for-
mulae brings at least three major improvements. First, character-
istic formulae do not need to represent and manipulate program
syntax. Thus, they avoid many technical difficulties, in particular
those associated with the representation of binders. Also, the re-
peated computations of substitutions that occur during the verifi-
cation of a deeply-embedded program typically lead to the gener-
ation of a proof term of quadratic size, which can be problematic
for scaling up to larger programs. Second, with characteristic for-
mulae there is no need to apply reasoning rules of the program
logic manually. Indeed, the applications of those rules have been
anticipated in the characteristic formulae. A practical consequence
is that proof scripts are lighter and easier to automate. Third and
last, characteristic formulae avoid the need to relate the deep em-
bedding of program values with the corresponding logical values,
saving a lot of technical burden. For example, consider a list of inte-
gers in a OCaml program. In the deep embedding, the description of
this list is encoded using constructors from the grammar of OCaml
values. With characteristic formulae, program values are translated
into logical values once and for all upon generation of the formula.
Thus, the list of integers would appear in the characteristic formula
directly as a list of integers, significantly simplifying proofs.

The fact that characteristic formulae outperform deep embed-
dings is after all not a surprize: characteristic formulae can be seen
as an abstract layer built on the top of a deep embedding, so as to
hide uninteresting details and retain only the essence of the reason-
ing rules supported by the deep embedding.

3. Formalizing purely functional data structures
Chris Okasaki’s book Purely Functional Data Structures [22] con-
tains a collection of efficient data structures, with concise imple-
mentation and nontrivial invariants. Its code appeared as a excel-

module type Fset = sig | module type Ordered =
type elem | sig
type fset | type t
val empty: fset | val lt: t -> t -> bool
val insert: elem -> fset -> fset | end
val member: elem -> fset -> bool |
end |

Figure 1. Module signatures for finite sets and ordered types

module RedBlackSet (Elem : Ordered) : Fset = struct
type elem = Elem.t
type color = Red | Black
type fset = Empty | Node of color * fset * elem * fset
let empty = Empty

let rec member x = function
| Empty -> false
| Node (_,a,y,b) ->

if Elem.lt x y then member x a
else if Elem.lt y x then member x b
else true

let balance = function
| (Black, Node (Red, Node (Red, a, x, b), y, c), z, d)
| (Black, Node (Red, a, x, Node (Red, b, y, c)), z, d)
| (Black, a, x, Node (Red, Node (Red, b, y, c), z, d))
| (Black, a, x, Node (Red, b, y, Node (Red, c, z, d)))
-> Node (Red, Node(Black,a,x,b), y, Node(Black,c,z,d))
| (col,a,y,b) -> Node(col,a,y,b)

let rec insert x s =
let rec ins = function

| Empty -> Node(Red,Empty,x,Empty)
| Node(col,a,y,b) as s ->

if Elem.lt x y then balance(col,ins a,y,b)
else if Elem.lt y x then balance(col,a,y,ins b)
else s in

match ins s with
| Empty -> raise BrokenInvariant
| Node(_,a,y,b) -> Node(Black,a,y,b)

end

Figure 2. Okasaki’s implementation of Red-Black sets

lent benchmark for testing the usability of our approach to program
verification. So far, we have verified more than half of the contents
of the book. This paper focuses on the formalization of red-black
trees and give statistics on the other formalizations completed.

Red-black trees behave like binary search trees except that each
node is tagged with a color, either red or black. Those tags are
used to maintain balance in the tree, ensuring a logarithmic asymp-
totic complexity. Okasaki’s implementation appears in Figure 2. It
consists of a functor that, given an ordered type, builds a module
matching the signature of finite sets. Signatures appear in Figure 1.

We specify each OCaml module signature through a Coq mod-
ule signature. We then verify each OCaml module implementation
through a Coq module implementation that contains lemmas estab-
lishing that the OCaml code satisfies its specification. We rely on
Coq’s module system to ensure that the lemmas proved actually
correspond to the expected specification. This strategy allows for
modular verification of modular programs.

3.1 Specification of the signatures
In order to specify functions manipulating red-black trees, we need
to introduce a representation predicate called rep. Intuitively, ev-
ery data structure admits a mathematical model. For example, the
model of a red-black tree is a set of values. Similarly, the model
of a priority queue is a multiset, and the model of a queue is a se-



quence (a list). Sometimes, the mathematical model is simply the
value itself. For instance, the model of an integer or of a value of
type color is just the value itself.

We formalize models through instances of a typeclass named
Rep. If values of a type a are modelled by values of typeA, then we
write “Rep aA”. For example, consider red-black trees that contain
items of type t. If those items are modelled by values of type T
(i.e. Rep t T ), then trees of type fset are modelled by values of type
setT (i.e. Rep fset (setT )), where set is the type constructor for
mathematical sets in Coq.

The typeclass Rep contains two constructors, as shown below.
For an instance of type “Rep aA”, the first field, rep, is a binary
relation that relates values of type a with their model, of type A.
Note that not all values admit a model. For instance, given a red-
black tree e, the proposition “rep eE” can only hold if e is a well-
balanced, well-formed binary search tree. The second field of Rep,
named rep unique, is a lemma asserting that every value of type a
admits at most one model (we sometimes need to exploit this fact
in proofs).

Class Rep (a:Type) (A:Type) :=
{ rep : a -> A -> Prop;

rep_unique : forall x X Y,
rep x X -> rep x Y -> X = Y }.

Remark: while representation predicates have appeared in previous
work (e.g. [7, 16, 19]), our work seems to be the first to use them
in a systematic manner through a typeclass definition.

Figure 3 contains the specification for an abstract finite set
module named F. Elements of the sets, of type elem, are expected to
be modelled by some type T and to be related to their models by an
instance of type “Rep elemT ”. Moreover, the values implementing
finite sets, of type fset, should be related to their model, of type
setT , through an instance of type “Rep fset (setT )”. The module
signature then contains the specification of the values from the
finite set module F. The first one asserts that the value empty
should be a representation for the empty set. The specifications for
insert and member rely on a special notation, explained next.

So far, we have relied on the predicate AppReturns to specify
functions. While this works well for functions of one argument,
it becomes impractical for curried functions of higher arity, in
particular because we want to specify the behaviour of partial
applications. So, we introduce the Spec notation, explaining its
meaning informally and postponing its formal definition to §5.2.
With the Spec notation, the specification of insert, shown below,
reads like a prototype: insert takes two arguments, x of type elem
and e of type fset. Then, for any model X of x and for any set E that
models e, the function returns a finite set e’ which admits a model
E’ equal to {X} ∪ E. (\{X} is a Coq notation for a singleton set.)

Parameter insert_spec :
Spec insert (x:elem) (e:fset) |R>>

forall X E, rep x X -> rep e E ->
R (fun e’ => exists E’,

rep e’ E’ /\ E’ = \{X} \u E).

The variable R should be read as “the application of insert returns
a value satisfying the following post-condition”. R is bound in
“|R>>”and it is applied to the post-condition of the function.

As it is often the case that arguments and/or results are described
through their rep predicate, we introduce the RepSpec notation.
With this new layer of syntactic sugar, the specification becomes:

Parameter insert_spec :
RepSpec insert (X;elem) (E;fset) |R>>

R (fun E’ => E’ = \{X} \u E ; fset).

Module Type FsetSigSpec.
Declare Module F : MLFset. Import F.

Parameter T : Type.
Instance elem_rep : Rep elem T.
Instance fset_rep : Rep fset (set T).

Parameter empty_spec : rep empty \{}.
Parameter insert_spec :

RepTotal insert (X;elem) (E;fset) >> = \{X} \u E ; fset.
Parameter member_spec :

RepTotal member (X;elem) (E;fset) >> bool_of (X \in E).

End FsetSigSpec.

Figure 3. Specification of finite sets

Module Type OrderedSigSpec.
Declare Module O : MLOrdered. Import O.

Parameter T : Type.
Instance rep_t : Rep t T.
Instance le_inst : Le T.
Instance le_order : Le_total_order.

Parameter lt_spec :
RepTotal lt (X;t) (Y;t) >> bool_of (LibOrder.lt X Y).

End OrderedSigSpec.

Figure 4. Specification of ordered types

The specification is now stated entirely in terms of the models,
and does no longer refer to the names of OCaml input and output
values. Only the type of those program values remain visible. Those
type annotation are introduced by semi-columns.

The specification for the function insert given in Figure 3 makes
two further simplifications. First, it relies on the notation RepTotal,
which avoids the introduction of a name R when it is immediately
applied. Second, we have employed for the sake of conciseness a
partial application of equality, of the form “= {X} ∪ E”. Overall,
the interest of introducing several layers of notation is that the final
specifications from Figure 3 are about the simplest possible formal
specifications one could hope for.

Let us describe briefly the remaining specifications. The func-
tion member takes as argument a value x and a finite set e, and
returns a boolean which is true if and only if the model X of x be-
longs to the model E of e. Figure 4 contains the specification of
an abstract ordered type module named O. Elements of the ordered
type t should be modelled by a type T . Values of type T should be
ordered by a total order relation. The order relation and the proof
that it is total are described through instances of the typeclasses Le
and Le total order, respectively. An instance of the strict-order re-
lation (LibOrder.lt) is automatically derived through the typeclass
mechanism. This relation is used to specify the boolean comparison
function lt, defined in the module O.

3.2 Verification of the implementation
It remains to verify the implementation of red-black trees. Con-
sider a module O describing an ordered type. Assume the mod-
ule O has been verified through a Coq module named OS of signa-
ture OrderedSigSpec. Our goal is then to prove correct the module
obtained by applying the functor RedBlackSet to the module O,
through the construction of Coq module of signature FsetSigSpec.
Thus, the verification of the OCaml functor RedBlackSet is carried
through the implementation of a Coq functor named RedBlackSet-



Spec, which depends both on the module O and on its specification
OS. The first few lines of this Coq functor are shown below.

Module RedBlackSetSpec
(O:MLOrdered) (OS:OrderedSigSpec with Module O:=O)
<: FsetSigSpec with Definition F.elem := O.t.
Module Import F <: MLFset := MLRedBlackSet O.

The next step in the construction of this functor is the definition
of an instance of the representation predicate for red-black trees. To
start with, assume that our goal is simply to specify a binary search
tree. The rep predicate would be defined in terms of an inductive
invariant called inv, as shown below. First, inv relates the empty
tree to the empty set. Second, inv relates a node with root y and
subtrees a and b to the set {Y} ∪ A ∪ B, where the uppercase
variables are the model associated with their lowercase counterpart.
Moreover, we need to ensure that all the elements of the left subtree
A are smaller than the root Y, and that, symmetrically, elements
from B are greater than Y. Those invariants are stated with help of
the predicate foreach. The proposition “foreachP E” asserts that
all the elements in the set E satisfy the predicate P .

Inductive inv : fset -> set T -> Prop :=
| inv_empty :

inv Empty \{}
| inv_node : forall col a y b A Y B,

inv a A -> inv b B -> rep y Y ->
foreach (is_lt Y) A -> foreach (is_gt Y) B ->
inv (Node col a y b) (\{Y} \u A \u B).

A red-black tree is a binary search tree satisfying three invari-
ants. First, every path from the root to a leaf contains the same
number of black nodes. Second, no red node can have a red child.
Third, the root of the tree must be black. In order to capture the first
invariant, we extend the predicate inv so that it depends on a natu-
ral number n representing the number of black nodes to be found in
every path. For an empty tree, this number is zero. For a nonempty
tree, this number is equal to the number m of black nodes that can
be found in every path of each of the two subtrees, augmented by
one if the node is black. The second invariant, asserting that a red
node must have black children, can be enforced simply by testing
colors. Finally, the rep predicate relates a red-black tree e with a
set E if there exists a value n such that “inv n e E” holds and such
that the root of e is black (the third invariant). The extended defini-
tion of inv appears in Figure 5.

In practice, we further extend the invariant with an extra boolean
(this extended definition does not appear in the present paper).
When the boolean is true, the definition of inv is unchanged. How-
ever, when the boolean is false, then second invariant might be bro-
ken at the root of the tree. This relaxed version of the invariant is
useful to specify the behaviour of the function balance. Indeed, this
function takes as input a color, an item and two subtrees, and one
of those two subtrees might have its root incorrectly colored.

Figure Figure 6 shows the lemma corresponding to the veri-
fication of insert. Observe that the local recursive function ins is
specified in the script. It is then verified with help of the tactic xgo.

3.3 Statistics
We have specified and verified various implementations of queues,
double-ended queues, priority queues (heaps), sets, as well as
sortable lists, catenable lists and random-access lists. OCaml im-
plementations are directly adapted from Okaski’s SML code [22].
All code and proofs can can be found online.1 Figure 7 contains
statistics on the number of non-empty lines in OCaml source code
and in Coq scripts. The programs considered are generally short,

1 http://arthur.chargueraud.org/research/2010/cfml/

Inductive inv : nat -> fset -> set T -> Prop :=
| inv_empty : forall,

inv 0 Empty \{}
| inv_node : forall n m col a y b A Y B,

inv m a A -> inv m b B -> rep y Y ->
foreach (is_lt Y) A -> foreach (is_gt Y) B ->
(n = match col with Black => m+1 | Red => m end) ->
(match col with | Black => True

| Red => root_color a = Black
/\ root_color b = Black end) ->

inv n (Node col a y b) (\{Y} \u A \u B).

Global Instance set_rep : Rep fset (set T).
Proof. apply (Build_Rep (fun e E =>

exists n, inv n e E /\ root_color e = Black)). [...]
Defined.

Figure 5. Representation predicate for red-black trees

Lemma insert_spec : RepTotal insert (X;elem) (E;fset) >>
= \{X} \u E ; fset.

Proof.
xcf. introv RepX (n&InvE&HeB).
xfun_induction_nointro_on size (Spec ins e |R>>

forall n E, inv true n e E -> R (fun e’ =>
inv (is_black (root_color e)) n e’ (\{X} \u E))).

clears s n E. intros e IH n E InvE. inverts InvE as.
xgo*. simpl. constructors*.
introv InvA InvB RepY GtY LtY Col Num. xgo~.
(* case insert left *)
destruct~ col; destruct (root_color a); tryifalse~.
ximpl as e. simpl. applys_eq* Hx 1 3.
(* case insert right *)
destruct~ col; destruct (root_color b); tryifalse~.
ximpl as e. simpl. applys_eq* Hx 1 3.
(* case no insertion *)
asserts_rewrite~ (X = Y). apply~ nlt_nslt_to_eq.

subst s. simpl. destruct col; constructors*.
xlet as r. xapp~. inverts Pr; xgo. fset_inv. exists*.

Qed.

Figure 6. Invariant and model of red-black trees

but note that OCaml is a concise language and that Okasaki’s code
is particularly minimalist. Details are given about Coq scripts.

The column “inv” indicates the number of lines needed to state
the invariant of each structure. The column “facts” gives the length
of proof script needed to state and prove facts that are used sev-
eral times in the verification scripts. The column “spec” indicates
the number of lines of specification involved, including the specifi-
cation of local and auxiliary functions. Finally, the last column de-
scribes the size of the actual verification proof scripts where charac-
teristic formulae are manipulated. Note that Coq proof scripts also
contain several lines to import and instantiate modules, a few lines
to set up automation, as well as one line per function to register its
specification in a database of lemmas.

We evaluate the relative cost of a formal verification by com-
paring the number of lines specific to formal proofs (figures from
columns “facts” and “verif”) against the number of lines required
in a properly-documented source code (source code plus invariants
and specifications). For particularly-tricky data structures, such as
bootstrapped queues, Hood-Melville queues and binominal heaps,
this ratio is close to 2.0. In all other structures, the ration does not
exceed 1.25. For a user as fluent in Coq proofs as in OCaml pro-
gramming, it means that the formalization effort can be expected to
be comparable to the implementation and documentation effort.



Development Caml Coq inv facts spec verif
BatchedQueue 20 73 4 0 16 16
BankersQueue 19 95 6 20 15 16
PhysicistsQueue 28 109 8 10 19 32
RealTimeQueue 26 104 4 12 21 28
ImplicitQueue 35 149 25 21 14 50
BootstrappedQueue 38 212 22 54 29 77
HoodMelvilleQueue 41 363 43 53 33 180
BankersDeque 46 172 7 26 24 58
LeftistHeap 36 132 16 28 15 22
PairingHeap 33 137 13 17 16 35
LazyPairingHeap 34 132 12 24 14 32
SplayHeap 53 176 10 41 20 59
BinomialHeap 48 367 24 118 41 110
UnbalancedSet 21 85 9 11 5 22
RedBlackSet 35 183 20 43 22 53
BottomUpMergeSort 29 151 23 31 9 40
CatenableList 38 153 9 20 23 37
RandomAccessList 63 272 29 37 47 83
Total 643 3065 284 566 383 950

Figure 7. Non-empty lines of source code and proof scripts

4. Characteristic formula generation
4.1 Source language and normalization
CFML takes as input programs written in the pure fragment of
OCaml, which includes algebraic data types, pattern matching,
higher-order functions, recursion and mutual recursion. Polymor-
phic recursion, whose support was recently added to OCaml and
which is used extensively in Okasaki’s book, is also handled. Mod-
ules and functors are supported as long as the corresponding signa-
tures are definable in Coq’s module system.

Lazy expressions are supported under the condition that the
code would terminate without any lazy annotation. While this re-
striction certainly does not enable reasoning on infinite data struc-
tures, it covers the use of laziness for computation scheduling, as
described in Okasaki’s book. In fact, our tools simply ignores any
annotation relative to laziness. The key idea is that if a program
satisfies its specification when evaluated without any lazy annota-
tion, then it also satisfies its specification when evaluated with lazy
annotations. (Of course, the reciprocal is not true.)

Program verification based on characteristic formulae could
presumably be applied to another programming language. Yet, we
make the assumption throughout this work that the source language
is call-by-value and deterministic. For the sake of simplicity, pro-
gram integers are modelled as unbounded mathematical integers.

Before generating the characteristic formula of a program, the
program is automatically transformed into its normal form: the pro-
gram is arranged so that all intermediate results and all functions
become bound by a let-definition (except applications of simple to-
tal functions such as addition and subtraction). This transformation,
similar toA-normalization [8], is straightforward to implement and
greatly simplifies formal reasoning on programs (see [10, 24] for
similar transformations in the context of program verification). The
grammar of terms in normal form is given below, for a subset of
the source language. It will later be extended with curried n-ary
functions and curried n-ary applications (§5.3).

x, f := variables
v := x | n | (v, v) | injk v
t := v | (v v) | fail | ifx then t else t |

letx = t in t | let f = (µf.λx.t) in t

Throughout this work, we consider only programs that are well-
typed in ML with recursive types. The grammar of types and type

schema is recalled below.

T := A | int | T × T | T + T | T → T | µA.T
S := ∀A.T

4.2 Characteristic formula generation: informal presentation
The characteristic formula of a term t, written JtK, is generated us-
ing a recursive algorithm that follows the structure of t. Recall that,
given a post-condition P , the characteristic formula is such that
the proposition “JtKP ” holds if and only if the term t terminates
and returns a value that satisfies P . In terms of a denotational in-
terpretation, JtK corresponds to the set of post-conditions that are
valid for the term t. In terms of types, the characteristic formula
associated with a term t of type T applies to a post-condition P of
type T → Prop and produces a proposition, so JtK admits the type
(T → Prop)→ Prop.

The key ideas involved in the construction of characteristic
formulae are explained next. The reflection of Caml values into
Coq and the treatment of polymorphism are described afterwards.
The definition of JtK for a particular term t always takes the form
“λP.H”, where H expresses what needs to be proved in order to
show that the term t returns a value satisfying the post-condition P .

To show that a value v returns a value satisfying P , it suffices
to prove that “P v” holds. So, JvK is defined as “λP. (P v)”. Next,
to prove that an application “f v” returns a value satisfying P , one
must exhibit a proof of “AppReturns f v P ”. So, Jf vK is defined
as “λP. AppReturns f v P ”. To show that “ifx then t1 else t2” re-
turns a value satisfying P , one must prove that t1 returns such a
value when x is true and that t2 returns such a value when x is
false. So, the formula Jifx then t1 else t2K is defined as

λP. (x = true ⇒ Jt1KP ) ∧ (x = false ⇒ Jt2KP )

To show that the term “fail” returns a value satisfying P , the only
way to proceed is to show that this point of the program cannot be
reached, by proving that the assumptions accumulated at that point
are contradictory. Therefore, JfailK is defined as “λP. False”.

The treatment of let-bindings is more interesting. To show that
a term “letx = t1 in t2” returns a value satisfying P , one must
prove that there exists a post-condition P ′ such that t1 returns a
value satisfying P ′ and that t2 returns a value satisfying P for any
x satisfying P ′. Formally, Jletx = t1 in t2K is defined as

λP. ∃P ′. (Jt1KP ′) ∧ ∀x. (P ′ x) ⇒ (Jt2KP )

Slightly trickier is the treatment of functions and recursive func-
tions. In fact, we generate the same formula regardless of whether
a function is recursive or not (except, of course, for the treatment of
binding scopes). Indeed, as suggested in the example of the func-
tion half (§1.2), specification for recursive functions are proved by
induction, using the induction principles provided by Coq. Thus,
there is no need to add further support for reasoning by induction
inside characteristic formulae.

Consider a possibly-recursive function “µf.λx.t”. The state-
ment “∀x.∀P ′. JtKP ′ ⇒ AppReturns f xP ′”, called the body
description for f , captures the fact that, in order to prove that the
application of f to x returns a value satisfying a post-condition P ′,
it suffices to prove that the body t, instantiated with that particular
value of x, terminates and returns a value satisfying P ′. The char-
acteristic formula for the function µf.λx.t then states that, in order
to prove a property P to hold of µf.λx.t, it suffices to prove that
the body description for f implies the proposition “P f” for any
abstract name f . The formula Jµf.λx.tK is thus defined as:

λP. ∀f.
(
∀x. ∀P ′. JtKP ′ ⇒ AppReturns f xP ′

)
⇒ P f

The treatment of pattern matching and mutually-recursive func-
tions can be found in the technical appendix [3].



4.3 Reflection of values in the logic
So far, we have abusively identified program values from the pro-
gramming language with values from the logic. This section clar-
ifies the translation from ML types to Coq types, as well as the
translation from ML values to Coq values.

We map every ML value to its corresponding Coq value, except
for functions. As explained earlier on, due to the mismatch between
the programming language arrow type and the logical arrow type,
we represent OCaml functions using values of type Func. For each
ML type T , we define the corresponding Coq type, written 〈T 〉.
This type is simply a copy of T where all the arrow types are
replaced with the type Func. Formally:

〈A〉 ≡ A

〈int〉 ≡ Int

〈T1 × T2〉 ≡ 〈T1〉 × 〈T2〉
〈T1 + T2〉 ≡ 〈T1〉+ 〈T2〉
〈µA.T 〉 ≡ µA.〈T 〉
〈T1 → T2〉 ≡ Func

Technical remark: a ML algebraic data type definition can be trans-
lated into a Coq inductive definition without any difficulty regard-
ing negative occurrences. Indeed, since all arrow types are mapped
to Func, there simply cannot be any negative occurrence.

Now, given a type T , we define the translation from Caml values
of type T towards Coq values of type 〈T 〉. The translation of a value
v of type T is written dveΓT . The context Γ, which maps Caml
variables to Coq variables, is used to translate non-closed values.
The definition of the operator d·e, called decoder, appears next.

dxeΓT ≡ Γ(x)

dneΓint ≡ n

d(v1, v2)eΓT1×T2 ≡ (dv1eΓT1 , dv2eΓT2)

dinjk veΓT1+T2 ≡ injk dveΓTk

dveΓµA.T ≡ dveΓ([A→(µA.T )]T )

dµf.λx.teΓT1→T2 ≡ not needed at this time

When decoding closed values, the context Γ is typically empty.
Henceforth, we write dveT as a shorthand for dve∅T . Moreover,
when there is no ambiguity on the type T of the value v, we omit
the type T and simply write dveΓ and dve.

4.4 Characteristic formula generation: formal presentation
The characteristic formula generator can now be given a formal
presentation in which OCaml values are reflected into Coq, through
calls to the decoding function d·e. If t is a term of type T , then
its characteristic formula JtKΓ is actually a logical predicate of
type (〈T 〉 → Prop)→ Prop. The environment Γ describes the
substitution from program variables to Coq variables.

In order to justify that characteristic formulae can be displayed
like the source code, we proceed in two steps. First, we describe
the characteristic formula generator in terms of an intermediate
layer of notation (Figure 8). Then, we define the notation layer
in terms of higher-order logic connectives as well as in terms of
the predicate AppReturns (Figure 9). The contents of those figures
simply refines the informal presentation from §4.2.

4.5 Polymorphism
The treatment of polymorphism is certainly one of the most delicate
aspect of characteristic formula generation. We need to extend the
characteristic formula so as to quantify type variables needed to
type-check the bodies of polymorphic let-bindings.

The translation of a polymorphic OCaml type ∀B.T is a poly-
morphic Coq type of the form ∀A.〈T 〉. The set of type variables A

is obtained by removing from the set B all the type variables that
do not occur free in 〈T 〉. Indeed, as all arrow types are mapped di-
rectly towards the type Func, some variables occuring in T may no
longer occur in 〈T 〉. So, the set B might be strictly smaller than A.

Consider a polymorphic let-binding “letx = t1 in t2”. The type
checking of the term t1 involves a set of type variables that are to be
generalized at this let-binding on variable x. Let C denotes that set
of generalizable type variables, and let T be the type of t1 before
generalization. The variable x thus admits a type of the form ∀B.T ,
where B is a subset of C. Note that, in general, C is a strict subset
of B because not all intermediate type variables are visible in the
result type of an expression.

Our goal is to define the characteristic formula associated with
the term “letx = t1 in t2” in a context Γ. To that end, let ∀A.〈T 〉
be the Coq translation of the type ∀B.T . Since A is a subset of B
and B is a subset of C, we can define a set A′ such that C is equal
to the union of A and A′. Then, we define:

Jletx = t1 in t2KΓ ≡
λP. ∃P ′ : (∀A.(〈T 〉 → Prop)). (∀A. ∀A′. Jt1KΓ (P ′A))

∧∀X : (∀A.〈T 〉). (∀A. (P ′ A) (X A)) ⇒ (Jt2K(Γ,x 7→X) P )

The post-condition P ′ describing X is a polymorphic predicate of
type ∀A.(〈T 〉 → Prop). Note that it is not a predicate on a poly-
morphic value, which would have the type (∀A.〈T 〉) → Prop.
(Indeed, we only care about describing the behaviour of monomor-
phic instances of the polymorphic variable X .) If we write type
applications explicitly, then a particular monomorphic instance of
X takes the form X A and it satisfies the predicate P ′ A. Those
type applications appear in the characteristic formula stated above.

Remark: we need to update slightly the translation from OCaml
variables to Coq variables, because the context Γ may now asso-
ciate program variables with polymorphic logical variables. The
translation a monomorphic occurrence of a polymorphic variable x
is the application of the Coq type variable Γ(x) to some appropri-
ates types, which depend on the type of x at its place of occurrence.

Finally, we give the characteristic formula for polymorphic
functions, which is simpler than that of other polymorphic values
because functions are simply reflected in the logic using the type
Func. If A denotes the set of generalizable type variables associ-
ated with the body t of a function µf.λx.t, then the characteristic
formula is constructed as follows.

Jµf.λx.tKΓ ≡ λP. ∀F.
(∀AX P ′. JtK(Γ,f 7→F,x 7→X) P ′ ⇒ AppReturnsF X P ′) ⇒ P F

5. Specification predicates
Through this section, we formally describe the meaning of the pred-
icates AppReturns and Spec. We then generalize those predicates
to n-ary functions. Finally, we investigate how the predicate Spec
can be used to specify higher-order functions.

5.1 Definition of the specification predicate
Consider the specification of the function half, written in terms of
the predicate AppReturns.

∀x. ∀n ≥ 0. x = 2 ∗ n ⇒ AppReturns halfx (= n)

The same specification can be rewritten with the Spec notation as:

Spec half (x : int) |R >> ∀n ≥ 0. x = 2 ∗ n ⇒ R (= n)

The notation based on Spec in fact stands for an application of a
higher-order predicate called Spec1. The proposition “Spec1 f K”
asserts that the function f admits the specificationK. The predicate
K takes both x and R as argument, and specifies the result of
the application of f to x. The predicate R is to be applied to the



JvKΓ ≡ Ret dveΓ
Jf vKΓ ≡ App dfeΓ dveΓ
JfailKΓ ≡ Fail
Jifx then t1 else t2KΓ ≡ If dxeΓ Then Jt1KΓ Else Jt2KΓ

Jletx = t1 in t2KΓ ≡ LetX := Jt1KΓ in Jt2K(Γ,x 7→X)

Jlet f ′ = (µf.λx.t1) in t2KΓ ≡ Let F ′ :=
(
Fun F X := Jt1K(Γ,f 7→F,x 7→X)

)
in Jt2K(Γ,f ′ 7→F ′)

Figure 8. Characteristic formula generator

Ret V ≡ λP. P V
App F V ≡ λP. AppReturnsF V P
Fail ≡ λP. False
If V Then Q Else Q′ ≡ λP. (V = true ⇒ QP ) ∧ (V = false ⇒ Q′ P )
LetX := Q in Q′ ≡ λP. ∃P ′. QP ′ ∧ (∀X. P ′X ⇒ Q′ P )
Fun F X := Q ≡ λP. ∀F.

(
∀X. ∀P ′. QP ′ ⇒ AppReturnsF X P ′

)
⇒ P F

Figure 9. Syntactic sugar to display characteristic formulae

post-condition that holds of the result of “f x”. For example, the
previous specification for half stands for:

Spec1 half (λxR. ∀n ≥ 0. x = 2 ∗ n ⇒ R (= n))

In first approximation, the predicate Spec1 is defined as follows:

Spec1 f K ≡ ∀x. K x (AppReturns f x)

where K has type A → ((B → Prop) → Prop) → Prop,
where A and B correspond to the input and the output type of f ,
respectively. The reader may check that unfolding the definition of
Spec1 in the specification for half expressed using Spec1 yields the
specification for half expressed in terms of AppReturns.

The true definition of “Spec1” actually include an extra side-
condition, expressing that K is covariant in R. It is needed to
ensure that the specification K actually concludes about the be-
haviour of the application of the function. Formally, covariance is
captured by the predicate Weakenable, defined as follows:

WeakenableH ≡ ∀GG′. (∀x.Gx→ G′ x)→ H G→ H G′

where H has type “(X → Prop) → Prop” for some X . The
formal definition of Spec1 appears in the middle of Figure 10.
Fortunately, thanks to appropriate lemmas and tactics, the predicate
Weakenable never needs to be manipulated explicitly by the user.

5.2 Direct treatment of n-ary functions
In order to obtain a realistic tool for program verification, it is cru-
cial to offer direct support for reasoning on the definition and ap-
plication of n-ary curried functions. Generalizing the definitions of
Spec1 and AppReturns1 to higher arities is not entirely straightfor-
ward, because we want the ability to reason on partial applications
and over applications. Intuitively, the specification of a n-ary cur-
ried function should capture the property that the application to a
number of arguments less than n terminates and returns a function
with the appropriate specialization of the original specification.

Firstly, we define the predicate AppReturnsn. The proposition
“AppReturnsn f v1 . . . vn P ” states that the application of f to the
n arguments v1 . . . vn returns a value satisfying P . The family of
predicates AppReturnsn is defined by recursion on n in terms of
the predicate AppReturns, as shown at the top of Figure 10. For
instance, “AppReturns2 f v1 v2 P ” states that the application of f
to v1 returns a function g such that the application of g to v2 returns
a value satisfying P . More generally, if m is smaller than n, then
applications at arities n and m are related as follows:

AppReturnsn f v1 . . . vn P ⇐⇒
AppReturnsm f v1 . . . vm (λg.AppReturnsn−m g vm+1 . . . vn P )

Secondly, we define the predicate Specn. Again, we proceed by
recursion on n. For example, a curried function f of two arguments
is a total function that, when applied to its first argument, returns a
unary function g that admits a certain specification which depends
on that first argument. Formally:

Spec2 f K ≡ Spec1 f (λxR. R (λg.Spec1 g (K x)))

where (K : A1 → A2 → ((B → Prop) → Prop) → Prop).
Remark: Spec2 is polymorphic in the types A1, A2 and B.

The actual definition, given in Figure 10, includes a side condi-
tion to ensure that K is covariant in R, written Is specnK. Note:
the specification of a curried function described using Specn can
always be viewed as a unary function specified using Spec1. This
property will be useful for reasoning on higher-order functions.

The high-level notation for specification used in §3 can now be
easily explained in terms of the family of predicates Specn.

Spec f (x1 : A1) . . . (xn : An) |R >> H
≡ Specn f (λ(x1 : A1). . . . λ(xn : A1). λR. H)

5.3 Characteristic formulae for curried functions
In this section, we update the generation of characteristic formulae
to add direct support for reasoning on n-ary functions using Specn
and AppReturnsn. Note that the grammar of terms in normal form
is now extended with n-ary applications and n-ary abstractions.

Intuitively, the characteristic formula associated with an ap-
plication “f v1 . . . vn” is simply “λP. AppReturnsn v1 . . . vn P ”.
The formal definition, which takes decoders into account, is:

Jf v1 . . . vnKΓ ≡ λP. AppReturnsn dfe
Γ dv1eΓ . . . dvneΓ P

The characteristic formula for a function “µf.λx1 . . . xn.t” as-
serts that to prove “Specn f K” it suffices to show that the propo-
sition “K x1 . . . xn JtK” holds for any arguments xi. Remark: the
treatment of unary functions given here is different but provably
equivalent to that given earlier on (§4.2).

It may be surprizing to see the predicate “K x1 . . . xn” being
applied to a characteristic formula JtK. It is worth considering
an example. Recall the definition of the function half. It takes
the form “µhalf.λx.t”, where t stands for the body of half. Its
specification takes the form “Spec1 halfK”, where K is equal to
“λxR. ∀n ≥ 0. x = 2 ∗ n ⇒ R (= n)”. According to the
new characteristic formula for functions, in order to prove that
the function half satisfies its specification, we need to prove the
proposition “∀x.K x JtK”. UnfoldingK, we obtain: “∀n ≥ 0. x =
2 ∗n⇒ JtK (= n)”. As expected, we are required to prove that the
body of the function half (described by the characteristic formula



AppReturns1 f xP ≡ AppReturns f xP
AppReturnsn f x1 . . . xn P ≡ AppReturns f x1 (λg. AppReturnsn−1 g x2 . . . xn P )
Is spec1 K ≡ ∀x.Weakenable (K x)
Is specnK ≡ ∀x. Is specn−1 (K x)
Spec1 f K ≡ Is spec1 K ∧ ∀x.K x (AppReturns f x)
Specn f K ≡ Is specnK ∧ Spec1 f (λxR. R (λg.Specn−1 g (K x)))

In the figure, n > 1 and (f : Func) and (xi : Ai) and (P : B → Prop) and (K : A1 → . . . An → ((B → Prop)→ Prop)→ Prop).

Figure 10. Formal definitions for AppReturnsn and Specn

JtK) returns a value equal to n, under the assumption that n is a
non-negative integer such that x = 2 ∗ n.

Characteristic formulae for functions are constructed as follows.
Jµf.λx1 . . . xn.tKΓ ≡ λP. ∀F.(
∀K.

(
∀X1 . . . Xn. K X1 . . . Xn JtK(Γ,f 7→F,xi 7→Xi)

)
⇒ Is specn K ⇒ Specn F K

)
⇒ P F

5.4 Specification of higher-order functions
The specification of a function, whether unary or n-ary, can always
take the form Spec1 f K. Thus, given a function f , we can quantify
over every possible specification that f might admit simply by
quantifying universally over the variable K. Let us illustrate this
ability with the functions apply and compose. The function apply,
defined as “λx. λf. (f x)”, can be specified as follows.

Spec2 apply (λx f R. ∀K. Spec1 f K ⇒ K xR)

The conclusion “K xR” states that the behaviour R of the term
“apply f x” is described by the predicate “K x”. The predicate
“K x” indeed specifies the behaviour of the term “f x”, since
“Spec1 f K” implies “K x (AppReturns1 f x)”.

Consider now the function compose, which is defined as
“λf1 f2 x. f1 (f2 x)”. Its specification is expressed in terms of the
specifications K1 and K2 of the functions f1 and f2, respectively.

Spec3 compose (λf1 f2 xR.
∀K1 K2. Spec1 f1 K1 ⇒ Spec1 f2 K2 ⇒
K2 x (λP. ∃y. P y ⇒ K1 y R)))

The last line can be read as follows. First, we want to unfold the
specification “K2 x” associated with the application of f2 onto x,
since this inner call is the first to be performed. Then, for any post-
condition P that holds of the result y of the application “f2 x”, the
behaviourR of the term “f1 (f2 x)” is the same as the behaviour of
“f1 y”. Since the behaviour of “f1 y” is described by the predicate
“K1 y”, the conclusion is “K1 y R”.

The specification given above specifies in particular the re-
sult obtained by applying compose to two functions. For exam-
ple, we were able to prove in a few lines of Coq that the term
“compose half half” yields a function that divides its argument by
four. More precisely, using a weakening lemma for specification,
we have proved that the resulting function admits the specification
“λxR. ∀n ≥ 0. x = 4 ∗ n ⇒ R (= n)”. (See [3] for details.)

Using similar techniques, we were able to assign a concise
specification to the Y fixed-point combinator, and then to verify
it. We have also started to investigate the specification of higher-
order iterators such as map and fold on lists and sets. However,
due to lack of space and because we lack experience in using those
specifications, we do not report on that recent work in this paper.

6. Soundness and completeness
Characteristic formulae can be displayed in a way that closely re-
semble source code. However, proving the soundness and com-
pleteness of a characteristic formula with respect to the source code
it describes is not entirely straightforward. First, we show how the

type Func and the predicate AppReturns can be given concrete im-
plementations in the logic. This construction, which has been ver-
ified in Coq for a subset of the source language, relies on a deep
embedding of the source language and on the definition of func-
tions called encoders, which are the reciprocal of decoders. Sec-
ond, we present the statements of the soundness and completeness
theorems, which have been proved on paper [3].

6.1 Realization of Func and AppReturns

To realize the type Func, we construct a deep embedding of the
source language. More precisely, we use inductive definitions to
define the set of runtime values, named Val, and to define the set of
program terms, named Trm. Runtime values, written v throughout
this section, extend source program values with function closures.
We then define Func as the set of function closures, that is, as the
set of values of type Val of the form µf.λx.t. In order to prove
interesting facts about characteristic formulae, we need to define
a decoder for function closures created at runtime. We define the
decoding of a function as the deep embedding of the code of that
function. In other words, the decoder for functions is the identity.

dµf.λx.teΓT1→T2 ≡ (µf.λx.t) : Func

Note that the context Γ is ignored as function closures are always
closed values.

To realize the predicate AppReturns, we need to define the
semantics of the source language and to define encoders. First,
we describe the semantics of the deep embedding of the source
language through a big-step reduction relation. This inductively-
defined judgment, written “t ⇓ v”, relates a term t of type Trm
with a value v of type Val. Second, we define encoders, which are
the reciprocal of decoders. For each program type T , we define an
encoder function, written bV c〈T 〉 or simply bV c, that translates a
logical value V of type 〈T 〉 towards the deep embedding of the
corresponding program value. Thus, bV c〈T 〉 is always a logical
value of type Val. The definition of encoders, not shown here, is
such that b dveT c〈T 〉 = v and d bV c〈T 〉 eT = V .

We can now give the concrete implementation to AppReturns.
The judgment “AppReturnsF V P ” asserts that the application of
F to the embedding of V terminates and returns the embedding of a
value V ′ that satisfies P . Remark: since F is a value of type Func,
F is also equal to its encoding bF c.
AppReturnsF V P ≡ ∃V ′. (P V ′) ∧ (F bV c) ⇓ bV ′c

6.2 Soundness and completeness theorems
The soundness theorem states that if a predicate P satisfies the
characteristic formula of a term t, then the term t terminates and
returns the encoding of a value V satisfying P .

Theorem 6.1 (Soundness) For any closed term t of type T and any
predicate P of type “〈T 〉 → Prop”,

JtK∅ P ⇒ ∃V. t ⇓ bV c ∧ P V

The completeness result states that the characteristic formula
of a term implies any true specification satisfied by this term. To



avoid complications related to the occurrence of functions in the
final result of a program, we present here only the particular case
where the program produces an integer value as final result.

Theorem 6.2 (Completeness for integer results) Let t be a well-
typed closed term, n be an integer, andP be a predicate on integers.
If “t ⇓ bnc” and “P n” are true then the proposition “JtK∅ P”
is provable, even without knowledge of the concrete definitions of
Func and AppReturns.

A more precise theorem can be found in the appendix [3].

6.3 Quantification over type variables
Polymorphism has been treated by quantifying over logical type
variables, but we have not mentioned what exactly is the sort of
these variables in the logic. A tempting solution would be to assign
them the sort Type. (In Coq, Type is the sort of all types from the
logic, including the sort of Prop.) But in fact, type variables used to
represent ML polymorphism are only meant to range over reflected
types, i.e. types of the form 〈T 〉. Thus, we ought to assign type
variables the sort RType, defined as {X : Type | ∃T.X = 〈T 〉 }.

Since we provide RType as an abstract definition, users do not
need to exploit the fact that universally-quantified types correspond
to reflected ML types. A question naturally follows: since RType
is an abstract type, would it remain sound and complete to use the
sort Type instead of the sort RType as a sort for type variables? We
conjecture that the answer is positive. In the implementation, we
use the sort Type for the sake of convenience, however we could
switch to RType if it ever turned out to be necessary.

7. Conclusion
We have presented CFML, a tool for the verification of pure OCaml
programs. It consists of two parts: a characteristic formula gener-
ator (implemented in 3000 lines OCaml) and a set of lemmas, no-
tation and tactics for manipulating characteristic formulae (a 4000-
line Coq library). We have reused OCaml’s parser and type-checker
to achieve maximal compatibility, making it possible to verify ex-
isting code, even if it is was not originally intented to be verified.

We have employed our tool to specify and verify total correct-
ness of a number of advanced purely-functional data structures.
Complex invariants can be expressed concisely, thanks to the high
expressiveness of higher-order logic. Nontrivial proof obligations
can be discharged easily, thanks to the use of interactive proofs.
When the code or its specification is incorrect, the proof assis-
tant provides immediate feedback, explaining what proof obliga-
tion fails and where this obligation comes from. In our experience,
the process of verifying a program can be conducted relatively
quickly. Most often, the hardest part is to figure out very precisely
all the invariants that the program relies upon.

References
[1] Mike Barnett, Rob DeLine, Manuel Fähndrich, K. Rustan M. Leino,

and Wolfram Schulte. Verification of object-oriented programs with
invariants. JOT, 3(6), 2004.

[2] Arthur Charguéraud. Verification of call-by-value func-
tional programs through a deep embedding. Unpublished.
http://arthur.chargueraud.org/research/2009/deep/, March 2009.

[3] Arthur Charguéraud. Technical appendix to the current paper.
http://arthur.chargueraud.org/research/2010/cfml/, April 2010.

[4] Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar,
and Ryan Wisnesky. Effective interactive proofs for higher-order
imperative programs. In ICFP, September 2009.

[5] Thierry Coquand. Alfa/agda. In Freek Wiedijk, editor, The Seventeen
Provers of the World, volume 3600 of Lecture Notes in Computer
Science, pages 50–54. Springer, 2006.

[6] Xinyu Feng, Zhong Shao, Alexander Vaynberg, Sen Xiang, and
Zhaozhong Ni. Modular verification of assembly code with stack-
based control abstractions. In M. Schwartzbach and T. Ball, editors,
PLDI. ACM, 2006.

[7] Jean-Christophe Filliâtre and Claude Marché. Multi-prover verifica-
tion of C programs. In Formal Methods and Software Engineering, 6th
ICFEM 2004, volume 3308 of LNCS, pages 15–29. Springer-Verlag,
2004.

[8] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
The essence of compiling with continuations. In PLDI, pages 237–
247, 1993.

[9] G. A. Gorelick. A complete axiomatic system for proving assertions
about recursive and non-recursive programs. Technical Report 75,
University of Toronto, 1975.

[10] Kohei Honda, Martin Berger, and Nobuko Yoshida. Descriptive
and relative completeness of logics for higher-order functions. In
M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors, ICALP
(2), volume 4052 of LNCS. Springer, 2006.

[11] Johannes Kanig and Jean-Christophe Filliâtre. Who: a verifier for
effectful higher-order programs. In ML’09: Proceedings of the 2009
ACM SIGPLAN workshop on ML, pages 39–48, New York, NY, USA,
2009. ACM.

[12] Henri Korver. Computing distinguishing formulas for branching
bisimulation. In Kim Guldstrand Larsen and Arne Skou, editors, CAV,
volume 575 of LNCS, pages 13–23. Springer, 1991.

[13] Xavier Leroy. Formal certification of a compiler back-end or: pro-
gramming a compiler with a proof assistant. In POPL, pages 42–54,
January 2006.

[14] Claude Marché, Christine Paulin Mohring, and Xavier Urbain. The
Krakatoa tool for certification of Java/JavaCard programs annotated in
JML. JLAP, 58(1–2):89–106, 2004.

[15] Conor McBride and James McKinna. The view from the left. JFP,
14(1):69–111, 2004.

[16] Farhad Mehta and Tobias Nipkow. Proving pointer programs in
higher-order logic. In Franz Baader, editor, CADE, volume 2741 of
LNCS, pages 121–135. Springer, 2003.

[17] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[18] Magnus O. Myreen, Michael J. C. Gordon, and Konrad Slind.

Machine-code verification for multiple architectures: an application
of decompilation into logic. In FMCAD, pages 1–8, Piscataway, NJ,
USA, 2008. IEEE Press.

[19] Aleksandar Nanevski, J. Gregory Morrisett, and Lars Birkedal. Hoare
type theory, polymorphism and separation. JFP, 18(5-6):865–911,
2008.

[20] Aleksandar Nanevski, Viktor Vafeiadis, and Josh Berdine. Structur-
ing the verification of heap-manipulating programs. In Manuel V.
Hermenegildo and Jens Palsberg, editors, POPL, pages 261–274.
ACM, 2010.

[21] Zhaozhong Ni and Zhong Shao. Certified assembly programming with
embedded code pointers. In POPL, 2006.

[22] Chris Okasaki. Purely Functional Data Structures. Cambridge Uni-
versity Press, 1999.

[23] David Park. Concurrency and automata on infinite sequences. In Peter
Deussen, editor, Theoretical Computer Science: 5th GI-Conference,
Karlsruhe, volume 104 of LNCS, pages 167–183, Berlin, Heidelberg,
and New York, March 1981. Springer-Verlag.

[24] Yann Régis-Gianas and François Pottier. A Hoare logic for call-by-
value functional programs. In MPC, July 2008.

[25] Matthieu Sozeau. Program-ing finger trees in coq. SIGPLAN Not.,
42(9):13–24, 2007.

[26] Karen Zee, Viktor Kuncak, and Martin Rinard. An integrated proof
language for imperative programs. In PLDI, 2009.


