
Interactive Verification of Call-by-Value Functional Programs

Arthur Charguéraud
INRIA

arthur.chargueraud@inria.fr

Abstract
A mechanized proof of total correctness enables one to verify a
program with utmost confidence. Yet, setting up a methodology
for reasoning formally on nontrivial code written in a general-
purpose language has appeared to be a highly challenging task.
In this paper, we propose a framework for modular verification of
purely functional code. By embedding the syntax and semantics
of a call-by-value functional language in a proof assistant, we are
able to specify programs through lemmas describing their big-step
behaviour, and to verify programs through proofs of such lemmas.
Our framework imposes no restriction on the code, apart from
its purity, and from a logical perspective is as expressive as the
theorem prover being used. The practical result of this work is a
technology for proving total correctness of pure Caml programs
using the Coq proof assistant. We have applied our approach to
fully specify and verify OCaml’s list library as well as a bytecode
compiler and interpreter for mini-ML.

1. Introduction
1.1 Mechanized proofs of correctness
Correctness of code is critical to ensure that programs do not
crash nor compute erroneous results. To get confidence about the
correctness of a program, the first step is usually to test it and proof-
read its source code. To get further confidence, one may rely on
static type systems and other static analysis tools, or insert runtime
checks. But, in general, the only way to get full confidence in the
correctness of a program is to write down a formal specification for
it and to carry out a mechanized proof of correctness.

A specification is a description of what a program is intended to
compute, regardless of how it computes it. Establishing correctness
of a program consists in proving that this program satisfies the
given specification. When the specification is written in a formal
language and the proof of correctness can be verified by a machine,
the proof is said to be mechanized.

Coming up with a set of definitions that allows in theory to me-
chanically prove programs correct is not such a difficult task. How-
ever, designing a system that can be used in practice to verify large
and complex programs is much more challenging. Three aspects are
particularly relevant for comparing various proposals. First, what
programming and specification languages are supported? Second,
how much human and machine effort is needed to complete the

[copyright notice will appear here]

proofs? Third, how closely are proof scripts related to the initial
source code, and are proofs easily maintainable?

1.2 Approaches to mechanized verification
Existing approaches to producing mechanically-verified software
fall roughly in three categories.

Firstly, a number of tools have been implemented following the
Hoare-logic approach [10]. In this style, source code is annotated
with pre- and post-conditions as well as loop invariants. A veri-
fication condition generator (VCG) is then used to extract proof-
obligations that entail the correctness of the program. These obli-
gations are typically discharged using one or several automated the-
orem provers, but it is also possible to use an interactive theorem
prover to carry out the proofs when necessary. This category of
tools includes Caduceus [9] for verifying C programs, Spec# [2]
for verifying C# programs, tools based on JML [3] for verifying
Java programs (e.g. Krakatoa [14]), and Pangolin [21] which tar-
gets ML programs.

A radically different approach, called shallow embedding, con-
sists in programming directly within a theorem prover and verifying
properties of the code interactively inside the same framework. In-
deed, the logic of a theorem prover typically contains a purely func-
tional programming language. With this approach, a piece of code
takes the form of a definition, its specification takes the form of the
statement of a lemma, and its verification is carried out through the
proof of that lemma. An extraction mechanism may then be used
to isolate the actual source code, to be compiled into executable
machine code, from proof-specific elements. In spite of a number
of limitations (detailed further on), significant developments can be
carried out following this approach, such as Leroy et al’s certified
compiler [13] written and certified in Coq [5]. Several projects aim
at overcoming the limitations of this approach, in particular by sup-
porting a richer source language and providing specialized tool sup-
port. Ynot [18] extends Coq with an axiomatized monad in order to
represent the impure features of the target programming language.
Epigram [15] suggests programming with depend types to enforce
data structures invariants, and adapting the programming language
to suit dependent types. While Epigram is not strictly-speaking a
shallow embedding, it can be, for our concern, considered as part
of this category.

A third approach to reasoning formally on programs also re-
lies heavily on the use of a theorem prover, but in a very differ-
ent manner. It consists in describing the syntax and the semantics
of a programming language in the logic of the prover. Notice that
this introduces an extra level of indirection compared to directly
programming in the prover. This technique is called deep embed-
ding (the syntax of the programming language is embedded in the
logic). Deep embedding techniques have been widely used to for-
mally reason on properties of type systems (see [1] for a survey),
to mechanize soundness and completeness proofs of logics (e.g.
formalization of Hoare logics [17]), and to prove correctness of
tools manipulating programs such as VCGs [11] or compilers [13].

1 2009/3/5

However much less work has focused on reasoning about particular
programs through a deep embedding. Existing attempts target ba-
sic procedural languages [16] or assembly-level programs [20, 7].
To the extent of our knowledge, our work is the first use of a deep
embedding of a high-level programming language.

1.3 Comparison
In order to shed more light on the relative benefits and drawbacks
of these three approaches, we compare them with respect to four
questions: What are the constraints on the programming language?
What are the constraints on the specification language? How much
work is involved for verifying that a program meets its specifica-
tion? And how much work is involved in order to reflect a change
in the code or the specification?

Programming language A VCG (Verification Condition Gener-
ator) can be custom-made for a particular programming language.
Thus, this technique does not impose any restriction on the source
language. The same applies to the use of a deep embedding. Indeed,
the syntax and the semantics of any given programming language
can be described faithfully in a general-purpose logic.

When using a shallow embedding however, the source language
needs to fit into the logical language of the theorem prover being
used. In practice, this has important repercussions, most of them
coming from the fact that the logical language undergoes a number
of restrictions required for the sake of its soundness. In particular,
partial functions need to be completed with dummy values outside
their domains, exceptions have to be encoded as explicit sum types,
and recursive functions must be proved terminating at the time
of their definition. As a consequence, the source code needs to
be largely re-engineered, and this has to be done in a clever way
in order to allow for short verification proof scripts. While this
re-engineering might be acceptable when writing a program from
scratch, it is quite costly when starting from existing code.

Specification language The VCG approach is not commited to
any particular logic, offering a lot of flexibility. A natural choice
may be to rely on a standard higher-order logic. Yet, some tools
choose to restrict their specification language to first-order logic,
so as to simplify the task for automated theorem provers. Other
tools support logics specialized for reasoning on programs, such
as Separation Logic [22], which provides dedicated operators for
reasoning on the contents of mutable stores.

With both the shallow and the deep embedding approaches,
specifications are naturally stated in the logic of the theorem prover
being used, which is presumably very expressive. Nevertheless, one
may prefer to work with specifications expressed in some other
logic. To that end, it suffices to define this other logic in terms of the
theorem prover’s logic (using either a shallow or a deep embedding
of that logic).

While both a shallow and a deep embedding ultimately express
specifications in terms of the theorem prover’s logic, there is an im-
portant difference between the two. With a shallow embedding, the
values that are being specified are those of the logic. For instance,
when a shallowly-embedded program manipulates a list, it manip-
ulates a logical list. On the contrary, with a deep embedding, one
specifies encoded values, i.e. description of values viewed through
the deep embedding. The specification can be expected to be more
complex because this encoding of values has to show up somehow.
One of the contributions of this work is to show that specification
need not be more complex than with a shallow embedding. Intu-
itively, by relating encoded values with their logical counterparts,
one can state specifications of encoded values at the logical level.

Verification process When using an embedding, either shallow
or deep, the verification phase amounts to proving lemmas in an
interactive proof environment. The set of available hypotheses and

the current proof obligation are visible at each point of the program,
and the user gets immediate feedback while carrying out the proof.
The structure of the proof and the chaining of the main arguments
that entail correctness are explicitly laid out in the script, while
simple subgoals are typically discharged by invoking an external
automated theorem prover.

The process is quite different when using a VCG in conjunction
with automated provers. After annotating the code with its speci-
fication and loop invariants, the verification condition generator is
run and the proof obligations produced are sent to one or several
automated theorem provers. It sometimes happen that all the proof
obligations are solved successfully, completing the job. Yet, most
often, one gets back an error message reporting that the automated
theorem provers have failed to prove a number of obligations. Sev-
eral cases are possible: (1) the code is incorrect and does not meet
the specification, (2) the code is correct but the specification or one
of the invariants given does not fit the code, (3) the specification of
a function being called in the code has too strong a pre-condition
or too weak a post-condition, (4) the proof obligation is true but the
prover simply fails to prove it. Finding out which case applies and
fixing the problem is typically time-consumming, for two main rea-
sons. First, the error usually does not come from a single fact taken
individually, but rather from the failure to connect many facts to-
gether. And second, reading the details of the proof obligation that
failed to be checked is long and tedious, due to the size of the proof
obligation and to the fact that the intermediate results often have
unfriendly machine-generated names, e.g. “N27”.

Proof maintainability Programs are rarely written once and
forall. In the case of mechanically-verified programs, a change
in the source code of a program or in its specification needs to be
reflected by an update in the corresponding proof of correctness.
With a shallow or a deep embedding, the user can replay the proof
script, which records the justification of why the program was cor-
rect before changes were made. The interactive theorem prover
halts at the places where the script needs to be patched. Thus, the
user has a precise view on what parts of the proof have been broken,
and why they have been broken.

Once again, the process is quite different with a VCG. When
running the tool after a modification of the code or its specification,
the user typically gets back a new set of proof obligations that could
not be discharged automatically. No explanation is provided on
why the program could be verified before but no longer after the
change. One particularly frustrating situation occurs when the tool
fails to verify parts of the code that have not been modified, for the
only reason that the set of hypotheses in certain proof obligations
has grown just too large for the automated theorem provers to
handle successfully.

Conclusion The VCG, the shallow embedding and the deep em-
bedding approaches appear as radically different techniques to pro-
ducing mechanically-verified software. Each of them comes with
its relative strengths and weaknesses. Given the importance of trust-
worthy software, all three approaches should be worth investigat-
ing in depth. This work focuses on the deep embedding technique,
which seems to have received relatively less attention in the past.

1.4 Contribution
This paper describes how one can use a deep embedding in order
to specify and verify purely functional ML programs. We have
deliberately considered a source language deprived of side-effects
to start with. We acknowledge that programming in such a language
is unrealistic for many purposes, yet our point is to show how one
can handle the features of a language that are not directly related to
the use of a mutable store. Support for side-effects might be added
later, either through a refinement of this work, or by relying on a

2 2009/3/5

fine-grained functional translation of imperative ML programs into
a purely functional language (see [4]). We leave to future work the
accomodation of side-effects.

We have deeply embedded the core fragment of Caml into the
Coq proof assistant [5]. Our infrastructure consists of a Coq library
and of an embedder program that translates Caml code into Coq
definitions. The Coq library axiomatizes the syntax and semantics
of the source language. It also defines a set of predicates for stating
specifications and provides a set of reasoning rules for proving
that terms admit particular behaviours. The embedder program
takes as input source code written in the core fragment of Caml
and generates Coq definitions that correspond to the embedding
of this code, that is, to the same code described through the deep
embedding.

In order to specify the behaviour of a program, the user writes
a proposition that should hold of the corresponding embedded
code. This proposition takes the form of a lemma stated directly
in the logic of Coq, using the specification predicates defined in the
library. Proving this lemma amounts to proving that the program
meets its specification. Such a proof can be constructed entirely
within Coq’s interactive development environment. The resulting
proof script can be replayed and udpated at any time, should the
code or its specification be modified.

This paper makes the following contributions:

• We provide a ready-to-use methodology for specifying and ver-
ifying total correctness of call-by-value functional programs. It
imposes no restriction of any kind on the source code. In partic-
ular, it supports reasoning on recursive functions, polymorphic
functions, higher-order functions, first-class functions, pattern
matching, exceptions, and even untyped code. Furthermore, the
language of specification and proof is highly expressive since
Coq is used directly.

• We introduce a family of functions called encoders as a way to
materialize the reflection between program values and logical
values. It seems that our work is the first to make use of such
functions that encode logical values into an embedded language
in the context of program verification. Moreover, we investigate
alternative implementations of reflection and point out the ben-
efits of using encoders.

• As far as we know, we have completed the first verification of
OCaml’s list library. In fact, we know of no other similar for-
malization for a list library based on higher-order functions and
written in a realistic programming language. We also illustrate
our approach with the verification of a bytecode compiler and
a bytecode interpreter for mini-ML programs. Establishing the
correctness of such a virtual machine involves nontrivial argu-
ments.

In the rest of this paper, we first describe the syntax and se-
mantics of the embedded language, focusing in particular on the
definition of big-step behaviours (§2). We introduce a reflection
mechanism relating values from the programming language with
values from the logic, which allows us to state specifications at the
level of the logic rather than directly on embedded values (§3). We
then present the reasoning rules used to effectively carry out the
verification of embedded programs (§4). Finally, we discuss case
studies (§5), implementation (§6), related work (§7), and then con-
clude (§8).

2. Syntax, semantics and specification
In this section, we briefly present the embedded programming
language and then introduce a few definitions used to describe big-
step behaviour of programs.

2.1 Syntax of the embedded language
The programming language that we consider is a λ-calculus ex-
tended with integers, n-ary data constructors and exceptions. More-
over, functions may be recursive and perform pattern matching on
their argument. The language is formally described in Figure 1.
Note that for the sake of simplicity we have not included floating-
points numbers and we assume integers to be arbitrarily precise.

The peculiarity of our representation of syntax is to distinguish
closed values (type Val) from terms (type Trm). The decision of not
including a constructor for variables in the syntax of values leads
to some unfortunate duplication across the syntaxes of terms and
values. Nevertheless, the resulting representation greatly simplifies
the formal reasoning on substitution. Indeed, substitution is always
the identity on values, by definition.

The term “fixxf p1 t1 t2” describes a function named xf with
input pattern p1. Its subterm t1 describes the continuation to be fol-
lowed when the argument provided to the function matches p1, and
t2 describes the contination to be applied otherwise. We define a
conventional abstraction “absx t” as “fix (pvar x) t ”. Through-
out the paper, we let the meta-variable f range over values built
upon the constructor vfix, and we write “App f v” as a shorthand
for “app (val f) (val v)”.

2.2 Semantics and specification of terms
The language is equipped with a deterministic, call-by-value se-
mantics. Determinism is not essential, it simply allows for a few
simplifications. Preliminary experiments suggest that the material
presented in this paper can be generalized so as to support a non-
deterministic language. The restriction to call-by-value semantics is
however important. Reasoning on termination and exceptions under
other reduction strategies (e.g. call-by-name) is theoretically feasi-
ble, but seems to be significantly harder.

The semantics of the source language is defined using a small-
step reduction relation. The predicate t −→ t′ indicates that the
term t reduces in one step towards t′. The details of this reduction
relation are not required to understand the rest of this paper. Its
definition can be found in our Coq development.1

While small-step semantics is a convenient way of defining
reductions, reasoning on programs is more naturally carried out in
big-step style. In a deterministic call-by-value semantics, a given
term admits one of the following big-step behaviours:

• Returns a value A term t evaluates to a value v if it reduces
in a finite number of steps to the value v. This is formally
written “t −→∗ val v”, where the relation−→∗ is the reflexive-
transitive closure of the reduction relation−→. In practice, it is
often more convenient to state that the term t converges to some
value that satisfies a given predicate P , without necessarily
being explicit about which value it converges to. We write this
as “t B |P ”, which reads “t returns a value satisfying P ”.

• Throws an exception A term t throws an exception v if
it reduces to an exception, i.e. “t −→∗ exn v”. The value
v describes the exception and may be analysed by exception
handlers. Remark that v is often a constant data constructor,
e.g. NotFound. The notation for terms throwing exceptions is
“tB! v”, which reads “t throws the exception v”.

• Diverges A term t diverges if an infinite sequence of reduction
steps begins on t, which we write “tB ⇑”. This is equivalent to
saying that all finite reduction sequences starting on t must end
with a term that is further reducible:

diverges t ≡ ∀ t′. (t −→∗ t′) ⇒ ∃ t′′. (t′ −→ t′′)

1 The formal development associated with this paper can be found at:
http://arthur.chargueraud.org/research/2009/deep/.

3 2009/3/5

Variable (type Var) x (variables are implemented using natural numbers)
Constructor (type Con) c (data constructors are implemented using natural numbers)
Terms (type Trm) t := val v | var x | app t1 t2 | constrn c t1 . . . tn | fixxf p1 t1 t2 | exn v | try t1 with t2

Values (type Val) v := vint i | vbuiltin b | vconstrn c v1 . . . vn | vfixxf p t1 t2

Patterns (type Pat) p := pvar x | pint i | pconstrn c p1 . . . pn | pany | paliasx p

Primitive (type Prm) b := add | sub | mult | div | cmp | leq | throw

Figure 1. Embedding of the syntax

• Gets stuck A term t is stuck if it is irreducible and neither a
value nor an exception. In practice, we do not care much about
specifying that programs get stuck. Instead, we introduce a
more general “unspecified” behaviour. The proposition “tB?”
indicates that the behaviour of t is not specified, and it holds of
any term t.

Formally, we introduce a general binary relation between terms
and behaviours. The predicate “t B B” indicates that the term t
admits the behaviour B. The grammar of behaviours is:

B := (|P) | ! v | ⇑ | ?

The relation B is defined using one introduction rule per behaviour:
RETURNS-VAL

P v
t −→∗ val v

tB (|P)

THROWS

t −→∗ exn v

tB (! v)

DIVERGES

diverges t

tB (⇑)

UNSPEC

tB (?)

2.3 Specification of functions
In the Hoare-style methodology [10], a function is specified using
a pre-condition and a post-condition. The pre-condition is a suf-
ficient condition on the argument of a function for ensuring that
the application of the function to its argument executes safely. The
post-condition is a binary predicate that relates the output of the
function to its input, in case the application of the function ter-
minates. When total correctness is aimed at, termination is proved
through an analysis of loop structures and recursive function calls.

With a deep embedding, we can define a single judgment that
captures the fact that a function, when applied to an argument
satisfying its pre-condition, executes safely, terminates, and returns
a value satisfying its post-condition. The following proposition
states that for any input value v that satisfies the pre-condition P ,
the function f terminates without error and returns a value v′ such
that the post-condition Q holds of v and v′.

∀ v. (P v) ⇒ ∃ v′. (App f v) −→∗ (val v′) ∧ (Qv v′)

Using the return predicate that we have introduced earlier, we may
restate the same proposition as:

∀ v. (P v) ⇒ (App f v) B | (Qv)
It is sometimes the case that both the pre- and the post-condition

need to be expressed in terms of some logical variables, the so-
called auxiliary variables in Hoare logic. (Illustration of auxiliary
variables appears in the case studies section, §5.) To allow for the
universal quantification of such variables in the previous statement,
we consider a more general form of specification for functions. In
our setting, the specification of a function f is just an arbitrary
proposition K that relates an argument v to the behaviour of the
application of f to v. The predicate K has the type “Val →
Trm → Prop”, where Prop is the type of logical propositions.
The corresponding specification predicate is defined as follows:

spec f K ≡ ∀ v. K v (App f v)

Examples of use appear further on the case-studies section (§5).

The behaviour of curried n-ary functions can be described in
a similar fashion. For instance, predicate spec2 is used to specify
a function of two arguments as a function that, when applied to
a first argument, returns a unary function verifying an instance of
the predicate spec. In the formal definition of spec2 which follows,
predicate K has type “Val→ Val→ Trm→ Prop”.

spec2 f K ≡ spec f (λv.λt. t B | (λg. spec g (K v)))

In summary, we have presented a set of definitions which can be
used to state formally that a certain term admits a certain behaviour
and that a certain function admits a certain specification. The defi-
nitions of the return behaviour as well as the predicate spec will be
generalized in the next section so as to take reflection into account.

3. Reflection of values into the logic
Reflection is a mechanism that relates values of the programming
language to their counterpart in the logic, whenever possible. This
mechanism plays a central role in our framework: without it, all
specifications and proofs would be polluted with details of the deep
embedding. The matter of this section is to show how we imple-
ment reflection using functions called encoders, and to explain how
we use encoders in specifications. Moreover, we will investigate
other possibilities for the implementation of reflection and argue
why encoders appear to be the most appropriate choice for writing
specifications.

3.1 Introduction to encoders
Through the deep embedding, we can reason on untyped programs.
Yet, in order to write specification and carry out proofs in terms
of logical values (e.g. Coq’s lists) rather than in terms of values
described in the embedded syntax, we exploit the fact that most
often the data-structures manipulated by a program are in fact
well-typed in ML. The key observation is that for each well-typed
value from the embedded language there exists a corresponding
logical value. For instance, consider the program value “4 :: nil”,
which admits the ML type “int list”. This object is described in our
embedding by a value of type Val, namely:

vconstr2 cons (vint 4) (vconstr0 nil)

At the same time, this object corresponds to the Coq list “4 :: Nil”,
of logical type “List Int”.

The purpose of this section is to formally establish this relation-
ship. First, we explain how to define, for each ML type, the Coq
type that corresponds to it. Second, we set up for each ML type
a logical function that connects embedded values of this type with
their logical counterparts. Remark: in the following, we do not con-
sider the case of recursive types. To start with, we assume that the
data-structures are free of first-class functions, in other words that
their types do not contain arrow constructor.

Given an ML algebraic type declaration or a type abbreviation,
we create the corresponding type definition in Coq. This transla-
tion is just a matter of adapting the syntax. We illustrate this pro-
cess on booleans, polymorphic lists, and lists of booleans, giving

4 2009/3/5

the ML type definitions, followed with the corresponding logical
definitions. Caml syntax and Coq syntax are used, with the excep-
tion that ML constants are written in lowercase and Coq constants
are written in uppercase, for the sake of presentation.

> type bool = true | false
> type ’a list = nil | cons of ’a * ’a list
> type bitlist = bool list

Inductive Bool : Type :=
| True : Bool
| False : Bool.

Inductive List (A:Type) : Type :=
| Nil : List A
| Cons : A -> List A -> List A.

Definition Bitlist := List Bool.

Our second step is to relate values of the embedded language
with their logical equivalent. To that end, we use functions that
translate logical values into values of the embedded language. Be-
cause these functions encode logical values using the constructs
of the deep embedding, we call them encoders. For example, the
encoder for booleans is a logical function that takes logical val-
ues, of type Bool, and produces embedded values, of type Val. We
name this encoder Bool. In the definition which follows, the low-
ercase constants true and false are distinct constants representing
data constructors of the embedded language (type Con), while the
uppercase constants True and False describe the booleans from the
logic (type Bool).

Definition _Bool (b:Bool) : Val :=
match b with
| True => vconstr_0 true
| False => vconstr_0 false
end.

Slightly more complex is the encoder for lists, named List. If
A is a logical type and l is a logical list of type List A, and if A
is an encoder for values of type A, then “ List A A l” computes
the embedded value that corresponds to l. In other words, the term
List is a polymorphic encoder such that, for any type A with its

associated encoder A, “ List A A” translates lists of type List A
into values of type Val. This encoder is defined as follows:

Fixpoint _List (A:Type)(_A:A->Val)(l:List A):Val :=
match l with
| Nil => vconstr_0 nil
| Cons h t => vconstr_2 cons (_A h) (_List A _A t)
end.

Finally, we define the encoder for lists of booleans by specializ-
ing the encoder of polymorphic lists to the type of booleans:

Definition _Bitlist : List Bool -> Val :=
_List Bool _Bool.

More generally, for any ML type, we define the corresponding
type A in the logic, and define the associated encoder of type
“A→ Val”. This encoder is, by convention, named A. It is such
that for any logical value X of type A, the application “ AX” is
the representation in the deep embedding of the program value that
corresponds to X .

This reflection mechanism applies to data-structures, but not to
functions. We do not reflect program functions as logical functions.
Indeed, while a particular program function may be shown to im-
plement a logical function on a given domain, the set of all program
functions of a given type is not in bijection with the set of logical
functions of the corresponding type. To specify an embedded func-
tion, that is, a value of type Val built with the constructor vfix, we

simply give a predicate of type “Val → Prop” that should hold of
this function. It is typically an instance of the predicate spec.

In ML, since functions are first-class values, one may work
with, say, a list of functions on integers. Such a list admits the
ML type “(int→ int) list”, and we would like to be able to reflect
this value into the logic as a logical value of type “List Val”. In
order to be able to reuse the encoder List for polymorphic lists,
we define the function Val as the identity function on the type Val.
Thereafter, “ List Val Val” is the encoder for lists of any kind of
value, including lists of functions. More generally, our translation
from ML types to their logical equivalent maps all arrow types to
the logical type Val.

Given an ML type, the generation of the corresponding type
declaration and of the associated encoder is entirely mechanical.
We have implemented a program which, given a set of type dec-
larations written in Caml syntax, generates all the corresponding
Coq definitions.2 This program saves the user the trouble of writ-
ing these tedious definitions by hand.

3.2 Specification using encoders
We now explain how the reflection mechanism is exploited to
specify return values of terms and input values of functions.

First, we integrate encoders with the behaviour “returns”. The
predicate “t B A |P ” indicates that the term t returns the trans-
lation by the encoder A of a logical value of type A that satis-
fies the predicate P . The predicate P is now a predicate of type
“A→ Prop” rather than “Val→ Prop”. We are thereby lifting
specifications from the level of embedded values to the level of
logical values. We generalize the rule RETURNS-VAL accordingly,
stating that t returns the encoding “ AV ” of a logical value V of
type A that satisfies P .

RETURNS
t −→∗ val (AV) P V

tB A |P
Note that this new definition is equivalent in terms of expressive-
ness to the earlier one: “tB|P ” is equivalent to “tB Val |P ”, and
“t B A |P ” is equivalent to “t B | (λv.∃V. v = AV ∧ P V)”.

Dually, the reflection mechanism is exploited in the specifica-
tion of function arguments. The predicate “Spec f A AK” de-
scribes the behaviour of the application of f to the encoding by
A of a logical value V , in terms of V . More precisely, K is a bi-

nary predicate that relates V to the application of f to “ AV ”. The
formal definition of Spec is:

Spec (f : Val) (A : Type) (A : A→ Val) (K : A→ Trm→ Prop)

≡ ∀ (V : A). K V (App f (AV))

For example, consider the function neg which returns the op-
posite of a given integer. It is such that for any integer n, the term
(App neg (Intn)) reduces to the value (Int (−n)). Its specifica-
tion is:

Spec neg Int Int (λn. λt. (t B Int | = −n))

Unfolding the definition of Spec, this specification is equivalent to:

∀n.∃m. (App neg (Intn)) −→∗ (Intm) ∧ m = −n
Once again, the use of encoders allows to state propositions in
terms of logical values (here n and m) rather than in terms of the
corresponding embedded values. Notice that the behaviour of the
function neg is unspecified on values which are not the translation
by the encoder Int of a logical value of type Int. In other words,
neg is simply not specified when its argument is not a value of the
form “vintn”.

2 For common types, such as bool or list, we reuse the definitions from
Coq’s standard library rather than generating new definitions.

5 2009/3/5

• Working with a relation

∀ (l : Val). ∀ (L : ListA). (RL l)
⇒ ∃ (n : Val).∃ (N : Int). (App length l −→∗ n)

∧ (RN n)
∧ (Coq.lengthL = N)

• Working with decoders

∀ (l : Val). ∀ (L : ListA). (SomeL = −ListA−A l)
⇒ ∃ (n : Val).∃ (N : Int). (App length l −→∗ n)

∧ (SomeN = −Intn)
∧ (Coq.lengthL = N)

• Working with encoders

∀ (L : ListA). ∃ (N : Int).
(App length (ListA AL)) −→∗ (IntN)

∧ (Coq.lengthL = N)

Figure 2. A side-by-side comparison of three approaches to im-
plementing reflection, on a function computing the length of a list

3.3 Other implementations of reflection
To conclude this section, we investigate how can one implement,
in the logic, the relationship between embedded values and logical
values. Encoders are one possibility, but certainly not the only one.

A naive attempt is to define reflection using a binary relation.
Since embedded values have type Val and logical values have a
type A that depends on the program value they correspond to,
reflection can be implemented using a dependently typed predi-
cate, call it R, of type “∀A, A → Val → Prop”. For instance,
“RBool True (val constr0 true)” describes the fact that the pro-
gram boolean value true is mapped onto the logical boolean value
True. Similarly, “R (List A) Nil (val constr0 nil)” describes the re-
flection of constructor nil as the empty list of type A, and it holds
for any A. Working directly with relation R is possible, as demon-
strated for instance by Mehta and Nipkow [16], yet it is quite heavy
(an example appears further on). So, instead, we try and define R
as a function.

The example of the empty list shows that a given untyped
value may correspond to several logical values, such as empty lists
of different types. Thus, relation R cannot be implemented as a
function from program values to logical values. However, given a
type A, a given program value is reflected by at most one logical
value of type A. Thus, we may consider a family of functions: for
each logical type A that corresponds to a programming language
type, we can define a function −A of type “Val → OptionA” able
to decode values that correspond to a logical value of type A (it
returns None for other values). We call these functions decoders.

Symmetrically, we may try to implement R using a function
from logical values towards program values. It should be feasible
since each logical value is mapped to at most one program value.
The corresponding function would have type “∀A,A→ Val”. Yet,
it is impossible to define in the logic a function of this type with the
intended behaviour, because one cannot perform a case analysis on
a polymorphic argument (due to parametricity of the logic). The
simplest solution to work around this issue is, again, to implement
relation R using not one but a family of functions. More precisely,
for each logical type A which corresponds to a programming lan-
guage type, we define a function of type “A → Val” which maps
each logical value of type A to its corresponding program value.
These functions are the ones which we call encoders.

We now compare the three possible approaches: directly work-
ing with the reflection relation R, working with decoders, or work-
ing with encoders. Figure 2 shows how these three approaches ap-
ply to a simple yet informative example: the specification of a func-

tion which computes the length of a list in terms of the logical
list length function (written Coq.length). While the first two ap-
proaches are roughly equivalent, the third one based on encoders
has two significant advantages.

First, it involves a conjunction of only two propositions, while
the other approaches require four propositions. This comes from
the fact that the application of encoders can be inlined in the propo-
sition stating the reduction relationship. Second, only variables at
the logical level need to be quantified when using encoders. In other
words, there is no need to quantify over variables describing en-
coded terms (i.e. variables of type Val). Again, this is a significant
gain when stating specifications. Thus, while it is undoubtedly pos-
sible to reason on programs without encoders, the use of encoders
appears to be the most effective way of specifying embedded pro-
grams at the logical level.

3.4 Inference of specifications using decoders
While we use exclusively encoders in the specification of programs,
we actually rely on the help of decoders during the verification
phase. Roughly speaking, we use decoders as a way to shorten
proof scripts. To understand how decoders help us, consider the
following piece of code which describes a list of length one con-
taining the value 4.

val (vconstr2 cons (vint 4) (vconstr0 nil))

During the verification of a program which contains this code,
it is possible to state explicitly that the behaviour of this subterm
is “ List Int | = 4 :: Nil”. But in fact, this specification can be
automatically inferred from the code, using decoders. This saves
the user from paraphrasing a large amount of the source code of
the program being verified.

To avoid difficulties associated with the type-checking of de-
coders, we implement decoding as a function written in the lan-
guage of tactics of Coq. Contrary to logical functions, tactics are
untyped and may fail. In particular, decoding only succeeds for a
program value if it corresponds to some logical value whose type
is not Val.

4. Reasoning on embedded programs
In this section, we explain how to prove that a given piece of
code admits a given behaviour. Such proofs are carried out using
a set of reasoning rules, all of which are formally proved correct
with respect to the semantics of the embedded language. Deriving
reasoning rules from the underlying semantics is not a novel idea.
It seems to have been pioneered by M. Gordon over two decades
ago [17]. Our contribution here lies in the design of a particular
set of reasoning rules that makes verification of ML programs both
intuitive and practical.

4.1 Case study: a rule for let-expressions
To introduce to the underlying mechanisms involved in our reason-
ing rules, we construct a reasoning rule for “let” expressions step
by step. Remark: “letx = t1 in t2” is encoded in our embedded
language as “app (absx t2) t1”.

Step 1 If a term t reduces to a term t′, then t and t′ admits exactly
the same behaviours. Formally:

t −→ t′ ⇒ (t BB ⇐⇒ t′ BB)

Thus, to prove that a term t admits a behaviour B, it suffices to
show that t reduces to a term t′ such that t′ admits the behaviour B
(this is formally stated by the rule REDUCTION in Figure 3).

In particular, to show that “letx = t1 in t2” admits the be-
haviour B it suffices to show that t1 evaluates to some value v1
and that “[x → val v1] t2” admits the behaviour B. For improved

6 2009/3/5

REDUCTION
t −→∗ t′ t′ BB

t BB

CTX-RETURNS
t B A |P redctxC

∀X. (P X) ⇒ C[val (AX)] BB

C[t] BB

CTX-THROWS
tB! v redctxC C[exn v] BB

C[t] BB

CTX-DIVERGES
tB ⇑ redctxC

C[t] B ⇑

SPEC-INTRO
∀X. (KX (App f (AX)))

Spec f A AK

SPEC-ELIM
Spec f A AK

K V (App f (AV))

SPEC-WEAKEN
Spec f A AK′

∀X t. (K′X t) ⇒ (KX t)

Spec f A AK

SPEC-INDUCTION
Spec f A A (λXt. H ⇒ KX t) where

H ≡ Spec f A A (λX ′t′. X ′ ≺ X ⇒ KX ′ t′)

Spec f A A (λXt. K X t)

Figure 3. Reasoning rules

readibility, we give the formal statement below under the form of
an inference rule, although it corresponds to a proven theorem.

t1 −→∗ val v1 ([x→ val v1] t2) BB

(letx = t1 in t2) BB

Reasoning on a program using such a symbolic evaluation is
not practical. Indeed, it requires that, for each term, we specify
to which exact value it evaluates. In general we wish to be more
abstract, and only express that a given property holds of the result
of its evaluation. Furthermore, performing the naive substitution
of v1 into t2 may lead to a significant increase in the size of the
proof obligation.

Step 2 Let P be the property that we wish to hold of the result v1
of the evaluation of t1. To show that “letx = t1 in t2” admits the
behaviour B, it suffices to show that t2 admits the behaviour B un-
der the assumption that the property P holds of x, that is “P x”.
An intuitive —although technically ill-formed— statement for rea-
soning on a let expression could be:

t1 −→∗ val v1 P v1 ∀x.
(
P x ⇒ t2 BB

)
(letx = t1 in t2) BB

The above rule is ill-formed because x is used both as a program
variable in the conclusion and as a meta-variable of type Val in the
premise. The correct version, shown below, assigns the name X
to the meta-variable, and performs the substitution of the program
variable x (technically “var x”) with the value X in t2.

t1 −→∗ val v1 P v1 ∀X. (P X) ⇒ ([x→ valX] t2) BB

(letx = t1 in t2) BB

Step 3 Finally, this latter rule needs to be slightly extended to
account for the use of encoders. So, instead of letting X stand for
the program value to which the term t1 evaluates, we let X stand
for the corresponding logical value. Thus, if A is the logical type of
the result of t1 and if A is the encoder for this type, then the result
of the evaluation of t1 is described by the value “ AX”.

Thereafter, to prove that “letx = t1 in t2” admits a be-
haviour B, it suffices to show that t1 returns the encoding by A
of a value satisfying P , and that “[x → val (AX)] t2” admits the
behaviour B under the assumption that “P X” holds. The corre-
sponding reasoning rule is stated below.

t1 B A |P ∀X. (P X) ⇒ ([x→ val (AX)] t2) BB

(letx = t1 in t2) BB

Summary Starting from a statement similar to a big-step evalua-
tion rule, we have introduced a meta-variableX to name the logical
representation of the result of the intermediate computation, and we
have then introduced a predicate P describing the post-condition
that holds of this result. By doing so, we have obtained a general
and useful rule for reasoning on let-expressions. This rule can be
easily generalized to other reduction contexts, as explained next.

4.2 Reasoning rules
The set of reasoning rules used in our framework is presented in
Figure 3 and described below. Note that these rules, which are
actually theorems, are provided only to help carrying out proofs of
correctness; expressiveness is not constrained by these rules since
one is not forced to use them.

Reduction in context We start with a definition of reduction con-
texts. A meta-level function C, of type “Trm → Trm”, is a reduc-
tion context if whenever a term t takes a reduction step the applica-
tion of C to t, written C[t], reduces accordingly. Formally:

redctxC ≡ ∀ t t′. (t −→ t′) ⇒ (C[t] −→ C[t′])

When C is a reduction context, the behaviour of a term C[t]
depends on the behaviour of t.

• If t returns a value, say “t B A |P ”, then, to prove that
C[t] admits a behaviour B, it suffices to prove that for any
logical value X of type A such that (P X) holds, the term
C[val (AX)] admits the behaviour B. This is stated formally
by rule CTX-RETURNS in Figure 3.

• If t throws an exception v, then the behaviour of C[t] is the
same as the behaviour ofC[exn v]. (See rule CTX-THROWS.) To
reason on this later term, one typically reduces the term using
rule REDUCTION so as to propagate the exception until reaching
either an exception-handler or the root of the term.

• If t diverges, then C[t] diverges as well (rule CTX-DIVERGES).

Applications Consider a term t in beta-redex form. It is of the
form “App f (AV)”, where f is a closed value describing the
function and V is the logical value describing the argument. (If
the argument has no logical equivalent, then V is of type Val and
A is the encoder Val defined as the identity function in §3.1.) To

reason on the term t, there are two possible situations, depending
on whether function f has already been specified or not.

• If a specification for f is available, say “Spec f A AK”, then
the proposition “K V t” describes the behaviour of t. This
comes directly from the definition of Spec, and is implemented
by the rule SPEC-ELIM.

• However, there might not yet exist a specification for the func-
tion f . This happens in particular when we are in the process of
proving a specification for the function f . In this case, we beta-
reduce the application of f to its argument in order to reason
on the application. In the particular case where f is a simple
abstraction, say “absx t1”, the reasoning rule that corresponds
to the contraction of the beta-redex is:

REDUCTION-BETA
[x→ val (AV)] t1 BB

App (absx t1) (AV) BB

7 2009/3/5

The above rule is in fact an instance of the more general rule
REDUCTION from Figure 3, which allows to execute embedded
programs step by step. The rule REDUCTION is used to reason
on beta-reduction and pattern-matching, as well as propagation of
exceptions and exception-catching.

Functions If the term studied is a function f (that is, a value built
using the constructor vfix), then we can prove a specification for it
of the form “Spec f A AK” in one of two ways:

• Either we apply the definition of Spec, that is, we show that for
any argument X the proposition “KX t” holds, where t is the
application of f onto “ AX”. This is implemented by the rule
named SPEC-INTRO.

• Or we show that this specification weakens another one proved
previously, say “Spec f A AK′ ”, by proving that for any
X and t, the proposition “K′X t” implies the proposition
“KX t”. This is formalized in the rule SPEC-WEAKEN.

Proving the correctness of a recursive function generally in-
volves reasoning by induction. To that end, one can either use
the primitive induction tactic of Coq or use directly our high-level
reasoning rule SPEC-INDUCTION. With this rule, one can prove a
given specification for f by verifying only a weaker specification
for f . This weaker specification allows to assume that the speci-
fication which we are trying to prove already holds of the func-
tion f for any call on a strictly-smaller argument. In the rule SPEC-
INDUCTION, this induction hypothesis is writtenH , and the symbol
≺ denotes a well-founded order which is to be provided by the user.

4.3 Reasoning tactics
The reasoning rule presented in the previous section can be applied
in an interactive proof as any other lemma, using Coq’s tactic
named “apply”. Nevertheless, we introduce a set of tactics to help
applying these rules more conveniently. More precisely, the role
of these tactics is to select the reasoning rule that applies, help
instantiate its premises, and prove trivial subgoals. For instance,
tactics are able to find out what the current reduction context is,
apply the corresponding context reasoning rule, and discharge side-
conditions such as “redctxC”.

Three techniques are used to help with instantiation of premises.
First, tactics may guess instantiations from information available
in the proof context. Secondly, they may introduce existential vari-
ables for delaying the instantiation until more information becomes
available. Thirdly, tactics rely on a database of lemmas that enables
them to automatically come up with the name of the specification
lemma for a given function, provided there exists one. Thereby, the
behaviour of the application of a known function can be deduced
automatically. The use of tactics is illustrated in the next section.

5. Case studies
In theory, a deep embedding of a programming language in a
sufficiently-expressive theorem prover can be used to prove any
true property of any given program. In practice, however, only a
well-designed and carefully-optimized framework will be success-
ful at verifying total correctness of realistic programs. Two proper-
ties are crucial for success.

• First, specifications should be succinct and intuitive, so that they
may be proof-read by third-party individuals, even those unfa-
miliar with formal proofs. Indeed, specifications of functions
exposed in the interface are part of the trusted base.

• Second, the technology should be such that proof scripts have
a length linear in the size and in the complexity of the code
being verified. Moreover, the constant factor involved should

let merge_sort cmp l =
let rec sort n l =

match n, l with
| 1, x::_ -> [x]
| _ ->

let k = n / 2 in
merge cmp (sort k l) (sort (n-k) (drop k l))

in
let len = length l in
if len <= 1 then l else sort len l

Figure 4. Source code of a merge sort function

be reasonably small. This is a necessity for the technology to
have a chance to accommodate large programs.

The purpose of the case studies that we have carried out is to
argue that our framework meets these two requirements on pieces
of typical functional code.

5.1 Notation for specifications
Before presenting the case studies, we describe briefly the plain text
notation used in specifications. The syntax for behaviours matches
the notation used in this paper. For instance, “t |> B” corresponds
to “t BB”, and “t |> Int | = 3” states that the term t returns
the encoding of an integer equal to 3. For brevity, we exploit Coq’s
implicit arguments feature, which allows to write “ List Int” to
mean “ List Int Int”.

For specifications, we use Coq’s notation feature to introduce
the following syntax:

spec f [x:_A] = t is K

which reads: “the application of the function f to an argument x
is a term t whose behaviour is described by K”. It is defined as
“Spec f A A (λx. λt.K)”, where both x and t are bound in K.
Note that the type A is deduced from the type of the encoder A.
Indeed, A must have the type “A→ Val”.3

Finally, in the particular case where the function does not re-
quire any pre-condition nor any auxiliary variable, we write

spec f [x:_A] is B

as short for “spec f [x: A] = t is t |> B”.

5.2 Example: merge sort
We start with a detailed example: the specification and verification
of a merge sort function. This function, whose source code appears
in Figure 4, is a simplified version of the sorting function imple-
mented in OCaml’s list library.

Its implementation relies on a recursive function named sort,
which takes two arguments. Intuitively, “sortn l” sorts the first n
items from the list l. The use of the parameter n avoids the need
for constructing new lists when making recursive calls, and thus
leads to improved performance. The implementation of merge sort
relies on three auxiliary functions: “length l” computes the length
of a list l, “drop k l” returns the sublist obtained by removing the
k first elements of l, and “merge l1 l2” returns a sorted list that
contains the union of the elements of l1 and l2, provided l1 and
l2 are themselves sorted. Note that we do not require the code of
these three functions in order to verify merge sort, but only their
specification.

The specification of the function merge sort is given by the
statement of the lemma that appears at the top of Figure 5. This

3 We are looking forward to exploit the new type-class mechanism of Coq in
order to deduce the parameter A from the type of K in “Spec f A A K”.
We should then be able to simply write: “spec f x = t is K”.

8 2009/3/5

Lemma merge_sort_spec :
forall (A : Type) (_A : A -> Val)
(le : relation A) (Le : total_pre_order.rel le),
spec merge_sort [cmp:_Val] [l:_List _A] = t is
comparator cmp _A le ->
t |> _List _A | sorts le l.

Proof.
intros. xintros cmp l. introv Cmp. xred.
(* -- reasoning on sort -- *)
xinfun (fun f =>
spec f [n:_Int] [l:_List _A] = t is
n >= 1 -> n <= length l ->
t |> _List _A | sorts le (truncate (abs n) l))
as sort.
clear l. xinduction (unproj21 (list A) (downto 0)).
xintros n l. introv sort_spec Nge2 Nlel. xreds 3.
asserts [[x [q [Neq1 L]]]|Nneq1]:
((exist x q, n = 1 /\ l = x::q) \/ n != 1).
testsb Neq1: (n==1).
left. destruct l as [|x q]; tryfalse. exists~.
right~.

(* -- -- case n = 1 -- *)
subst n l. xpat. xreds. xreturns~.
(* -- -- case n > 1 -- *)
xredfail. simpl. rewriteb~ Nneq1. xreds.
xapply~ as n1. xred.
forwards~ Q1 L1 Q2 L2: (@div_2_parts’ n n1 (n-n1)).
sets n2: (n-n1).
xapply drop_spec as l2.
xapplys. fold n2.
xapply~ as l2’ [P2 S2].

subst n2 l2. rewrite~ drop_length.
xapply~ as l1’ [P1 S1].
xapply~ (merge_spec _A Le) as l’.
xreturns. rewrite~ (@cutting_int _ n n1 n2 l).

applys sorts_permut of_hyps Pl’.
apply~ permut_app_lr. rewrite~ <- Pl2.

(* -- main call -- *)
xapply length_spec as len. xred.
xapplys. xcase.

xreturns. destruct~ l. destruct~ l.
calc_length in Plen. subst len. false.
xapply as l’. subst len.
xreturns. rewrite abs_pos_nat in Pl’.
rewrite~ (@truncate_length _ l) in Pl’.

Qed.

Figure 5. Specification and verification of the merge sort function

specification is polymorphic in the type A, which is the type of the
logical representation of items in the list, and is also polymorphic
in A, which is intended to be the associated encoder for values of
type A. The specification is also parametrized by a binary relation,
written le, and a proof that this relation is a total pre-order relation-
ship on values of type A.

The core of the specification follows. It states that the applica-
tion of merge sort to a function cmp and to a list l is a term, written
t, whose behaviour is described as follows: if cmp is a comparison
function that implements the order le, then t returns a list which
is the result of sorting l with respect to le. A comparison function
implements the order relation le under the following condition: for
any two arguments, it should return an integer less or equal to zero
if and only if its first argument is smaller than its second argument,
relatively to le. The formal definition that caracterizes comparsion
functions is stated as follows:

Definition comparator
(cmp:Val) (A:Type) (_A:A->Val) (le:relation A) :=

spec cmp [x1:_A] [x2:_A] is
|> Int | (fun n => n <= 0 <-> le x1 x2).

The last line of the specification states that the value returned
on a call to merge sort is a list l′ such that the proposition
(sorts A le l l′) holds. Note that the name l′ does not appear in
the specification due to the use of a partial application of the pred-
icate sorts, and that the type A is left out since it can be inferred
by Coq’s implicit arguments mechanism. The predicate sorts is
defined in terms of list permutation and list sortedness, as follows:

Definition sorts
(A:Type) (le:relation A) (l l’:list A) :=

permut l l’ /\ sorted le l’.

The verification proof script follows the specification lemma.
The structure of the proof closely matches the structure of the
source program. As for any Coq proof, a verification script consists
in a sequence of tactic invocations, separated with dots. The tactics
that appear in a verification script fall in two categories. On the one
hand, the script contains tactics devoted to applying the reasoning
rules that we have introduced earlier on (in §4). These tactics are
provided by our library, and we call them administrative tactics
in the rest of the paper. These administrative tactics can be easily
recognize as their names always start with the character ‘x’. On the
other hand, the script contains calls to standard general-purpose
Coq tactics.4 These tactics are used to argue, at the logical level,
for the correctness of the program. When general-purpose tactics
are used, the details of the deep embedding, and in particular the
encoding of values, are no longer involved. Although it is not
an easy task to describe on paper the working of an interactive
proof, we try and describe the main ingredients that appear in
the verification script of the merge sort function, starting with a
brief description of the administrative tactics. Remark: when a tilde
symbol (~) follows the name of a tactic, it simply indicates a call to
auto, the automated proof-search feature of Coq, on all subgoals.

The tactic xintros introduces the arguments of a function. It cor-
responds to the rule SPEC-INTRO. xred is used to contract a let-
expression. It implements the rule REDUCTION. Similarly, xcase,
xpat and xredfail are used to reduce pattern matchings. xreds iter-
ates xred as many time as possible. xinfun is used to specify a local
function (here, the recursive function sort), and the verification of
this local function follows as first subgoal. The tactic xinduction
applies the rule SPEC-INDUCTION. In Figure 5, the arguments of
the call to xinduction indicate that the value of the first parameter
of the function has an integer value that decreases on each recur-
sive calls. More generally, any well-founded relation can be used
to argue for termination. The tactic xreturns is used to prove the
behaviour of a term reduced to a value. The tactic xapply is used
to reason on an application. It combines the rules SPEC-ELIM and
CTX-RETURNS. Notice that xapply is often followed with a list of
identifiers. These identifiers are used to give explicit names to in-
termediate results. The tactic xapplys is similar, except that it sub-
stitutes the result of the application directly into the current term,
rather than naming it.

Our proof script contains a few lines devoted to the setting up of
the case analysis for the pattern matching that occurs in the source
code of the function sort. These five lines are located just before
the case analysis on n, starting with the keyword “asserts”. The in-
termediate lemma being proved there simply describes the various
possible cases. When the pattern matching is simple enough, one

4 The Coq expert will notice that we rely on a number of extensions to the
set of builtin Coq tactics. Our extended set of general-purpose tactics, which
aims for improved tactic behaviour, is independent from this work.

9 2009/3/5

needs not explicitly state such a lemma, since the builtin case anal-
ysis tactic of Coq works just fine. However, more complex patterns
do require this kind of lemma, which we state and prove by hand
for the time being, but are looking forward to generate in the future.

Administrative tactics structure the proof in a way that reflects
the structure of the program. They allow to explicitly assign names
to variables and hypotheses that need to be mentioned in the for-
mal reasoning. Naming properly variables and hypotheses on the
one hand, and keeping track of the structure of proofs on the other
hand, are two ingredients critical to script maintainability. In par-
ticular, our proof scripts are not affected by alpha-conversion in the
source code, and a local modification in a source program can be
accomodated with a local modification at the corresponding posi-
tion in its verification script.

Outside administrative tactics, there is some reasoning involved
for establishing that the pre-condition of functions called are sat-
isfied, using the facts gathered from prior function calls and case
analyses. Most of this work is handled through automation, but
sometimes explicit rewriting or invocation of external lemmas is
necessary. For example, to establish the correctness of the merge
sort function, one needs to justify that the concatenation of the n
first elements of a list l with the sublist obtained by cutting out the
n first elements of the same list l is exactly l.

5.3 Caml’s list library
The first interest in considering a list library lies in the fact that it is
a very good sample of idiomatic functional code. In particular, its
code relies heavily on pattern matching and recursion. Also, poly-
morphic higher-order functions are used extensively to implement
iterators. Furthermore, a typical functional program is very likely
to make use of lists and list operations defined in the library, so the
verification of functions from the list library is a requirement for
the complete verification of a program that uses these functions.
In what follows, we describe the main patterns that arose in the
specification of the 34 functions included in OCaml’s list library.
Statistics on the size of specifications and proofs appear in the next
section.

Functions such as length (which computes the length of a list),
append (which concatenates two lists) or concat (which flattens
a list of lists) are specified using their logical counterpart directly.
Consider for example the specification of the function length:

Lemma length_spec : forall (A:Type) (_A:A->Val),
spec length [l:_A] is (|> _Int | = Coq.length l)

This specification states that when function length is applied to the
encoding of a logical list l, it returns the encoding of an integer
equal to the logical length (Coq.length) of the length of list l.

Functions such as combine (which builds a list of pairs from two
lists of equal length) or nth (which returns the n-th element of a list)
are also specified using their logical counterpart, but only under
the hypothesis that the arguments satisfy a given pre-condition. For
instance, nth implements Coq.nth provided it is applied to a non-
negative index strictly smaller than the length of the list.

Lemma nth_spec : forall A _A,
spec nth [l:_List _A] [n:_Int] = t is
(0 <= n < Coq.length l) ->
t |> _A | = (Coq.nth n l)

A higher-order function such as map (which applies a function
to all the values in a list and returns the list of the results) can
be given a simple specification when the function f that it takes
as argument is naturally reflected as a function F from the logic,
that is, when f implements F . This specification of map states that
the application of this function to f and to the encoding of a list l

produces a list equal to the encoding of the result of the application
of Coq.map to F and l.

Lemma map_spec : forall A _A B _B,
spec map [f:_Val] [l:_List _A] = t is

forall (F:A->B),
(spec f [x:_A] is |> _B | = F x) ->
t |> _List _B | = (Coq.map F l).

Yet, this specification is not the most general one. Indeed, we
should not suppose that the function f implements some logical
function F , but only assume that there exists some post-condition
that relates the inputs and the outputs of f . Moreover, we should
only require information on the behaviour of f on the set of values
that actually occur in the list l. More precisely, we suppose that
there exists a post-condition Q such that for any item x (of type A)
in the list l, function f terminates on the input x and returns a result
y (of type B) such that (Qxy):

spec f [x:_A] = t is
(Coq.mem x l) -> (t |> _B | (fun y => Q x y))

If the above is true, then the application of function map to the
function f and to the encoding of the list l returns a list, call
it l′, such that pairs of elements at corresponding indices in l
and l′ satisfy predicate Q. This inductively-defined property is
captured by the proposition “Coq.for all2Q l l′”. The more general
specification of map appears below.

Lemma map_spec’ : forall A _A B _B,
spec map [f:_Val] [l:_List _A] = t is

forall (Q:A->B->Prop),
(spec f [x:_A] = t’ is
(Coq.mem x l) -> (t’ |> _B | Q x)) ->

t |> _List _B | (Coq.for_all2 Q l)

Functions such as fold right are specified using invariants.
Given a function f , a value a and a list 〈x1;x2; . . . ;xn〉, fold right
computes “f x1 (f x2 . . . (f xn a) . . .)”. If a binary predicate I
holds of the empty list and of the initial value a of the accumulator,
and if it is preserved at each step in the folding process, then the
invariant I holds of the entire list given to fold right and of the
final result. Technically:

Lemma fold_right_spec : forall A _A B _B,
spec fold_right [f:_Val] [l:_List _A] [a:_B]

= t is
forall (I : List A -> B -> Prop),
I nil a ->
(spec f [x:_A] [b:_B] = t’ is

forall l’, I l’ b -> t’ |> _B | I (x::l’)) ->
t |> _B | (I l)

Finally, Caml’s list library includes a 65-line long implementa-
tion of merge sort. Compared to the function presented in the ex-
ample earlier on (§5.2), the library function is carefully optimized
for performance. By manipulating lists sorted either in ascending
or descending order, it minimizes the number of cells allocated at
runtime. This leads to a longer and more complex code, whose ver-
ification is naturally more challenging. The proof-checking of this
optimized implementation of merge sort takes about 30 seconds
(measured on a bi-processor 2.4Ghz machine), which accounts for
half of the time needed to verify the entire list library.

5.4 Bytecode compiler and interpreter
The matter of this second case study is the complete verification
of a virtual machine for a core ML language. This development
includes three functions. First, function “compile” compiles a λ-
terms into bytecode. Second, function “run” interprets a sequence

10 2009/3/5

Source code Specification Verification
List.length 3 1 4
List.map 3 4 4
List.fold right 4 6 4
List.split 4 2 5
List.merge sort 65 5 298
OCaml’s list library 201 143 558
ML virtual machine 43 8 95

Figure 6. Size of case studies (non-empty lines)

of bytecode. Third and last, function “execute” combines the two
previous functions to implement a relatively efficient virtual ma-
chine. The source code is made of 24 lines of type declarations
plus 19 lines of actual code, and relies heavily on pattern-matching.
Both the code and the proof of correctness were adapted from work
by Leroy [12] which focuses on difficulties arising in the formal-
ization of an ML compiler.

The specification of execute states that if a program p com-
putes a value with respect to a call-by-value semantics, then the
application of execute to the code of the program p returns this
value. Verifying this specification is nontrivial because the argu-
mentation of why the virtual machine appropriately simulates its
input is quite remote from what appears in the source code of this
machine. In particular, the termination of the bytecode interpreter
has to be established by induction on the finite reduction sequence
of the source program, although the code of the source program is
thrown away by the virtual machine after the compilation phase.

We have completely separated the logical argumentation of why
the virtual machine is correct, which uses logical definitions of
the machine states and transitions, from the actual verification of
the source code, for which we only need to verify that the code
correctly implements the set of transitions. The former part requires
71 lines of definitions and proofs, while the latter requires 8 lines
of specification and 24 lines of proofs.

6. Implementation
We have implemented a tool that parses source code in Caml
syntax and generates Coq definitions for type declarations, for data
constructors, for encoders, and for each top-level value defined in
the source. This program is made of about 800 lines of OCaml, not
counting a copy of OCaml’s parser.

The Coq library for the deep embedding which we have set up
contains: (1) definitions of the syntax of the embedded language,
(2) pretty-printing directives for displaying embedded syntax dur-
ing interactive proofs, (3) definition of the semantics, of behaviours
and of specification predicates, (4) statements and proofs of the rea-
soning rules, (5) definition of the tactics that help applying these
rules, and (6) definition and verification of a number of basic func-
tions (e.g. negation, disequality, etc. . .). There are about one thou-
sand lines of definitions and notation, another thousand lines for
proofs, and about five hundred lines of tactic definitions.

As explained earlier on (§5.2), proof steps fall in two cate-
gories: administrative steps, for navigating through the structure of
programs, and high-level arguments, which explain why programs
work. For administrative steps, we observe that the number of ad-
ministrative tactic involved is in average equal to the number of
nodes in the abstract syntax tree of this program. Considering that
we are working with a high-level programming language in which
programs typically have a rather concise code, it seems reasonable
to expect programs to require proofs longer than their code. So,
starting with an overhead equal to the size of the code should not
be prohibitive.

Practical evidence of the relative brevity of our scripts is given
in Figure 6. It contains statistics on the number of lines of code,

of specifications and of proofs for selected functions as well as for
complete developments. It appears that, for a simple function, the
size of the proof of a program is typically no longer than the sum
of the size of its code plus the size of its specification. Of course,
more complex functions require longer proofs, but this happens
independently of the framework being used.

7. Related work
Tools such as Spec# [2] for C# programs, and tools using JML [3]
as specification language for Java programs such as Krakatoa [14],
are serious attempts at setting up a verification process for indus-
trial programming languages. Yet, these tools impose specifications
to be expressed in first-order logic. As a consequence, they fail to
scale up due to the lack of support for higher-order functions, as
well as lack of modularity and abstraction. Moreover, despite re-
cent progress, automated provers still have difficulties discharging
proof obligation of nontrivial properties, and often fail to explain
where additional or stronger annotations are required. Caduceus
[9], based on the framework Why [8], allows for the verification
of C programs. It supports annotation with higher-order logic pred-
icates, but does not support higher-order functions. Proof obliga-
tions that are not discharged automatically can be discharged us-
ing an interactive theorem prover. However, the statement of these
proof obligations is typically large and clumsy, involving dozens of
machine generated names, making proofs difficult to carry out and
to maintain.

Pangolin [21] is a tool that successfully applies the Hoare-style
methodology to a purely-functional language, including support for
polymorphic higher-order functions. In this setting, programs are
written in a syntax close to Caml and annotated with higher-order
logic specifications and invariants. Proof obligations are then ex-
tracted using a VCG and can be discharged either automatically
or interactively using Coq. As for the aforementioned tools, Pan-
golin checks only partial correctness of well-typed programs. The
most fundamental difference with our work lies in the way in which
computational entities are lifted to the logical level. In Pangolin
values are lifted automatically at the time of generating proof obli-
gations, while we do it explicitly through the use of encoders. Fur-
thermore functions are reflected by a pair of a pre-condition and a
post-condition, and not by their code. Thus, functions, contrary to
other values, are described in Pangolin’s logic by a pair of propo-
sitions (in Prop) and not as a datatype (in Set). It is unclear what
happens when functions are stored in data-structures and whether
it is possible to verify code which exploits this.

Reflection of values is trivially dealt with by a shallow embed-
ding: program values and logical values are simply identified. The
downside of this identification is that programming functions un-
dergo the same restrictions as logical functions. As explained in the
introduction, this leads to constraints with respect to partiality, re-
cursion and exceptions. In short, the shallow embedding approach
benefits from a very low cost of entry, but it requires significant
effort for making a given source code fit the framework. Some peo-
ple, among which the authors of Epigram [15], argue that, after all,
it might be a good thing to rethink the way we write our programs.
Indeed, writing the code in a style that explicitly establishes data
structure invariants would certainly ease program verification (and,
in particular, simplify the task of type-checking in presence of de-
pendent types). Yet, it is unclear how many programmers would be
willing to make such a dramatic change to their programming style.

Ynot [19] can be seen as an attempt to to overcome these limi-
tations on the source language when using a shallow embedding. It
axiomatically extends Coq with a monad that encapsulates all im-
purities: non-termination, exceptions, and side-effects. Thus, pro-
grams are written in terms of Coq language constructs plus the extra
monadic operators (it is still a shallow embedding), and executable

11 2009/3/5

Haskell code can be extracted. The reasoning is carried out with
an axiomatized predicate that captures Hoare-logic specifications
and integrates a notion of separation for local reasoning on side-
effects. Impressive examples, such as a set of imperative implemen-
tations of finite maps, demonstrate the theoretical strength of the
approach. One visible difference with our approach is that Ynot re-
quires source programs to be well-typed. Also, because Ynot carves
in stone a monadic type for Hoare triples, there is no lightweight
solution for extending it to support a richer programming language
nor to enable verification of total correctness properties.

Mehta and Nipkow have investigated the use of a deep em-
bedding for reasoning on programs written in a simple impera-
tive language, with assignment, sequence, conditional and while
loops. Hoare-style reasoning rules are proved correct with respect
to the semantics of the language, and a tactic implements a sim-
ple VCG to produce proof obligations. For the VCG tactic to work,
the source code needs to be annotated with all its invariants. In our
work, invariants only appear in proof scripts. In fact, many of them
need not be written explicitly since they can be deduced from the
specification of the functions being applied in the code. Mehta and
Nipkow start by using a predicate to relate list- or tree-shaped data
structures that lie in the store with their logical counterpart. Later
in their paper, they implement this predicate using a function that
corresponds to what we have called a decoder. They illustrate their
approach with a formalization of the Schorr-Waite graph marking
algorithm, a relatively short program (a dozen of lines of code) with
nontrivial invariants.

XCAP [20] and SCAP [7] are frameworks for reasoning about
assembly programs. The most notable similarity with our work is
the use of a deep embedding of the target language. These two
frameworks have been used to verify short but fairly complex as-
sembly routines. The verification involves hundreds of lines of
proofs per machine instruction. The major difference with our work
is that XCAP and SCAP target a low-level imperative language,
whose mechanisms are quite far from those of a high-level func-
tional language. As argued by their authors [6], a central advantage
of relying on a deep embedding is that it allows for interoperabil-
ity between different program logics (e.g. XCAP and SCAP) by
ultimately defining all the logics used in terms of machine code
semantics. Interoperability is particularly useful when setting up a
certified operating system, since the components involved rely on
different computation features and span different abstraction levels.

8. Conclusion
We have set up a technology for specifying and proving total cor-
rectness of purely functional programs. It relies on three main in-
gredients: a deep embedding of the programming language, a fam-
ily of encoders to implement the reflection between program values
and logical values, and tactics to implement the application of big-
step reasoning rules. Our approach is relatively lightweight, very
expressive, and can be used to produce robust proofs of complex
pieces of functional code.

Acknowledgments
I wish to thank François Pottier for fruitful discussions on program
verification and careful reading of this paper, Xavier Leroy for
technical discussions related to non-termination and co-induction,
Didier Rémy for helping to improve the presentation, and Jean-
Baptiste Tristan for valuable feedback on early drafts of this paper.

References
[1] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy

Pollack, and Stephanie Weirich. Engineering formal metatheory. In
POPL, January 2008.

[2] Mike Barnett, Rob DeLine, Manuel Fähndrich, K. Rustan M. Leino,
and Wolfram Schulte. Verification of object-oriented programs with
invariants. JOT, 3(6), 2004.

[3] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry,
Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of
JML tools and applications. STTT, 7(3):212–232, June 2005.

[4] Arthur Charguéraud and François Pottier. Functional translation of a
calculus of capabilities. In ICFP, September 2008.

[5] The Coq Development Team. The Coq proof assistant reference
manual, version 8.1. At http://coq.inria.fr/, 2007.

[6] Xinyu Feng, Zhaozhong Ni, Zhong Shao, and Yu Guo. An open
framework for foundational proof-carrying code. In François Pottier
and George C. Necula, editors, TLDI, pages 67–78. ACM, 2007.

[7] Xinyu Feng, Zhong Shao, Alexander Vaynberg, Sen Xiang, and
Zhaozhong Ni. Modular verification of assembly code with stack-
based control abstractions. In Michael I. Schwartzbach and Thomas
Ball, editors, PLDI, pages 401–414. ACM, 2006.

[8] Jean-Christophe Filliâtre. Verification of non-functional programs
using interpretations in type theory. JFP, 13(4):709–745, 2003.

[9] Jean-Christophe Filliâtre and Claude Marché. Multi-prover verifica-
tion of C programs. In Formal Methods and Software Engineering,
6th ICFEM 2004, volume 3308 of LNCS, pages 15–29. Springer-
Verlag, 2004.

[10] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

[11] Peter V. Homeier and David F. Martin. Trustworthy tools for
trustworthy programs: A verified verification condition generator. In
Thomas F. Melham and Juanito Camilleri, editors, TPHOLs, volume
859 of LNCS, pages 269–284. Springer, 1994.

[12] Xavier Leroy. Coinductive big-step operational semantics. In Peter
Sestoft, editor, ESOP, volume 3924 of Lecture Notes in Computer
Science, pages 54–68. Springer Verlag, 2006.

[13] Xavier Leroy. Formal certification of a compiler back-end or:
programming a compiler with a proof assistant. In POPL, pages
42–54, January 2006.

[14] Claude Marché, Christine Paulin Mohring, and Xavier Urbain. The
Krakatoa tool for certification of Java/JavaCard programs annotated
in JML. JLAP, 58(1–2):89–106, 2004.

[15] Conor McBride and James McKinna. The view from the left. JFP,
14(1):69–111, 2004.

[16] Farhad Mehta and Tobias Nipkow. Proving pointer programs in
higher-order logic. In Franz Baader, editor, CADE, volume 2741 of
Lecture Notes in Computer Science, pages 121–135. Springer, 2003.

[17] Michael J.C. Gordon. Mechanizing programming logics in higher-
order logic. In G.M. Birtwistle and P.A. Subrahmanyam, editors,
Current Trends in Hardware Verification and Automatic Theorem
Proving, pages 387–439. Springer-Verlag, 1988.

[18] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymor-
phism and separation in hoare type theory. In ICFP, pages 62–73,
2006.

[19] Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Govereau,
and Lars Birkedal. Ynot : Reasoning with the awkward squad. In
ICFP, September 2008.

[20] Zhaozhong Ni and Zhong Shao. Certified assembly programming
with embedded code pointers. In POPL, pages 320–333, 2006.

[21] Yann Régis-Gianas and François Pottier. A Hoare logic for call-by-
value functional programs. In MPC, July 2008.

[22] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, pages 55–74, 2002.

12 2009/3/5

