Set Implicit Arguments.
Require Import CPS_Definitions Omega.
Implicit Types x y z : var.
Ltac gather_vars :=
let A := gather_vars_with (fun x : vars => x) in
let B := gather_vars_with (fun x : var => {{ x }}) in
let C := gather_vars_with (fun x : trm => fv x) in
constr:(A \u B \u C).
Tactic Notation "pick_fresh" ident(x) :=
let L := gather_vars in pick_fresh_gen L x.
Tactic Notation "pick_fresh" ident(x) "from" constr(E) :=
let L := gather_vars in pick_fresh_gen (L \u E) x.
Tactic Notation "apply_fresh" constr(T) "as" ident(x) :=
apply_fresh_base T gather_vars x.
Tactic Notation "apply_fresh" "*" constr(T) "as" ident(x) :=
apply_fresh T as x; auto_star.
Tactic Notation "apply_fresh" constr(T) :=
apply_fresh_base T gather_vars ltac_no_arg.
Tactic Notation "apply_fresh" "*" constr(T) :=
apply_fresh T; auto_star.
Tactic Notation "exists_fresh" :=
let y := fresh "y" in let Fry := fresh "Fr" y in
exists_fresh_gen gather_vars y Fry.
Hint Constructors term.
Notation "'[[' x '~>' y ']]' t" := (subst x (trm_fvar y) t) (at level 69).
Lemma term_abs_to_body : forall t1,
term (trm_abs t1) -> body t1.
Proof. intros. unfold body. inversion* H. Qed.
Lemma body_to_term_abs : forall t1,
body t1 -> term (trm_abs t1).
Proof. intros. inversion* H. Qed.
Hint Resolve term_abs_to_body body_to_term_abs.
Lemma subst_fresh : forall x t u,
x \notin fv t -> [x ~> u]t = t.
Proof.
intros. induction t; simpls; fequals~. case_var~.
Qed.
Lemma open_rec_term_ind :forall t j v i u, i <> j ->
{i ~> u}({j ~> v}t) = {j ~> v}t -> {i ~> u}t = t.
Proof.
induction t; introv Neq Equ; simpls; inversions~ Equ; fequals*.
case_nat~. case_nat~.
Qed.
Lemma open_rec_term : forall t u k,
term t -> {k ~> u}t = t.
Proof.
introv H. gen k. induction H; intros; simpl; fequals~.
unfolds open. pick_fresh x.
apply~ (@open_rec_term_ind t1 0 (trm_fvar x)).
Qed.
Lemma open_fresh : forall x y t,
x \notin fv t -> x <> y -> x \notin fv (t^y).
Proof.
introv. unfold open. generalize 0.
induction t; simpl; intros i Fr Neq; auto.
case_nat; simple~.
Qed.
Hint Resolve open_fresh.
Lemma open_var_inj : forall x t1 t2,
x \notin (fv t1) -> x \notin (fv t2) ->
(t1 ^ x = t2 ^ x) -> (t1 = t2).
Proof.
intros x t1. unfold open. generalize 0.
induction t1; intro k; destruct t2; simpl; intros; inversion H1;
try solve [ fequals*
| do 2 try case_nat; inversions~ H1; try notin_false ].
Qed.
Lemma subst_open : forall x u t1 t2, term u ->
[x ~> u] (t1 ^^ t2) = ([x ~> u]t1) ^^ ([x ~> u]t2).
Proof.
intros. unfold open. generalize 0.
induction t1; intros; simpl; fequals~.
case_nat~. case_var~. rewrite~ open_rec_term.
Qed.
Lemma subst_open_var : forall x y u t, y <> x -> term u ->
([x ~> u]t) ^ y = [x ~> u](t ^ y).
Proof.
introv Neq Wu. rewrite~ subst_open. simpl. case_var~.
Qed.
Lemma subst_intro : forall x t u,
x \notin (fv t) -> term u ->
t ^^ u = [x ~> u](t ^ x).
Proof.
introv Fr Wu. rewrite~ subst_open.
rewrite~ subst_fresh. simpl. case_var~.
Qed.
Lemma subst_term : forall t z u,
term u -> term t -> term ([z ~> u]t).
Proof.
induction 2; simple~.
case_var~.
apply_fresh term_abs. rewrite~ subst_open_var.
Qed.
Hint Resolve subst_term.
Lemma open_term : forall t u,
body t -> term u -> term (t ^^ u).
Proof.
intros. destruct H. pick_fresh y. rewrite~ (@subst_intro y).
Qed.
Hint Resolve open_term.
Lemma body_subst : forall t u x,
body t -> term u -> body ([x~>u]t).
Proof.
introv T U. invert T. intros L B.
exists_fresh. rewrite~ subst_open_var.
Qed.
Lemma close_var_fresh : forall x t i,
x \notin fv t -> close_var_rec i x t = t.
Proof.
induction t; simpl; intros i Fr; fequals~. case_var~.
Qed.
Lemma close_var_notin : forall x t,
x \notin fv (close_var x t).
Proof.
introv. unfold close_var. generalize 0.
induction t; intros k; simpls; notin_simpl; auto.
case_var; simple~.
Qed.
Hint Resolve close_var_notin.
Lemma close_var_notin_keep : forall x y t,
x \notin fv t ->
x \notin fv (close_var y t).
Proof.
introv. unfold close_var. generalize 0.
induction t; simpl; intros i Fr; auto. case_var; simple~.
Qed.
Lemma close_var_open_ind : forall x y z t1 i j,
i <> j -> y <> x -> y \notin (fv t1) ->
{i ~> trm_fvar y} ({j ~> trm_fvar z} (close_var_rec j x t1) )
= {j ~> trm_fvar z} (close_var_rec j x ({i ~> trm_fvar y}t1) ).
Proof.
induction t1; simpl; intros; try solve [ fequals~ ].
do 2 (case_nat; simpl); try solve [ case_var~ | case_nat~ ].
case_var~. simpl. case_nat~.
Qed.
Lemma close_var_open : forall x t,
term t -> t = (close_var x t) ^ x.
Proof.
introv W. unfold close_var, open. generalize 0.
induction W; intros j; simpls; fequals~.
case_var~. simpl. case_nat~.
match goal with |- _ = ?t => pick_fresh y from (fv t) end.
apply~ (@open_var_inj y).
unfolds open. rewrite~ close_var_open_ind.
Qed.
Lemma close_var_body : forall x t,
term t -> body (close_var x t).
Proof.
introv W. exists {{x}}. intros y Fr.
unfold open, close_var. generalize 0. gen y.
induction W; intros y Fr j; simpls.
case_var; simple~. case_nat~.
auto.
auto.
apply_fresh term_abs as z.
unfolds open. rewrite~ close_var_open_ind.
Qed.
Hint Resolve close_var_body.
Lemma close_var_spec : forall t x,
term t -> exists u, t = u ^ x /\ body u /\ x \notin (fv u).
Proof.
intros. exists (close_var x t). splits 3.
apply* close_var_open.
apply* close_var_body.
apply* close_var_notin.
Qed.
Lemma close_var_subst : forall x t z u,
x \notin fv u -> x <> z ->
close_var x ([z~>u]t) = [z~>u](close_var x t).
Proof.
introv Fr Neq. unfold close_var. generalize 0.
induction t; intros i; simpl; fequals~.
case_var; case_var; simpl.
case_var. rewrite~ close_var_fresh.
case_var~.
do 2 case_var~.
Qed.
Lemma close_var_rename : forall y x t,
y \notin fv t ->
close_var y ([[x ~> y]]t) = close_var x t.
Proof.
introv Fr. unfold close_var. generalize 0. gen Fr.
induction t; simpl; intros Fr i; fequals~.
case_var; simpl; case_var~.
Qed.
Lemma trm_size_rename : forall x y t,
trm_size ([x ~> trm_fvar y]t) = trm_size t.
Proof.
induction t; simpl; fequals. case_var~.
Qed.
Lemma trm_size_open : forall x t,
trm_size (t^x) = trm_size t.
Proof.
intros. unfold open. generalize 0.
induction t; intros; simpl; fequals.
case_nat~.
rewrite IHt1. rewrite~ IHt2.
rewrite~ IHt.
Qed.
Lemma term_size :
forall P : trm -> Prop,
(forall x, P (trm_fvar x)) ->
(forall k, P (trm_cst k)) ->
(forall t1 t2,
term t1 -> P t1 -> term t2 -> P t2 -> P (trm_app t1 t2)) ->
(forall t1,
body t1 ->
(forall t2 x, x \notin fv t2 -> trm_size t2 = trm_size t1 ->
term (t2 ^ x) -> P (t2 ^ x)) ->
P (trm_abs t1)) ->
(forall t, term t -> P t).
Proof.
intros P Ha Hb Hc Hd t. gen_eq n: (trm_size t). gen t.
induction n using peano_induction. introv Eq T. subst. inverts T.
apply Ha.
apply Hb.
apply~ Hc. apply~ H. simpl; omega. apply~ H. simpl; omega.
apply~ Hd. exists_fresh; auto. introv Fr Eq T.
apply~ H. rewrite trm_size_open. simpl. omega.
Qed.
Tactic Notation "calc_open" :=
unfold open; simpl; rewrite_all open_rec_term.
Tactic Notation "calc_open" "~" :=
calc_open; auto_tilde.
Tactic Notation "calc_open" "*" :=
calc_open; auto_star.
Hint Extern 1 (body _) =>
exists_fresh; calc_open.
Hint Extern 1 (term (trm_abs _)) =>
apply_fresh term_abs; calc_open; auto.
Hint Extern 1 (term ?x) =>
match goal with H: x = _ |- _ => subst x end.
Tactic Notation "name_var_gen" ident(x) :=
match goal with
| |- context [var_gen ?L] => sets x: (var_gen L)
| H: context [var_gen ?L] |- _ => sets x: (var_gen L)
end.
Hint Extern 5 (?x \notin _) =>
progress (unfold x); apply notin_var_gen; intros.
Hint Resolve open_fresh.
Lemma cps_fix : forall t,
cps t = cps_body cps t.
Proof.
prove_fixf. destruct x; fequals.
rewrite IH. rewrite IH. auto. simpl; omega. simpl; omega.
rewrite IH. auto. simpl. rewrite trm_size_open. omega.
Qed.
Hint Resolve cps_fix.
Lemma cps_term : forall t,
term t -> term (cps t).
Proof.
introv T. induction T using term_size; simplfix cps.
auto.
auto.
auto.
name_var_gen x.
protects (trm_abs (close_var x (cps (t1^x)))) do auto 8.
Qed.
Lemma cps_term_abs : forall t1,
term (trm_abs t1) ->
term (trm_abs (cps_abs_body t1)).
Proof.
intros. unfold cps_abs_body. name_var_gen x.
lets: cps_term. auto 8.
Qed.
Hint Resolve cps_term cps_term_abs.
Lemma cpsval_term : forall v,
value v -> term (cpsval v).
Proof.
introv V. inverts V; simple~.
Qed.
Hint Resolve cpsval_term.
Lemma value_regular : forall t,
value t -> term t.
Proof.
induction 1; auto.
Qed.
Lemma eval_regular : forall t v,
eval t v -> term t /\ term v.
Proof.
induction 1; auto* value_regular.
Qed.
Hint Extern 1 (term ?t) =>
match goal with
| H: value t |- _ => apply (value_regular H)
| H: eval t _ |- _ => apply (proj1 (eval_regular H))
| H: eval _ t |- _ => apply (proj2 (eval_regular H))
end.
|