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Abstract

Separation Logic brought amajor breakthrough in the area of program verification. The all-in-Coq
course entitled Separation Logic Foundations is published as Volume 6 of the Software Foundations
series. The present document corresponds to the companion course notes for that volume. It
covers the key definitions, formatted in traditional LaTeX style rather than in Coq. It also includes
an historical survey of Separation Logic for sequential programs.
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Chapter 1

Introduction

1.1 Motivation

In the 90’s, the use of formal methods was mainly motivated by safety-critical applications, where
a bug in the code could mean that people get hurt. Of course, such applications remain relevant.
Yet, two game-changing evolutions related to software have significantly broadened the scope of
application of formal methods: massive-scale deployment, and digital security concerns.

Regarding deployment, consider that a given piece of code may be executed by a couple billion
users. The cost of one bug, multiplied by the number of users, adds up to such a large amount that
it motivates corporations to invest considerable efforts in eliminating bugs. The Big Tech compa-
nies, which do provide software to billions of users, are among those that go beyond traditional
testing, and leverage formal methods for critical products. For example, AWS (Amazon’s cloud)
exploits TLA+ [Yu et al., 1999] to apply model checking to detect flaws in the design of their fault-
tolerant, distributed systems [Newcombe et al., 2015]. Meta exploits the Infer tool [Calcagno and
Distefano, 2011] for static analysis of its Android and iOS apps, in particular. The Infer tool is now
also being used by Spotify, Uber, Mozilla, Microsoft, AWS, and many others. Besides, Meta has in-
vested efforts in verifying parts of a microkernel for embedded devices [Carbonneaux et al., 2022].
Likewise, Google recently announced KataOS, an operating system for embedded devices that
run machine-learning applications [Google, 2022], implemented on top of the seL4 mechanically-
verified microkernel [Klein et al., 2010]. We can reasonably expect the deployment of software at
a very large scale, and thus the interest in bug-free programs, to keep growing.

The second critical aspect is security. Software is widespread in every aspect of society, from
corporations and factories to daily consumer products such as phones, TVs, cars, etc. A software
bugmay induce a source of vulnerability, that an attackermay exploit to crash a system, or (usually
worse) to steal data, or (much worse) to take remote control of a physical system, such as a car, a
factory, or a city-management system. Attackers may also exploit a flaw to set up a backdoor for a
future attack. Attackers may be motivated by extorting ransoms, by stealing valuable information
or technology, or by taking an advantage in the cyberwarfare. Attacks are carried out not only by
individuals and small teams of hackers, but also by official and undercover government agencies.
The cumulative cost of cyberattacks is very hard to evaluate, with estimates ranging from hun-
dreds to thousands of billion US dollars per year. Because cyberattacks can be performed remotely
from anywhere on earth, possibly by leaving very few tracks behind, with limited investment and
possibly huge returns, we can expect such attacks to continue at a sustained rate. The use of for-
mal methods alone certainly does not make software systems invulnerable, but it can help reduce
the attack surface.

The large number of users concerned, combined with the desperate need for increased soft-
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CHAPTER 1. INTRODUCTION 7

ware security, will, one can speculate, motivate unprecedented growth in the use of formal meth-
ods. One key question is whether existing verification tools can be improved to decrease the cost
of verifying large and complex systems. Another question is how many years it will take to train
the workforce necessary for specifying and verifying a significant fraction of the highly sensitive
software components in use.

1.2 Separation Logic

Separation Logic brought a major breakthrough in the area of program verification [O’Hearn,
2019]. Since its introduction, it has made its way into a number of practical tools that are used on
a daily basis for verifying programs ranging from pieces of operating systems kernels [Xu et al.,
2016; Carbonneaux et al., 2022] and file systems [Chen et al., 2015] to data structures [Pottier,
2017] and state-of-the-art algorithms [Guéneau et al., 2019; Haslbeck and Lammich, 2021]. These
programs are written in various programming languages, including machine code [Myreen and
Gordon, 2007], assembly [Ni and Shao, 2006; Chlipala, 2013], C-language [Appel and Blazy, 2007],
OCaml [Charguéraud, 2011], SML [Kumar et al., 2014], and Rust [Jung et al., 2017].

The key ideas of Separation Logic were devised by John Reynolds, inspired in part by older
work by Burstall [1972]. Reynolds presented his ideas in lectures given in the fall of 1999. The
proposed rules turned out to be unsound, but O’Hearn and Ishtiaq [2001] noticed a strong rela-
tionship with the logic of bunched implications [O’Hearn and Pym, 1999], leading to ideas on how
to set up a sound program logic. Soon afterwards, the seminal publications on Separation Logic
appeared at the CSL workshop [O’Hearn et al., 2001] and at the LICS conference [Reynolds, 2002].

The first paragraph from Reynold’s paper [2002] summarizes the situation prior to Separation
Logic in the following words.

Approaches to reasoning about [the use of shared mutable data structures] have been

studied for three decades, but the result has been methods that suffer from either limited

applicability or extreme complexity, and scale poorly to programs of even moderate size.

Today, the core definitions of Separation Logic may appear as the obvious thing to write, or even as
the only thing that would make sense to write. Perhaps the best way to truly value the contribution
of Separation Logic is to realize that, following the introduction of the first program logics in
the late sixties [Floyd, 1967; Hoare, 1969; Dijkstra, 1975], people have tried for 30 years to verify
programs without Separation Logic.

1.3 Foundational Verification

The term formal methods covers a broad range of tools, with different purposes, e.g., to check
functional properties, to check convergence properties, to verify cryptographic protocols, to verify
hardware circuits, to analyze resource consumption, to verify time-channel attacks, etc. Deductive
program verification aims at formally verifying that all possible behaviors of a given program
satisfy formally defined properties. These properties constitute the specification of the program.

The verification process is said to be machine-checked if a program called a theorem prover is
used to validate every step of the reasoning involved in the process. A theorem prover may consist
either of an automated theorem prover, or of an interactive proof assistant (e.g., Coq).

The verification process is said to be foundational if the reasoning on the program of the behav-
ior is established, via machine-checked proofs, with respect to a formalization of the operational
semantics of the source programming language. Foundational verification, when combined with
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the use of a machine-checked compiler, yields very high confidence on the fact that the machine
code produced does indeed satisfy the desired formal specification.

1.4 Contents of the Book

This book presents the key ideas involved in the construction of an interactive framework
based on Separation Logic, allowing to establish functional correctness and termination,
in a foundational way.

This book focuses on reasoning about sequential programs. Reasoning about concurrent pro-
grams, with multiple threads interacting with each other, is left as matter for another book.

The present book accompanies an all-in-Coq course, entitled Foundations of Separation Logic,
and released as Volume 6 of the Software Foundation series, edited by Benjamin Pierce. This course
includes more than 130 exercises of various difficulties. Its prerequisites are the contents of Vol-
ume 1 (Logical Foundations) and Volume 2 (Programming Language Foundations) of the series.



Chapter 2

Features of Separation Logic

This chapter gives an overview of the features that are specific to Separation Logic: (1) the separat-
ing conjunction and the frame rule, which enable local reasoning and small-footprint specifications;
(2) the treatment of aliasing; (3) the specification of recursive pointer-based data structures such
as mutable linked lists; and (4) the ability to ensure complete deallocation of all allocated data.

2.1 The Frame Rule

In Hoare logic, the behavior of a command 𝑡 is specified through a triple, written {𝐻} 𝑡 {𝑄},
where the precondition 𝐻 describes the input state, and the postcondition 𝑄 describes the output
state. Whereas in Hoare Logic 𝐻 and 𝑄 describe the whole memory state, in Separation Logic
they describe only a fragment of the memory state. This fragment must include all the resources
involved in the execution of the command 𝑡.

The frame rule asserts that if a command 𝑡 safely executes in a given piece of state, then it
also executes safely in a larger piece of state. More precisely, if 𝑡 executes in a state described
by𝐻 and produces a final state described by 𝑄, then this program can also be executed in a state
that extends 𝐻 with a disjoint piece of state described by 𝐻 ′. The corresponding final state then
consists of𝑄 extended with𝐻 ′, capturing the fact that the additional piece of state is unmodified
by the execution of 𝑡. The frame rule enables local reasoning, defined as follows [O’Hearn et al.,
2001].

To understand how a program works, it should be possible for reasoning and specification

to be confined to the cells that the program actually accesses. The value of any other cell

will automatically remain unchanged.

The frame rule is stated using the separating conjunction, written ⋆, which is a binary oper-
ator over heap predicates. In Separation Logic, pieces of states are traditionally called heaps, and
predicates over heaps are called heap predicates. Given two heap predicates 𝐻 and 𝐻 ′, the heap
predicate 𝐻 ⋆ 𝐻 ′ describes a heap made of two disjoint parts, one that satisfies 𝐻 and one that
satisfies 𝐻 ′. The statement of the frame rule, shown below, asserts that any triple remains valid
when extending both its precondition and its postcondition with an arbitrary predicate 𝐻 ′.

{𝐻} 𝑡 {𝑄}
{𝐻 ⋆𝐻 ′} 𝑡 {𝑄 ⋆ 𝐻 ′}

frame-for-commands
where 𝑡 is a command.

In this manuscript, we do not consider a language of commands, but a language based on the
𝜆-calculus, with programs described as terms that evaluate to values. (The language is formalized

9



CHAPTER 2. FEATURES OF SEPARATION LOGIC 10

in Section 6.1.) In that setting, a specification triple takes the form {𝐻} 𝑡 {𝜆𝑥.𝐻 ′}, where 𝐻
describes the input state, 𝑥 denotes the value produced by the term 𝑡, and𝐻 ′ describes the output
state, with 𝑥 bound in𝐻 ′. For such triples, the frame rule may be stated in the form shown below:

{𝐻} 𝑡 {𝜆𝑥. 𝐻 ′′}
{𝐻 ⋆𝐻 ′} 𝑡 {𝜆𝑥. 𝐻 ′′ ⋆ 𝐻 ′}

frame where 𝑡 is a term producing a value,
and 𝑥 /∈ fv(𝐻 ′)

or, more concisely, as:

{𝐻} 𝑡 {𝑄}
{𝐻 ⋆𝐻 ′} 𝑡 {𝑄 .⋆ 𝐻 ′}

frame
where 𝑄 .⋆ 𝐻 ≡ 𝜆𝑣. (𝑄𝑣 ⋆ 𝐻).

2.2 Separation Logic Specifications

What makes Separation Logic work smoothly in practice is that specifications are expressed us-
ing a small number of operators for defining heap predicates, such that these operators interact
well with the separating conjunction. The most important operators are summarized below—they
appear in examples throughout the rest of this section, and are formally defined further on (Sec-
tion 4.2).

• 𝑝 →˓ 𝑣, to be read “𝑝 points to 𝑣”, describes a single memory cell, allocated at address 𝑝,
with contents 𝑣.

• [ ] describes an empty state.
• [𝑃 ] also describes an empty state, and moreover asserts that the proposition 𝑃 is true.
• 𝐻1 ⋆ 𝐻2 describes a heap made of two disjoint parts, one described by 𝐻1 and another
described by 𝐻2.

• ∃∃𝑥.𝐻 and ∀∀𝑥.𝐻 are used to quantify variables in Separation Logic assertions.

We call these operators the core heap predicate operators, because all the other Separation Logic
operators that we will consider can be defined in terms of these core operators.

The heap predicate operators appear in the statement of preconditions and postconditions.
For example, consider the specification of the function incr, which increments the contents of a
reference cell. It is specified using a triple of the form {𝐻} (incr 𝑝) {𝑄}, as shown below.

Example 2.2.1 (Specification of the increment function)

∀ 𝑝 𝑛. {𝑝 →˓ 𝑛} (incr 𝑝) {𝜆_. 𝑝 →˓ (𝑛+ 1)}

The precondition describes the existence of a memory cell that stores an integer value, through the

predicate 𝑝 →˓ 𝑛. The postcondition describes the final heap in the form 𝑝 →˓ (𝑛+ 1), reflecting the
increment of the contents. The “𝜆_. ” symbol at the head of the postcondition indicates that the value

returned by incr 𝑝, namely the unit value, needs not be assigned a name.

Throughout the rest of the manuscript, the outermost universal quantification (e.g., “∀ 𝑝 𝑛.”) are
left implicit, following standard practice.



CHAPTER 2. FEATURES OF SEPARATION LOGIC 11

2.3 Implications of the Frame Rule

The precondition in the specification of incr 𝑝 describes only the reference cell involved in the
function call, and nothing else. Consider now the execution of incr 𝑝 in a heap that consists of
two distinct memory cells, the first one being described as 𝑝 →˓ 𝑛, and the other being described
as 𝑞 →˓ 𝑚. In Separation Logic, the conjunction of these two heap predicates are described by the
heap predicate (𝑝 →˓ 𝑛) ⋆ (𝑞 →˓ 𝑚). There, the separating conjunction (a.k.a. the star) captures
the property that the two cells are distinct. The corresponding postcondition of incr 𝑝 describes
the updated cell 𝑝 →˓ (𝑛+ 1) as well as the other cell 𝑞 →˓ 𝑚, whose contents is not affected by
the call to the increment function. The corresponding Separation Logic triple is therefore stated
as follows.

Example 2.3.1 (Applying the frame rule to the specification of the increment function)

{(𝑝 →˓ 𝑛) ⋆ (𝑞 →˓ 𝑚)} (incr 𝑝) {𝜆_. (𝑝 →˓ 𝑛+ 1) ⋆ (𝑞 →˓ 𝑚)}

The above triple is derivable from the one stated in Example 2.2.1 by applying the frame rule to
add the heap predicate 𝑞 →˓ 𝑚 both to the precondition and to the postcondition. More generally,
any heap predicate 𝐻 can be added to the original, minimalist specification of incr 𝑝. Thus:

{(𝑝 →˓ 𝑛) ⋆ 𝐻} (incr 𝑝) {𝜆_. (𝑝 →˓ 𝑛+ 1) ⋆ 𝐻}.

2.4 Treatment of Potentially-Aliased Arguments

We next discuss the case of potentially-aliased reference cells. In the previous example, we have
considered two reference cells 𝑝 and 𝑞 assumed to be distinct from each other. Consider now
a function incr_two that expects as arguments two reference cells, at addresses 𝑝 and 𝑞, and
increments both. Potentially, the two arguments might correspond to the same reference cell. The
function thus admits two specifications. The first one describes the case of two distinct arguments,
using separating conjunction to assert the difference. The second one describes the case of two
aliased arguments, that is, the case 𝑝 = 𝑞, for which the precondition describes only one reference
cell.

Example 2.4.1 (Potentially aliased arguments) The function:

let incr_two p q = (incr p; incr q)

admits the following two specifications.

1. {(𝑝 →˓ 𝑛) ⋆ (𝑞 →˓ 𝑚)} (incr_two p q) {𝜆_. (𝑝 →˓ 𝑛+ 1) ⋆ (𝑞 →˓ 𝑚+ 1)}
2. {𝑝 →˓ 𝑛} (incr_two p p) {𝜆_. (𝑝 →˓ 𝑛+ 2)}

2.5 Small-Footprint Specifications

A Separation Logic triple captures all the interactions that a termmay have with thememory state.
Any piece of state that is not described explicitly in the precondition is guaranteed to remain un-
touched. Separation Logic therefore encourages small footprint specifications, i.e., specifications
that mention nothing but what is strictly needed. The small-footprint specifications for the prim-
itive operations ref, get and set are stated and explained next.
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Example 2.5.1 (Specification of primitive operations on references)

{[ ]} (ref 𝑣) {𝜆𝑟. ∃∃𝑝. [𝑟 = 𝑝] ⋆ (𝑝 →˓ 𝑣)}
{𝑝 →˓ 𝑣} (get 𝑝) {𝜆𝑟. [𝑟 = 𝑣] ⋆ (𝑝 →˓ 𝑣)}
{𝑝 →˓ 𝑣} (set 𝑝 𝑣′) {𝜆_. (𝑝 →˓ 𝑣′)}

The operation ref 𝑣 can execute in the empty state, described by [ ]. It returns a value,
named 𝑟, that corresponds to a pointer 𝑝, such that the final heap is described by 𝑝 →˓ 𝑣. In
the postcondition, the variable 𝑝 is quantified existentially, and the pure predicate [𝑟 = 𝑝] denotes
an equality between the value 𝑟 and the address 𝑝, viewed as an element from the grammar of
values (formalized in Section 6.1). The operation get 𝑝 requires in its precondition the existence
of a cell described by 𝑝 →˓ 𝑣. Its postcondition asserts that the result value, named 𝑟, is equal
to the value 𝑣, and that the final heap remains described by 𝑝 →˓ 𝑣. The operation set 𝑝 𝑣′ also
requires a heap described by 𝑝 →˓ 𝑣. Its postcondition asserts that the updated heap is described
by 𝑝 →˓ 𝑣′. The result value, namely unit, is ignored.

The possibility to state a small-footprint specification for the allocation operation captures an
essential property: the reference cell allocated by ref is implicitly asserted to be distinct from
any pre-existing reference cell. This property can be formally derived by applying the frame
rule to the specification triple for ref. For example, the triple stated below asserts that if a cell
described by 𝑞 →˓ 𝑣′ exists before the allocation operation ref 𝑣, then the new cell described by
𝑝 →˓ 𝑣 is distinct from that pre-existing cell. This freshness property is captured by the separating
conjunction (𝑝 →˓ 𝑣) ⋆ (𝑞 →˓ 𝑣′) that appears below.

Example 2.5.2 (Application of the frame rule to the specification of allocation)

{𝑞 →˓ 𝑣′} (ref 𝑣) {𝜆𝑟. ∃∃𝑝. [𝑟 = 𝑝] ⋆ (𝑝 →˓ 𝑣) ⋆ (𝑞 →˓ 𝑣′)}

The strength of the separating conjunction is even more impressive when involved in the
description of recursive data structures such as mutable lists, which we present next.



Chapter 3

Representation Predicates

3.1 Representation of Mutable Lists

Amutable linked list consists of a chain of cells. Each cell contains two fields: the head field stores
a value, which corresponds to an item from the list; the tail field stores either a pointer onto the
next cell in the list, or the null pointer to indicate the end of the list.

Definition 3.1.1 (Representation of a list cell) A list cell allocated at address 𝑝, storing the value 𝑣
and the pointer 𝑞, is represented by two singleton heap predicates, in the form:

(𝑝.head →˓ 𝑥) ⋆ (𝑝.tail →˓ 𝑞)

where “𝑝.𝑘” is a notation for the address 𝑝+ 𝑘, and “head ≡ 0” and “tail ≡ 1” denote the offsets.

A mutable linked list is described by a heap predicate of the form Mlist𝐿𝑝, where 𝑝 denotes
the address of the head cell and 𝐿 denotes the logical list of the elements stored in the mutable
list. The predicate Mlist is called a representation predicate because it relates the pair made of a
pointer 𝑝 and of the heap-allocated data structure that originates at 𝑝 together with the logical
representation of this data structure, namely the list 𝐿.

The predicate Mlist is defined recursively on the structure of the list 𝐿. If 𝐿 is the empty list,
then 𝑝 must be null. Otherwise, 𝐿 is of the form 𝑥 :: 𝐿′. In this case, the head field of 𝑝 stores the
item 𝑥, and the tail field of 𝑝 stores a pointer 𝑞 such that Mlist𝐿′ 𝑞 describes the tail of the list.
The case disjunction is expressed using Coq’s pattern-matching construct.

Definition 3.1.2 (Representation of a mutable list)

Mlist𝐿𝑝 ≡ match𝐿with
| nil ⇒ [𝑝 = null]
|𝑥 :: 𝐿′ ⇒ ∃∃𝑞. (𝑝.head →˓ 𝑥) ⋆ (𝑝.tail →˓ 𝑞) ⋆ (Mlist𝐿′ 𝑞)

Example 3.1.1 (Application of the predicateMlist to a list of length 3) To see howMlist un-
folds on a concrete example, consider the example of a mutable list storing the values 8, 5, and 6.

Mlist (8 :: 5 :: 6 :: nil) 𝑝0 ≡ ∃∃𝑝1. (𝑝0.head →˓ 8) ⋆ (𝑝0.tail →˓ 𝑝1)
⋆ ∃∃𝑝2. (𝑝1.head →˓ 5) ⋆ (𝑝1.tail →˓ 𝑝2)
⋆ ∃∃𝑝3. (𝑝2.head →˓ 6) ⋆ (𝑝2.tail →˓ 𝑝3)
⋆ [𝑝3 = null]

13
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Observe how the definition ofMlist, by iterating the separating conjunction operator, ensures that
all the list cells are distinct from each other. In particular,Mlist precludes the possibility of cycles
in the linked list, and precludes inadvertent sharing of list cells with other mutable lists.

Definition 3.1.2 characterizes Mlist by case analysis on whether the list 𝐿 is empty. Another,
equivalent definition instead characterizesMlist by case analysis on whether the pointer 𝑝 is null.
This alternative definition is very useful because most list-manipulating programs involve code
that tests whether the list pointer at hand is null.

Definition 3.1.3 (Alternative definition forMlist)

Mlist𝐿𝑝 ≡ If (𝑝 = null)
then [𝐿 = nil]
else ∃∃𝑥𝐿′𝑞. [𝐿 = 𝑥 :: 𝐿′] ⋆ (𝑝.head →˓ 𝑥) ⋆ (𝑝.tail →˓ 𝑞) ⋆ (Mlist𝐿′ 𝑞)

Note that this alternative definition is not recognized as structurally-recursive by Coq. Its state-
ment may be formulated as an equality, and proved correct with respect to Definition 3.1.2.

3.2 Operations on Mutable Lists

Consider a function that concatenates two mutable lists in-place. This function expects two point-
ers 𝑝1 and 𝑝2 that denote the addresses of twomutable lists described by the logical lists𝐿1 and𝐿2,
respectively. The first list is assumed to be nonempty. The concatenation operation updates the
last cell of the first list so that it points to 𝑝2, the head cell of the second list. After this operation,
the mutable list at address 𝑝1 is described by the concatenation 𝐿1 ++ 𝐿2.

Example 3.2.1 (Specification of in-place append for mutable lists)

𝑝1 ̸= null ⇒ {(Mlist𝐿1 𝑝1) ⋆ (Mlist𝐿2 𝑝2)} (mappend 𝑝1 𝑝2) {𝜆_. Mlist (𝐿1 ++ 𝐿2) 𝑝1}

Observe how the specification above reflects the fact that the cells of the second list are absorbed
by the first list during the operation. These cells are no longer independently available, hence the
absence of the representation predicateMlist𝐿2 𝑝2 from the postcondition.

Remark (Alternative placement of pure preconditions) The hypothesis 𝑝1 ̸= null from the

specification of the append function may be equivalently placed inside the precondition:

{[𝑝1 ̸= null] ⋆ (Mlist𝐿1 𝑝1) ⋆ (Mlist𝐿2 𝑝2)} (mappend 𝑝1 𝑝2) {𝜆_. Mlist (𝐿1 ++ 𝐿2) 𝑝1}.

We follow the convention of placing pure hypotheses as premises outside of triples, as in general it

tends to improve readability.

As second example, consider a function that takes as argument a pointer 𝑝 to amutable list, and
allocates an entirely independent copy of that list, made of fresh cells. This function is specified
as shown below. The precondition describes the input list as Mlist𝐿𝑝, and the postcondition
describes the output heap asMlist𝐿𝑝 ⋆ Mlist𝐿𝑝′, where 𝑝′ denotes the address of the new list.

Example 3.2.2 (Specification of a copy function for mutable lists)

{Mlist𝐿𝑝} (mcopy 𝑝) {𝜆𝑟. ∃∃𝑝′. [𝑟 = 𝑝′] ⋆ (Mlist𝐿𝑝) ⋆ (Mlist𝐿𝑝′)}
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The separating conjunction from the postcondition asserts that the original list and its copy do not
share any cell: they are entirely disjoint from each other. An implementation may be found in Sec-
tion 10.5. The key steps of that proof are summarized next. Details may be found in [Charguéraud,
2020, Appendix E].

Proof The specification of mcopy is proved by induction on the length of the list 𝐿. If the list 𝐿
is empty, the result 𝑝′ is the null pointer, and Mlist nil 𝑝′ is equivalent to the empty heap predicate.

When the list is nonempty, Mlist𝐿𝑝 unfolds as (𝑝.head →˓ 𝑥) ⋆ (𝑝.tail →˓ 𝑞) ⋆ (Mlist𝐿′ 𝑞). The
induction hypothesis allows to assume the specification to hold for the recursive call of mcopy on the

tail of the list, with the precondition Mlist𝐿′ 𝑞. Over the scope of that call, the frame rule is used to

put aside the head cell, described by (𝑝.head →˓ 𝑥) ⋆ (𝑝.tail →˓ 𝑞). Let 𝑞′ denote the result of the
recursive call, and let 𝑝′ denote the address of a freshly-allocated list cell storing the value 𝑥 and the

tail pointer 𝑞′. The final heap is described by:

(𝑝.head →˓ 𝑥) ⋆ (𝑝.tail →˓ 𝑞) ⋆ (Mlist𝐿′ 𝑞) ⋆ (𝑝′.head →˓ 𝑥) ⋆ (𝑝′.tail →˓ 𝑞′) ⋆ (Mlist𝐿′ 𝑞′)

which may be folded to (Mlist𝐿𝑝) ⋆ (Mlist𝐿𝑝′), matching the claimed postcondition.

In the above proof, the frame rule enables reasoning about a recursive call independently of
all the cells that have already been traversed by the outer recursive calls to mcopy. Without the
frame rule, one would have to describe the full list at an arbitrary point during the recursion.
Doing so requires describing the list segment made of cells ranging from the head of the initial
list up to the pointer on which the current recursive call is made. Stating an invariant involving
list segments is doable, yet involves more complex definitions and assertions. More generally, for
a program manipulating tree-shaped data structures, the frame rule saves the need to describe a
tree with a subtree carved out of it, thereby saving a significant amount of proof effort.

Verification of termination via proofs by induction. The previous example shows the proof
of a recursive function. A key aspect of this proof is that the specification is proved by induction,
using Coq’s support for well-founded induction. More precisely, we aim to establish a specification
for a mutable linked list whose logical model is the Coq list 𝐿. By induction principle, we may
assume this specification to hold for any mutable linked list whose logical model is a sublist of
𝐿. More generally, the CFML framework manipulates total-correctness triples. Hence, when one
establishes a triple for a term, one establishes in particular a proof of termination for that term.

One may wonder what happens if trying to establish a triple for a term that diverges. Consider
for example the definition let rec f x = f x. The term f 0 diverges. To establish a triple for the
term f 0, one would need to establish a triple for its body, which is also f 0. Such a hypothesis
may only come from an induction principle, yet there exist no measure or well-founded relation
for which the argument 0 could be viewed as smaller than itself. Thus, a user would get stuck
trying to establish a triple for f 0. More generally, by virtue of the soundness of the framework,
no total-correctness triple can be established for a term that diverges.

3.3 Reasoning about Deallocation

Consider a programming language with explicit deallocation. For such a language, proofs in Sep-
aration Logic guarantee two essential properties: (1) a piece of data is never accessed after its
deallocation, and (2) every allocated piece of data is eventually deallocated.

The operation free 𝑝 deallocates the reference cell at address 𝑝. This deallocation operation
is specified through the following triple, whose precondition describes the cell to be freed by the
predicate 𝑝 →˓ 𝑣, and whose postcondition is empty, reflecting the loss of that cell.
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Definition 3.3.1 (Specification of the free operation)

{𝑝 →˓ 𝑣} (free 𝑝) {𝜆_. [ ]}

There is no way to get back the predicate 𝑝 →˓ 𝑣 once it is given away. Because 𝑝 →˓ 𝑣 is required
in the precondition of all operations involving the reference 𝑝, Separation Logic ensures that no
operations on 𝑝 can be performed after its deallocation.

The next examples show how to specify the deallocation of a list cell and of a full list.

Example 3.3.1 (Deallocation of a list cell) The function mfree_cell deallocates a list cell.

{(𝑝.head →˓ 𝑥) ⋆ (𝑝.tail →˓ 𝑞)} (mfree_cell 𝑝) {𝜆_. [ ]}.

Example 3.3.2 (Deallocation of a mutable list) The function mfree_list deallocates a list

by recursively deallocating each of its cells. Its implementation is shown below (using ML syntax,

even though the language considered features null pointers and explicit deallocation).

let rec mfree_list p =
if p != null then begin

let q = p.tail in
mfree_cell p;
mfree_list q

end

The specification of mfree_list admits the precondition Mlist𝐿𝑝, describing the mutable list to

be freed, and admits an empty postcondition, reflecting the loss of that list.

{Mlist𝐿𝑝} (mfree_list 𝑝) {𝜆_. [ ]}

Remark (Languages with implicit garbage collection) For languages equippedwith a garbage-

collector, Separation Logic can be adapted to allow freely discarding heap predicates (see Chapter 11).



Chapter 4

Heap Predicates

4.1 Representation of Heaps

Let loc denote the type of locations, i.e., of memory addresses. This type may be realized using,
e.g., natural numbers. Let val denote the type of values. The grammar of values depends on the
programming language. Its formalization is postponed to Chapter 6.

A heap (i.e., a piece of memory state) may be represented as a finite map from locations to val-
ues. The finiteness property is required to ensure that fresh locations always exist. Let fmap𝐴𝐵
denote the type of finite maps from a type 𝐴 to an (inhabited) type 𝐵.

Definition 4.1.1 (Representation of heaps) The type state is defined as “fmap loc val”.

Thereafter, let ℎ denote a heap, that is, a piece of state. Let ℎ1 ⊥ ℎ2 assert that two heaps
have disjoint domains, i.e., that no location belongs both to the domain of ℎ1 and to that of ℎ2.
Let ℎ1 ⊎ ℎ2 denote the union of two disjoint heaps. The union operation is unspecified when
applied to non-disjoint arguments; in other words, it may return arbitrary results for arguments
with overlapping domains.

4.2 Core Heap Predicates

A heap predicate, written 𝐻 , is a predicate that asserts properties of a heap.

Definition 4.2.1 (Heap predicates) A heap predicate is a predicate of type: state→ Prop.

The core heap predicate operators, informally introduced in Section 2.2, are realized as predi-
cates over heaps, as shown below and explained next.

Definition 4.2.2 (Core heap predicates)

Operator Notation Definition
empty predicate [ ] 𝜆ℎ. ℎ = ∅
pure fact [𝑃 ] 𝜆ℎ. ℎ = ∅ ∧ 𝑃
singleton 𝑝 ↦→ 𝑣 𝜆ℎ. ℎ = (𝑝→ 𝑣) ∧ 𝑝 ̸= null
separating conjunction 𝐻1 ⋆ 𝐻2 𝜆ℎ. ∃ℎ1ℎ2. ℎ1 ⊥ ℎ2 ∧ ℎ = ℎ1 ⊎ ℎ2 ∧ 𝐻1 ℎ1 ∧ 𝐻2 ℎ2
existential quantifier ∃∃𝑥.𝐻 𝜆ℎ. ∃𝑥. 𝐻 ℎ
universal quantifier ∀∀𝑥.𝐻 𝜆ℎ. ∀𝑥. 𝐻 ℎ

17
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The definitions for the core heap predicates all take the form 𝜆ℎ. 𝑃 , where 𝑃 denotes a propo-
sition. The empty predicate, written [ ], characterizes a heap equal to the empty heap, written ∅.
The pure predicate, written [𝑃 ], also characterizes an empty heap, and moreover asserts that
the proposition 𝑃 is true. The singleton heap predicate, written 𝑝 ↦→ 𝑣, characterizes a heap
described by a singleton map, written 𝑝 → 𝑣, which binds 𝑝 to 𝑣. This predicate embeds the
property 𝑝 ̸= null, capturing the invariant that no data may be allocated at the null location. The
separating conjunction, written 𝐻1 ⋆ 𝐻2, characterizes a heap ℎ that decomposes as the disjoint
union of two heaps ℎ1 and ℎ2, with ℎ1 satisfying 𝐻1 and ℎ2 satisfying 𝐻2. The existential and
universal quantifiers of Separation Logic allow quantifying entities at the level of heap predicates
(state → Prop), in contrast to the standard Coq quantifiers that operate at the level of proposi-
tions (Prop). Note that the quantifiers ∃∃𝑥.𝐻 and ∀∀𝑥.𝐻 may quantify values of any type, without
restriction. In particular, they allow quantifying over heap predicates or proof terms.

Remark (Encodings between the empty and the pure heap predicate) In Coq, the pure heap

predicate [𝑃 ] can be encoded as “∃∃(𝑝 : 𝑃 ). [ ]”, that is, by quantifying over the existence of a proof

term 𝑝 for the proposition 𝑃 . Note that the empty heap predicate [ ] is equivalent to [True].

4.3 Other Heap Predicates

Traditional presentations of Separation Logic include four additional operators, ⊥, ⊤, ∨∨, and ∧∧.
These four operators may be encoded in terms of the ones from Definition 4.2.2, with the help
of Coq’s conditional construct. The table below presents the relevant encodings, in addition to
providing direct definitions of these operators as predicates over heaps.

Operator Notation Definition Encoding
bottom ⊥ 𝜆ℎ. False [False]
top ⊤ 𝜆ℎ. True ∃∃(𝐻 : state→ Prop). 𝐻
disjunction 𝐻1 ∨∨𝐻2 𝜆ℎ. (𝐻1 ℎ ∨ 𝐻2 ℎ) ∃∃(𝑏 : bool). If 𝑏 then 𝐻1 else 𝐻2

non-separating conjunction 𝐻1 ∧∧𝐻2 𝜆ℎ. (𝐻1 ℎ ∧ 𝐻2 ℎ) ∀∀(𝑏 : bool). If 𝑏 then 𝐻1 else 𝐻2

Definition 4.3.1 (Representation predicate for lists defined with disjunction) The represen-

tation predicate for lists introduced in Definition 3.1.1 can be reformulated using the disjunction op-

erator instead of relying on pattern-matching. The corresponding definition, which may be useful if

the host logic does not feature a pattern-matching construct, is as follows.

Mlist𝐿𝑝 ≡
(︀
[𝑝 = null] ⋆ [𝐿 = nil]

)︀
∨∨
(︀
[𝑝 ̸= null] ⋆ ∃∃𝑥𝐿′𝑞. [𝐿 = 𝑥 :: 𝐿′] ⋆ (𝑝.head →˓ 𝑥) ⋆ (𝑝.tail →˓ 𝑞) ⋆ (Mlist𝐿′ 𝑞)

)︀



Chapter 5

Entailment

5.1 Definition and Properties of Entailment

The entailment relation, written 𝐻1 ⊢ 𝐻2, asserts that any heap satisfying 𝐻1 also satisfies 𝐻2.

Definition 5.1.1 (Entailment relation)

𝐻1 ⊢ 𝐻2 ≡ ∀ℎ. 𝐻1 ℎ ⇒ 𝐻2 ℎ

Entailment is used to state reasoning rules and to state properties of the heap predicates operators.
The entailment relation defines an order relation on the set of heap predicates.

Lemma 5.1.1 (Entailment defines an order on the set of heap predicates)

himpl-refl

𝐻 ⊢ 𝐻

himpl-trans

𝐻1 ⊢ 𝐻2 𝐻2 ⊢ 𝐻3

𝐻1 ⊢ 𝐻3

himpl-antisym

𝐻1 ⊢ 𝐻2 𝐻2 ⊢ 𝐻1

𝐻1 = 𝐻2

The antisymmetry property concludes on an equality between two heap predicates. To es-
tablish such an equality, it is necessary to exploit the principle of predicate extensionality. This
principle asserts that if two predicates 𝑃 and 𝑃 ′, when applied to any argument 𝑥, yield logically
equivalent propositions, then these two predicates can be considered equal in the logic.1 The anti-
symmetry property plays a critical role for stating the key properties of Separation Logic operators
in the form of equalities, as detailed next.

The useful properties of entailment involving pure facts and quantifiers appear in Figure 5.1.
The application of a number of reasoning rules for entailment can be automated by means of a tac-
tic. One such tactic, called xsimpl, is illustrated in Section 10.5, and is specified in [Charguéraud,
2020, Appendix G]. Other properties may also be derived, such as ([𝑃1] ⋆ [𝑃2]) = [𝑃1 ∧ 𝑃2]. Yet,
when a simplification tactic is available, one does not need to state such properties explicitly.

1In proof assistants such as HOL or Isabelle/HOL, extensionality is built-in. In Coq, it needs to be either axiom-
atized, or derived from two more fundamental extensionality axioms: extensionality for functions and extensionality
for propositions. These standard axioms are formally stated as follows.

predicate-extensionality: ∀𝐴. ∀(𝑃 𝑃 ′ : 𝐴 → Prop). (𝑃 𝑥 ⇔ 𝑃 ′ 𝑥) ⇒ (𝑃 = 𝑃 ′)
functional-extensionality: ∀𝐴𝐵. ∀(𝑓𝑓 ′ : 𝐴 → 𝐵). (𝑓 𝑥 = 𝑓 ′ 𝑥) ⇒ (𝑓 = 𝑓 ′)
propositional-extensionality: ∀(𝑃 𝑃 ′ : Prop). (𝑃 ⇔ 𝑃 ′) ⇒ (𝑃 = 𝑃 ′)

In practice, we take functional-extensionality and propositional-extensionality as axioms in Coq, then derive
predicate-extensionality from these two.

19



CHAPTER 5. ENTAILMENT 20

pure-l
𝑃 ⇒ (𝐻 ⊢ 𝐻 ′)

([𝑃 ] ⋆ 𝐻) ⊢ 𝐻 ′

exists-l
∀𝑥. (𝐻 ⊢ 𝐻 ′)

(∃∃𝑥.𝐻) ⊢ 𝐻 ′

forall-l
([𝑎/𝑥]𝐻) ⊢ 𝐻 ′

(∀∀𝑥.𝐻) ⊢ 𝐻 ′

exists-monotone
∀𝑥. (𝐻 ⊢ 𝐻 ′)

(∃∃𝑥.𝐻) ⊢ (∃∃𝑥.𝐻 ′)

pure-r
(𝐻 ⊢ 𝐻 ′) 𝑃

𝐻 ⊢ (𝐻 ′ ⋆ [𝑃 ])

exists-r
𝐻 ⊢ ([𝑎/𝑥]𝐻 ′)

𝐻 ⊢ (∃∃𝑥.𝐻 ′)

forall-r
∀𝑥. (𝐻 ⊢ 𝐻 ′)

𝐻 ⊢ (∀∀𝑥.𝐻 ′)

forall-monotone
∀𝑥. (𝐻 ⊢ 𝐻 ′)

(∀∀𝑥.𝐻) ⊢ (∀∀𝑥.𝐻 ′)

Figure 5.1: Useful properties for pure facts and quantifiers, with respect to entailment.

5.2 Properties of Separating Conjunction

There are 6 fundamental properties of the separating conjunction operator. The first three capture
the fact that (⋆, [ ]) forms a commutative monoid: the star is associative, commutative, and admits
the empty heap predicate as neutral element. The next two describe how quantifiers may be
extruded from arguments of the star operator. The extraction rule star-exists is stated using an
equality because the entailment relation holds in both directions. On the contrary, the extraction
rule star-forall is stated using a simple entailment relation because the reciprocal entailment
does not hold—for a counterexample, consider the case where the type of 𝑥 is inhabited. The last
rule, star-monotone-r, describes a monotonicity property; it is explained afterwards.

Lemma 5.2.1 (Fundamental properties of the star)

star-assoc: (𝐻1 ⋆ 𝐻2) ⋆ 𝐻3 = 𝐻1 ⋆ (𝐻2 ⋆ 𝐻3)
star-comm: 𝐻1 ⋆ 𝐻2 = 𝐻2 ⋆ 𝐻1

star-neutral-r: 𝐻 ⋆ [ ] = 𝐻
star-exists: (∃∃𝑥.𝐻1) ⋆ 𝐻2 = ∃∃𝑥. (𝐻1 ⋆ 𝐻2) (if 𝑥 /∈ 𝐻2)
star-forall: (∀∀𝑥.𝐻1) ⋆ 𝐻2 ⊢ ∀∀𝑥. (𝐻1 ⋆ 𝐻2) (if 𝑥 /∈ 𝐻2)

star-monotone-r:

𝐻1 ⊢ 𝐻 ′
1

𝐻1 ⋆ 𝐻2 ⊢ 𝐻 ′
1 ⋆ 𝐻2

Themonotonicity rule star-monotone-r can be read from bottom to top: when facing a proof
obligation of the form𝐻1 ⋆𝐻2 ⊢ 𝐻 ′

1 ⋆𝐻2, one may cancel out𝐻2 on both sides, leaving the proof
obligation 𝐻1 ⊢ 𝐻 ′

1.

Remark (Symmetric version of the monotonicity rule) The monotonicity rule may be equiv-

alently presented in its symmetric form, stated below.

𝐻1 ⊢ 𝐻 ′
1 𝐻2 ⊢ 𝐻 ′

2

𝐻1 ⋆ 𝐻2 ⊢ 𝐻 ′
1 ⋆ 𝐻

′
2

star-monotone

5.3 Entailment for Extracting Pure Facts

The entailment relation may be employed to express how a specific piece of information can be
extracted from a given heap predicate. For example, from 𝑝 →˓ 𝑣, one can extract the information
𝑝 ̸= null. Likewise, from a heap predicate of the form 𝑝 →˓ 𝑣1⋆𝑝 →˓ 𝑣2, where the same location 𝑝
is described twice, one can derive a contradiction, because the separating conjunction asserts
disjointness. These two results are formalized as follows.
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Lemma 5.3.1 (Properties of the singleton heap predicate)

single-not-null: (𝑝 →˓ 𝑣) ⊢ (𝑝 →˓ 𝑣) ⋆ [𝑝 ̸= null]
single-conflict: (𝑝 →˓ 𝑣1) ⋆ (𝑝 →˓ 𝑣2) ⊢ [False]

5.4 Entailment between Postconditions

In the imperative 𝜆-calculus considered in this manuscript and formalized further on (Section 6.1),
a term evaluates to a value. A postcondition thus describes both an output value and an output
state.

Definition 5.4.1 (Type of postconditions) A postcondition has type: val→ state→ Prop.

Thereafter, we let 𝑄 range over postconditions. To obtain concise statements of the reasoning
rules, it is convenient to extend separating conjunction and entailment to operate on postcondi-
tions. To that end, we generalize 𝐻 ⋆ 𝐻 ′ and 𝐻 ⊢ 𝐻 ′ by introducing the predicate 𝑄 .⋆ 𝐻 ′ and
the judgment 𝑄 .⊢𝑄′, written with a dot to suggest pointwise extension. These two predicates are
formalized next.

Definition 5.4.2 (Separating conjunction between a postcondition and a heap predicate)

𝑄 .⋆ 𝐻 ≡ 𝜆𝑣. (𝑄𝑣 ⋆ 𝐻)

This operator appears for example in the statement of the frame rule (recall Section 2.1).
The entailment relation for postconditions is a pointwise extension of the entailment relation

for heap predicates: 𝑄 entails 𝑄′ if and only if, for any value 𝑣, the heap predicate 𝑄𝑣 entails
𝑄′ 𝑣.

Definition 5.4.3 (Entailment between postconditions)

𝑄 .⊢𝑄′ ≡ ∀𝑣. (𝑄𝑣 ⊢ 𝑄′ 𝑣)

This entailment defines an order on postconditions. It appears for example in the statement of the
consequence rule, which allows strengthening the precondition and weakening the postcondition.

𝐻 ⊢ 𝐻 ′ {𝐻 ′} 𝑡 {𝑄′} 𝑄′ .⊢𝑄
{𝐻} 𝑡 {𝑄}

conseqence



Chapter 6

Definition of Triples

The definition of triples depends on the details of the programming language. Section 6.1 presents
the syntax of embedded programs. Section 6.2 presents the standard big-step semantics. As we
argue, the standard big-step semantics is not the most well-suited for capturing safety and ter-
mination of nondeterministic programs. Section 6.3 presents a variant of the big-step semantics
called the omni-big-step semantics, and Section 6.4 presents its key properties. Section 6.5 presents
the definition of triples in terms of the omni-big-step semantics. Section 6.6 presents an alternative
definition of triples directly in terms of the big-step semantics, but only applicable to languages
that are deterministic (up to the choice of memory allocations).

6.1 Syntax of Embedded Programs

We consider an imperative call-by-value 𝜆-calculus. The syntactic categories are primitive func-
tions 𝜋, values 𝑣, and terms 𝑡. The grammar of values is intended to denote closed values, that is,
valueswithout occurrences of free variables. This design choice leads to a simple term-substitution
function, which may be defined as the identity over all values.

The primitive operations fall in two categories. First, they include the state-manipulating op-
erations for allocating, reading, writing, and deallocating references. Second, they include Boolean
and arithmetic operations. For brevity, we include only addition, division, and random number
generation. The nondeterministic operation rand𝑛, where 𝑛 is a positive integer, evaluates to any
integer in the range [0, 𝑛).

The values include the unit value tt , boolean literals 𝑏, integer literals 𝑛, memory locations 𝑝,
primitive operations 𝜋, and recursive functions 𝜇̂𝑓.𝜆𝑥.𝑡. The latter construct is written with a hat
symbol to denote the fact this value is closed.

The terms include variables, values, function invocation, sequence, let-bindings, conditionals,
and function definitions. The latter construct is written 𝜇𝑓.𝜆𝑥.𝑡, this time without a hat symbol.

Definition 6.1.1 (Syntax of the language)

𝜋 := ref | get | set | free | (+) | (÷) | rand
𝑣 := tt | 𝑏 | 𝑛 | 𝑝 | 𝜋 | 𝜇̂𝑓.𝜆𝑥.𝑡
𝑡 := 𝑣 | 𝑥 | (𝑡 𝑡) | let𝑥 = 𝑡 in 𝑡 | if 𝑡 then 𝑡 else 𝑡 | 𝜇𝑓.𝜆𝑥.𝑡

A non-recursive function 𝜆𝑥. 𝑡 may be viewed as a recursive function 𝜇𝑓.𝜆𝑥.𝑡 with a dummy
name 𝑓 . Likewise, a sequence (𝑡1 ; 𝑡2) may be viewed as a let-binding of the form let𝑥 = 𝑡1 in 𝑡2
for a dummy name 𝑥. Our Coq formalization actually includes these two constructs explicitly

22
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in the grammar to avoid unnecessary complications associated with the elimination of dummy
variables.

Restriction to A-normal form. Although our syntax technically allows for arbitrary terms,
for simplicity we assume in this chapter terms to be written in “administrative normal form” (A-
normal form). In A-normal form, “let𝑥 = 𝑡1 in 𝑡2” is the sole sequencing construct: no sequencing
is implicit in any other construct. For instance, the conditional construct “if 𝑡0 then 𝑡1 else 𝑡2”,
where 𝑡0 is not a value, must be encoded as “let𝑥 = 𝑡0 in if 𝑥 then 𝑡1 else 𝑡2”. This presentation
is intended to simplify the statement of the evaluation rules and reasoning rules. Note that many
practical program verification tools perform code A-normalization as a preliminary step. Never-
theless, in Section 14.2, we present the bind rule, which allows to reason about a subterm in an
evaluation context, and thereby handle programs that are not in A-normal form.

Details on the syntax of function definitions. In the grammar of terms, 𝜇𝑓.𝜆𝑥.𝑡 denotes
a function definition, where the body 𝑡 may refer to free variables. In the grammar of values,
𝜇̂𝑓.𝜆𝑥.𝑡 denotes a closure, that is, a closed recursive function, without any free variable. The
distinction between functions and closed functions usually does not appear in research papers.
It appears, however, naturally in mechanized formalization. We define the type val for closed
values in mutual recursion with the type trm for terms.
Inductive val : Type :=
| val_int : int→val
| val_fix : var→var→trm→val
...

with trm : Type :=
| trm_val : val→trm
| trm_var : var→trm
| trm_fix : var→var→trm→trm
...

The fundamental benefit of considering a grammar for closed values is that the substitution
operation needs not traverse values.
Fixpoint subst (y:var) (w:val) (t:trm) : trm :=
match t with
| trm_val v⇒trm_val v (* no traversal of v *)
| trm_var x⇒if var_eq x y then trm_val w else t
| trm_fix f x t1⇒trm_fix f x (if var_eq y f || var_eq y x

then t1 else subst y w t1)
...

If values were allowed to contain free variables, we would indeed save the need to distinguish
between 𝜇𝑓.𝜆𝑥.𝑡 and 𝜇̂𝑓.𝜆𝑥.𝑡 (a.k.a. trm_fix and val_fix). However, we would need to carry
around invariants of the form “the function 𝑓 is closed”. To see why, assume that 𝑓 is a function
defined as 𝜇𝑓.𝜆𝑥.𝑡 and for which a specification triple has already been established, and consider
the example program let 𝑎 = 3 in 𝑓 𝑎. To reason about this program, one needs to reason about
the term ([3/𝑎] 𝑓) ([3/𝑎] 𝑎). One naturally expects this term to simplify to 𝑓 3. Yet, the equality
[3/𝑎] 𝑓 = 𝑓 only holds under the knowledge that 𝑓 is a closed value.

Checking that 𝑓 is closed may be easily verified by a syntactic operation, but only if the def-
inition of 𝑓 is available—this is not the case in the presence of abstraction barriers. For example,
if 𝑓 is a function coming from a module taken as argument of a functor, then the definition of
𝑓 is not available. In such case, the interface that provides 𝑓 must be accompanied by a lemma
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big-val

𝑣/𝑠 ⇓ 𝑣/𝑠

big-fix

(𝜇𝑓.𝜆𝑥.𝑡)/𝑠 ⇓ (𝜇̂𝑓.𝜆𝑥.𝑡)/𝑠

big-app
𝑣1 = 𝜇̂𝑓.𝜆𝑥.𝑡 ([𝑣2/𝑥] [𝑣1/𝑓 ] 𝑡)/𝑠 ⇓ 𝑣′/𝑠′

(𝑣1 𝑣2)/𝑠 ⇓ 𝑣′/𝑠′

big-let
𝑡1/𝑠 ⇓ 𝑣1/𝑠

′ ([𝑣1/𝑥] 𝑡2)/𝑠
′ ⇓ 𝑣/𝑠′′

(let𝑥 = 𝑡1 in 𝑡2)/𝑠 ⇓ 𝑣/𝑠′′

big-if
If 𝑏 then (𝑡1/𝑠 ⇓ 𝑣′/𝑠′) else (𝑡2/𝑠 ⇓ 𝑣′/𝑠′)

(if 𝑏 then 𝑡1 else 𝑡2)/𝑠 ⇓ 𝑣′/𝑠′

big-ref
𝑝 /∈ dom 𝑠

(ref 𝑣)/𝑠 ⇓ 𝑝/(𝑠[𝑝 := 𝑣])

big-free
𝑝 ∈ dom 𝑠

(free 𝑝)/𝑠 ⇓ tt/(𝑠∖ 𝑝)

big-get
𝑝 ∈ dom 𝑠

(get 𝑝)/𝑠 ⇓ (𝑠[𝑝])/𝑠

big-set
𝑝 ∈ dom 𝑠

(set 𝑝 𝑣)/𝑠 ⇓ tt/(𝑠[𝑝 := 𝑣])

big-add

((+)𝑛1 𝑛2)/𝑠 ⇓ (𝑛1 + 𝑛2)/𝑠

big-div
𝑛2 ̸= 0

((÷)𝑛1 𝑛2)/𝑠 ⇓ (𝑛1 ÷ 𝑛2)/𝑠

big-rand
0 ≤ 𝑚 < 𝑛

(rand𝑛)/𝑠 ⇓ 𝑚/𝑠

Figure 6.1: Evaluation rules in big-step style

asserting that 𝑓 is a closed value. Stating and exploiting such lemmas would induce a significant
overhead in practice. We avoid the issue altogether by considering a grammar for closed values,
associating to the type val the property that its inhabitants are closed values.

A second motivation for closed values is performance of proof-checking. If we do not dis-
tinguish between 𝜇𝑓.𝜆𝑥.𝑡 and 𝜇̂𝑓.𝜆𝑥.𝑡, then the syntactic check performed to establish that a
function definition is a closed value would need to traversing not only the body of that function,
but also the body of all the functions that it refers to. Likewise, the substitution function would
need to traverse in depth through all values, and would need to recurse through functions that
appear inside those values, and through values and functions that appear inside those functions.

6.2 Standard Big-Step Semantics

Thereafter, we use the meta-variable 𝑠 to denote a variable of type state that corresponds to a full
memory state at a given point in the execution, in contrast to the meta-variable ℎ, which denotes
a heap that may correspond to only a piece of the memory state.

The semantics of the language is described by the big-step judgment 𝑡/𝑠 ⇓ 𝑣/𝑠′, which asserts
that the term 𝑡, starting from the state 𝑠, evaluates to the value 𝑣 and the final state 𝑠′.

Definition 6.2.1 (Big-step semantics of the language) The evaluation rules appear in Figure 6.1.

The rules are standard. A value evaluates to itself. Likewise, a function evaluates to itself. The
evaluation rules for function calls and let-bindings involve the standard (capture-avoiding) substi-
tution operation: [𝑣/𝑥] 𝑡 denotes the substitution of 𝑥 by 𝑣 throughout the term 𝑡. The evaluation
rule for conditionals is stated concisely using Coq’s conditional construct. The primitive opera-
tions on reference cells are described using operations on finite maps: dom 𝑠 denotes the domain
of the state 𝑠, the operation 𝑠[𝑝] returns the value associated with 𝑝, the operation 𝑠∖ 𝑝 removes
the binding on 𝑝, and the operation 𝑠[𝑝 := 𝑣] sets or updates a binding from 𝑝 to 𝑣.
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omni-big-val
(𝑣, 𝑠) ∈ 𝑄

𝑣/𝑠 ⇓ 𝑄

omni-big-let
𝑡1/𝑠 ⇓ 𝑄1

(︀
∀(𝑣′, 𝑠′) ∈ 𝑄1. ([𝑣′/𝑥] 𝑡2)/𝑠

′ ⇓ 𝑄
)︀

(let𝑥 = 𝑡1 in 𝑡2)/𝑠 ⇓ 𝑄

omni-big-app
𝑣1 = 𝜇𝑓.𝜆𝑥.𝑡1

([𝑣1/𝑓 ] [𝑣2/𝑥] 𝑡1)/𝑠 ⇓ 𝑄

(𝑣1 𝑣2)/𝑠 ⇓ 𝑄

omni-big-if
If 𝑏 then (𝑡1/𝑠 ⇓ 𝑄) else (𝑡2/𝑠 ⇓ 𝑄)

(if 𝑏 then 𝑡1 else 𝑡2)/𝑠 ⇓ 𝑄

omni-big-add
(𝑛1 + 𝑛2, 𝑠) ∈ 𝑄

((+)𝑛1 𝑛2)/𝑠 ⇓ 𝑄

omni-big-div
𝑛2 ̸= 0 (𝑛1 ÷ 𝑛2, 𝑠) ∈ 𝑄

((÷)𝑛1 𝑛2)/𝑠 ⇓ 𝑄

omni-big-rand
𝑛 > 0

(︀
∀𝑚. 0 ≤ 𝑚 < 𝑛 ⇒ (𝑚, 𝑠) ∈ 𝑄

)︀
(rand𝑛)/𝑠 ⇓ 𝑄

omni-big-ref
∀𝑝 /∈ dom 𝑠. (𝑝, 𝑠[𝑝 := 𝑣]) ∈ 𝑄

(ref 𝑣)/𝑠 ⇓ 𝑄

omni-big-free
𝑝 ∈ dom 𝑠 (tt , 𝑠∖ 𝑝) ∈ 𝑄

(free 𝑝)/𝑠 ⇓ 𝑄

omni-big-get
𝑝 ∈ dom 𝑠 (𝑠[𝑝], 𝑠) ∈ 𝑄

(get 𝑝)/𝑠 ⇓ 𝑄

omni-big-set
𝑝 ∈ dom 𝑠 (tt , 𝑠[𝑝 := 𝑣]) ∈ 𝑄

(set 𝑝 𝑣)/𝑠 ⇓ 𝑄

omni-big-bind
¬ value 𝑡 𝑡/𝑠 ⇓ 𝑄1

(︀
∀𝑣𝑠′. 𝑄1 𝑣 𝑠

′ ⇒ 𝐸[𝑣] / 𝑠′ ⇓ 𝑄
)︀

𝐸[𝑡] / 𝑠 ⇓ 𝑄

Figure 6.2: Evaluation rules in omni-big-step style

Observe that the rules of Figure 6.1 define a semantics that is deterministic up to the choice of

memory locations.

6.3 Definition of Omni-Big-Step Semantics

The omni-big-step semantics judgment is written 𝑡/𝑠 ⇓ 𝑄. It asserts that all possible evaluations
starting from the configuration 𝑡/𝑠 reach final configurations that belong to the set 𝑄. Whereas
the standard big-step judgment 𝑡/𝑠 ⇓ 𝑣/𝑠′ describes the behavior of one possible execution of
𝑡/𝑠, the omni-big-step judgment describes the behavior of all possible executions of 𝑡/𝑠. Omni-
big-step semantics appear to have first appear in Schäfer et al. [2016]. The use of such semantics
in the context of Separation Logic appears in Charguéraud et al. [2022].

Definition 6.3.1 (Omni-big-step semantics of the language) The evaluation rules in Figure 6.2

define the inductive judgment 𝑡/𝑠 ⇓ 𝑄.

The omni-big-step rules capture the same semantics as the standard big-step semantics from Fig-
ure 6.1. [Charguéraud et al., 2022, §2.2].

The set 𝑄 that appears in 𝑡/𝑠 ⇓ 𝑄 corresponds to an overapproximation of the set of final
configurations: it may contain configurations that are not actually reachable by executing 𝑡/𝑠. (A
discussion of why to consider an overapproximation of the set of results as opposed to an exact

set of results may be found in [Charguéraud et al., 2022, §2.3].)
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The set𝑄 contains pairs made of values and states. Such a set can be described equivalently by
a predicate of type “val→ state→ Prop” or by a predicate of type “(val× state)→ Prop”. In the
beginning of this chapter, to present definitions in the most idiomatic style, we use set-theoretic
notation such as (𝑣, 𝑠) ∈ 𝑄 for stating semantics and typing rules. We then use the logic-oriented
notation 𝑄𝑣 𝑠 for discussing applications of this judgment to program logics.

We next describe the key evaluation rules of Figure 6.2.
The rule for values, omni-big-val, asserts that a final configuration 𝑣/𝑠 satisfies the postcon-

dition 𝑄 if this configuration belongs to the set 𝑄.
The let-binding rule, omni-big-let, ensures that all possible evaluations of an expression

let𝑥 = 𝑡1 in 𝑡2 in state 𝑠 terminate and satisfy the postcondition 𝑄. First, we need all possible
evaluations of 𝑡1 to terminate. Let 𝑄1 denote (an overapproximation of) the set of results that 𝑡1
may reach, as captured by the first premise 𝑡1/𝑠 ⇓ 𝑄1. One can think of 𝑄1 as the type of 𝑡1, in
a very precise type system where any set of values can be treated as a type. The second premise
asserts that, for any configuration 𝑣′/𝑠′ in that set𝑄1, we need all possible evaluations of the term
[𝑣′/𝑥] 𝑡2 in state 𝑠′ to satisfy the postcondition𝑄. The rule omni-big-bind generalizes the let-rule
to arbitrary evaluation contexts.

The evaluation rule omni-big-app explains how to evaluate a beta-redex by evaluating the
result of the relevant substitution. Omnisemantics can be understood as an inductively defined
weakest-precondition semantics (or more generally, predicate-transformer semantics) that does
not involve invariants for recursion (or loops), but instead uses unrolling rules like in traditional
small-step and big-step semantics.

The rule for conditional, omni-big-if, is stated using a Coq if-statement, written using a cap-
italized “If” keyword. Alternatively, it could be stated using the rule omni-big-if’ shown below,
or using the pair of rules omni-big-if-true and omni-big-if-false.

omni-big-if’
(If 𝑏 then 𝑡1 else 𝑡2)/𝑠 ⇓ 𝑄

(if 𝑏 then 𝑡1 else 𝑡2)/𝑠 ⇓ 𝑄

omni-big-if-true
𝑡1/𝑠 ⇓ 𝑄

(if true then 𝑡1 else 𝑡2)/𝑠 ⇓ 𝑄

omni-big-if-false
𝑡2/𝑠 ⇓ 𝑄

(if false then 𝑡1 else 𝑡2)/𝑠 ⇓ 𝑄

The evaluation rule omni-big-add for an addition operation is almost like that of a value: it
asserts that the evaluation of (+)𝑛1 𝑛2 in state 𝑠 satisfies the postcondition 𝑄 if the pair ((𝑛1 +
𝑛2), 𝑠) belongs to the set 𝑄. The rule omni-big-div is similar, only with an additional premise to
disallow division by zero.

The nondeterministic rule omni-big-rand is more interesting. The term rand𝑛 evaluates
safely only if 𝑛 > 0. Under this assumption, its result, named𝑚 in the rule, may be any integer in
the range [0, 𝑛). Thus, to guarantee that every possible evaluation of rand𝑛 in a state 𝑠 produces
a result satisfying the postcondition𝑄, it must be the case that every pair of the form (𝑚, 𝑠) with
𝑚 ∈ [0, 𝑛) belongs to the set 𝑄.

The evaluation rule omni-big-ref, which describes allocation at a nondeterministically cho-
sen, fresh memory address, follows a similar pattern. For every possible new address 𝑝, the pair
made of 𝑝 and the extended state 𝑠[𝑝 := 𝑣] needs to belong to the set 𝑄.

The remaining rules, omni-big-free, omni-big-get and omni-big-set, are deterministic and
follow the same pattern as omni-big-add, only with a side condition 𝑝 ∈ dom 𝑠 to ensure that the
address being manipulated does belong to the domain of the current state.

On the one hand, omni-big-step semantics can be viewed as operational semantics, because
they are not far from traditional operational semantics or executable interpreters. On the other
hand, omni-big-step can be viewed as axiomatic semantics, because they are not far form reasoning
rules. In particular, they directly give a practical, usable definition of a weakest-precondition
judgment, which can be used for verifying concrete programs. The fact that they are both closely
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related to operational semantics and to axiomatic semantics is precisely the strength of omni-big-
step semantics.

6.4 Properties of Omni-Big-Step Semantics

In this section, we discuss key properties of the omni-big-step judgment 𝑡/𝑠 ⇓ 𝑄 that are involved
in the soundness proof of the rules of Separation Logic. For other properties and other applications
of omni-semantics, we refer to Charguéraud et al. [2022]. Recall that the metavariable 𝑄 denotes
an of the set of possible final configurations.

The judgment 𝑡/𝑠 ⇓ 𝑄 is preserved when the postcondition 𝑄 is replaced with a larger set.
In other words, the postcondition can always be weakened, like in Hoare logic.

Lemma 6.4.1 (Consequence property for big-step omnisemantics)

𝑡/𝑠 ⇓ 𝑄 𝑄 ⊆ 𝑄′

𝑡/𝑠 ⇓ 𝑄′ omni-big-conseqence

A fundamental result is that the omni-big-step judgment inherently satisfies the frame prop-
erty. The corresponding lemma captures the preservation of the omni-big-step judgment 𝑡/𝑠1 ⇓
𝑄 when the input state 𝑠1 is extended with a disjoint piece of state 𝑠2.

Lemma 6.4.2 (Frame property for big-step omnisemantics)

𝑡/𝑠1 ⇓ 𝑄 𝑠1 ⊥ 𝑠2

𝑡/(𝑠1 ⊎ 𝑠2) ⇓ (𝑄 .⋆ (𝜆𝑠′. 𝑠′ = 𝑠2))
omni-big-frame

Proof The proof is carried out by induction on the omnisemantics judgment. We next show the two

most interesting cases of the proof: the treatment of an allocation (4 lines of Coq script) and that of a

let-binding (3 lines of Coq script). In each case, we assume 𝑠1 ⊥ 𝑠2.
Case 1: 𝑡 is ref 𝑣. The assumption is (ref 𝑣)/𝑠1 ⇓ 𝑄. It is derived by the rule omni-big-

ref, whose premise is ∀𝑝 /∈ dom 𝑠1. 𝑄 𝑝 (𝑠1[𝑝 := 𝑣]). We need to prove (ref 𝑣)/(𝑠1 ⊎ 𝑠2) ⇓
(𝑄 .⋆ (𝜆𝑠′. 𝑠′ = 𝑠2)). By omni-big-ref, we need to justify: ∀𝑝 /∈ dom (𝑠1 ⊎ 𝑠2). (𝑄 .⋆ (𝜆𝑠′. 𝑠′ =
𝑠2)) 𝑝 ((𝑠1 ⊎ 𝑠2)[𝑝 := 𝑣]). Consider a location 𝑝 not in dom 𝑠1 nor in dom 𝑠2. The predicate (𝑄 .⋆
(𝜆𝑠′. 𝑠′ = 𝑠2)) 𝑝 is equivalent to (𝑄𝑝) ⋆ (𝜆𝑠′. 𝑠′ = 𝑠2). The state update (𝑠1 ⊎ 𝑠2)[𝑝 := 𝑣] is
equivalent to (𝑠1[𝑝 := 𝑣]) ⊎ 𝑠2. Thus, there remains to prove: ((𝑄𝑝) ⋆ (𝜆𝑠′. 𝑠′ = 𝑠2)) ((𝑠1[𝑝 :=
𝑣])⊎𝑠2). By definition of separating conjunction and exploiting (𝑠1[𝑝 := 𝑣]) ⊥ 𝑠2, it suffices to show

𝑄𝑝 (𝑠1[𝑝 := 𝑣]). This fact follows from ∀𝑝 /∈ dom 𝑠1. 𝑄 𝑝 (𝑠1[𝑝 := 𝑣]).
Case 2: 𝑡 is “let𝑥 = 𝑡1 in 𝑡2”. The assumption is 𝑡/𝑠1 ⇓ 𝑄. It is derived by the rule omni-big-

let, whose premises are 𝑡1/𝑠1 ⇓ 𝑄1 and ∀𝑣′𝑠′. 𝑄1 𝑣
′ 𝑠′ ⇒ ([𝑣′/𝑥] 𝑡2)/𝑠

′ ⇓ 𝑄. We need to prove

(let𝑥 = 𝑡1 in 𝑡2)/(𝑠1 ⊎ 𝑠2) ⇓ (𝑄 .⋆ (𝜆𝑠′. 𝑠′ = 𝑠2)). To that end, we invoke omni-big-let. For its

first premise, we prove 𝑡1/(𝑠1 ⊎ 𝑠2) ⇓ (𝑄1 .⋆ (𝜆𝑠′. 𝑠′ = 𝑠2)) by exploiting the induction hypothesis

applied to 𝑡1/𝑠1 ⇓ 𝑄1. For the second premise, we have to prove ∀𝑣′𝑠′′. (𝑄1 .⋆(𝜆𝑠
′. 𝑠′ = 𝑠2)) 𝑣

′ 𝑠′′ ⇒
([𝑣′/𝑥] 𝑡2)/𝑠

′′ ⇓ (𝑄 .⋆ (𝜆𝑠′. 𝑠′ = 𝑠2)). Consider a particular 𝑣′ and 𝑠′′. The assumption (𝑄1 .⋆
(𝜆𝑠′. 𝑠′ = 𝑠2)) 𝑣

′ 𝑠′′ is equivalent to ((𝑄1 𝑣
′) ⋆ (𝜆𝑠′. 𝑠′ = 𝑠2)) 𝑠

′′
. By definition of separating

conjunction, we deduce that 𝑠′′ decomposes as 𝑠′1 ⊎ 𝑠2, with 𝑠′1 ⊥ 𝑠2 and𝑄1 𝑣
′ 𝑠′1, for some 𝑠′1. There

remains to prove ([𝑣′/𝑥] 𝑡2)/(𝑠
′
1 ⊎ 𝑠2) ⇓ (𝑄 .⋆ (𝜆𝑠′. 𝑠′ = 𝑠2)). We first exploit ∀𝑣′𝑠′. 𝑄1 𝑣

′ 𝑠′ ⇒
([𝑣′/𝑥] 𝑡2)/𝑠

′ ⇓ 𝑄, on 𝑄1 𝑣
′ 𝑠′1 to obtain ([𝑣′/𝑥] 𝑡2)/𝑠

′
1 ⇓ 𝑄. We then conclude by applying the

induction hypothesis to the latter judgment. □
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6.5 Separation Logic Triples

Consider a possibly nondeterministic semantics. A total-correctness Hoare triple {𝐻} 𝑡 {𝑄}
asserts that, for any input state 𝑠 satisfying the precondition 𝐻 , every possible execution of 𝑡/𝑠
terminates and satisfies the postcondition 𝑄. This property can be captured using the inductive
omni-big-step judgment as follows.

Definition 6.5.1 (Separation Logic triples in terms of the omni-big-step judgment)

{𝐻} 𝑡 {𝑄} ≡ ∀𝑠. 𝐻 𝑠 ⇒ (𝑡/𝑠 ⇓ 𝑄)

Note that, reciprocally, an omni-big-step judgment may be interpreted as a particular Hoare
triple, featuring a singleton precondition to constrain the input state:(︀

𝑡/𝑠 ⇓ 𝑄
)︀

⇐⇒ {(𝜆𝑠′. 𝑠′ = 𝑠)} 𝑡 {𝑄}.

6.6 Alternative Definition of Triples for Deterministic Languages

An alternative route to defining Separation Logic triples is to use the technique of the baked-in

frame rule [Birkedal et al., 2005], for defining Separation Logic triples in terms of Hoare triples.
A Hoare triple, written HOARE{𝐻} 𝑡 {𝑄}, asserts that in any state 𝑠 satisfying the precondi-

tion 𝐻 , the evaluation of the term 𝑡 terminates and produces output value 𝑣 and output state 𝑠′,
as described by the evaluation judgment 𝑡/𝑠 ⇓ 𝑣/𝑠′. Moreover, the output value and output state
satisfy the postcondition𝑄, in the sense that𝑄𝑣 𝑠′ holds. This definition captures termination: it
defines a total correctness triple.

Definition 6.6.1 (Total correctness Hoare triple)

HOARE{𝐻} 𝑡 {𝑄} ≡ ∀𝑠. 𝐻 𝑠 ⇒ ∃𝑣.∃𝑠′. (𝑡/𝑠 ⇓ 𝑣/𝑠′) ∧ (𝑄𝑣 𝑠′)

Such Hoare triples do not yet give Separation Logic reasoning, because they lack support for
the frame rule (presented in Section 2.1). Let us see why.

Counterexample (The Hoare triples defined above do not satisfy the frame rule)
The big-ref evaluation rule associated with the definition of the big-step judgment asserts that a term

of the form “ref 𝑣” may evaluate to any fresh memory location. Thus, we can prove that, starting from

an empty heap, the program ref 5 returns a specific memory location, say the address number 2. We

are therefore able to establish the triple:
Hoare {[ ]} (ref 5) {𝜆𝑝. [𝑝 = 2] ⋆ (2 →˓ 5)}, where 𝑝 denotes

the address of the fresh location, specified to be equal to 2.
To see why the judgment does not satisfy the frame rule, let us attempt to extend the pre- and the

postcondition of this triple with the heap predicate 2 →˓ 6, which denotes a reference at location 2
storing the value 6. If the frame rule were to hold on Hoare triples, we would be able to derive:

Hoare {2 →˓ 6} (ref 5) {𝜆𝑝. [𝑝 = 2] ⋆ (2 →˓ 5) ⋆ (2 →˓ 6)}. This triple does not hold because,

even though the precondition is satisfiable, and even though the program ref 5 evaluates safely, the

separating conjunction (2 →˓ 5) ⋆ (2 →˓ 6) that appears in the postcondition is equivalent to [False]
by the rule single-conflict (Chapter 5). Hence, we derive a contradiction. □

Whereas a Hoare triple describes the evaluation of a term with respect to the whole memory
state, a Separation Logic triple describes the evaluation of a term with respect to only a fragment
of the memory state. To relate the two concepts, it suffices to quantify over “the rest of the state”,
that is, the part of the state that the evaluation of the term is not concerned with.
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A Separation Logic triple, written {𝐻} 𝑡 {𝑄}, asserts that, for any heap predicate𝐻 ′ describ-
ing the “rest of the state”, the Hoare triple HOARE{𝐻 ⋆ 𝐻 ′} 𝑡 {𝑄 .⋆ 𝐻 ′} holds. This formulation
effectively bakes in the frame rule, by asserting from the very beginning that specifications are
intended to preserve any resource that is not mentioned in the precondition.

Definition 6.6.2 (Total correctness Separation Logic triple)

{𝐻} 𝑡 {𝑄} ≡ ∀𝐻 ′. HOARE{𝐻 ⋆𝐻 ′} 𝑡 {𝑄 .⋆ 𝐻 ′}

To fully grasp the meaning of a Separation Logic triple, it helps to consider an alternative
definition expressed directly with respect to the evaluation judgment. This alternative, provably-
equivalent definition is shown below. It reads as follows: if the input state decomposes as a part ℎ1
that satisfies the precondition𝐻 and a disjoint part ℎ2 that describes the rest of the state, then the
term 𝑡 terminates on a value 𝑣, producing a heapmade of a partℎ′1 and, disjointly, the partℎ2which
was unmodified; moreover, the value 𝑣 and the heap ℎ′1 together satisfy the postcondition 𝑄.

Definition 6.6.3 (Alternative definition of total correctness Separation Logic triples)

{𝐻} 𝑡 {𝑄} ≡ ∀ℎ1.∀ℎ2.
ß

𝐻 ℎ1
ℎ1 ⊥ ℎ2

⇒ ∃𝑣.∃ℎ′1.

⎧⎨⎩
ℎ′1 ⊥ ℎ2
𝑡/(ℎ1 ⊎ ℎ2) ⇓ 𝑣/(ℎ′1 ⊎ ℎ2)
𝑄𝑣 ℎ′1

The two definitions of triples shown above are appropriate for semantics that are deterministic,
or deterministic up to the choice of memory locations.



Chapter 7

Reasoning Rules

The reasoning rules of Separation Logic fall in three categories. Section 7.1 presents the structural
rules, which do not depend on the details of the language. Section 7.2 presents the reasoning rules
for terms: there is one such rule for each term construct of the language. Section 7.3 presents
the specification of the primitive operations: there is one such rule for each primitive operation.
Section 7.4 details a few proofs.

7.1 Structural Rules

The structural rules of Separation Logic include the consequence rule and the frame rule, which
were already discussed, and two rules for extracting pure facts and existential quantifiers out of
preconditions.

Lemma 7.1.1 (Structural rules of Separation Logic) The following reasoning rules can be stated

as lemmas and proved correct with respect to the interpretation of triples given by Definition 6.6.2.

consequence

𝐻 ⊢ 𝐻 ′ {𝐻 ′} 𝑡 {𝑄′} 𝑄′
.⊢𝑄

{𝐻} 𝑡 {𝑄}

frame

{𝐻} 𝑡 {𝑄}
{𝐻 ⋆𝐻 ′} 𝑡 {𝑄 .⋆ 𝐻 ′}

prop

𝑃 ⇒ {𝐻} 𝑡 {𝑄}
{[𝑃 ] ⋆ 𝐻} 𝑡 {𝑄}

exists

∀𝑥. {𝐻} 𝑡 {𝑄}
{∃∃𝑥.𝐻} 𝑡 {𝑄}

The frame rulemay be exploited in practice as a forward reasoning rule: given a triple {𝐻} 𝑡 {𝑄},
one may derive another triple by extending both the precondition and the postcondition with a
heap predicate𝐻 ′. This rule is, however, almost unusable as a backward reasoning rule: indeed, it
is extremely rare for a proof obligation to be exactly of the form {𝐻 ⋆𝐻 ′} 𝑡 {𝑄 .⋆𝐻 ′}. In order to
exploit the frame rule in backward reasoning, one usually needs to first invoke the consequence
rule. The effect of a combined application of the consequence rule followed with the frame rule is
captured by the combined consequence-frame rule, stated below.

Lemma 7.1.2 (Combined consequence-frame rule)

𝐻 ⊢ 𝐻1 ⋆ 𝐻2 {𝐻1} 𝑡 {𝑄1} 𝑄1 .⋆ 𝐻2 .⊢𝑄
{𝐻} 𝑡 {𝑄}

consequence-frame

30
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This combined rule applies to a proof obligation of the form {𝐻} 𝑡 {𝑄}, with no constraints on
the precondition nor the postcondition. To prove this triple from an existing triple {𝐻1} 𝑡 {𝑄1},
it suffices to show that the precondition 𝐻 decomposes as 𝐻1 ⋆ 𝐻2, and to show that the post-
condition 𝑄 can be recovered from 𝑄1 .⋆ 𝐻2. The “framed” heap predicate 𝐻2 can be computed
as the difference between 𝐻 and 𝐻1. In practice, though, rather than trying to instantiate 𝐻2 in
the consequence-frame rule, it may be more effective to exploit the ramified frame rule presented
further on (Section 8.4).

7.2 Rules for Terms

The program logic includes one rule for each term construct. The corresponding rules are stated
below and explained next.

Lemma 7.2.1 (Reasoning rules for terms in Separation Logic) The following rules can be stated

as lemmas and proved correct with respect to the interpretation of triples given in Definition 6.6.2.

𝐻 ⊢ (𝑄𝑣)

{𝐻} 𝑣 {𝑄}
val

𝐻 ⊢ (𝑄 (𝜇̂𝑓.𝜆𝑥.𝑡))

{𝐻} (𝜇𝑓.𝜆𝑥.𝑡) {𝑄}
fix

𝑣1 = 𝜇̂𝑓.𝜆𝑥.𝑡 {𝐻} ([𝑣2/𝑥] [𝑣1/𝑓 ] 𝑡) {𝑄}
{𝐻} (𝑣1 𝑣2) {𝑄}

app

{𝐻} 𝑡1 {𝜆𝑣.𝐻 ′} {𝐻 ′} 𝑡2 {𝑄}
{𝐻} (𝑡1 ; 𝑡2) {𝑄}

seq

{𝐻} 𝑡1 {𝑄′} ∀𝑣. {𝑄′ 𝑣} ([𝑣/𝑥] 𝑡2) {𝑄}
{𝐻} (let𝑥 = 𝑡1 in 𝑡2) {𝑄}

let

𝑏 = true ⇒ {𝐻} 𝑡1 {𝑄} 𝑏 = false ⇒ {𝐻} 𝑡2 {𝑄}
{𝐻} (if 𝑏 then 𝑡1 else 𝑡2) {𝑄}

if

The rules val and fix apply to terms that correspond to closed values. A value evaluates to
itself, without modifying the state. If the heap at hand is described in the precondition by the
heap predicate𝐻 , then this heap, together with the value 𝑣, should satisfy the postcondition. This
implication is captured by the premise 𝐻 ⊢ 𝑄𝑣. Note that the rules val and fix can also be
formulated using triples featuring an empty precondition.

Lemma 7.2.2 (Small-footprint reasoning rules for values)

{ [ ] } 𝑣 {𝜆𝑟. [𝑟 = 𝑣]}
val’

{ [ ] } (𝜇𝑓.𝜆𝑥.𝑡) {𝜆𝑟. [𝑟 = (𝜇̂𝑓.𝜆𝑥.𝑡)]}
fix’

The app rule merely reformulates the 𝛽-reduction rule. It asserts that reasoning about the
application of a function to a particular argument amounts to reasoning about the body of this
function in which the name of the argument gets substituted with the value of the argument
involved in the application. This rule is typically exploited to begin the proof of the specification
triple for a function. Once established, such a specification triple may be invoked for reasoning
about calls to that function.

The seq rule asserts that a sequence “𝑡1 ; 𝑡2” admits precondition 𝐻 and postcondition 𝑄
provided that 𝑡1 admits the precondition 𝐻 and a postcondition describing a heap satisfying 𝐻 ′,
and that 𝑡2 admits the precondition𝐻 ′ and the postcondition𝑄. The result value 𝑣 produced by 𝑡1
is ignored.

The let rule enables reasoning about a let-binding of the form “let𝑥 = 𝑡1 in 𝑡2”. It reads
as follows. Assume that, in the current heap described by 𝐻 , the evaluation of 𝑡1 produces a
postcondition 𝑄′. Assume also that, for any value 𝑣 that the evaluation of 𝑡1 might produce, the
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evaluation of [𝑣/𝑥] 𝑡2 in a heap described by 𝑄′ 𝑣 produces the postcondition 𝑄. Then, under the
precondition 𝐻 , the term “let𝑥 = 𝑡1 in 𝑡2” produces the postcondition 𝑄.

The if rule enables reasoning about a conditional. Its statement features two premises: one
for the case where the condition is the value true, and one for the case where it is the value false.

7.3 Specification of Primitive Operations

The third and last category of reasoning rules corresponds to the specification of the primitive
operations of the language. The operations on references have already been discussed (Section 2.5
and Section 3.3). The arithmetic operations admit specifications that involve only empty heaps.

Lemma 7.3.1 (Specification for primitive operations)

ref: {[ ]} (ref 𝑣) {𝜆𝑟. ∃∃𝑝. [𝑟 = 𝑝] ⋆ (𝑝 →˓ 𝑣)}
get: {𝑝 →˓ 𝑣} (get 𝑝) {𝜆𝑟. [𝑟 = 𝑣] ⋆ (𝑝 →˓ 𝑣)}
set: {𝑝 →˓ 𝑣} (set 𝑝 𝑣′) {𝜆_. (𝑝 →˓ 𝑣′)}
free: {𝑝 →˓ 𝑣} (free 𝑝) {𝜆_. [ ]}
add: {[ ]} ((+)𝑛1 𝑛2) {𝜆𝑟. [𝑟 = 𝑛1 + 𝑛2]}
div: 𝑛2 ̸= 0 ⇒ {[ ]} ((÷)𝑛1 𝑛2) {𝜆𝑟. [𝑟 = 𝑛1 ÷ 𝑛2]}

7.4 Proofs of Reasoning Rules

Consider, e.g., a let-binding. Compare the omni-big-let rule with the corresponding Separation
Logic rule.

omni-big-let
𝑡1/𝑠 ⇓ 𝑄1(︀

∀𝑣′𝑠′. 𝑄1 𝑣
′ 𝑠′ ⇒ ([𝑣′/𝑥] 𝑡2)/𝑠

′ ⇓ 𝑄
)︀

(let𝑥 = 𝑡1 in 𝑡2)/𝑠 ⇓ 𝑄

let
{𝐻} 𝑡1 {𝑄1}(︀

∀𝑣′. {𝑄1 𝑣
′} ([𝑣′/𝑥] 𝑡2) {𝑄}

)︀
{𝐻} (let𝑥 = 𝑡1 in 𝑡2) {𝑄}

The only difference between the two rules is that the first one considers one specific state 𝑠,
whereas the second rule considers a set of possible states satisfying the precondition𝐻 . To prove
the let rule, we first unfold the definition of {𝐻} 𝑡 {𝑄} as ∀𝑠. 𝐻 𝑠 ⇒ (𝑡/𝑠 ⇓ 𝑄). We then
consider a particular state 𝑠, and apply the rule omni-big-let for that state. The two premises of
omni-big-let are justified by applying each of the two premises of the let rule. The corresponding
Coq proof script witnesses the simplicity of this proof: “intros. eapply mbig_let; eauto.”



Chapter 8

The Magic Wand Operator

8.1 Definition of the Magic Wand

The magic wand, also known as separating implication, is an additional heap predicate operator,
written 𝐻1 −⋆𝐻2, and read “𝐻1 wand 𝐻2”. Although it is technically possible to carry out all
Separation Logic proofs without the magic wand, this operator helps to state several reasoning
rules and specifications more concisely.

Intuitively, 𝐻1 −⋆𝐻2 defines a heap predicate such that, if starred with 𝐻1, it produces 𝐻2.
In other words, the magic wand satisfies the cancellation rule 𝐻1 ⋆ (𝐻1 −⋆𝐻2) ⊢ 𝐻2. The magic
wand operator can be formally defined in at least four different ways.

Definition 8.1.1 (Magic wand) The magic wand operator is equivalently characterized by:

1. 𝐻1 −⋆𝐻2 ≡ 𝜆ℎ.
(︀
∀ℎ′. ℎ ⊥ ℎ′ ∧ 𝐻1 ℎ

′ ⇒ 𝐻2 (ℎ ⊎ ℎ′)
)︀

2. 𝐻1 −⋆𝐻2 ≡ ∃∃𝐻0. 𝐻0 ⋆
[︀
(𝐻1 ⋆ 𝐻0) ⊢ 𝐻2

]︀
3. 𝐻0 ⊢ (𝐻1 −⋆𝐻2) ⇔ (𝐻1 ⋆ 𝐻0) ⊢ 𝐻2

4. 𝐻1 −⋆𝐻2 satisfies the following introduction and elimination rules.

(𝐻1 ⋆ 𝐻0) ⊢ 𝐻2

𝐻0 ⊢ (𝐻1 −⋆𝐻2)
wand-intro

𝐻1 ⋆ (𝐻1 −⋆𝐻2) ⊢ 𝐻2
wand-cancel

The first characterization asserts that𝐻1−⋆𝐻2 holds of a heap ℎ if and only if, for any disjoint
heap ℎ′ satisfying 𝐻1, the union of the two heaps ℎ ⊎ ℎ′ satisfies 𝐻2.

The second characterization describes a heap satisfying a predicate𝐻0 that, when starred with
𝐻1 entails𝐻2. This characterization shows that the magic wand can be encoded using previously-
introduced concepts from higher-order Separation Logic.

The third characterization consists of an equivalence that provides both an introduction rule
and an elimination rule. The left-to-right direction is equivalent to the cancellation rule wand-
cancel stated in definition (4). The right-to-left direction corresponds exactly to the introduction
rule from definition (4), namely wand-intro, which reads as follows: to show that a heap de-
scribed by 𝐻0 satisfies the magic wand 𝐻1 ⋆ 𝐻2, it suffices to prove that 𝐻1 starred with 𝐻0

entails 𝐻2.
Each of these four characterizations of the magic wand operator have appeared in various

papers on Separation Logic, yet Charguéraud [2020] appears to provide the first mechanized proof
of their equivalence.

33
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8.2 Properties of the Magic Wand

In practice, the properties stated below are useful for working with the magic wand and for imple-
menting a tactic that simplifies the proof obligations that arise from the ramified frame rule (Sec-
tion 8.4).

Lemma 8.2.1 (Useful properties of the magic wand)

wand-monotone

𝐻 ′
1 ⊢ 𝐻1 𝐻2 ⊢ 𝐻 ′

2

(𝐻1 −⋆𝐻2) ⊢ (𝐻 ′
1 −⋆𝐻 ′

2)

wand-self

[ ] ⊢ (𝐻 −⋆𝐻)

wand-pure-l

𝑃

([𝑃 ]−⋆𝐻) = 𝐻

wand-curry

((𝐻1 ⋆ 𝐻2)−⋆𝐻3) = (𝐻1 −⋆(𝐻2 −⋆𝐻3))

wand-star

((𝐻1 −⋆𝐻2) ⋆ 𝐻3) ⊢ (𝐻1 −⋆(𝐻2 ⋆ 𝐻3))

Lemma 8.2.2 (Partial concellation of a magic wand) If the left-hand side of a magic wand in-

volves the separating conjunction of several heap predicates, it is possible to cancel out just one of

them with an occurrence of the same heap predicate occurring outside the magic wand. For example,

the entailment 𝐻2 ⋆
(︀
(𝐻1 ⋆ 𝐻2 ⋆ 𝐻3)−⋆𝐻4

)︀
⊢

(︀
(𝐻1 ⋆ 𝐻3)−⋆𝐻4

)︀
is obtained by cancelling 𝐻2.

8.3 Magic Wand for Postconditions

Just as useful as the magic wand is its generalization to postconditions, which is involved for
example in the statement of the ramified frame rule (Section 8.4). This operator, written𝑄1 .–⋆ 𝑄2,
takes as argument two postconditions 𝑄1 and 𝑄2 and produces a heap predicate.

Definition 8.3.1 (Magic wand for postconditions) The operator (.–⋆ ) is equivalently defined by:

1. 𝑄1 .–⋆ 𝑄2 ≡ ∀∀𝑣.
(︀
(𝑄1 𝑣)−⋆(𝑄2 𝑣)

)︀
2. 𝑄1 .–⋆ 𝑄2 ≡ 𝜆ℎ.

(︀
∀𝑣ℎ′. ℎ ⊥ ℎ′ ∧ 𝑄1 𝑣 ℎ

′ ⇒ 𝑄2 𝑣 (ℎ ⊎ ℎ′)
)︀

3. 𝑄1 .–⋆ 𝑄2 ≡ ∃∃𝐻0. 𝐻0 ⋆
[︀
(𝑄1 .⋆ 𝐻0) .⊢ 𝑄2

]︀
4. 𝐻0 ⊢ (𝑄1 .–⋆ 𝑄2) ⇔ (𝑄1 .⋆ 𝐻0) .⊢𝑄2

5. 𝑄1 .–⋆ 𝑄2 satisfies the following introduction and elimination rules.

(𝑄1 .⋆ 𝐻0) .⊢𝑄2

𝐻0 ⊢ (𝑄1 .–⋆ 𝑄2)
qwand-intro

𝑄1 .⋆ (𝑄1 .–⋆ 𝑄2) .⊢𝑄2
qwand-cancel

Lemma 8.3.1 (Useful properties of the magic wand for postconditions)

qwand-monotone

𝑄′
1 .⊢ 𝑄1 𝑄2 .⊢ 𝑄′

2

(𝑄1 .–⋆ 𝑄2) ⊢ (𝑄′
1 .–⋆ 𝑄′

2)

qwand-self

[ ] ⊢ (𝑄 .–⋆ 𝑄)

qwand-star

((𝑄1 .–⋆ 𝑄2) .⋆ 𝐻) ⊢ (𝑄1 .–⋆ (𝑄2 ⋆ 𝐻))

qwand-specialize(︀
𝑄1 .–⋆ 𝑄2

)︀
⊢

(︀
(𝑄1 𝑣) .–⋆ (𝑄2 𝑣)

)︀
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8.4 Ramified Frame Rule

One key practical application of the magic wand operator appears in the statement of the ramified

frame rule. This rule reformulates the consequence-frame rule in a manner that is both more
concise and better-suited for automated processing. Recall the rule conseqence-frame, which
is reproduced below. To exploit it, one must provide a predicate𝐻2 describing the “framed” part.
Providing the heap predicate 𝐻2 by hand in proofs involves a prohibitive amount of work; it is
strongly desirable that 𝐻2 may be inferred automatically.

The predicate𝐻2 can be computed as the difference between𝐻 and𝐻1. Automatically com-
puting this difference is relatively straightforward in simple cases, however this task becomes quite
challenging when𝐻 and𝐻1 involve numerous quantifiers. Indeed, it is not obvious to determine
which quantifiers from𝐻 should be cancelled against those from𝐻1, andwhich quantifiers should
be carried over to 𝐻2.

The benefit of the ramified frame rule is that it eliminates the problem altogether. The key
idea is to observe that the premise 𝑄1 .⋆ 𝐻2 .⊢𝑄 from the conseqence-frame rule is equivalent
to 𝐻2 .⊢ (𝑄1 .–⋆ 𝑄), by the 4th characterization of Definition 8.3.1. Thus, in the other premise
𝐻 ⊢ 𝐻1 ⋆ 𝐻2, the heap predicate 𝐻2 may be replaced with 𝑄1 .–⋆ 𝑄. The ramified-frame rule
appears below.

Lemma 8.4.1 (Ramified frame rule) ramified-frame reformulates consequence-frame.

consequence-frame

𝐻 ⊢ 𝐻1 ⋆ 𝐻2 {𝐻1} 𝑡 {𝑄1} 𝑄1 .⋆ 𝐻2 .⊢𝑄
{𝐻} 𝑡 {𝑄}

ramified-frame

{𝐻1} 𝑡 {𝑄1} 𝐻 ⊢ 𝐻1 ⋆ (𝑄1 .–⋆ 𝑄)

{𝐻} 𝑡 {𝑄}



Chapter 9

Weakest-Precondition Style

9.1 Semantic Weakest Precondition

The notion of weakest precondition has been used pervasively in the development of automated
tools based on Hoare logic. Work on the Iris framework [Jung et al., 2015] has shown that this
notion also helps to streamline the set-up of interactive tools based on Separation Logic.

The semantic weakest precondition of a term 𝑡with respect to a postcondition𝑄 denotes a heap
predicate, written wp 𝑡𝑄, which corresponds to the weakest precondition 𝐻 satisfying the triple
{𝐻} 𝑡 {𝑄}. The notion of “weakest” is to be understood with respect to the entailment relation,
which induces an order relation on the set of heap predicates (recall Lemma 5.1.1). The definition
of the predicatewp can be formalized in at least five different ways. The corresponding definitions
are shown below and commented next.

Definition 9.1.1 (Semantic weakest precondition) The predicate wp is equivalently character-
ized by:

1. wp 𝑡𝑄 ≡ min(⊢)
{︀
𝐻

⃒⃒
{𝐻} 𝑡 {𝑄}

}︀
2.

(︀
{wp 𝑡𝑄} 𝑡 {𝑄}

)︀
∧

(︀
∀𝐻. {𝐻} 𝑡 {𝑄} ⇒ 𝐻 ⊢ wp 𝑡𝑄

)︀
3. wp 𝑡𝑄 ≡ 𝜆ℎ.

(︀
{𝜆ℎ′. ℎ′ = ℎ} 𝑡 {𝑄}

)︀
4. wp 𝑡𝑄 ≡ ∃∃𝐻. 𝐻 ⋆

[︀
{𝐻} 𝑡 {𝑄}

]︀
5. 𝐻 ⊢ wp 𝑡𝑄 ⇔ {𝐻} 𝑡 {𝑄}
6. wp 𝑡𝑄 ≡ 𝜆ℎ. (𝑡/𝑠 ⇓ 𝑄)

The first characterization asserts that wp 𝑡𝑄 is the weakest precondition: it is a valid precondi-
tion for a triple for the term 𝑡with the postcondition𝑄. Moreover, any other valid precondition𝐻
for a triple involving 𝑡 and 𝑄 entails wp 𝑡𝑄.

The second characterization consists of a reformulation of the first characterization in terms
of basic logic operators.

The third characterization defines wp 𝑡𝑄 as a predicate over a heap ℎ, asserting that wp 𝑡𝑄
holds of the heap ℎ if and only if the evaluation of the term starting from a heap equal to ℎ produces
the postcondition 𝑄.

The fourth characterization asserts that wp 𝑡𝑄 is entailed by any heap predicate𝐻 satisfying
the triple {𝐻} 𝑡 {𝑄}. This characterization shows that the notion of weakest precondition can
be expressed as a derived notion in terms of the core heap predicate operators.

The fifth characterization asserts that any triple of the form {𝐻} 𝑡 {𝑄} may be equivalently
reformulated by replacing this triple with 𝐻 ⊢ wp 𝑡𝑄.
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The sixth characterization defines wp 𝑡𝑄 directly in terms of the omni-big-step judgment,
bypassing the notion of triple.

The developer of a practical tool based on Separation Logic may choose to take either triples
or weakest-preconditions as a primitive notion; the other notion may then be derived in terms
of that primitive notion. One may define wp using characterization (6), then derive the notion of
triple using equivalence (5) in the right-to-left direction. Reciprocally, assuming a definition of
triples, one may derive wp. The choice of the encoding depends on the strength of the host logic
with respect to existential quantification. Definition (3) makes weaker assumptions, but require
reasoning at the level of heaps. Definition (4) leverages the ability to existentially quantify over
heap predicates, allowing for higher-level reasoning.

9.2 WP-Style Structural Rules

The structural reasoning rule can be reformulated in weakest-precondition style, as follows.

Lemma 9.2.1 (Structural rules in weakest-precondition style)

𝑄 .⊢ 𝑄′

wp 𝑡𝑄 ⊢ wp 𝑡𝑄′ wp-consequence

(wp 𝑡𝑄) ⋆ 𝐻 ⊢ wp 𝑡 (𝑄 .⋆ 𝐻)
wp-frame

The rule wp-conseqence captures a monotonicity property. The rule wp-frame reads as
follows: if I own a heap in which the execution of 𝑡 produces the postcondition 𝑄, and, separately, I

own a heap satisfying 𝐻 , then, altogether, I own a heap in which the execution of 𝑡 produces both 𝑄
and𝐻 . These two structural rules may be combined into a single rule, called wp-ramified-frame.
This rule alone suffices to capture all the structural properties of Separation Logic.

Lemma 9.2.2 (Ramified frame rule in weakest-precondition style)

(wp 𝑡𝑄) ⋆ (𝑄 .–⋆ 𝑄′) ⊢ (wp 𝑡𝑄′)
wp-ramified-frame

9.3 WP-Style Rules For Terms

The weakest-precondition style reformulation of the reasoning rules for terms yields rules that are
similar to the corresponding Hoare logic rules. For example, the rule for sequence is as follows.

wp 𝑡1 (𝜆𝑣. wp 𝑡2𝑄) ⊢ wp (𝑡1 ; 𝑡2)𝑄
wp-seq

This rule can be read as follows: if I own a heap in which the execution of 𝑡1 produces a heap in

which the execution of 𝑡2 produces the postcondition 𝑄, then I own a heap in which the execution of

the sequence “𝑡1 ; 𝑡2” produces 𝑄. The other reasoning rules for terms appear below.

Lemma 9.3.1 (Reasoning rules for terms in weakest-precondition style)

wp-val

𝑄𝑣 ⊢ wp 𝑣 𝑄

wp-fix

𝑄 (𝜇̂𝑓.𝜆𝑥.𝑡) ⊢ wp (𝜇𝑓.𝜆𝑥.𝑡)𝑄

wp-app

𝑣1 = 𝜇̂𝑓.𝜆𝑥.𝑡

wp ([𝑣2/𝑥] [𝑣1/𝑓 ] 𝑡)𝑄 ⊢ wp (𝑣1 𝑣2)𝑄

wp 𝑡1 (𝜆𝑣. wp ([𝑣/𝑥] 𝑡2)𝑄) ⊢ wp (let𝑥 = 𝑡1 in 𝑡2)𝑄
wp-let

If 𝑏 then (wp 𝑡1𝑄) else (wp 𝑡2𝑄) ⊢ wp (if 𝑏 then 𝑡1 else 𝑡2)𝑄
wp-if
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9.4 WP-Style Function Specifications

Function specifications were so far expressed using triples of the form {𝐻} (𝑓 𝑣) {𝑄}. These
specifications may be equivalently expressed using assertions of the form 𝐻 ⊢ wp (𝑓 𝑣)𝑄.

The primitive operations are specified using wp as shown below. For example, the allocation
operation ref 𝑣 produces a postcondition𝑄, provided that the result of extending the current pre-
condition with 𝑝 →˓ 𝑣 yields 𝑄𝑝. In the formal statement of the specification wp-ref, observe
how the fresh address 𝑝 is quantified universally in the left-hand side of the entailment.

Lemma 9.4.1 (Specification of primitive operations in weakest-precondition style)

wp-ref : ∀𝑄𝑣.
(︀
∀∀𝑝. (𝑝 →˓ 𝑣)−⋆(𝑄𝑝)

)︀
⊢ wp (ref 𝑣)𝑄

wp-get : ∀𝑄𝑝. (𝑝 →˓ 𝑣) ⋆
(︀
(𝑝 →˓ 𝑣)−⋆(𝑄𝑣)

)︀
⊢ wp (get 𝑝)𝑄

wp-set : ∀𝑄𝑝𝑣 𝑣′. (𝑝 →˓ 𝑣) ⋆
(︀
∀∀𝑟. (𝑝 →˓ 𝑣′)−⋆(𝑄𝑟)

)︀
⊢ wp (set 𝑝 𝑣′)𝑄

wp-free : ∀𝑄𝑝𝑣. (𝑝 →˓ 𝑣) ⋆
(︀
∀∀𝑟. (𝑄𝑟)) ⊢ wp (free 𝑝)𝑄

Remark: wp-set and wp-free can also be stated by specializing the variable 𝑟 to the unit value tt .

There exists a general pattern for translating from conventional triples toweakest-precondition
style specifications. The following lemma covers the case of a specification involving a single aux-
iliary variable named 𝑥. It may easily be generalized to a larger number of auxiliary variables.

Lemma 9.4.2 (Specifications in weakest-precondition style) Let 𝑣 denote a value that may

depend on a variable 𝑥, and let𝐻 ′
denote a heap predicate that may depend on the variables 𝑥 and 𝑟.(︀

{𝐻} 𝑡 {𝜆𝑟. ∃∃𝑥. [𝑟 = 𝑣] ⋆ 𝐻 ′}
)︀
⇔

(︀
∀𝑄. 𝐻 ⋆ (∀∀𝑥. 𝐻 ′ −⋆(𝑄𝑣)) ⊢ wp 𝑡𝑄

)︀
Stating specifications in weakest-precondition style is not at all mandatory for working with

reasoning rules in weakest-precondition style. Indeed, as we do in CFML, it is possible to continue
stating specifications using conventional triples, which are more intuitive to read. In that setting
(presented in Section 10.6), we exploit the following rule for reasoning about every function call.

Lemma 9.4.3 (Variant of the ramified frame rule for proof obligations in wp style)

{𝐻1} 𝑡 {𝑄1} 𝐻 ⊢ 𝐻1 ⋆ (𝑄1 .–⋆ 𝑄)

𝐻 ⊢ wp 𝑡𝑄
ramified-frame-for-wp



Chapter 10

Characteristic Formulae

This chapter describes the technique of characteristic formulae for smoothly integrating Separa-
tion Logic in an interactive proof assistant. Section 10.1 explains the concept of characteristic
formula, and in particular how it relates to the concept of weakest precondition. Section 10.2 and
Section 10.3 show how to define the characteristic formulae generator as a function that effectively
computes within Coq. Section 10.4 presents the soundness proof. Section 10.5 and Section 10.6 de-
scribe the set-up used for carrying interactive program verification in practice using characteristic
formulae, through the use of tactics that lead to concise proof scripts.

10.1 Principle of Characteristic Formulae

Recall from the previous chapter that the predicate wp 𝑡𝑄 describes the weakest precondition of a
term 𝑡with respect to a postcondition𝑄. This predicate satisfies the equivalence

(︀
𝐻 ⊢ wp 𝑡𝑄

)︀
⇔

{𝐻} 𝑡 {𝑄}. It comes with a number of reasoning rules, such as wp-let, which is expressed as the
entailment: wp 𝑡1 (𝜆𝑣. wp ([𝑣/𝑥] 𝑡2)𝑄) ⊢ wp (let𝑥 = 𝑡1 in 𝑡2)𝑄. The predicatewp can be defined
in numerous ways, but ultimately all definitions refer to the inductively defined semantics of the
programming language.

This chapter presents a function that effectively computes the weakest precondition of a term.
This function, called cf, is defined by recursion over the syntax of the source term. In the par-
ticular case where cf reaches a function application, the formula that it produces simply refers
to the weakest precondition (wp) associated with that application. Compared with a weakest-

precondition calculus, as found typically in Hoare-logic based tools that rely on automated solvers
for discharging proof obligations, the main difference is that cf operates on a raw source term,
without requiring any specification or invariant to accompany the term. One may thus view a
computation of the characteristic formula as a most general weakest-precondition calculus.

The central theorem of this chapter establishes cf 𝑡𝑄 ⊢ wp 𝑡𝑄. Exploiting this entailment
allows to establish the specification of a function by following the structure of the logical formula
produced by cf. In particular, to establish that a function satisfies a given specification, one can
apply the rule cf-triple-fix shown below. This rule reveals the characteristic formula associated
with the body the function instantiated on the argument provided to the function. This rule is a
corollary of the reasoning rule app and of the entailment cf 𝑡𝑄 ⊢ wp 𝑡𝑄.

𝑣1 = 𝜇̂𝑓.𝜆𝑥.𝑡 𝑓 ̸= 𝑥 𝐻 ⊢ cf ([𝑣2/𝑥] [𝑣1/𝑓 ] 𝑡)𝑄

{𝐻} (𝑣1 𝑣2) {𝑄}
cf-triple-fix

Compared with carrying out proofs using wp directly, the added value of characteristic for-
mulae is three-fold.
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First, the characteristic formula function cf produces a logical formula that no longer refer
to the deeply-embedded syntax of the term 𝑡. All variables appear as logical variables, that is,
Coq variables. Furthermore, there is no need to simplify substitutions expressed on the deep
embedding, such as [𝑣/𝑥] 𝑡2 in the rule wp-let.

Second, the characteristic formula in some sense pre-applies all the reasoning rules of the pro-
gram logic. For example, when processing a let-binding, there is no need to apply the lemma
wp-let, because this lemma is somehow already exploited as part of the statement of the charac-
teristic formula. The only bookkeeping work that remains to make progress through a let-binding
is to instantiate an existential quantifier and split a conjunction. These two benefits should appear
more clearly when we present examples further on.

Third, characteristic formulae enable the introduction of the lifting technique described in
the next chapter. This technique allows describing program values directly using Coq values. In
particular, constructors of OCaml algebraic data types may be represented using corresponding
Coq inductive constructors. Among other benefits, the lifting techniques leads to considerable
simplifications in the logical formulae produced for reasoning about pattern matching.

10.2 Building a Characteristic Formulae Generator, Step by Step

We next describe a 6-step process that leads to the definition of the function cf. For simplicity, we
assume the term 𝑡 to be in A-normal form, meaning that arguments of functions and conditionals
are expected to be either variables or values. The generalization beyond A-normal form makes
the definitions slightly more technical, so we do not present it here. Such a generalization may be
found in the implementation of CFML.

Step 0: Weakest-precondition style reasoning rules. We start from the wp-style reasoning
rules (Section 9.3), which we reproduce below for convenience. In the rule wp-let that handles
a term of the form let𝑥 = 𝑡1 in 𝑡2, the variable named 𝑋 has type val and corresponds to the
value produced by 𝑡1. The substitution [𝑋/𝑥] 𝑡2 replaces the program variable 𝑥 (represented as
a string) with an abstract value represented by the Coq variable 𝑋 .

wp-val: 𝑄𝑣 ⊢ wp 𝑣 𝑄
wp-fix: 𝑄 (𝜇̂𝑓.𝜆𝑥.𝑡) ⊢ wp (𝜇𝑓.𝜆𝑥.𝑡)𝑄
wp-app: wp ([𝑣2/𝑥] [𝑣1/𝑓 ] 𝑡)𝑄 ⊢ wp (𝑣1 𝑣2)𝑄 where 𝑣1 = 𝜇̂𝑓.𝜆𝑥.𝑡

wp-let: wp 𝑡1 (𝜆𝑋. wp ([𝑋/𝑥] 𝑡2)𝑄) ⊢ wp (let𝑥 = 𝑡1 in 𝑡2)𝑄
wp-if: If 𝑏 then (wp 𝑡1𝑄) else (wp 𝑡2𝑄) ⊢ wp (if 𝑏 then 𝑡1 else 𝑡2)𝑄
wp-frame: (wp 𝑡𝑄) ⋆ (𝑄 .–⋆ 𝑄′) ⊢ (wp 𝑡𝑄′)

Step 1: Recursion over the syntax. We consider a first version of cf 𝑡𝑄, defined by recur-
sion over its argument 𝑡. For all term constructs except applications, we mimic the weakest-
precondition rule. For a function application, we simply refer to the wp judgment for that appli-
cation. Indeed, we do not have at hand the specification of the function being called. In the case of
a conditional, we need to existentially quantify over the boolean value 𝑏 that corresponds to the
argument of the conditional, because in the original program that argument could be a variable
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and not a boolean value. Support for the frame rule will be added later on, at step 5.

cf 𝑣 𝑄 ≡ 𝑄𝑣

cf (𝜇𝑓.𝜆𝑥.𝑡)𝑄 ≡ 𝑄 (𝜇̂𝑓.𝜆𝑥.𝑡)

cf (𝑡1 𝑡2)𝑄 ≡ wp (𝑡1 𝑡2)𝑄
cf (let𝑥 = 𝑡1 in 𝑡2)𝑄 ≡ cf 𝑡1

(︀
𝜆𝑋. cf ([𝑋/𝑥] 𝑡2)𝑄

)︀
cf (if 𝑡0 then 𝑡1 else 𝑡2)𝑄 ≡ ∃∃(𝑏 : bool). [𝑡0 = 𝑏] ⋆ If 𝑏 then (cf 𝑡1𝑄) else (cf 𝑡2𝑄)

cf𝑥𝑄 ≡ ⊥

On the last line above, cf𝑥𝑄 is defined as the always-false assertion. Indeed, variables should
all have been removed via the substitutions performed when traversing let-bindings. If the com-
putation of cf reaches a free variable, it means that this variable was a dangling (unbound) free
variable of the original input program. A dangling free variable is a stuck term in the semantics,
hence its weakest precondition is the false predicate.

Step 2: Refinement for local functions. Let us refine the definition of characteristic formu-
lae for local functions. Consider a local function definition of the form 𝜇𝑓.𝜆𝑥.𝑡. The formula
𝑄 (𝜇̂𝑓.𝜆𝑥.𝑡) is sound and complete: it enables the user to state and prove property about that
function, by exploiting its syntactic definition. Yet, when working with characteristic formulae,
we would like to never manipulate program syntax. Instead, we would like to obtain a logical
formula that enables the user to reason about the extensional behavior of the function. Such a
behavior can be achieved by leveraging the characteristic formula recursively computed for the
body of that function. The relevant definition is shown below and explained next.

cf (𝜇𝑓.𝜆𝑥.𝑡)𝑄 ≡ ∀∀(𝐹 : val). [∀𝑋𝑄′. cf ([𝑋/𝑥] [𝐹/𝑓 ] 𝑡)𝑄′ ⊢ wp (𝐹 𝑋)𝑄′]−⋆ 𝑄𝐹

The universally quantified variable 𝐹 denotes the value 𝜇̂𝑓.𝜆𝑥.𝑡 that corresponds to the function
closure. Yet this information is not revealed. What is provided is an assumption that may be
exploited to establish properties about calls of the form 𝐹 𝑋 . This assumption asserts that, for
any argument 𝑋 , to establish that the application 𝐹 𝑋 admits a particular behavior described by
a postcondition 𝑄′, one has to show that the term [𝑋/𝑥] [𝐹/𝑓 ] 𝑡 admits the same behavior.

An equivalent formulation of cf (𝜇𝑓.𝜆𝑥.𝑡)𝑄, slightly more convenient when specifying func-
tions using triples, is shown below. It specifies the application 𝐹 𝑋 using a triple, and involves a
heap predicate 𝐻 to denote the precondition of that application.

cf (𝜇𝑓.𝜆𝑥.𝑡)𝑄 ≡
framed (𝜆𝑄.∀∀𝐹. [∀𝑋𝐻𝑄′. 𝐻 ⊢ cf(𝑓,𝐹 )::(𝑥,𝑋)::𝐸 𝑡𝑄′ ⇒ {𝐻} (𝐹 𝑋) {𝑄′}]−⋆ 𝑄𝐹 )

Step 3: Obtaining a structural recursion. The recursive function cf defined at steps 1 and 2
is not structurally recursive. Indeed, in the processing of let𝑥 = 𝑡1 in 𝑡2, the second recursive call
is not performed on 𝑡2 but on [𝑋/𝑥] 𝑡2. The function cf does terminate on all input, because the
substitution involved replaces variables not with arbitrary terms but with values. These values
are handled at the base case (cf 𝑣 𝑄 ≡ 𝑄𝑣), where no recursive call is involved. To simplify the
Coq formalization of the function cf, we are going to recast the function in a way that makes it
structurally recursive.

We introduce an environment, written 𝐸, to keep track of the delayed substitutions. This
environment plays the same role as a typing environment in a type-checker, except that it binds
a program variable not to its type but to its corresponding Coq variable. Concretely, we define a
function of the form cf𝐸 𝑡𝑄. For simplicity, we represent 𝐸 as an association list binding values
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to variables. We note, however, that an appropriate tree data structure (e.g., a Patricia tree) could
improve performance.

The definition of the structurally recursive function cf is shown below. The context 𝐸 gets
extended in the let-binding case. When the function reaches a free variable 𝑥, it performs a lookup
for this variable in the environment𝐸, using the operation written𝐸[𝑥]. Besides, observe that the
definition of cf𝐸 𝑣 𝑄 does not involve any substitution, because values in our language are always
closed value.

cf𝐸 𝑥𝑄 ≡ If (𝑥 ∈ dom𝐸) then 𝑄 (𝐸[𝑥]) else ⊥
cf𝐸 𝑣 𝑄 ≡ 𝑄𝑣

cf𝐸 (𝜇𝑓.𝜆𝑥.𝑡)𝑄 ≡ ∀∀𝐹. [∀𝑋𝑄′. cf(𝑓,𝐹 )::(𝑥,𝑋)::𝐸 𝑡𝑄′ ⊢ wp (𝐹 𝑋)𝑄′]−⋆ 𝑄𝐹

cf𝐸 (𝑡1 𝑡2)𝑄 ≡ wp (subst𝐸 (𝑡1 𝑡2))𝑄

cf𝐸 (let𝑥 = 𝑡1 in 𝑡2)𝑄 ≡ cf𝐸 𝑡1
(︀
𝜆𝑋. cf(𝑥,𝑋)::𝐸 𝑡2𝑄

)︀
cf𝐸 (if 𝑡0 then 𝑡1 else 𝑡2)𝑄 ≡ ∃∃(𝑏 : bool). [𝑡0 = 𝑏] ⋆ If 𝑏 then (cf𝐸 𝑡1𝑄) else (cf𝐸 𝑡2𝑄)

To invoke the characteristic formulae generator on a closed program, we let cf 𝑡𝑄 ≡ cfnil 𝑡𝑄.

Step 4: Reformulation as a function that does not depend on the postcondition. For
reasons that will only appear clear in the following steps, we next swap the place where 𝑄 is
taken as an argument with the place where the pattern matching on 𝑡 occurs. In other words, we
define the recursive function cf𝐸 𝑡, whose output is a function that expects a postcondition 𝑄 as
argument. The function cf𝐸 𝑡, reformulated below, admits the type: (val→ Hprop)→ Hprop.

cf𝐸 𝑥 ≡ 𝜆𝑄. If (𝑥 ∈ dom𝐸) then 𝑄 (𝐸[𝑥]) else ⊥
cf𝐸 𝑣 ≡ 𝜆𝑄.𝑄𝑣

cf𝐸 (𝜇𝑓.𝜆𝑥.𝑡) ≡ 𝜆𝑄.∀∀𝐹. [∀𝑋𝑄′. cf(𝑓,𝐹 )::(𝑥,𝑋)::𝐸 𝑡𝑄′ ⊢ wp (𝐹 𝑋)𝑄′]−⋆ 𝑄𝐹

cf𝐸 (𝑡1 𝑡2) ≡ 𝜆𝑄.wp (subst𝐸 (𝑡1 𝑡2))𝑄

cf𝐸 (let𝑥 = 𝑡1 in 𝑡2) ≡ 𝜆𝑄. cf𝐸 𝑡1
(︀
𝜆𝑋. cf(𝑥,𝑋)::𝐸 𝑡2𝑄

)︀
cf𝐸 (if 𝑡0 then 𝑡1 else 𝑡2) ≡ 𝜆𝑄. ∃∃(𝑏 : bool). [𝑡0 = 𝑏] ⋆ If 𝑏 then (cf𝐸 𝑡1𝑄) else (cf𝐸 𝑡2𝑄)

Step 5: Adding support for the frame rule. The frame rule (wp 𝑡𝑄) ⋆ (𝑄 .–⋆ 𝑄′) ⊢ (wp 𝑡𝑄′)
is not syntax directed. Thus, we do not know, a priori, where in a proof the usermaywish to exploit
this rule. Our approach to handling structural rules is to introduce a predicate transformer, written
framedℱ , at every node of the characteristic formula. For example:

cf𝐸 (let𝑥 = 𝑡1 in 𝑡2) ≡ framed (𝜆𝑄. cf𝐸 𝑡1
(︀
𝜆𝑋. cf(𝑥,𝑋)::𝐸 𝑡2𝑄

)︀
)

We will come back to the definition and properties of “framed” in Section 10.3. Suffices to
know at this point that: (1) if needed, this predicate can be exploited to mimic the frame rule; (2) if
not needed, this predicate can be discarded, before pursuing through the remaining of the formula
at hand.

The idea of applying a predicate transformer at every node of the characteristic formula
originates from [Charguéraud, 2010]. Yet, the characteristic formulae presented here operate on
weakest-precondition style predicates, thus the predicate framed used here admits a totally dif-
ferent shape than in the prior work on characteristic formulae.

Step 6: Introduction of auxiliary definitions. We introduce one auxiliary definitions per
term construct. Their purpose is to improve the readability of the output of calls to cf by means of
a set of custom notation, and to ease the statement of the lemmas that contribute to the soundness
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proof. In the definitions shown below, the meta-variable ℱ denotes a formula of type (val →
Hprop)→ Hprop, and 𝒢 denotes a formula that depends on one or several arguments of type val.

Definition 10.2.1 (Auxiliary definitions for the characteristic formulae)

cf_fail ≡ framed (𝜆𝑄. ⊥)
cf_val 𝑣 ≡ framed (𝜆𝑄. 𝑄𝑣)

cf_var𝐸 𝑥 ≡ framed (𝜆𝑄. If (𝑥 ∈ dom𝐸) then cf_val (𝐸[𝑥]) else cf_fail)
cf_app 𝑡 ≡ framed (𝜆𝑄. wp 𝑡𝑄)

cf_fix𝒢 ≡ framed (𝜆𝑄. ∀∀𝐹. [∀𝑋𝑄′. 𝒢 𝐹 𝑋 𝑄′ ⊢ wp (𝐹 𝑋)𝑄′]−⋆ 𝑄𝐹 )

cf_letℱ1 𝒢2 ≡ framed (𝜆𝑄. ℱ1 (𝜆𝑋. 𝒢2 𝑣 𝑄))

cf_if 𝑡0ℱ1ℱ2 ≡ framed (𝜆𝑄. ∃∃(𝑏 : bool). [𝑡0 = 𝑏] ⋆ If 𝑏 then ℱ1𝑄 else ℱ2𝑄)

For example, we can now define: “cf𝐸 (let𝑥 = 𝑡1 in 𝑡2)” as “cf_let (cf𝐸 𝑡1)
(︀
𝜆𝑋. cf(𝑥,𝑋)::𝐸 𝑡2

)︀
”.

Furthermore, we introduce the Coq syntax “Let x := F1 in F2” for the predicate “cf_letℱ1 𝒢2”.
As a result, the characteristic formula of a term of the form “let𝑥 = 𝑡1 in 𝑡2” is displayed to the user
in the form “Let X := F1 in F2”. In other words, as we will illustrate further on (Section 10.5), the
display of characteristic formulae gives the user the illusion of reading source code, even though in
fact what is being manipulated is not a piece of program syntax but instead a Coq logical formula.

The definition of the characteristic formulae generator in terms of the auxiliary definitions is
as follows.

Definition 10.2.2 (Characteristic formulae generator) cf 𝑡𝑄 ≡ cfnil 𝑡𝑄 with

cf𝐸 𝑥 ≡ cf_var𝐸 𝑥

cf𝐸 𝑣 ≡ cf_val 𝑣
cf𝐸 (𝜇𝑓.𝜆𝑥.𝑡) ≡ cf_fix (𝜆𝐹𝑋. cf(𝑓,𝐹 )::(𝑥,𝑋)::𝐸 𝑡)

cf𝐸 (𝑡1 𝑡2) ≡ cf_app (subst𝐸 (𝑡1 𝑡2))

cf𝐸 (let𝑥 = 𝑡1 in 𝑡2) ≡ cf_let (cf𝐸 𝑡1) (𝜆𝑋. cf(𝑥,𝑋)::𝐸 𝑡2)

cf𝐸 (if 𝑡0 then 𝑡1 else 𝑡2) ≡ cf_if (subst𝐸 𝑡0) (cf𝐸 𝑡1) (cf𝐸 𝑡2)

10.3 Properties and Definition of the “framed” Predicate

As said earlier, the purpose of the predicate framed is to provide the user with the possibility to
access the expressiveness of the frame rule while carrying out proofs via characteristic formulae.
Proof obligations take the form 𝐻 ⊢ framedℱ 𝑄, where ℱ is an application of an auxiliary def-
inition such as cf_let, or an application of wp. On such proof obligations, we wish to exploit the
following reasoning rules, which mimic the application of consequence and frame on triples, and
to be able to eliminate the transformer “framed” when it is not needed.

cf-framed-conseq
𝐻 ⊢ framedℱ 𝑄 𝑄 .⊢𝑄′

𝐻 ⊢ framedℱ 𝑄′

cf-framed-frame
𝐻 ⊢ framedℱ 𝑄

𝐻 ⋆𝐻 ′ ⊢ framedℱ (𝑄 .⋆ 𝐻 ′)

cf-framed-erase
𝐻 ⊢ ℱ 𝑄

𝐻 ⊢ framedℱ 𝑄

There remains to exhibit a definition of “framed” that satisfies the above rules. Recall that
the frame and consequence rules are subsumed by the rule wp-frame. This rule asserts that
the assertion wp 𝑡𝑄 is entailed by the assertion ∃∃𝑄′. (wp 𝑡𝑄′) ⋆ (𝑄′ .–⋆ 𝑄). We can mimic this
definition by defining the assertion “framedℱ 𝑄” as “∃∃𝑄′. (ℱ 𝑄′) ⋆ (𝑄′ .–⋆ 𝑄)”.
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Definition 10.3.1 (Predicate “framed”)

framedℱ ≡ 𝜆𝑄. ∃∃𝑄′. (ℱ 𝑄′) ⋆ (𝑄′
.–⋆ 𝑄)

The key properties of this predicate appear below. The three first properties justify the three
reasoning rules stated above. The next two properties are useful in the soundness proof: framed-
mono asserts that framed is covariant in the formula it applies to; framed-wp asserts that framed
does not add to the expressiveness of a weakest-precondition formula wp 𝑡 , because such a for-
mula already supports consequence-frame reasoning. The last property framed-idem, is a sanity
check. It shows that two nested applications of the framed predicate are redundant; it is reminis-
cent of the fact that two applications of the frame rule (or of the consequence rule) can always be
merged into a single application of that rule.

Definition 10.3.2 (Properties of the predicate “framed”)

framed-conseq: 𝑄 .⊢𝑄′ ⇒ framedℱ 𝑄 ⊢ framedℱ 𝑄′

framed-frame: (framedℱ 𝑄) ⋆ 𝐻 ⊢ framedℱ(𝑄 .⋆ 𝐻)

framed-erase: ℱ 𝑄 ⊢ framedℱ 𝑄

framed-mono: (∀𝑄. ℱ 𝑄 ⊢ ℱ ′𝑄) ⇒ framedℱ 𝑄 ⊢ framedℱ ′𝑄

framed-wp: framed (wp 𝑡 ) = wp 𝑡

framed-idem: framed (framedℱ) = framedℱ

10.4 Soundness of Characteristic Formulae

As announced earlier, our aim is to prove cf 𝑡𝑄 ⊢ wp 𝑡𝑄. Recall that cf 𝑡𝑄 ≡ cfnil 𝑡𝑄 where
the recursive function has the form cf𝐸 𝑡 , for an environment 𝐸. A key insight is that the for-
mula computed by cf𝐸 𝑡𝑄 is equivalent to the one computed by cf (subst𝐸 𝑡)𝑄, where subst𝐸 𝑡
corresponds to the term 𝑡 in which all bindings from 𝐸 have been substituted. We define the it-
erated substitution operation subst as a recursive function over the term 𝑡, for efficiency reasons.
Alternatively, this operation can be defined by recursion over the environment 𝐸 as follows.

subst nil 𝑡 ≡ 𝑡

subst ((𝑥, 𝑣) :: 𝐸) 𝑡 ≡ subst𝐸 ([𝑣/𝑥] 𝑡)

In fact, our soundness proof exploits the fact that these two definitions of subst are equivalent.
Our soundness proof establishes the following result:

cf𝐸 𝑡𝑄 ⊢ wp (subst𝐸 𝑡)𝑄.

The proof is by structural induction on the term 𝑡. To ease the statement of the lemmas involved
in the soundness proof, we introduce an auxiliary judgment to reformulate the proof obligations.
This judgment, written “sound 𝑡ℱ”, asserts that ℱ is a logical formula stronger than the weakest-
precondition of 𝑡.

Definition 10.4.1 (Auxiliary soundness judgment)

sound 𝑡ℱ ≡ ∀𝑄. ℱ 𝑄 ⊢ wp 𝑡𝑄

Using this judgment, the proposition cf𝐸 𝑡𝑄 ⊢ wp (subst𝐸 𝑡)𝑄 reformulates as shown below.
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Lemma 10.4.1 (Statement of the induction principle for the soundness proof) We prove:

∀𝑡𝐸. sound (subst𝐸 𝑡) (cf𝐸 𝑡)

The proof is by induction on 𝑡. We next list the key lemmas involved in the proof.

sound-wp : sound 𝑡 (wp 𝑡)

sound-framed : sound 𝑡ℱ ⇒ sound 𝑡 (framedℱ)
sound-fail : sound 𝑡 cf_fail

sound-val : sound 𝑣 (cf_val 𝑣)

sound-app : sound 𝑡 (cf_app 𝑡)

sound-if : sound 𝑡1ℱ1 ∧ sound 𝑡2ℱ2

⇒ sound (if 𝑡0 then 𝑡1 else 𝑡2) (cf_if 𝑡0ℱ1ℱ2)

sound-let : sound 𝑡1ℱ1 ∧
(︀
∀𝑋. sound ([𝑋/𝑥] 𝑡2) (𝒢2𝑋)

)︀
⇒ sound (let𝑥 = 𝑡1 in 𝑡2) (cf_letℱ1 𝒢2)

sound-fix :
(︀
∀𝐹𝑋. sound ([𝑋/𝑥] [𝐹/𝑓 ] 𝑡) (𝒢 𝐹 𝑋)

)︀
⇒ sound (𝜇𝑓.𝜆𝑥.𝑡) (cf_fix𝒢)

Each of these lemmas admits a short proof. The lemma sound-fix requires 4 lines of Coq
script, the lemmas sound-let and sound-if each require 2 lines of Coq script, and all others
require a single line of proof. For example, the proof of sound-let is as follows.
Lemma sound_let : ∀F1 G2 x t1 t2,
sound t1 F1→
(∀ v, sound (subst1 x v t2) (G2 v))→
sound (trm_let x t1 t2) (cf_let F1 G2).

Proof using.
introv S1 S2. intros Q. unfolds cf_let. applys himpl_trans wp_let.
applys himpl_trans S1. applys wp_conseq. intros v. applys S2.

Qed.

With these lemmas at hand, the Coq script for the soundness proof is no more than a dozen
lines long.
Lemma sound_cf : ∀E t,
sound (isubst E t) (cf E t).

Proof using.
intros. gen E. induction t; intros; simpl;
applys sound_framed.
{ applys sound_val. }
{ rename v into x. unfold cf_var. case_eq (lookup x E).
{ intros v EQ. applys sound_val. }
{ intros N. applys sound_fail. } }

{ introv IHt1. applys sound_fix.
intros F X. rewrite←isubst_rem_2. applys IHt1. }

{ applys wp_sound. }
{ applys sound_let.
{ applys IHt1. }
{ intros X. rewrite←isubst_rem. applys IHt2. } }

{ applys sound_if. { applys IHt2. } { applys IHt3. } }
Qed.
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The only tedious parts of the proof are the lemmas isubst_rem and isubst_rem_2, which
explain how substitutions commute. For example, isubst_rem establishes the equality:

subst ((𝑥, 𝑣) :: 𝐸) 𝑡 = [𝑣/𝑥] (subst (𝐸 ∖ {𝑥}) 𝑡)

where 𝐸 ∖ {𝑥} denotes a copy of 𝐸 with bindings on 𝑥 removed.
Equipped with these results, we derive our final theorem justifying the soundness of charac-

teristic formulae by instantiating Lemma 10.4.1 on the empty environment.

Theorem 10.4.1 (Soundness of characteristic formulae)

cf 𝑡𝑄 ⊢ wp 𝑡𝑄

In practice, this soundness theorem is exploited by means of the rule cf-triple-fix, which allows
establishing a specification triple for a function by processing the characteristic formula of its
body (recall Section 10.1).

10.5 Interactive Proofs using Characteristic Formulae

In this section, we describe the process of reasoning about untyped code by exploiting charac-
teristic formulae that are computed inside Coq. The examples from this section can be played
interactively by opening the first two Coq files, Basic.v and Repr.v, from [Charguéraud,
2021].

Consider as an example program the function incr, which increments the contents of a mu-
table cell that stores an integer. In OCaml syntax, this function could be defined (in A-normal
form) as shown below.
let incr =
fun p ->
let n = !p in
let m = n + 1 in
p := m

Thanks to the use of a Coq custom syntax, enclosed in specific delimiters written <{ .. }>, we can
parse source code using a readable syntax, not too far from that of OCaml. The only caveat is that
we need to prefix all variables with a quote symbol, to distinguish between program variables and
Coq constants. The definition shown below defines a Coq constant named incr. This constant
has type val, the type of closed values in our deep embedding.
Definition incr : val :=
<{ fun ’p⇒

let ’n = ! ’p in
let ’m = ’n + 1 in
’p := ’m }>.

Wenext state a specification for that function. This specification takes the formtriple t H Q,
where t corresponds to an application of the function incr to an argument, written <{ incr p }>
in our custom syntax. The precondition is 𝑝 →˓ 𝑛, and the postcondition is 𝑝 →˓ (𝑛 + 1). The
“fun _⇒ ...” that appears at the head of the postcondition denotes the fact that the function re-
turns a unit value that does not need to be named. The argument 𝑝 and the auxiliary variable 𝑛 are
quantified outside the triple. The variable 𝑛 has type int, which is an alias for Z. Our semantics
indeed assumes an arbitrary-precision arithmetic, as implemented, e.g., in the CakeML verified
compiler [Kumar et al., 2014].
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Lemma triple_incr : ∀(p:loc) (n:int),
triple <{ incr p }>
(p →˓n)
(fun _⇒ (p →˓ (n+1))).

We next discuss the proof establishing that the code of incr satisfies its specification. First,
we explain how proof obligations are displayed. Second, we show a naive, explicit proof script.
Third, we show how the use of specialized tactics called x-tactics or CFML-style tactics can shorten
proof scripts.

Interactive feedback. After introducing the variables 𝑝 and 𝑛 in the context, the proof begins
with an application of the rule cf-triple-fix. Throughout the proof, the proof obligations in-
volving characteristic formulae take the form 𝐻 ⊢ ℱ 𝑄, where ℱ is a formula associated with a
subterm of the program. We display such proof obligations in Coq using a custom notation of the
form PRE H CODE F POST Q. In the CODE section, the characteristic formula is displayed using
our custom notation for formulae introduced earlier at step 6. Up to alpha-renaming of bound
variables, the initial proof obligation reads as follows. Observe how one can somewhat recognize
the body of the function incr.
PRE (p →˓n)
CODE <[ Let n := App val_get p in

Let m := App val_add n 1 in
App val_set p ) ]>

POST (fun _⇒ (p →˓ (n+1))).

Proofs without x-tactics. Carrying a proof from first principles is quite verbose. We show
below a corresponding proof script. The name triple_get refers to the lemma that corre-
sponds to the specification of the “get” operation on references. Likewise, triple_add and
triple_set refer to specification lemmas. The tactic xsimpl simplifies an entailment; it is
detailed further on. The tactic xpull simplifies the left-hand side of an entailment; it is a re-
stricted version of xsimpl. The Coq tactic intros ?→ introduces two quantifiers of the form
∀(𝑥 : 𝐴)(𝐻 : 𝑥 = 𝑒)...., then immediately substitutes 𝑥 away, replacing its occurrences with the
expression 𝑒.
Proof using.
intros.
applys cf_triple_fix. { reflexivity. } simpl.
applys cf_let.
applys cf_app. { apply triple_get. } { xsimpl. }
xpull; intros ?→ .
applys cf_let.
applys cf_app. { apply triple_add. } { xsimpl. }
xpull; intros ?→ .
applys cf_app. { apply triple_set. } { xsimpl. }
xsimpl.

Qed.

Simplification of entailments. Each call to the tactics xpull and xsimplmay apply dozens
of lemmas for exploiting the associativity and commutativity of the separating conjunction, as
well as extraction rules (star-exists and exists-l and pure-l, Chapter 5). The tactic xsimpl is
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a procedure able to simplify and/or prove nontrivial entailments, including ones involving cer-
tain cancellations of magic wand operators. Here are two example entailments that xsimpl can
discharge.

1. ∃∃𝑣. (𝑞 →˓ 𝑣) ⋆ [𝑛 = 4] ⋆ (𝑝 →˓ 𝑛) ⋆ 𝐻 ⊢ ∃∃𝑚. (𝑝 →˓ 𝑚) ⋆ 𝐻 ⋆ [𝑚 > 0] ⋆⊤⊤
2. 𝐻1 ⋆ 𝐻2 ⋆

(︀
(𝐻1 ⋆ 𝐻3)−⋆(𝐻4−⋆𝐻5)

)︀
⋆ 𝐻4 ⊢

(︀
(𝐻2−⋆𝐻3)−⋆𝐻5

)︀
The behavior of xsimpl is described in details in [Charguéraud, 2020, Appendix K]. This tactic is
currently implemented using Ltac, the tactic programming language of Coq. Yet, due to limitation
of Ltac, this implementation is quite slow, and is the major performance bottleneck.

Proofs using x-tactics. Let us revisit the proof of the specification lemma for the increment
function using specialized tactics for manipulating characteristic formulae. The corresponding
script, shown below, consists of a series of x-tactics. Each tactic applies one or several rules
(i.e., lemmas) specifically tailored for processing characteristic formulae—details are given in Sec-
tion 10.6.
Proof.
xwp. xapp. xapp. xapp. xsimpl.

Qed.

A more complex example. To give an idea of what a typical proof script looks like, let us
consider a more complex example. The example consists of the copy function for C-style, null-
terminated linked list, where mnil and mcons are smart constructors for the empty list and for
a list cell, respectively.
let rec mcopy p =
let b = (p == null) in
if b then
mnil ()

else
let x = p.head in
let q = p.tail in
let q2 = mcopy q in
mcons x q2

The specification of this function has been presented in Section 3.2.2. We reproduce it here using
Coq syntax.
Lemma triple_mcopy : ∀(p:loc) (L:list val),
triple (mcopy p)
(MList L p)
(fun (r:val)⇒∃∃(p’:loc), \[r = p’] ⋆ (MList L p) ⋆ (MList L p’)).

The proof script is shown below. The first line sets up a well-founded induction on the list. The
remaining lines follow the structure of the program: xwp enters the proof; xapp is used to handle
each function call; xif handles the conditional and leaves one subgoal for each branch. The tactic
xchange exploits the consequence rule to fold or unfold the representation predicate for mutable
lists (Mlist, see Definition 3.1.3). The star symbol that appears after tactic names denotes a call to
Coq’s automation tactic eauto.
Proof using.
intros. gen p. induction_wf IH: list_sub L.
xwp. xapp. xchange MList_if. xif; intros C; case_if; xpull.
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{ intros→ . xapp. xsimpl∗. subst. xchange∗←MList_nil. }
{ intros x q L’→ . xapp. xapp. xapp. intros q’.
xapp. intros p’. xchange←MList_cons. xsimpl∗. }

Qed.

Summary. The above script is representative of many CFML-style proofs. It consists of:

1. the set-up of a proof by induction, in the case of a recursive function;
2. x-tactics for handling a term construct and thereby make progress through the code;
3. interleaved between the former, x-tactics that apply the structural reasoning rules, which

are not syntax-directed;
4. also interleaved between x-tactics for term constructs, calls to conventional Coq tactics for

performing rewriting operations, or performing case analyses (i.e., inversions);
5. calls of xsimpl and xpull for simplifying entailments;
6. conventional Coq tactics for discharging pure obligations in the leaves of the proof tree.

The use of x-tactics for processing characteristic formulae and for simplifying entailments
allows achieving fairly concise proof scripts. Besides, the x-tactics that follow the term constructs
help organize the proof script in a way that matches the structure of the code. If either the code or
the specification is modified, the user greatly benefits from these structuring tokens for figuring
out where and how to fix the proof script. We next give a brief overview of how x-tactics are
defined.

10.6 Implementation of CFML-Style Tactics

We next describe the construction of a few key CFML tactics. We do not aim here for exhaustive-
ness. Details may be found in the Coq file WPgen.v.

Processing of specification triples. As mentioned earlier, the user begins a proof with the
tactic xwp. First, the tactic introduces the variables universally quantified in the specification.
Second, it applies the rule cf-triple-fix, reproduced below. Third, it launches the evaluation in
Coq of the application of cf to the body of the function.

𝑣1 = 𝜇̂𝑓.𝜆𝑥.𝑡 𝑓 ̸= 𝑥 𝐻 ⊢ cf ([𝑣2/𝑥] [𝑣1/𝑓 ] 𝑡)𝑄

{𝐻} (𝑣1 𝑣2) {𝑄}
cf-triple-fix

Application of the frame rule. The tactic xframe enables the user to invoke the frame rule.
This tactic leverages the rule cf-frame shown below. The first premise asserts that the char-
acteristic formula ℱ at hand contains a leading “framed” transformer. This premise is always
verified by construction of characteristic formulae.

ℱ = framedℱ ′ 𝐻 ⊢ 𝐻1 ⋆ 𝐻2 𝐻1 ⊢ ℱ 𝑄1 𝑄1 .⋆ 𝐻2 .⊢ 𝑄

𝐻 ⊢ ℱ 𝑄
cf-framed

In practice, the tactic comes in two flavors: one tactic for specifying which heap predicates that
should be kept (i.e., providing 𝐻1), and one for specifying which heap predicates should be ex-

cluded (i.e., providing 𝐻2). In both cases, the heap predicate that corresponds to the complement
is computed by invoking xsimpl on the second premise.
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Processing of values. The tactic xval invokes the lemma cf-val, which reformulates the
definition of cf_val 𝑣.

𝐻 ⊢ 𝑄𝑣

𝐻 ⊢ cf_val 𝑣 𝑄
cf-val

Processing of let-bindings. Likewise, the tactic xlet invokes the lemma cf-let, which refor-
mulates the definition of cf_letℱ1 𝒢2.

𝐻 ⊢ ℱ1 (𝜆𝑋. 𝒢2𝑋 𝑄)

𝐻 ⊢ cf_letℱ1 𝒢2𝑄
cf-let

Processing of applications. The tactic xapp is themost interesting. First, xapp invokes xlet
if it faces a let-binding. Then, xapp expects to face a proof obligation of the form 𝐻 ⊢ wp 𝑡𝑄,
where 𝑡 corresponds to a function application. It applies the rule ramified-frame-for-wp, intro-
duced in Section 9.4 and reproduced below.

{𝐻1} 𝑡 {𝑄1} 𝐻 ⊢ 𝐻1 ⋆ (𝑄1 .–⋆ 𝑄)

𝐻 ⊢ wp 𝑡𝑄
ramified-frame-for-wp

CFML provides amechanism for registering a specification lemma for every top-level function. Us-
ing this “database”, we are able to automatically look up and instantiate the relevant lemma. Using
the instantiated specification lemma, we discharge the first premise of the rule ramified-frame-
for-wp. We also offer means of providing explicit arguments for instantiating the specification
lemma in nontrivial cases.

The second premise is handled byxsimpl, which, in particular, computes on-the-fly the frame

that applies to the function call. More precisely, by cancelling the current heap predicate𝐻 against
the precondition𝐻1, xsimpl simplifies the remaining proof obligation to𝑄1 .⋆𝐻2 ⊢ 𝑄, where𝐻2

denotes the framed predicate.
For function calls inside a let-binding, the postcondition𝑄 is of the form 𝜆𝑋. 𝒢2𝑋 𝑄′. In such

case, the proof obligation simplifies further to: ∀𝑋. (𝑄1𝑋) ⋆ 𝐻2 ⊢ 𝒢2𝑋 𝑄′. Here, 𝑋 denotes
the value produced by the function call, 𝑄1𝑋 characterizes the heap produced by that function
call,𝐻2 denotes the heap predicate framed during the call, and 𝒢2𝑋 𝑄′ denotes the characteristic
formula of the continuation, which may refer to the value 𝑋 .

In many cases, the postcondition 𝑄1 includes an equality on 𝑋 , so the proof obligation takes
the form: ∀𝑋. [𝑋 = 𝑉 ] ⋆ (𝑄′

1𝑋) ⋆ 𝐻2 ⊢ 𝒢2𝑋 𝑄′. Such proof obligations are further simplified
by xapp into the form: (𝑄′

1 𝑉 ) ⋆ 𝐻2 ⊢ 𝒢2 𝑉 𝑄′. Doing so saves the user the need to perform
the substitution for 𝑋 by hand. A tactic xapp_nosubst can be used to avoid this automated
simplification, in the rare cases where it is preferable to preserve an explicit equality on 𝑋 .

Summary. Ourmethodology in developing CFML-tactics is to capture asmuch as possible of the
reasoning in the statement of lemmas, in order to limit the required amount of tactic programming
to the minimum. In each tactic, in particular in xapp, we integrate a number of “processing by
default” to obtain the behavior that is best-suited for the majority of the cases encountered in
practice. We provide variants of the tactics to handle the rarer cases appropriately. Overall, we
are able to implement a set of robust, well-specified tactics for processing characteristic formulae
through concise proof scripts. In practice, when verifying the implementation of an algorithm
using CFML, x-tactics account for a tiny fraction of our proof scripts: most of the reasoning is
concerned with explaining why the algorithm at hand is correct, tackling its inherent complexity
rather than its implementation details.



Chapter 11

Partially-Affine Separation Logic

11.1 Linear and Affine Heap Predicates

The Separation Logic presented in the previous chapter is well-suited for a language with explicit
deallocation. It is, however, impractical for a language equipped with a garbage collector. Indeed,
it does not provide any rule for discarding the description of pieces of state that are ready for the
garbage collector to dispose of.

Technically, a Separation Logic is said to be linear if only pure heap predicates, of the form
[𝑃 ], can be discarded. The seminal papers on Separation Logic describe linear logics [O’Hearn
et al., 2001; Reynolds, 2002]. On the contrary, a Separation Logic is said to be affine if any heap
predicates may be freely discarded at any time. The purpose of this section is to set up a partially-
affine Separation Logic, in which both linear and affine heap predicates may coexist. The contents
of this chapter follows the presentation of Charguéraud [2020, §8].

11.2 Customizable Characterization of Affine Heap Predicates

The discard rules of our program logic are expressed using a predicate written affine𝐻 , to assert
that the heap predicate 𝐻 may be freely discarded. This predicate is defined in terms of a lower-
level predicate, written haffineℎ, that characterizes which pieces of heap may be discarded. The
predicate haffineℎ is a parameter of the program logic: by suitably instantiating this predicate,
the user can choose which predicates should be treated as affine, as opposed to linear.

When defining the predicate haffineℎ, the user only has to satisfy two basic well-formedness
constraints, expressed below.

Definition 11.2.1 (Axiomatization of affine heaps) The predicate haffineℎmust satisfy two rules:

haffine∅
staffine-empty

haffineℎ1 haffineℎ2 ℎ1 ⊥ ℎ2

haffine (ℎ1 ⊎ ℎ2)
staffine-union

The predicate affine𝐻 captures the idea that a heap predicate𝐻 can be discarded. By defini-
tion, affine𝐻 holds if the heap predicate 𝐻 is restricted to affine heaps.

Definition 11.2.2 (Definition of affine heap predicates)

affine𝐻 ≡ ∀ℎ. 𝐻 ℎ ⇒ haffineℎ

51



CHAPTER 11. PARTIALLY-AFFINE SEPARATION LOGIC 52

The rules presented next establish that the composition of affine heap predicates yield affine
heap predicates. In other words, the predicate affine is stable by composition. For example, a heap
predicate 𝐻1 ⋆ 𝐻2 is affine provided that 𝐻1 and 𝐻2 are both affine. A heap predicate ∃∃𝑥.𝐻
is affine provided that 𝐻 is affine for any variable 𝑥. Likewise, a heap predicate ∀∀𝑥.𝐻 is affine
provided that𝐻 is affine for any variable 𝑥, with a technical restriction asserting that the type of
𝑥must be inhabited (because, otherwise, the hypothesis would be vacuous). The last rule, affine-
star-pure, asserts that to prove [𝑃 ] ⋆ 𝐻 affine, it suffices to prove𝐻 affine under the hypothesis
that the proposition 𝑃 holds.

Lemma 11.2.1 (Sufficient conditions for affinity of a heap predicate)

affine-empty

affine [ ]

affine-pure

affine [𝑃 ]

affine-star

affine𝐻1 affine𝐻2

affine (𝐻1 ⋆ 𝐻2)

affine-exists

∀𝑥. affine𝐻
affine (∃∃𝑥.𝐻)

affine-forall

∀𝑥. affine𝐻 the type of 𝑥 is inhabited
affine (∀∀𝑥.𝐻)

affine-star-pure

𝑃 ⇒ affine𝐻

affine ([𝑃 ] ⋆ 𝐻)

In practice, the application of these rules is automated using a tactic. The process of justifying
that a heap predicate is affine is in most cases totally transparent for the user.

To state the reasoning rules that enable discarding affine heap predicates, it is helpful to intro-
duce the affine top heap predicate, which is written ⊤⊤. Whereas the top heap predicate (written
⊤ and defined as “𝜆ℎ. True”) holds of any heap, the affine top predicate holds only of any affine

heap.

Definition 11.2.3 (Affine top) The predicate ⊤⊤ can be equivalently defined in two ways.

(1) ⊤⊤ ≡ 𝜆ℎ. haffineℎ (2) ⊤⊤ ≡ ∃∃𝐻. [affine𝐻] ⋆ 𝐻

There are three important properties of the affine top predicate. The first one asserts that any
affine heap predicate𝐻 entails⊤⊤. The second one asserts that the predicate⊤⊤ is itself affine. The
third one asserts that several copies of ⊤⊤ are equivalent to a single ⊤⊤.

Lemma 11.2.2 (Properties of affine top)

affine𝐻

𝐻 ⊢ ⊤⊤
atop-r

affine⊤⊤
affine-atop

(⊤⊤ ⋆⊤⊤) = ⊤⊤
star-atop-atop

All the aforementioned definitions and lemmas hold for any predicate haffine satisfying the
axiomatization from Definition 11.2.1.

Two extreme instantiations of haffine are particularly interesting. The first instantiation treats
all heaps as discardable, leading to a fully-affine logic. The second instantiation treats none heaps
as discardable, leading to a fully-linear logic, equivalent to the logic from the previous chapter.

Example 11.2.1 (Fully-affine Separation Logic) The definition “haffineℎ ≡ True” satisfies the
requirements of Definition 11.2.1, and leads to a Separation Logic where all heap predicates may be

freely discarded. In that setting, (affine𝐻) ⇔ True, and ⊤⊤ = ⊤ = (𝜆ℎ. True) = (∃∃𝐻.𝐻).

Example 11.2.2 (Fully-linear Separation Logic) The definition “haffineℎ ≡ (ℎ = ∅)” satisfies
the requirements of Definition 11.2.1, and leads to a Separation Logic where only pure heap predicates

may be freely discarded. In that setting, (affine𝐻) ⇔ (𝐻 ⊢ [ ]), and ⊤⊤ = [ ] = (𝜆ℎ. ℎ = ∅).
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11.3 Triples for a Partially-Affine Separation Logic

To accommodate reasoning rules that enable freely discarding affine heap predicates, it suffices
to refine the definition of a Separation Logic triple (Definition 6.6.2) by integrating the affine top
predicate ⊤⊤ into the postcondition of the underlying Hoare triple, as formalized next.

Definition 11.3.1 (Refined definition of triples for Separation Logic)

{𝐻} 𝑡 {𝑄} ≡ ∀𝐻 ′. HOARE{𝐻 ⋆𝐻 ′} 𝑡 {𝑄 .⋆ 𝐻 ′
.⋆⊤⊤}

Note that, with the fully-linear instantiation described in Example 11.2.2, the predicate⊤⊤ is equiv-
alent to the empty heap predicate, therefore Definition 11.3.1 is strictly more general than Defini-
tion 6.6.2.

Lemma 11.3.1 (Reasoning rules for refined Separation Logic triples) All the previouslymen-

tioned reasoning rules, in particular the structural rules (Lemma 7.1.1) and the reasoning rules for

terms (Lemma 7.2.1), remain correct with respect to the refined definition of triples (Definition 11.3.1).

The discard rules, which enable discarding affine heap predicates, may be stated in a number
of ways. The three variants that are most useful in practice are shown below. These three variants
have equivalent expressive power with respect to discarding heap predicates.

The rule discard-pre allows discarding a user-specified predicate 𝐻 ′ from the precondition,
provided that𝐻 ′ is affine. Without this rule, the user would have to carry this heap predicate𝐻 ′

through the proof until it appears in a postcondition.
The rule atop-post allows extending the postcondition with ⊤⊤, allowing a subsequent proof

step to yield an entailment relation of the form𝑄1 .⊢(𝑄 .⋆⊤⊤), allowing to discard unwanted pieces
from𝑄1. This rule is useful in “manual” proofs, i.e., proofs carried out with limited tactic support.

The rule ramified-frame-atop extends the ramified frame rule so that its entailment inte-
grates the predicate ⊤⊤, allowing to discard unwanted pieces from either 𝐻 or 𝑄1. This rule is a
key building block for a practical tool that implements a partially-affine Separation Logic.

Lemma 11.3.2 (Discard rules for triples)

discard-pre

{𝐻} 𝑡 {𝑄} affine𝐻 ′

{𝐻 ⋆𝐻 ′} 𝑡 {𝑄}

atop-post

{𝐻} 𝑡 {𝑄 .⋆⊤⊤}
{𝐻} 𝑡 {𝑄}

ramified-frame-atop

{𝐻1} 𝑡 {𝑄1} 𝐻 ⊢ 𝐻1 ⋆ (𝑄1 .–⋆ (𝑄 .⋆⊤⊤))
{𝐻} 𝑡 {𝑄}

These three rules can be equivalently formulated in weakest-precondition style, shown below.
Let us point out the strength of the third rule, namely wp-ramified-frame-atop. This rule sub-
sumes all the other structural rules of our Separation Logic: conseqence, frame, prop, exists,
discard-pre, and atop-post (stated in Lemma 7.1.1 and Lemma 11.3.2).

Lemma 11.3.3 (Discard rules in weakest-precondition style)

affine𝐻

(wp 𝑡𝑄) ⋆ 𝐻 ⊢ (wp 𝑡𝑄)
wp-discard-pre

wp 𝑡 (𝑄 .⋆⊤⊤) ⊢ wp 𝑡𝑄
wp-atop-post

(wp 𝑡𝑄) ⋆ (𝑄 .–⋆ (𝑄′
.⋆⊤⊤)) ⊢ (wp 𝑡𝑄′)

wp-ramified-frame-atop

To integrate support for affine heap predicates in characteristic formulae, we revise the defi-
nition of the predicate “framed”, by inserting the predicate ⊤⊤ next to the postcondition 𝑄.
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Definition 11.3.2 (Revised definition of “framed”)

framedℱ ≡ 𝜆𝑄. ∃∃𝑄′. (ℱ 𝑄′) ⋆ (𝑄′
.–⋆ (𝑄 ⋆⊤⊤))

With this definition, the predicate framed satisfies properties reminiscent of the ruleswp-discard-
pre and wp-atop-post.

Definition 11.3.3 (Additional properties of the predicate “framed”)

framed-atop-pre: affine𝐻 ⇒ 𝐻 ⋆ framedℱ 𝑄 ⊢ framedℱ 𝑄

framed-atop-post: framedℱ (𝑄 .⋆⊤⊤) ⊢ framedℱ 𝑄



Chapter 12

Arrays

This chapter present specifications for operations on ML-style arrays and C-style arrays. The
representation predicate Array 𝑝𝐿 to assert that at location 𝑝 is allocated an array whose elements
are described by the list 𝐿. In particular, the length of the array is equal to the length of the list 𝐿,
written |𝐿|.

12.1 Representation of ML-style Arrays

Let us start by explaining how the predicate Array 𝑝𝐿 may be defined in a foundational manner
with respect to the memory model. In ML, an array is laid out in memory as a header cell followed
by a sequence of cells.

• The header block is described by a heap predicate written ArrayHeader 𝑝 𝑛, where 𝑝 denotes
the address of the array and 𝑛 its length.

• An individual array cell is described by a heap predicate written Cell 𝑝 𝑖 𝑣 where 𝑝 denotes
the base of the address, 𝑖 an index in the array, and 𝑣 the value stored in the cell at that
index.

• The heap predicate ArraySeg 𝑝 𝑗 𝐿 describes an array segment from the array 𝑝, starting at
index 𝑗, and covering a range of cells whose elements are described by the list 𝐿.

• The high-level heap predicate Array 𝑝𝐿 describes both the array header and the full seg-
ment, which covers elements from index 0 to index |𝐿| − 1, inclusive.

In the formal definitions shown below, 𝐿[𝑖] stands for “List.nth 𝑖 𝐿” and 𝐿[𝑖 := 𝑣] stands for
“List.update 𝑖 𝑣 𝐿”. Besides, the construction ⋆𝑖∈[0,|𝐿|) 𝐻𝑖 denotes an iterated separating conjunc-
tion, indexed by valid indices in the list 𝐿.

Definition 12.1.1 (Definitions of representation predicates for arrays)
The first two definitions are implementation-dependent and should not be revealed to the end user.

ArrayHeader 𝑝 𝑛 ≡ 𝑝 →˓ 𝑛 (not revealed)
Cell 𝑝 𝑖 𝑣 ≡ (𝑝+ 1 + 𝑖) →˓ 𝑣 (not revealed)
ArraySeg 𝑝 𝑗 𝐿 ≡ ⋆𝑖∈[0,|𝐿|) Cell 𝑝 (𝑗 + 𝑖) (𝐿[𝑖])

Array 𝑝𝐿 ≡ ArrayHeader 𝑝 |𝐿| ⋆ ArraySeg 𝑝 0𝐿
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12.2 Operations on Arrays

We can assign two sets of specifications to array operations: large-footprint specifications ex-
pressed in terms of the high-level predicate Array 𝑝𝐿, or small-footprint specifications expressed
in terms of the finer-grained predicates Cell 𝑝 𝑖 𝑣 and ArrayHeader 𝑝 𝑛. Let us first show the large-
footprint specifications, which are generally more convenient to work with.

Lemma 12.2.1 (Large-footprint specifications for array operations)

𝑛 ≥ 0 ⇒ {[ ]} (Array.make𝑛 𝑣) {𝜆𝑝. Array 𝑝 (List.make𝑛 𝑣)}
{Array 𝑝𝐿} (Array.length 𝑝) {𝜆𝑟. [𝑟 = |𝐿|] ⋆ Array 𝑝𝐿}

0 ≤ 𝑖 < |𝐿| ⇒ {Array 𝑝𝐿} (Array.get 𝑝 𝑖) {𝜆𝑟. [𝑟 = 𝐿[𝑖]] ⋆ Array 𝑝𝐿}
0 ≤ 𝑖 < |𝐿| ⇒ {Array 𝑝𝐿} (Array.set 𝑝 𝑖 𝑣) {𝜆_. Array 𝑝 (𝐿[𝑖 := 𝑣])}

Small-footprint specifications reveal useful for reasoning about algorithms that operate on a
clearly delimited subset of the array cells. For example, a recursive call to quicksort operates on
a specific array segment. By using smaller-footprint specifications, one benefits from the frame
rule, which inherently captures the fact that all the array cells that are not mentioned in the
precondition remain unmodified. The small-footprint specifications may be expressed either at
the level of individual cells or at the level of array segments. We first show the specifications at
the level of cells.

Lemma 12.2.2 (Small-footprint specifications for array operations, for individual cells)

{Cell 𝑝 𝑖 𝑣} (Array.get 𝑝 𝑖) {𝜆𝑟. [𝑟 = 𝑣] ⋆ Cell 𝑝 𝑖 𝑣}
{Cell 𝑝 𝑖 𝑣′} (Array.set 𝑝 𝑖 𝑣) {𝜆_. Cell 𝑝 𝑖 𝑣}

{ArrayHeader 𝑝 𝑛} (Array.length 𝑝) {𝜆𝑟. [𝑟 = 𝑛]}

In the last specification stated above, observe that reading the length of the array requires
only access to the header, described by ArrayHeader 𝑝 𝑛. Remark: in Cosmo [Mével et al., 2020],
a concurrent Separation Logic for multicore OCaml, ArrayHeader 𝑝 𝑛 appears to the user as a
duplicatable heap predicate, more convenient to manipulate.

12.3 Borrowing and Splitting

The borrowing lemma presented next may reveal useful for exploiting small-footprint specifica-
tions without revealing the iterated star that enumerates all the array cell. This lemma allows
isolating the 𝑖-th cell out of an array, to perform read and write operations on that cell in isolation
from the rest of the array. Subsequently, the cell with its updated contents, named 𝑣 below, may
be merged back into the array representation. This logical operation involves cancelling a magic
wand.

Lemma 12.3.1 (Borrowing of a cell) Assume 0 ≤ 𝑖 < |𝐿|.(︀
Array 𝑝𝐿

)︀
⊢

(︀
Cell 𝑝 𝑖 (𝐿[𝑖])

)︀
⋆
(︀
∀∀𝑣. Cell 𝑝 𝑖 𝑣 −⋆ Array 𝑝 (List.update 𝑖 𝑣 𝐿)

)︀
We next present specifications based on array segments. There, 𝑖 denotes the absolute index,

𝑗 denotes the start of the segment, and 𝑑 denotes the index of the targeted cell relative to the start
of the segment—thus 𝑖 = 𝑗 + 𝑑.
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Lemma 12.3.2 (Small-footprint specifications for array operations, for segments)

𝑑 = 𝑖− 𝑗 ∧ 0 ≤ 𝑑 < |𝐿| ⇒ {ArraySeg 𝑝 𝑗 𝐿} (Array.get 𝑝 𝑖) {𝜆𝑟. [𝑟 = 𝐿[𝑑]] ⋆ ArraySeg 𝑝 𝑗 𝐿}
𝑑 = 𝑖− 𝑗 ∧ 0 ≤ 𝑑 < |𝐿| ⇒ {ArraySeg 𝑝 𝑗 𝐿} (Array.set 𝑝 𝑖 𝑣) {𝜆_. ArraySeg 𝑝 𝑗 𝐿[𝑑 := 𝑣]}

For functions that process an array bymaking recursive calls to increasingly-smaller segments
of the array, the following range splitting lemma allows splitting the segment at hand. Typically,
one would provide one of the two segments to a recursive call (e.g., in quicksort), while the other
fragment may be framed over the scope of that call.

Lemma 12.3.3 (Splitting of array segments)

ArraySeg 𝑝 𝑗 (𝐿1 ++ 𝐿2) = ArraySeg 𝑝 𝑗 𝐿1 ⋆ ArraySeg 𝑝 (𝑗 + |𝐿1|)𝐿2

12.4 Arrays in a C-like Language

We complete the discussion of arrays with a specification of arrays in a C-like language featuring
pointer arithmetic. In C, there are no header blocks stored at the front of every array. However,
there is a notion of malloc-ed block that needs to be tracked by the program logic. Indeed, the
deallocation operation (free) may only be called on pointers obtained as a result of an allocation
operation (malloc). In the formal definitions shown below, the predicateMallocBlock 𝑝 𝑛 captures
the fact that a memory block of size 𝑛 was allocated at location 𝑝.

Definition 12.4.1 (Alternative definitions for arrays in a C-like language)

MallocBlock 𝑝 𝑛 ≡ ... (depends on the memory allocator)
Cell 𝑝 𝑖 𝑣 ≡ (𝑝+ 𝑖) →˓ 𝑣 (transparently)
Array 𝑝𝐿 ≡ ArraySeg 𝑝 0𝐿 ⋆ MallocBlock 𝑝 |𝐿|
ArraySeg 𝑝 𝑗 𝐿 ≡ ⋆𝑖∈[0,|𝐿|) Cell 𝑝 (𝑗 + 𝑖) (𝐿[𝑖])

The segment representation predicate in a C-like language features additional equalities thanks
to the exposure of pointer arithmetic by the language.

Lemma 12.4.1 (Properties of the array representation predicate in a C-like language)

ArraySeg 𝑝 𝑗 (𝐿1 ++ 𝐿2) = ArraySeg 𝑝 𝑗 𝐿1 ⋆ ArraySeg 𝑝 (𝑗 + |𝐿1|)𝐿2

ArraySeg 𝑝 𝑗 𝐿 = ArraySeg (𝑝+ 𝑗) 0𝐿

ArraySeg 𝑝 0 (𝐿1 ++ 𝐿2) = ArraySeg 𝑝 0𝐿1 ⋆ ArraySeg (𝑝+ |𝐿1|) 0𝐿2

The alloc operation allocates an array of a given size. Its cells are initialized with a special
value called uninit. This value cannot be read by the get operation. The specification of get is
thus updated with an additional precondition of the form 𝑣 ̸= uninit. The free operation, when
applied to the address of a block, requires as precondition all the cells that were allocated as part
of that block.

Lemma 12.4.2 (Specification of operations on arrays in a C-like language)

Specification of alloc: 𝑛 ≥ 0 ⇒ {[ ]} (alloc𝑛) {𝜆𝑝. Array 𝑝 (List.make𝑛 uninit)}
Specification of get: 𝑣 ̸= uninit ⇒ {𝑝 →˓ 𝑣} (get 𝑝) {𝜆𝑥. [𝑥 = 𝑣] ⋆ 𝑝 →˓ 𝑣}
Specification of set: {𝑝 →˓ 𝑣} (set 𝑝 𝑣′) {𝜆_. (𝑝 →˓ 𝑣′)} (where 𝑣 could be uninit)
Specification of free: {Array 𝑝𝐿} (free 𝑝) {𝜆_. [ ]}
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The view of arrays and array segments as iterated separating conjunctions of cells comes from
the original papers on Separation Logic [O’Hearn et al., 2001; Reynolds, 2002]. A foundational
formalization of small-footprint specifications for ML-style arrays is implemented in CFML since
2021.



Chapter 13

Records

This chapter presents specifications for operations on ML-style records. Compared the treatment
of arrays, there are two important differences. The first difference is that the cells are indexed by
fields names, instead of being indexed by an integer value. As a result, the model of a record is
not a list of values, but a list or set of pairs each made of a field identifier and a value. It is usually
desirable for representation predicates to be insensitive to the order of fields, following common
practice in ML languages. The second difference is that, because ML does not expose a function
to read the number of fields of a record, there is no need to keep track in the program logic of
representation predicates for the record headers. For the remaining aspects, our formalization of
records shares a lot of similarities with that of arrays.

13.1 Representation of Records

We introduce the representation predicate Record 𝑝𝐾 to assert that at location 𝑝 is allocated a
record whose fields are described by the list 𝐾 , which consists of a list of pairs each made of a
field identifier and a value. An individual record field is described by a heap predicate written
Field 𝑝 𝑘 𝑣 where 𝑝 denotes the base of the address, 𝑘 denotes a field identifier, and 𝑣 the value
stored in the cell at that index.

To realize record predicates in a foundationalmanner, we have to consider a particularmemory
layout for records. To that end, field identifiers are viewed as natural numbers representing the
offset of the corresponding field. However, in the high-level presentation exposed to the user, fields
are referred to by name—the offset need not be exposed. Thereafter, we use the term field name

to refer to field identifiers, reflecting the choice of presenting reasoning rules using the concepts
of that appear in source code.

The foundational definitions appear next. The predicate Field 𝑝 𝑘 𝑣 is meant to be presented
as an abstract predicate to the end user. The predicate Record 𝑝𝐾 is defined by iterating over the
fields. The definition inherently ensures that Record 𝑝𝐾 is equal to Record 𝑝𝐾 ′ for any𝐾 ′ being
a permutation of the list𝐾 . We deliberately choose to represent𝐾 as a Coq list rather than a set to
ensure that fields remain ordered in the same way as the user writes them in formal specifications.

Definition 13.1.1 (Definitions of representation predicates for records)

Field 𝑝 𝑘 𝑣 ≡ (𝑝+ 1 + 𝑘) →˓ 𝑣 (not revealed)
Record 𝑝𝐾 ≡ ⋆(𝑘,𝑣)∈𝐾 Field 𝑝 𝑘 𝑣

Observe that the definition ofRecord 𝑝𝐾 allows one to convert between the record view, which
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describes multiple fields at once, and the field view, which enables manipulating individual fields.
There is also the possibility to consider a subset view of a record, by means of the following split
rule, which allows isolating any subset of the record fields. Considering a subset may be helpful
to reason about a program component that only interacts with a subset of the fields associated
with a record data type.

Lemma 13.1.1 (Decomposition rules for the record representation predicate)

Record 𝑝 (𝐾1 ++𝐾2) = Record 𝑝𝐾1 ⋆ Record 𝑝𝐾2

Record 𝑝 ((𝑘, 𝑣) :: nil) = Field 𝑝 𝑘 𝑣

Record 𝑝 nil = [ ]

13.2 Operations on Records

The specification of operations on records share a lot of similarities with the operations on arrays.
We next present small-footprint and large-footprint specifications.

Lemma 13.2.1 (Small-footprint specifications for record operations, for individual fields)

{Field 𝑝 𝑘 𝑣} (p.k) {𝜆𝑟. [𝑟 = 𝑣] ⋆ Field 𝑝 𝑘 𝑣}
{Field 𝑝 𝑘 𝑣′} (p.k <- v) {𝜆_. Field 𝑝 𝑘 𝑣}

Lemma 13.2.2 (Large-footprint specifications for record operations)

{[ ]} ({k1:=v1;k2:=v2}) {𝜆𝑝. Record 𝑝 ((𝑘1, 𝑣1) :: (𝑘2, 𝑣2) :: nil)}
𝑘 ∈ dom𝐾 ⇒ {Record 𝑝𝐾} (p.k) {𝜆𝑟. [𝑟 = 𝐾[𝑘]] ⋆ Record 𝑝𝐾}
𝑘 ∈ dom𝐾 ⇒ {Record 𝑝𝐾} (p.k <- v) {𝜆_. Record 𝑝 (𝐾[𝑘 := 𝑣])}

13.3 Record-With Construct

OCaml’s record-with operation applies to an existing record and creates a fresh copy of that record,
with a subset of the fields being updated. Consider the specification shown below.

𝑘1, 𝑘2 ∈ dom𝐾 ⇒ {Record 𝑝𝐾}
({p with k1:=v1;k2:=v2})
{𝜆𝑝′. Record 𝑝′ (𝐾[𝑘1 := 𝑣1][𝑘2 := 𝑣2])}

This specification captures the semantics of the record-with operation, but only under the assump-
tion that the program logic at hand is affine. Indeed, the predicate Record 𝑝𝐾 might cover only a
subset of the fields. For every field that is not described by𝐾 , the corresponding field in the fresh
record is implicitly discarded when exploiting the above specification. It is thus the responsibility
of the user to gather the heap predicates associated with all the fields before reasoning about a
record-with operation. (In a linear program logic, one would need to involve the record header
predicate to constrain the length of the list 𝐾 , and thereby enforce that 𝐾 covers all the fields of
the input record.)

CFML features a mechanism to smoothen the reasoning about read and write operations on
record fields. Given an operation on a field 𝑘 of a record at address 𝑝, this mechanism searches
the precondition at hand for a predicate of the form Field 𝑝 𝑘 𝑣, or of the form Record 𝑝𝐾 with
𝑘 ∈ 𝐾 . It then exploits the appropriate specification. In the case of a large-footprint specifica-
tion, the record update of the form 𝐾[𝑘 := 𝑣] is computed. In terms of syntax, CFML provides
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the syntax p~>‘{k1:=v1;k2:=v2} for Record 𝑝 ((𝑘1, 𝑣1) :: (𝑘2, 𝑣2) :: nil). Overall, from the
perspective of the end user, a heap predicate for a record closely resembles the source code for
the corresponding record definition, and operations on records are processed automatically by the
framework.



Chapter 14

Additional Language Extensions

This chapter presents reasoning rules for dynamic checks (Section 14.1), for terms that are not in
A-normal form (Section 14.2), for while-loops and for-loops, and for n-ary functions (Section 14.4).

14.1 Treatment of Dynamic Checks (Assertions)

The language construct “assert 𝑡” expresses a Boolean assertion. If the term 𝑡 evaluates to the
value true, the assertion produces unit. Otherwise, the term “assert 𝑡” gets stuck—the program
halts on an error. The verification of a program should statically ensure that: (1) the body of every
assertion evaluates to true, and (2) the program remains correct when assertions are disabled
either via a compiler option such as -noassert in OCaml, or via the programming pattern
“if debug then assert 𝑡”, where debug denotes a compilation flag. The assert rule, shown below,
satisfies these two properties.

Lemma 14.1.1 (Evaluation rules and reasoning rule for assertions)

big-assert-enabled

𝑡/𝑠 ⇓ true/𝑠′

(assert 𝑡)/𝑠 ⇓ tt/𝑠′

big-assert-disabled

(assert 𝑡)/𝑠 ⇓ tt/𝑠

assert

{𝐻} 𝑡 {𝜆𝑟. [𝑟 = true] ⋆ 𝐻}
{𝐻} (assert 𝑡) {𝜆_. 𝐻}

The term “assert false” denotes inaccessible branches of the code. A valid triple for this term
can only be derived from a false precondition: {[False]} (assert false) {𝑄}.

Interestingly, the reasoning rule assert is not limited to read-only terms. For example, con-
sider the Union-Find data structure, which involves the operation find that performs path com-
pression. The evaluation of an assertion of the form assert (find x = find y) may in-
volve write operations. It nevertheless preserves all the invariants of the data structure. These
invariants would be captured by the heap predicate 𝐻 in the rule assert.

14.2 Beyond A-normal Form: The Bind Rule

In this section, we explain how to reason about programs that are not in A-normal form. We follow
the approach of the bind rule, popularized by Iris [Jung et al., 2018] in the context of program logics.
The bind rule follows the pattern of the let-binding rule but allows for evaluation of a subterm 𝑡
that appears in an evaluation context 𝐸.
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For the syntax introduced in Section 6.1 and used so far, we can define evaluation contexts by
the following grammar, where □ denotes the hole, i.e., the empty context. We fix here a left-to-
right evaluation order; other orders could be considered.

𝐸 := □ | let𝑥 = 𝐸 in 𝑡 | (𝐸 𝑡) | (𝑣 𝐸) | if 𝐸 then 𝑡 else 𝑡

We write 𝐸[𝑡] for the context 𝐸 whose hole is filled with the term 𝑡. We write value 𝑡 for the
predicate that asserts that 𝑡 is a value. The bind rule describes how to evaluate or reason about
subterms that appear in evaluation contexts and that are not already values. The big-step bind
rule takes the following form.

¬ value 𝑡 𝑡/𝑠 ⇓ 𝑣/𝑠′ 𝐸[𝑣] / 𝑠′ ⇓ 𝑣′/𝑠′′

𝐸[𝑡] / 𝑠 ⇓ 𝑣′/𝑠′′
big-bind

Note that the premise ¬ value 𝑡 is technically optional. Indeed, if 𝑡 is a value, then the last premise
is simply equivalent to the conclusion of the rule. (Nevertheless, we like to include this premise
because it is necessary when considering a coinductive interpretation of the evaluation rules, see
[Charguéraud et al., 2022, §3.4].)

The corresponding reasoning rules, expressed using either triples or weakest preconditions,
appear next. Observe that these two rules need not include a premise of the form¬ value 𝑡. Indeed,
the rules remain valid even in the case where 𝑡 is already a value. (Here, including the premise
would add a serious burden onto the end user, who will have to perform additional case analyses.)

Lemma 14.2.1 (Bind rules)
bind

{𝐻} 𝑡 {𝑄1}
(︀
∀𝑣. {𝑄1 𝑣} 𝐸[𝑣] {𝑄}

)︀
{𝐻} 𝐸[𝑡] {𝑄}

wp-bind

wp 𝑡
(︀
𝜆𝑣.wp (𝐸[𝑣])𝑄

)︀
⊢ wp (𝐸[𝑡])𝑄

14.3 Inductive Reasoning for Loops

Pointer-manipulating programs are typically written using loops. Although loops can be simu-
lated using recursive functions, proofs are simpler in the presence of a while-loop construct. We
write it “while 𝑡1 do 𝑡2”.

A loop “while 𝑡1 do 𝑡2” is equivalent to its one-step unfolding: if 𝑡1 evaluates to true, then 𝑡2
is executed and the loop proceeds; otherwise the loop terminates on the unit value. The rules
big-while and while shown below capture this one-step unfolding principle.

Lemma 14.3.1 (Evaluation rule and reasoning rules for while loops)
big-while

(if 𝑡1 then (𝑡2 ; while 𝑡1 do 𝑡2) else tt)/𝑠 ⇓ 𝑣/𝑠′

(while 𝑡1 do 𝑡2)/𝑠 ⇓ 𝑣/𝑠′

while

{𝐻} (if 𝑡1 then (𝑡2 ; while 𝑡1 do 𝑡2) else tt) {𝑄}
{𝐻} (while 𝑡1 do 𝑡2) {𝑄}

One may establish a triple about the behavior of a while loop by conducting a proof by in-
duction over a decreasing measure or well-founded relation, exploiting the induction hypothesis
to reason about the “remaining iterations”. Note that this approach is essentially equivalent to
encoding the loop as a tail-recursive function, yet without the boilerplate associated with an en-
coding.
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Example 14.3.1 (Length of a list using a while loop) Consider the following code fragment, which

sets the contents of s to the length of the mutable list at location p.

let r = ref p and s = ref 0 in
while !r != null do (incr s; r := !r.tail) done

The loop is specified by the triple:

{Mlist𝐿𝑝 ⋆ 𝑟 →˓ 𝑝 ⋆ 𝑠 →˓ 0}
(while ... done)
{𝜆_.Mlist𝐿𝑝 ⋆ 𝑟 →˓ null ⋆ 𝑠 →˓ |𝐿|}

and its proof is conducted by induction on the following statement.

∀𝐿𝑛𝑝. {Mlist𝐿𝑝 ⋆ 𝑟 →˓ 𝑝 ⋆ 𝑠 →˓ 𝑛}
(while ... done)
{𝜆_.Mlist𝐿𝑝 ⋆ 𝑟 →˓ null ⋆ 𝑠 →˓ 𝑛+ |𝐿|}

Applying the while rule reveals the conditional on whether !r is null. In the case where it is not

null, s is incremented, r is set to the tail of the current list, and the loop starts over. To reason about

this “recursive invocation” of the while-loop, it suffices to apply the frame rule to put aside the head

cell described by a predicate of the form (𝑝.head →˓ 𝑥) ⋆ (𝑝.tail →˓ 𝑞), and to apply the induction

hypothesis to the tail of the list described by Mlist𝐿′ 𝑞, where 𝐿 = 𝑥 :: 𝐿′
.

The above example shows that, by carrying a proof by induction, it is possible to apply the
frame rule over the remaining iterations of a loop. Doing sowould not be possible with a reasoning
rule that imposes a loop invariant to be valid both at the entry point and exit point of the loop
body. Indeed, such a loop invariant would necessarily involve the description of a list segment.

The statement of a reasoning rule for loops that allows to frame over the remaining iterations
had been devised independently by Tuerk [2010] and Charguéraud [2010].

14.4 Treatment of Functions of Several Arguments

Functions of several arguments may be represented as curried functions, as tupled functions, or as
native n-ary functions (like, e.g., in the C language). Regardless of the representation of functions,
the rules for reasoning about a proper function call—i.e., with the expected number of arguments—
are stated essentially in the same way. For example, one may state the following rule for reasoning
about the call to a function of two arguments. The predicate noduplicates involved here captures
the fact that the name of the function and of its arguments do not clash.

Lemma 14.4.1 (Reasoning rule for functions of arity 2)

app2

𝑣0 = 𝜇̂𝑓.𝜆𝑥1𝑥2.𝑡 {𝐻} ([𝑣2/𝑥2] [𝑣1/𝑥1] [𝑣0/𝑓 ] 𝑡) {𝑄} noduplicates (𝑓 :: 𝑥1 :: 𝑥2 :: nil)

{𝐻} (𝑣0 𝑣1 𝑣2) {𝑄}

More interestingly, we can state an arity-generic version of the rule, that works for any arity.
It applies to a function 𝑓 expecting a list 𝑥 of arguments of the form “𝑥1 :: ... :: 𝑥𝑛 :: nil”. The term
𝑣0 𝑣 denotes the application of a value 𝑣0 to a list of arguments 𝑣 of the form “𝑣1 :: ... :: 𝑣𝑛 :: nil”.
The corresponding rule, which is used in the current version of CFML, is stated as follows.
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Lemma 14.4.2 (Reasoning rule for n-ary functions)

apps

𝑣0 = 𝜇̂𝑓.𝜆𝑥.𝑡 {𝐻} [(𝑣0 :: 𝑣)/(𝑓 :: 𝑥)] 𝑡 {𝑄} |𝑣| = |𝑥| > 0 noduplicates (𝑓 :: 𝑥)

{𝐻} (𝑣0 𝑣) {𝑄}

Remark: in CFML, we set up a Coq coercion such that an application written in curried style
“𝑣0 𝑣1 ... 𝑣𝑛” is elaborated to the n-ary application “𝑣0 (𝑣1 :: ... :: 𝑣𝑛 :: nil)”.

To reason about n-ary applications that are not in A-normal forms, the bind rule can be used,
with a suitably adapted grammar of contexts.



Chapter 15

A Survey of Separation Logic for
Sequential Programs

This chapter focuses on research on Separation Logic, excluding work on concurrent Separation
Logic. This survey corresponds, up to minor updates, to the version published in [Charguéraud,
2020]. For a broader survey of Separation Logic, we refer to O’Hearn’s CACM paper [2019]. In
particular, the appendix to his survey covers practical automated and semi-automated tools based
on Separation Logic, such as Infer [Calcagno et al., 2015], VeriFast [Philippaerts et al., 2014], or
Viper [Müller et al., 2016].

Section 15.1 starts by listing the ingredients that were already present in the seminal papers on
Separation Logic [O’Hearn et al., 2001; Reynolds, 2002]. Section 15.2 attempts to trace the origin
of every other ingredient. Section 15.3 gives a tour of the work that involves mechanized presen-
tations of Separation Logic. Finally, Section 15.4 provides a review of course notes on Separation
Logic.

15.1 Original Presentation of Separation Logic

Traditional presentations of Separation Logic target command-based languages, which involve
mutable variables in addition to heap-allocated data. In that setting, the statement of the frame
rule involves a side-condition to assert that the mutable variables occurring in the framed heap
predicate are not modified by the command. Up to minor differences in presentation, many fun-
damental concepts appeared in the first descriptions of Separation Logic [O’Hearn et al., 2001;
Reynolds, 2002]:

• the grammar of heap predicate operators, except the pure heap predicate [P], and with the
limitation that quantifiers ∃∃𝑥.𝐻 and ∀∀𝑥.𝐻 range only over integer values;

• the rule of consequence and the frame rule;
• a variant of the rule exists, named exists2 in the discussion further below;
• the fundamental properties of the star operator described in Lemma 5.2.1;
• the small footprint specifications for primitive state-manipulating operations,
• the definition of Mlist, stated by pattern-matching over the list structure like in Defini-
tion 3.1.2;

• the characterization of the magic wand operator via characterizations (1), (3) and (4) from
Definition 8.1.1, but not characterization (2), which involves quantification over heap pred-
icates;
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• the example of a copy function for binary trees;
• the encoding of records and arrays using pointer arithmetics.

My presentation of structural reasoning rules (Lemma 7.1.1) features two extraction rules
named prop and exists. These rules did not appear in that form in the original papers on Sepa-
ration Logic. Instead, these papers included the following two rules.

∀𝑥. {𝐻} 𝑡 {𝑄}
{∃∃𝑥.𝐻} 𝑡 {𝜆𝑣. ∃∃𝑥. (𝑄𝑣)}

exists2
{[𝑎/𝑥]𝐻} 𝑡 {𝑄}
{∀∀𝑥.𝐻} 𝑡 {𝑄}

forall

The rules exists and exists2 yield equivalent expressive power, that is, they may be derived
from one another (in the presence of the rule conseqence, and exists-r and exists-l from
Figure 5.1). Compared with exists2, the statement of exists is more concise and better-suited
for practical purpose. The rule prop for extracting pure facts may be seen as a particular instance
of the rule exists for extracting existential quantifiers. Indeed, as pointed out in Remark 4.2.1,
the heap predicate [𝑃 ] is equal to ∃∃(𝑝 : 𝑃 ). [ ]. The rule forall does not need to be included in
the core set of rules. Indeed, it is derivable, via the rule of conseqence, from the rule forall-l,
which enables instantiating universal quantifiers in entailments (Figure 5.1).

15.2 Additional Features of Separation Logic

The original presentation of Separation Logic consists of a first-order logic for a first-order lan-
guage. Follow-up work aimed for higher-order logics and languages.

Biering et al. [2005, 2007] tackled the generalization to higher-order quantification—the possi-
bility to quantify over propositions and heap predicates—using BI-hyperdoctrines. Krishnaswami
et al. [2007] formalized the subject-observer pattern with a strong form of information hiding
between the subject and the client. This work illustrated how higher-order Separation Logic sup-
ports data abstraction.

Birkedal et al. [2005, 2006] tackled the generalization of Separation Logic to higher-order lan-

guages, where functions may take functions as arguments. To avoid complications with muta-
ble variables, the authors considered a version of Algol with immutable variables and first-order
heaps—heap cells can only store integer values. Specifications are presented using dependent
types: a triple {𝐻} 𝑡 {𝑄} is expressed by the fact that the term 𝑡 admits the type “{𝐻} · {𝑄}”.
One key idea from this work is to bake-in the frame rule into the interpretation of triples, that is, to
quantify over a heap predicate describing the rest of the state, as in Definition 6.6.2. The technique
of the baked-in frame rule later proved successful in mechanized proofs. For example, it appears
in the HOL4 formalization by Myreen and Gordon [2007] (see §3.2, as well as §2.4 from Myreen’s
PhD thesis [2008]) and in the Coq formalization by [Appel and Blazy, 2007] (see Definition 9).

Reus and Schwinghammer [2006] presented a generalization of Separation Logic to higher-

order stores, where heap cells may store functions whose execution may act over the heap. The
former work targets a language that features storable, parameter-less procedures. Its model, de-
veloped on paper, was then simplified by Birkedal et al. [2008] using the technique of the baked-in
frame rule.

Another approach to tackling the circularity issues associatedwith higher-order quantification
and higher-order stores consists of using the step indexing technique [Appel and McAllester, 2001;
Ahmed, 2004; Appel et al., 2007]. In that approach, a heap predicate depends not only on a heap
but also on a natural number, which denotes the number of execution steps for which the predicate
is guaranteed to hold. This approach was later exploited in VST, which provided the first higher-
order concurrent Separation Logic [Hobor et al., 2008], and in Iris [Jung et al., 2017].
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Ni and Shao [2006] presented the XCAP framework, formalized in Coq. It targets an assembly-
level language with embedded code pointers, thereby supporting both higher-order functions
and higher-order stores. XCAP features impredicative polymorphism, allowing heap predicates
to quantify over heap predicates. This work addresses the same problem as the aforementioned
work through a more syntactic approach.

When reasoning about first-class functions, the notion of nested triple naturally appears: triples
may occur inside the pre- or post-condition of other triples. Nested triples were described in work
by Schwinghammer et al. [2009] for functions stored in the heap, and in work by Svendsen et al.
[2010] for higher-order functions (more precisely, for delegate functions). Nested triples are natu-
rally supported by shallow embeddings of Separation Logic in higher-order logic proof assistants.
This possibility is mentioned explicitly by Wang et al. [2011], but was already implicitly available
in earlier formalizations, e.g. [Appel and Blazy, 2007].

Krishnaswami et al. [2010] introduced the idea of a ramified frame rule. The general statement
of the ramified rule stated as in Lemma 8.4.1 appeared in [Hobor and Villard, 2013]. Users of the
tools VST [Cao et al., 2018b] and Iris [Jung et al., 2017] have advertised for the interest of this rule.

Themagic wand between postconditions, written𝑄1 .–⋆ 𝑄2, as opposed to the use of an explicit
quantification ∀∀𝑣.𝑄1 𝑣−⋆𝑄2 𝑣, appears to have first been employed by Bengtson et al. [2012]. This
operator is described in the book by Appel et al. [2014]. The five equivalent characterizations of
this operator give in Definition 8.3.1 appear to be a (minor) contribution of Charguéraud [2020].

Regarding while loops, the possibility to frame over the remaining iterations (Section 14.3) is
inherently available when a loop is encoded as a recursive function, or when a loop is presented in
CPS-style—typical with assembly-level code [Ni and Shao, 2006; Chlipala, 2011]. The statement of
a reasoning rule directly applicable to a non-encoded loop construct, and allowing to frame over
the remaining iterations, has appeared independently in work by Charguéraud [2010] and Tuerk
[2010].

A number of interesting extensions of Separation Logic for deterministic sequential programs
are beyond the scope of the present survey. Let us cite a few.

• Fractional permissions have been introduced by Boyland [2003] in the context of a type sys-
tem with linear capabilities. Soon afterwards, the idea was identified as essential for speci-
fying concurrent threads in Separation Logic [Bornat et al., 2005]. It appears that fractions
may also be useful for reasoning about sequential programs. For example, we use them per-
vasively for keeping track of pointers when reasoning about space usage in the presence of
a garbage collector [Moine et al., 2023].

• The higher-order frame [Birkedal et al., 2005, 2006] and the higher-order anti-frame [Pot-
tier, 2008; Schwinghammer et al., 2010] allow reasoning about hidden state in sequential
programs.

• The notion of Separation Algebra [Calcagno et al., 2007; Dockins et al., 2009; Gotsman et al.,
2011; Klein et al., 2012] is useful for developing a Separation Logic framework independently
of the details of the programming language.

• Costanzo and Shao [2012] present a refined definition of local reasoning to ensure that,
whenever a program runs safely on some state, adding more state would have no effect
on the program’s behavior; their definition is useful in particular for nondeterministic pro-
grams and programs executed in a finite memory.

• Fictional Separation Logic [Jensen and Birkedal, 2012] generalizes the interpretation of sep-
arating conjunction beyond physical separation, and explains how to combine several sep-
aration algebras.
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• Temporary read-only permissions [Charguéraud and Pottier, 2017] provide a simpler alter-
native to fractional permission for manipulating duplicatable read-only resources in a se-
quential program.

• Time credits allow for amortized cost analysis [Charguéraud and Pottier, 2015; Charguéraud
and Pottier, 2019]. Time receipts provide the dual notion: they may be used to establish
lower bounds on the execution time. Mével et al. [2019] and Pottier et al. [2024] formalize
time credits and time receipts in Iris. Spies et al. [2021] introduce transfinite time credits in
Iris for reasoning about the termination of programs whose execution time cannot be bound
upfront.

15.3 Mechanized Presentations of Separation Logic

Gordon [1989] presents the first mechanization of Hoare logic in higher-order logic, using the
HOL tool. Gordon’s pioneering work was followed by numerous formalizations of Hoare logic,
targeting various programming languages. Mechanizations of Separation Logic appeared later.
Here again, we restrict our discussion to the verification of sequential programs.

Yu et al. [2003, 2004] present the CAP framework, implemented in Coq. It supports reason-
ing about low-level code using Separation Logic-style rules, and is applied to the verification of
a dynamic storage allocation library. Ni and Shao [2006] present the XCAP framework, already
mentioned in the previous section, to reason about embedded code pointers. XCAP was also ap-
plied to reasoning about x86 context management code [Ni et al., 2007]. Feng et al. [2006] present
the SCAP framework, for reasoning about stack-based control abstractions, including exceptions
and setjmp/longjmp operations. SCAP is also applied to the verification of Baker’s incremental
copying garbage collector [McCreight et al., 2007]. Feng et al. [2007] present the OCAP framework
that generalizes XCAP for supporting interoperability of different verification systems, including
SCAP. Cai et al. [2007] present the GCAP framework for reasoning about self-modifying code, and
apply Separation Logic to support local reasoning on both program code and regular data struc-
tures. Feng et al. [2008] presents the first verified implementation of a preemptive thread runtime
that exploits hardware interrupts; this runtime is linked to verified context switch primitives,
using the OCAP and the SCAP frameworks. Wang et al. [2011] present ISCAP, a step-indexed,
direct-style operational semantics with support for first-class pointers.

Weber [2004] formalizes in Isabelle/HOL a first-order Separation Logic for a simple while
language. This work includes a soundness proof for the frame rule, and the verification of the
classic in-place list reversal example.

Preoteasa [2006] formalize in PVS a first-order Separation Logic, with the additional feature
that it supports recursive procedures. This work includes the verification of a collection of recur-
sive procedures for computing the parse tree associated with an arithmetic expression.

Marti et al. [2006] formalize in Coq a Separation Logic library, and used it for the verification
of the heap manager of an operating system.

Tuch et al. [2007] present a shallow embedding of Separation Logic in Isabelle/HOL, for a
subset of the C language, with support for interpreting values at the byte level when required.
Their framework is applied to the verification of the memory allocator of a microkernel. Its logic
was later extended to support predicates for mapping virtual to physical addresses, and thereby
reason about the effects of virtual memory [Kolanski and Klein, 2009]. Klein et al. [2012] present
a re-usable library for Separation Algebras, including support for automation.

Appel and Blazy [2007] formalize in Coq a Separation logic for Cminor. This work led to the
VST tool, which supports the verification of concurrent C code [Appel, 2011; Appel et al., 2014;
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Cao et al., 2018a]. VST leverages step-indexed definitions and features a later modality [Hobor
et al., 2008; Dockins et al., 2008; Hobor et al., 2010].

Myreen and Gordon [2007] formalize Separation Logic in HOL4. This work eventually lead to
the CakeML compiler, described further on.

Varming and Birkedal [2008] demonstrate the possibility to formalize higher-order Separation
Logic as a shallow embedding in Isabelle/HOLCF.

Nanevski et al. [2008b] and Chlipala et al. [2009] present the Ynot tool, which consists of an
axiomatic embedding in Coq of Hoare Type Theory (HTT) [Nanevski et al., 2006, 2008a]. HTT
is a presentation of higher-order Separation Logic with higher-order stores in the form of a type
system for a dependently typed functional language. In Ynot, like in HTT, a Coq term 𝑡 admits
the Coq type “ST𝐻 𝑄” to express the specification {𝐻} 𝑡 {𝑄}. In Ynot, programs are shallowly
embedded in Coq: they are expressed using Coq primitive constructs and axiomatized monadic
constructs for effects. The frame rule takes the form of an identity coercion of type ST𝐻 𝑄 →
ST (𝐻 ⋆ 𝐻 ′) (𝜆𝑣. 𝑄 𝑣 ⋆ 𝐻 ′). For specifications involving auxiliary variables, Ynot supports ghost
arguments, which appear like normal function arguments except that they are erased at runtime.

Charguéraud [2011] presents the CFML tool, which supports the verification of OCaml pro-
grams. CFML does not state reasoning rules directly in Coq; instead, a program is verified by
means of its characteristic formula, which corresponds to a form of strongest postcondition. These
characteristic formulae are generated as Coq axioms by an external tool that parses input pro-
grams in OCaml syntax. CFML was extended to support asymptotic cost analysis [Charguéraud
and Pottier, 2015; Charguéraud and Pottier, 2019]. CFML initially hard-wired fully-affine triples,
featuring unrestricted discard rules, and later integrated the customizable predicate haffine (Chap-
ter 11) [Guéneau et al., 2019].

Tuerk [2011] presents in HOL4 the Holfoot tool, formalizing in particular the rules of Abstract
Separation Logic [Calcagno et al., 2007].

Chlipala [2011, 2013] presents in Coq the Bedrock framework, for the verification of programs
written at the assembly level. Bedrock has been, for example, put to practice to verify a coopera-
tive threading library and an implementation of a domain-specific language for XML processing.
These software components were interfaced with hardware components of mobile robots [Chli-
pala, 2015].

Bengtson et al. [2011] present a shallow embedding of higher-order Separation Logic in Coq,
demonstrating the use of nested triples for reasoning about object-oriented code. Following up
on that work, Bengtson et al. [2012] developed in Coq the Charge! tool, which handles a subset of
Java.

Jensen et al. [2013] give a modern presentation of a Separation Logic for low-level code, ex-
ploiting in particular the (higher-order) frame connective [Birkedal et al., 2005; Birkedal and Yang,
2007; Krishnaswami, 2012]. Building on that work, Kennedy et al. [2013] show how to write as-
sembly syntax and generate x86 machine code inside Coq.

The CakeML verified compiler [Kumar et al., 2014], implemented in HOL, takes SML-like pro-
grams as input and produces machine code as output. It exploits Separation Logic to prove the
garbage collector [Sandberg Ericsson et al., 2019]. It also exploits Separation Logic to set up a
CFML-style characteristic formulae generator, extended with support for catchable exceptions
and I/O [Guéneau et al., 2017]. The characteristic formulae are used to verify the standard library
for CakeML.

The Iris framework [Jung et al., 2015, 2016; Krebbers et al., 2017; Jung et al., 2017, 2018], im-
plemented in Coq, supports higher-order concurrent Separation Logic. Like VST, Iris features a
later modality and step-indexed definitions. Iris exploits weakest-precondition style reasoning
rules (Chapter 9) and function specifications are stated as in Lemma 9.4.2, although using syntac-
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tic sugar to make specifications resemble conventional triples. Iris is defined as a fully-affine logic,
with an affine entailment. Tassarotti et al. [2017] present an extension of Iris featuring linear heap
predicates, and an affine modality written 𝒜(𝐻). An alternative approach is proposed by Bizjak
et al. [2019], who present the encoding on top of Iris of two logics that enable tracking of linear
resources, transferable among dynamically allocated threads. The first one, called Iron, leverages
fractional permissions to encode trackable resources, and allow, e.g., reasoning about deallocation
of shared resources. The second one, called Iron++, hides away the use of fractions, and offers the
user with the illusion of a linear Separation Logic with support for trackable invariants. Spies et al.
[2021] extend Iris with transfinite time credits for, in particular, reasoning about termination.

The Mosel framework [Krebbers et al., 2018] generalizes Iris’ tooling to a large class of sepa-
ration logics, targeting both affine and linear separation logics, and combinations thereof.

Bannister et al. [2018] discuss techniques for forward and backward reasoning in Separation
Logic. Their work, presented in Isabelle/HOL, introduces the separating coimplication operator
to improve automation. Separating coimplication is the dual of separating conjunction, just like
septraction [Vafeiadis and Parkinson, 2007] is the dual of separating implication. Separating coim-
plication forms a Galois connection with septraction, just like separating conjunction forms a
Galois connection with separating implication.

Lammich [2019b] present a refinement framework that leverages Separation Logic to refine
from Isabelle/HOL definitions to verified code in LLVM intermediate representation. It is applied
to the production of a number of algorithms, including an efficient KMP string search implemen-
tation [Lammich, 2019a].

15.4 Course Notes on Separation Logic

There exists a number of course notes on Separation Logic. Many of them follow the presentation
from Reynolds’ article [2002] and course notes [2006]. These course notes consider languages with
mutable variables, whose treatment adds complexity to the reasoning rules. The Separation Logic
is presented as a first-order logic on its own, without attempt to relate it in a way or another to
the higher-order logic of a proof assistant. The soundness of the logic is generally only skimmed
over, with a few lines explaining how to justify the frame rule.

A few courses present Separation Logic in relation with its application in mechanized proofs.
Appel’s book Program Logics For Certified Compilers [2014] presents a formalization of a Sepa-
ration Logic targeting the C semantics from CompCert [Leroy, 2009]. More recently, Appel and
Cao [2020] published a volume part of the Software Foundations series, entitled Verifiable C. This
volume is a tutorial for VST [Cao et al., 2018a], a tool that supports reasoning about actual C code.
As of 2022, the tutorial covers the verification of data structures, including linked lists, stacks,
hashtables, as well as string-manipulating functions. The presence of mutable variables, in addi-
tion to other specificities of the C memory model, makes the presentation unnecessarily complex
for a first exposure to Separation Logic and to its soundness proof.

The Iris tutorial by Birkedal and Bizjak [2018] presents the core ideas of Iris’ concurrent Sep-
aration Logic [Krebbers et al., 2017; Jung et al., 2018]. Chapters 3 and 4 introduce heap predicates
and Separation Logic for sequential programs. Unlike in Iris’ Coq formalization, which leverages
a shallow embedding of Separation Logic, the tutorial presents the heap predicate in deep embed-
ding style, via a set of typing rules for heap predicates. The realization of these predicates is not
explained, and the tutorial does not discuss how the reasoning rules are proved sound with respect
to the small-step semantics of the language. The logic presented targets partial correctness, not
total correctness, and only the case of an affine logic is covered. Dietrich [2021] wrote, as part
of her Bachelor’s thesis, A beginner’s guide to Iris, Coq and Separation Logic. It provides a gentle
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introduction on how to use the framework in practice, illustrated with a few case studies.
Chlipala’s course notes [Chlipala, 2018a] feature a chapter on Separation Logic, accompanied

by a corresponding Coq formalization meant to be followed by students [Chlipala, 2018b]. The
material includes a proof of soundness, as well as the verification of a few example programs.
Chlipala’s chapter focuses on the core of Separation Logic—it does not cover any of the enhance-
ments listed in the introduction. The programming language is described in mixed-embedding

style: the syntax includes a constructor Bind, which represents bindings using Coq functions, in
higher-order abstract syntax style. The rest of the syntax consists of operations for allocation and
deallocation, for reading and writing integer values into the heap, plus the constructors Return,
Loop, and Fail. These constructs are dependently-typed: a term that produces a value of type 𝛼
admits the type cmd𝛼. Altogether, this design allows for a concise formalization of the source lan-
guage, yet, we believe, at the price of an increased cost of entry for the reader unfamiliar with the
techniques involved. The core heap predicates are formalized like in Ynot [Chlipala et al., 2009].
Triples are defined in deep embedding style, via an inductive definition whose constructors corre-
spond to the reasoning rules. This deep embedding presentation requires “not-entirely-obvious”
inversion lemmas, which are not needed in our approach. The soundness proof establishes a
partial correctness result expressed via preservation and progress lemmas. Chlipala’s approach
appears well suited for reasoning about an operating system kernel that should never terminate,
or reasoning about concurrent code. However, for reasoning about sequential executions of func-
tions that do terminate, a total correctness proof carried out with respect to a big-step semantics
yields a stronger result, via a simpler proof.

In 2020, Arthur Charguéraud released the first version of an all-in-Coq course entitled Foun-

dations of Separation Logic [Charguéraud, 2021]. It is distributed as Volume 6 of the Software Foun-
dations Series, edited by Benjamin C. Pierce. A second version was released in 2023, together with
a first version of the present companion document. An earlier version of this material appeared
in Charguéraud’s habilitation manuscript [2023].
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