Better typing errors for OCaml

Arthur Charguéraud

Inria


http://arthur.chargueraud.org/

Overview

State of the art
Dozens of research papers on reporting type errors in ML...
... hone of these ideas ever reached the OCaml compiler!

Motivation
Get OCaml to produce better error messages, for beginners...
... and maybe for you, too!

Result
A patch to the type-checker, providing alternative error messages
for ill-typed top-level definitions.




Missing unit argument

let x = read int in (* missing unit argument *)
print int x

ocamlc

File "examples/example missing unit readint.ml", line 2, characters 10-11:
Error: This expression has type unit -> int
but an expression was expected of type int.

ocamlc -easy

File "examples/example missing unit readint.ml", line 2, characters 0-9:
Error: The function “print int' expects one argument of type [int],
but it is given one argument of type [unit -> int].

You probably forgot to provide "()' as argument somewhere.

If reaching a unification error between type unit -> ?t and ?u, then
report You probably forgot to provide "()' as argument somewhere.



Missing bang

let r = ref 1 in
print _int r (* should be [!r] *)

ocamlc

File "examples/example ref missing bang.ml", line 2, characters 10-11:
Error: This expression has type int ref
but an expression was expected of type int.

ocamlc -easy

File "examples/example ref missing bang.ml", line 2, characters 0-9:
Error: The function "print int' expects one argument of type [int],
but it is given one argument of type [int ref].

You probably forgot a “!' operator somewhere.

If reaching a unification error between type ?t ref and ?u, then
report You probably forgot a “!' operator somewhere.



Missing rec

let facto n = (* missing [rec] *)
if n =0 then 1 else n * facto (n-1)

ocamlc

File "examples/example let missing rec.ml", line 2, characters 28-33:
Error: Unbound value facto

ocamlc -easy

File "examples/example let missing rec.ml", line 2, characters 28-33:
Error: Unbound value facto.

You are probably missing the “rec' keyword on line 1.

Check whether the unbound variable would have been in the scope if
it had been bound by a 1let rec instead of a let.



Missing else branch

let ordered list with x y =
if x <=y then [Xx;y]
else if x > y then [y;x]

ocamlc

File "examples/example missing else.ml", line 3, characters 23-27:
Error: This variant expression is expected to have type unit
The constructor :: does not belong to type unit

ocamlc -easy

File "examples/example missing else.ml", line 3, characters 22-27:
Error: This expression is the result of a conditional with no else branch,
so it should have type [unit] but it has type ['a list].

If a subterm of a particular language construct does not have the
expected type, then explain why this type is expected.



Reducing the left-to-right bias

let f b =
if b then 0 else 3.14 (* should have been 0. *)

ocamlc

File "examples/example incompatible else.ml", line 2, characters 19-23:
Error: This expression has type float but an expression was expected of type
int.

ocamlc -easy

File "examples/example incompatible else.ml", line 2, characters 2-23:
Error: The then-branch has type [int]

but the else-branch has type

[float].

Cannot unify type [int] with type [float].

To type-check a conditional or a pattern matching, first type-check
each branch independently, then unify the branch types one by one.



Remaining left-to-right bias

let f b x =
if b
then print_int x
else print float x

ocamlc

File "examples/example if propagate.ml", line 5, characters 21-22:
Error: This expression has type int but an expression was expected of type
float.

ocamlc -easy

File "examples/example if propagate.ml", line 5, characters 9-20:
Error: The function “print float' expects one argument of type [float],
but it is given one argument of type [int].

Unification may still perform side-effects accross branches; yet, the
error typically involves a free variable, which often is to blame.



Errors for ill-typed applications

let =
ignore (Array.make 0.0 20)

ocamlc

File "examples/example make swap.ml", line 2, characters 21-24:
Error: This expression has type float but an expression was expected of type
int.

ocamlc -easy

File "examples/example make swap.ml", line 2, characters 10-20:
Error: The function “Array.make' expects 2 arguments of types [int]
and ['a], but it is given 2 arguments of types [float] and [int].

If an application fails to type-check, locate the error on the entire
application and display: function “foo' expects arguments of type
[bla] and [bla], but it is given arguments of type [bla] and
[bla].



Confusion on arithmetic operators

let =
print float (2.0 + 3.0) (* should be [+.] instead of [+] *)

ocamlc

File "examples/example add bad.ml", line 2, characters 15-18:
Error: This expression has type float but an expression was expected of type
int.

ocamlc -easy

File "examples/example add bad.ml", line 2, characters 19-20:
Error: The function “+' expects 2 arguments of types [int] and [int],
but it is given 2 arguments of types [float] and [float].

Errors are no longer reported at a location ahead of the actual error.



Missing parentheses on a negation

let =
succ -1 (* missing parentheses around [-1] *)

ocamlc

File "examples/example f minus one.ml", line 2, characters 3-7:
Error: This expression has type int -> int
but an expression was expected of type int.

ocamlc -easy

File "examples/example f minus one.ml", line 2, characters 8-9:
Error: The function "-' expects 2 arguments of types [int] and [int],
but it is given 2 arguments of types [int -> int] and [int].

The new error makes it clear that *-' is parsed as a binary operator.



Errors on higher-order function calls

let = List.map (fun x -> x + 1) [2.0; 3.0]
(* should have been [+.] instead of [+], or
should have been [2;3] instead of [2.0;3.0] *)

ocamlc

File "examples/example map bad.ml", line 1, characters 35-38:
Error: This expression has type float but an expression was expected of type
int.

ocamlc -easy

File "examples/example map bad.ml", line 1, characters 8-16:

Error: The function “List.map' expects 2 arguments of types ['a -> 'b]
and ['a list], but it is given 2 arguments of types [int -> int]
and [float list].

The new error explains the type of the anonymous function involved.



Occur-check errors

let rev filter f 1 =
List.fold left (fun x acc -> if f x then x::acc else acc) [] [1; 2; 3]
(* swapped the parameters of the higher-order function *)

ocamlc

File "examples/example fold left swap app 2.ml", line 2, characters 43-44:
Error: This expression has type 'a list
but an expression was expected of type 'a.

The type variable 'a occurs inside 'a list

ocamlc -easy

File "examples/example fold left swap app 2.ml", line 2, characters 2-16:
Error: The function “List.fold left' expects 3 arguments of types
['a -> 'b -> 'a] and ['a] and ['b list],
but it is given 3 arguments of types ['c -> 'c list -> 'c list]
and ['d list] and [int list].




Summary

Custom messages for missing ()’ and "!" and ‘rec'.
Custom messages for subterms of particular constructs.
Decreased left-to-right bias for "if’, ‘match’, and function calls.

No reporting of errors before their actual locations (binary operators).

Support for optional and named arguments in function calls.
No change to errors on top-level definitions involving GADTSs.

No change to module type-checking.




Give it a try!

https://github.com/charguer/ocaml

Send feedback!






