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Bugs in the old days

Mark-I computer (3Hz)

"First actual case of 

bug being found."
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Modern bugs

Bugs at every levels:
• applications
• operating system
• drivers
• hardware
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Bugs in the real world
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Appearance of bugs

Example:

Visible bugs

• system freezing → windows blue screen

• erratic behaviors → music that loops

Silent bugs

• incorrect results → false numeric results

• security holes → stolen informations

→ security holes are not always due to bugs, 

but bugs can sometimes be exploited by attackers
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Bug hunting

Code review
• 10 million lines of code... one bug is enough 

• some pieces of code are very complex 

Testing
• can find many bugs, but not all

• too many cases to test
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More bug hunting

Static analysis
• finds all the bugs of a particular form

• successful example: type checking 

Mechanized verification
• build a proof of the absence of bugs

• have this proof checked by a program (a theorem prover)
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Specification of a program
A specification is a description of what a program is intended 
to compute, regardless of how the program computes its result.

Examples:

– The definition let n = ...produces a value n that is the 
smallest prime number greater than 90

– The function let f x = ...when given a nonnegative integer x, 
returns an integer equal to x!

– The function let incr r = ... when called in a state where the 
location r contains an integer n, changes the memory so that the 
location r contains n+1
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Correctness of a program

Intuition: "the program P is free of bugs".
Formalization: "the program P satisfies the specification S".

Two aspects are critical:

→ the adequacy of the specification 

→ the correctness of the theorem prover
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The verifying compiler

SpecificationSource code

(ideally)
fully-automated proofs

→ one of the unfulfilled promises of Artificial Intelligence...

Verification
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Verification condition generation

SpecificationSource code Invariants

Verif. conditions

automated 
generation

Verification

automated proofs if 
sufficiently-many invariants
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Machine-checked mathematical proofs

Feit-Thompson theorem

"all odd groups are solvable", or equivalently,

"every nonabelian finite simple group has even order"

→ Conjecture by Burnside (1911)

→ Original proof (1962): 255 pages

→ Revised proof (1995): two books

→ Machine-checked proof by Gonthier et al (2012)

170,000 lines in the Coq proof assistant
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Coq at a glance

Theorem statement

Sequence of tactics

Hypotheses

Proof obligations

Current position
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Extraction from Coq

SpecificationSource code Program in logic

Verification

extraction to 
pure Caml code

interactive 
proofs

→ e.g. Leroy's verified C compiler (Compcert) 

→ this approach only applies to purely-functional programs
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Verification using characteristic formulae

SpecificationSource code Charac. formula

Verification

automated
generation

interactive 
proofs

→ supports imperative programs in potentially any language

→ implementation for Caml in a tool called CFML
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Programmes verified using CFML
Purely functional data structures

batched queue, bankers queue, physicists queue, real-time 

queue, implicit queue, bootstrapped queue, Hood-Melville 

queue, leftist heap, pairing heap, lazy pairing heap, splay 

heap, binominal heap, unbalanced set, red-black set, bottom-

up merge sort, catenable lists, binary random-access lists, 

finger trees

Imperative programs

→ Dijkstra shortest path, Union-Find, sparse array, mutable lists and trees

→ functions with local state (gensym)

→ higher-order functions (List.iter, compose)

→ CPS functions (CPS-append)

→ functions stored in memory cells (Landin's knot)
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let dijkstra g s e =
let n = Array. length g in
let b = Array .make n Infinite in
let v = Array .make n false in
let q = Pqueue .create() in
b.(s) <- Finite 0;
Pqueue .push (s,0) q;
while not ( Pqueue .is_empty q) do

let (x,dx) = Pqueue .pop q in
if not v.(x) then begin

v.(x) <- true;
let update (y,w) =

let dy = dx + w in
if ( match b.(y) with | Finite d -> dy < d

| Infinite -> true)
then (b.(y) <- Finite dy; Pqueue .push (y,dy) q) in

List .iter update g.(x);
end ;

done ;
b.(e)

Source code
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Formulae generated by CFML
Axiom dijkstra : func.

Axiom dijkstra_cf : 
(@CFPrint.tag tag_top_fun _ _ (@CFPrint.tag tag_bod y _ _ (forall K :  
(CFHeaps.loc -> (int -> (int -> ((CFHeaps.hprop -> ((_ -> 
CFHeaps.hprop) -> Prop)) -> Prop)))), ((is_spec_3 K ) -> ((forall g : 
CFHeaps.loc, (forall s : int, (forall e : int, (((( K g) s) e) 
(@CFPrint.tag tag_let_trm (Label_create 'n) _ (loca l (fun H : 
CFHeaps.hprop => (fun Q : (_ -> CFHeaps.hprop) => ( Logic.ex (fun Q1 
: (int -> CFHeaps.hprop) => ((Logic.and (((@CFPrint .tag tag_apply _ 
_ ((((@app_1 CFHeaps.loc) int) ml_array_length)... 

(** goes on for about 100 more lines *)

...
(Let dy := Ret dx + w in
Let _x38 := App ml_array_get b y ; in

If_ Match 
(Case _x38 = Finite d [d] Then Ret (dy '< d) Else 
(Case _x38 = Infinite Then Ret true Else Done))

Then (App ml_array_set b y (Finite dy) ;) ;;
App push (y, dy) h ; Else (Ret tt))

Displayed in Coq in a more readable form:
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Specification

pre-condition

post-condition

Theorem dijkstra_spec : ∀∀∀∀ g x y G,

nonnegative_edges G ->

x \in nodes G -> 

y \in nodes G ->

(App dijkstra g x y)

(g ~> GraphAdjList G) 

(fun d => [d = dist G x y]  

\* g ~> GraphAdjList G) 

application

x
y

d

graph G
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Theorem dijkstra_spec : ∀∀∀∀ g x y G, ... (App dijkstra g x y) ...
Proof.
xcf. introv Pos Ns Ne. unfold GraphAdjList at 1. 
hdata_simpl. xextract as N Neg Adj. xapp. 
intros Ln. rewrite <- Ln in Neg. 
xapps. xapps. xapps. xapps*. xapps.
set (data := fun B V Q => g ~> Array N \* 

v ~> Array V \* b ~> Array B \* q ~> Heap Q).
set (hinv := fun VQ => let '(V,Q) := VQ in

Hexists B, data B V Q \* [inv G n s V B Q (crossing  G s V)]).
xseq (# Hexists V, hinv (V,\{})). 
set (W := lexico2 

(binary_map (count (= true)) (upto n))
(binary_map card (downto 0))).

xwhile_inv W hinv. refine (ex_intro' (_,_)). 
unfold hinv,data. hsimpl. applys_eq~ inv_start 2. 
permut_simpl. intros [V Q]. unfold hinv. 
xextract as B Inv. xwhile_body. 
unfold data. xapps. xret.
...
Qed.

Proof script

loop invariant

termination 
measure

specialized tactic

lemma about the 
invariant

– 180 lines in auxiliary lemmas
– 48 lines in the proof of this theorem
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Pos : nonnegative_edges G
Ns : s \in nodes G
Ne : e \in nodes G
Neg : nodes_index G n
Adj : forall x y w,

x \in nodes G -> Mem (y, w) (N\(x)) = has_edge G x y w
Nx : x \in nodes G
Vx : ~ V\(x)
Dx : Finite dx = dist G s x
Inv : inv G n s V' B Q (new_crossing G s x L' V)
EQ : N\(x) = rev L' ++ (y, w) :: L
Ew : has_edge G x y w
Ny : y \in nodes G

Proof obligations

(Let dy := Ret dx + w in
Let _x38 := App ml_array_get b y ; in

If_ Match 
(Case _x38 = Finite d [d] Then Ret (dy '< d) Else 
(Case _x38 = Infinite Then Ret true Else Done))

Then (App ml_array_set b y (Finite dy) ;) ;;
App push (y, dy) h ; Else (Ret tt))

(q ~> Pqueue Q \* b ~> Array B \* v ~> Array V' \* g ~> Array N)

(fun _:unit => hinv' L) post-condition

pre-condition

characteristic 
formula

hypotheses
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Summary

→ bugs will have more and more impact on our daily life

→ use mechanized proofs to prove the absence of bugs

→ characteristic formulae support complex imperative programs

SpecificationSource code Charac. formula

Verification

automated
generation

interactive 
proofs

On-going work:

→ adding support for exceptions and floating point arithmetic

→ developing characteristic formulae for C programs


