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The multicore revolution

Multicore is everywhere

Performance matters

Programming on a weak
memory model is tricky
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Multicore programming

Parallelizing an algorithm typically involves:

decomposing the work in subtasks,

a dynamic load balancing scheduler,

a few concurrent data structures,

avoiding locks, atomic read-write ops,
memory fences, contention.

PASL benchmarks, using 30 cores Speedup

matrix-multiply 21.7
exponential-�bonnacci 26.2
maximal-matching (eggrid2d) 19.6
maximal-matching (egrlg) 20.0
maximal-matching (egrmat) 20.1
max-independent-set (grid2d) 17.5
max-independent-set (rlg) 17.9
max-independent-set (rmat) 18.5
quick-hull (plummer2d) 18.0
quick-hull (uniform2d) 19.1
merge-sort (exptintseq) 18.6
merge-sort (randintseq) 21.7
sample-sort (exptseq) 23.2
sample-sort (randdblseq) 23.5

Intel Xeon X7550 2GHz, 4x8 cores, 1Tb RAM.
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Correctness challenges

The scheduler and the concurrent data structures involve:

relatively small pieces of code (a few dozens LOC),

code that is very di�cult to get right (weak memory model),

code that is very hard to test (too many interleavings),

bugs that can be extremely hard to reproduce.

. . . the ideal scenario for program veri�cation!
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x86-TSO: the manufacturer's view

Loads may be reordered with older stores to di�erent locations.

Other pairs of memory accesses are never reordered.

Stores to a same location have a total order.

Memory ordering respects transitive visibility.

Locked instructions occur atomically and have a total order.
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Locked instructions

compare_and_swap(&x, 2, 3)

I Let v be the content of x
I If v is 2, then write 3 into x, and return true
I If v is not 2, then do nothing, and return false

fetch_and_add(&x, 3)

I Let v be the content of x
I Write v+3 into x
I Return v

x = 3; memory_fence(); a = y

I Ensures that the read of y is not reordered prior to the write of x.
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x86-TSO: equivalence of the models

A Better x86 Memory Model: x86-TSO. (TPHOLs 2009)

A line of work due to Jade Alglave, Thomas Braibant, Luc Maranget,
Magnus Myreen, Scott Owens, Tom Ridge, Susmit Sarkar, Peter Sewell,
and Francesco Zappa Nardelli.

Establishes the equivalence between the manufacturer's view and a
relatively simple model.
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x86-TSO: the researcher's view

Cores write values into their bu�er.

Cores read values from their bu�er if possible, else from main memory,

At any time, the oldest store of a bu�er can be pushed to memory.

Locked instructions are only executed with an empty bu�er.
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First example: a concurrent counter

Global state

int x = 0

Code for each of the two cores

for (int k = 0; k < N; k++)

x++ // {int a=x; x=a+1}

Speci�cation?

min(N, 2) ≤ x ≤ 2 ∗ N
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Veri�cation strategy

General strategy to verify a program w.r.t. x86-TSO semantics:

1 State the invariant in terms of:
I the value in shared memory,
I the content of the bu�ers,
I the program point of each core.

2 Prove stability: show that pushing the oldest value from a
non-empty bu�er to the shared memory preserves the invariant.

3 Prove correctness: show that the execution of each atomic
instruction preserves the invariant.
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Veri�cation of the concurrent counter

Notation: let B1 and B2 denote the bu�ers, X the value in shared
memory, and n1 and n2 the number of writes performed by each core.

Invariant: Let Ai = {ai} if ai is in scope, else ∅. The invariant is:

∀v ∈ ({X} ∪B1 ∪B2 ∪A1 ∪A2). v ≤ n1 + n2

Stability: Assume Bi is of the form B′
i ++ [m]. We check that the

a�ectations Bi ← B′
i and X ← m preserve the invariant.

Correctness: By symmetry, consider only transitions of core 1.

a = x. The value a1 is less than n1 + n2, because it is read from
either bu�er B1 or cell X.

x = a+1. We check that the a�ectations B1 ← (a1 + 1) :: B1 and
n1 ← n1 + 1 preserve the invariant.

Arthur Charguéraud (INRIA) Program veri�cation for x86-TSO Parkas seminar, 2013 12 / 45



Veri�cation of the concurrent counter

Notation: let B1 and B2 denote the bu�ers, X the value in shared
memory, and n1 and n2 the number of writes performed by each core.

Invariant: Let Ai = {ai} if ai is in scope, else ∅. The invariant is:

∀v ∈ ({X} ∪B1 ∪B2 ∪A1 ∪A2). v ≤ n1 + n2

Stability: Assume Bi is of the form B′
i ++ [m]. We check that the

a�ectations Bi ← B′
i and X ← m preserve the invariant.

Correctness: By symmetry, consider only transitions of core 1.

a = x. The value a1 is less than n1 + n2, because it is read from
either bu�er B1 or cell X.

x = a+1. We check that the a�ectations B1 ← (a1 + 1) :: B1 and
n1 ← n1 + 1 preserve the invariant.

Arthur Charguéraud (INRIA) Program veri�cation for x86-TSO Parkas seminar, 2013 12 / 45



Veri�cation of the concurrent counter

Notation: let B1 and B2 denote the bu�ers, X the value in shared
memory, and n1 and n2 the number of writes performed by each core.

Invariant: Let Ai = {ai} if ai is in scope, else ∅. The invariant is:

∀v ∈ ({X} ∪B1 ∪B2 ∪A1 ∪A2). v ≤ n1 + n2

Stability: Assume Bi is of the form B′
i ++ [m]. We check that the

a�ectations Bi ← B′
i and X ← m preserve the invariant.

Correctness: By symmetry, consider only transitions of core 1.

a = x. The value a1 is less than n1 + n2, because it is read from
either bu�er B1 or cell X.

x = a+1. We check that the a�ectations B1 ← (a1 + 1) :: B1 and
n1 ← n1 + 1 preserve the invariant.

Arthur Charguéraud (INRIA) Program veri�cation for x86-TSO Parkas seminar, 2013 12 / 45



Veri�cation of the concurrent counter

Notation: let B1 and B2 denote the bu�ers, X the value in shared
memory, and n1 and n2 the number of writes performed by each core.

Invariant: Let Ai = {ai} if ai is in scope, else ∅. The invariant is:

∀v ∈ ({X} ∪B1 ∪B2 ∪A1 ∪A2). v ≤ n1 + n2

Stability: Assume Bi is of the form B′
i ++ [m]. We check that the

a�ectations Bi ← B′
i and X ← m preserve the invariant.

Correctness: By symmetry, consider only transitions of core 1.

a = x. The value a1 is less than n1 + n2, because it is read from
either bu�er B1 or cell X.

x = a+1. We check that the a�ectations B1 ← (a1 + 1) :: B1 and
n1 ← n1 + 1 preserve the invariant.

Arthur Charguéraud (INRIA) Program veri�cation for x86-TSO Parkas seminar, 2013 12 / 45



Towards modular proofs

x++ y++

Consider a program that uses two
independent concurrent counters.

We expect to be able to refer twice to the
veri�cation of a single counter.

Need independent views on the stores
bu�ered for distinct memory cells.
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Notation for per-cell store bu�ers

Given a memory location x, we write:

X the value of x in shared memory,

X̄i the bu�er containing the stores at location x performed by core i.

By splitting the bu�ers, we gain modularity, however . . .
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The lost ordering

We loose the ability to reason about the relative ordering between store
operations performed by a same core.

Illustration of the problem

// Shared variables

int x = 0

int y = 0

// Code for core 1

while (true) {

x++

y++

}

// Code for core 2

while (true)

assert (x >= y)

Idea of the solution

We allow the invariant to express
inequalities between the date at
which store operations stored in two
bu�ers X̄i and Ȳ i associated with a
same core i are performed.
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Program logic for x86-TSO: data structures

For a memory location x:

X denotes the value of x in shared memory.

X̄i now denotes a list of pairs made of a value and a timestamp,
representing the bu�ered stores made by i at location x.

Additional notation:

~Xi denotes the list X̄i ++ [X],

Xi denotes the value of x as seen by core i, that is, the head of ~Xi.

Remark: when convenient, X̄i and ~Xi may be interpreted as list of values.
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Program logic for x86-TSO: invariant

The invariant is expressed in terms of:

the program point of each core (line number and local variables),

the shared memory values of every memory location,

the values contained in the bu�ers of each core and each location,

comparisons between timestamps from bu�ers of the same core.
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Program logic for x86-TSO: stability

To prove stability:

we assume that the invariant holds,

we consider an arbitrary bu�er X̄i of the form B ++ [(v, t)],

we assume that t is smaller than the timestamp contained in any other
bu�er Ȳ i associated with the same core i,

we prove that the updates X ← v and X̄i ← B preserve the invariant.
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Program logic for x86-TSO: correctness

To prove correctness,

we assume that the invariant holds,

we consider an atomic operation from the code executed by a core i,

I If the operation is a write x← v, then, for an arbitrary timestamp t
greater than any timestamp stored in a bu�er of the form Ȳ i, we show

that the update X̄i ← (v, t) :: X̄i preserves the invariant.

I If the operation is a read of the content of x into a local variable a, we
show that the updates a← head(X̄i ++ [X]) preserves the invariant.
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Program logic for x86-TSO: correctness, cont.

I If the operation is a = compare-and-swap(&x, v, w), we assume all the
bu�ers of i to be empty, and we show that

F if X = v then the updates a← true and X ← w preserve the invariant,
F if X 6= v then the update a← false preserves the invariant.

I If the operation is a = fetch-and-add(&x, v), we assume all the bu�ers

of i to be empty, and we show that the updates a← v and

X ← X + v preserve the invariant.

I If the operation is a memory fence, we assume all bu�ers of i to be

empty and we show that stepping to the next program point preserves

the invariant.
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Program logic for x86-TSO: summary

Summary of program veri�cation w.r.t. x86-TSO:

state the invariant,

prove stability,

prove correctness.

Completeness (conjecture): any x86-TSO program behavior can be veri�ed
using this logic of per-cell store bu�ers with time constraints.
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Applications

Locks and atomicity

Locks implemented using compare-and-swap

Reachability in graphs

Concurrent FIFO

Single-consumer single-producer FIFO

Multi-consumer single-producer FIFO

Work stealing

Work stealing using concurrent deques

Work stealing using private deques, using compare-and-swap

Work stealing using private deques, without compare-and-swap
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Implementation of locks using CAS

Code pattern

...

if (compare_and_swap (&x,0,1))

{

// critical section begins

...

x--

// critical section ends

}

...

Invariant

If core i is in the critical section, then
X = 1, and ∀j. X̄j = nil, and cores
other than i are not in the critical
section.

Else, if i is not in the critical section,
then either X̄i = 0 :: nil and X = 1,
or X̄i = nil and X = 0.

Stability: easy.
Correctness: if core i succeeds on the CAS, we have X̄j = nil and X = 0,
so no core may already be in the critical section.
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Reachability in graphs

Goal: compute in parallel the set of nodes accessible from a given source.

Traditional version: a compare-and-swap operation is used to ensure
that each node is processed at most once.

Idempotent version: visited node are simply marked using a write
operation, saving the cost of the compare-and-swap operation.
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Reachability in graphs, traditional version

Source code

// global

int visited[N]

// per core

stack <node_id > to_visit

// code of each core

while true

if ! to_visit.empty ()

node_id n = to_visit.pop()

foreach m in edges[n]

if CAS(& visited[m], 0, 1)

to_visit.push(m)

else

perform_load_balancing ()

Invariant

Let x denote the cell visited[n].

For all i, we have X̄i = nil.

X = 0 or X = 1

X = 1 i� there exists a path
from the source to the node n
made of processed edges.

An edge (a, b) is processed if
visited[a] = 1 and, for all i, we
have a /∈ −−−−−−−−→to_visit[i]i and if ni = a
then (a, b) has already been handled
by the for loop.
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Reachability in graphs, idempotent version

Source code

// global

int visited[N]

// per core

stack <node_id > to_visit

// code of each core

while true

if ! to_visit.empty ()

node_id n = to_visit.pop()

for each m in edges_from[n]

if visited[m] == 0

visited[m] = 1

to_visit.push(m)

else

perform_load_balancing ()
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Single-producer single-consumer FIFO

struct cell = { void* data; cell* next }

Consumer code

while true

if c.next != null

received.push(c.data)

c = c.next

Producer code

while ! tosend.empty()

p.data = tosend.pop()

n = new cell()

n.next = null

p.next = n

p = n
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Single-producer single-consumer FIFO

Invariant: there exists a non-empty list L of pairs of locations and items,
with all locations in L disjoint, describing, e.g., the picture below.
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Multi-consumer single-producer FIFO

Data structure

array <item > data; int capacity; int size = 0; int next = 0;

Producer code

// assumes(size < capacity)

void push(item v)

data[size] = v

size++

Consumer code

while true

int n = next

if n < size &&

CAS(&next , n, n+1)

process(data[n])

Arthur Charguéraud (INRIA) Program veri�cation for x86-TSO Parkas seminar, 2013 29 / 45



Multi-consumer single-producer FIFO

For simplicity, let core 0 be the producer and 1...(P − 1) be the consumers.

Invariants

∀i ∈ [1, P ). size
i

= nil ∧ ∀k. data[k]i = nil

∀i ∈ [0, P ). nexti = nil

∀k ∈ [0, size0). data[k] = produced[k]
−→
size0 is a decreasing list of consecutive integers

0 ≤ next ≤ size ≤ size0 < capacity

If Line(i) > 2 for some i ∈ [1, P ), then ni ∈ [0, size]

If Line(i) > 3 for some i ∈ [1, P ), then ni ∈ [0, size)

⋃
k∈[0,next)

{data[k]} =
⋃

i∈[1,P )

consumedBy[i] ∪
⋃

i ∈ [1, P )
Line(i) = 5

data[ni]

Arthur Charguéraud (INRIA) Program veri�cation for x86-TSO Parkas seminar, 2013 30 / 45



Work stealing
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Introduction to the fork-join model

Quick-hull pseudo-code

let rec quick_hull points =

if points.size < cutoff

graham_hull(points)

else

let (p1,p2) = split points

let (h1,h2) = (| quick_hull p1 ,

quick_hull p2 |)

merge_hulls h1 h2

Computation DAG
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Introduction to work stealing

Each core owns a deque of tasks, and work by popping and pushing
tasks from the bottom of its deque.

When a core runs out of work, it picks a task from the top of another
core's deque, selected at random.

→Work stealing performs very well both in theory and in practice.
Expected number of task migration is O(nbCores ∗ depthOfTheDAG).
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Expected number of task migration is O(nbCores ∗ depthOfTheDAG).
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Work stealing with concurrent deques

struct Deque = { int size;

item* data }

// per core

Deque* deque

int bottom

int top

// global

Deque* deques[P]

void push_bottom(item v)

int b = bottom

int t = top

Deque* q = deque

if b-t >= q.size -1

expand ()

q = deque

q.data[b % q.size] = v

bottom = b+1

void expand ()

int nb = deque.size

Deque* q = new Deque (2*nb)

for (i = top; i < bottom; i++)

q.data[i % (2*nb)] =

deque.data[i % nb]

deque = q

deques[myid] = q

item pop_bottom ()

int b = bottom -1

Deque* q = deque

bottom = b

store_load_fence

int t = top

if b < t

bottom = t

return EMPTY

item v = q.data[b % q.size]

if b > t

return v

if ! CAS(&top , t, t+1)

return EMPTY

bottom = t+1

return v

item pop_top_from(int id)

int t = top

int b = bottom

Deque* q = deques[id]

if t >= b

return EMPTY

item v = q.data[t % q.size]

if ! CAS(&top , t, t+1)

return ABORT

return v
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Work stealing with private deques

Abandon the idea of using a concurrent data structure.

Instead, associate to each core a private deque:

load balancing through explicit communication,

faster, more �exible local operations,

requires frequent communication.

Two strategies:

Receiver-initiated:

steal requests by idle cores, periodic polling by busy cores.

Sender-initiated:

idle cores raise their �ag, periodic deal attempts by busy cores.
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Receiver initiated work stealing

Arthur Charguéraud (INRIA) Program veri�cation for x86-TSO Parkas seminar, 2013 36 / 45



Receiver-initiated work stealing

// per core

queue <task >* deque

// global

int query[P]

task* answer[P]

// called when out of work

void acquire ()

while true

answer[myid] = NONE

int k = random_other_id ()

if CAS(&query[k], NONE , myid)

while answer[myid] == NONE

communicate ()

task* t = answer[myid]

if t != null

deque.push_bottom(t)

return

// called periodically when busy

void communicate ()

int j = query[myid]

if j == NONE then return

if deque.empty ()

answer[j] = null

else

answer[j] = deque.pop_top ()

query[myid] = NONE
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Sender-initiated work stealing
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Sender-initiated work stealing

// per core

queue <task >* deque

// global

task* c[P]

// called when out of work

void acquire ()

c[myid] = null

while c[myid] == null

noop

deque.push_bottom(c[myid])

// called periodically when busy

void communicate ()

if deque.empty () then return

int j = random_other_id ()

if c[j] != null then return

task* t = deque.get_top ()

bool r = CAS(&c[j], null , t)

if r then deque.pop_top ()
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Fence-free work stealing

Question: can we e�ciently implement work stealing on multicore
architecture without using any locked operation (compare-and-swap,
fetch-and-add, memory fence)?
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Fence-free sender-initiated work stealing
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Fence-free sender-initiated work stealing

// per core

queue <task >* deque

// global

int round[P]

Query query[P]

task* answer[P]

// called periodically when busy

void communicate ()

// check incoming queries

Query q = query[myid]

if q.round != round[myid]

return

// answer the queries

if deque.size() > 0

answer[q.id] = deque.pop_top ()

// starts a new phase

round[myid ]++

// called to reject/prevent queries

void block()

int r = round[myid]

if query[myid] != Query(myid ,r)

query[myid] = Query(myid ,r+1)

round[myid] = r+1

// 64bit representation of queries

type Query = { 40bits round;

24bits id }

// called when out of work

void acquire ()

answer[myid] = null

while true

int j = random_other_id ()

int r = round[j]

if query[j].round < r

// send a query

query[j] = Query(i,r)

while round[j] == r

// resend if needed

if query[j].round < r

query[j] = Query(i,r)

block()

// receive task if any

task* t = answer[myid]

if t != null

deque.push(t)

round[myid ]++

return

block()
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Fence-free sender-initiated work stealing
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Fence-free sender-initiated work stealing
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Conclusion

Program veri�cation on x86-TSO

Model: one bu�er per cell and per core, plus time constraints.

Schema: state the invariant, prove stability, prove correctness.

Applications: concurrent data structures, scheduling algorithms,
algorithms exploiting races in nontrivial ways, . . .

Future work

A tool for mechanizing the proofs

Partial inference of the invariants

Integration with separation logic
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