
Verification of Concurrent Programs
Targeting the x86-TSO Weak Memory Model

Arthur Charguéraud

INRIA

Toccata seminar, 2013/04/19

1 / 41



The multicore revolution

I Multicore is everywhere

I Performance matters

I Programming on a weak
memory model is tricky

2 / 41



Multicore programming

Parallelizing an algorithm typically
involves:

I decomposing the work in subtasks,
I a dynamic load balancing scheduler,
I a few concurrent data structures.

Good speedups can be achieved, if:
I work-efficient parallel algorithm,
I many but not too small subtasks,
I efficient load balancing algorithm,
I no lock, contention, or false

sharing.

PASL benchmarks, using 30 cores Speedup
matrix-multiply 21.7
exponential-fibonnacci 26.2
maximal-matching (eggrid2d) 19.6
maximal-matching (egrlg) 20.0
maximal-matching (egrmat) 20.1
max-independent-set (grid2d) 17.5
max-independent-set (rlg) 17.9
max-independent-set (rmat) 18.5
quick-hull (plummer2d) 18.0
quick-hull (uniform2d) 19.1
merge-sort (exptintseq) 18.6
merge-sort (randintseq) 21.7
sample-sort (exptseq) 23.2
sample-sort (randdblseq) 23.5

Intel Xeon X7550 2GHz, 4x8 cores, 1Tb

RAM.

3 / 41



Correctness challenges

The scheduler and the concurrent data structures involve:
I relatively small pieces of code (a few hundred LOC),
I code that is very difficult to get right (weak memory model),
I code that is very hard to test properly (too many

interleavings),
I bugs that can be extremely hard to reproduce.

. . . the ideal scenario for program verification!

4 / 41



x86-TSO: the manufacturer’s view

I Loads may be reordered with older stores to different locations.
I Other pairs of memory accesses are never reordered.
I Stores to a same location have a total order.
I Memory ordering respects transitive visibility.
I Locked instructions have a total order (e.g.,

compare-and-swap).

5 / 41



x86-TSO: the researcher’s view

I Memory accesses are atomic operations in the store buffer
model.

I Each core pushes its store operations into its FIFO store buffer.
I At any time, the oldest store of a buffer can be pushed to

memory.
I Each core reads values from its buffer if possible, else from

memory.
I Locked instructions are only executed with an empty buffer.

6 / 41



x86-TSO: equivalence of the models

The equivalence of the manufacturer’s view and the researcher’s
views is described in the following paper.

A Better x86 Memory Model: x86-TSO. (TPHOLs 2009)

A line of work due to Jade Alglave, Thomas Braibant, Luc
Maranget, Magnus Myreen, Scott Owens, Tom Ridge, Susmit
Sarkar, Peter Sewell, and Francesco Zappa Nardelli.

7 / 41



First example: a concurrent counter

Global state
int x = 0

Code for each core
for (int k = 0; k < N; k++)

x++ // {int a=x; x=a+1}

Specification

min(N, 2) ≤ x ≤ 2 ∗ N

8 / 41



Verification strategy

General strategy to verify a program w.r.t. x86-TSO semantics:

1. State the invariant in terms of:
I the value in shared memory,
I the content of the buffers,
I the program point of each core.

2. Prove stability: show that pushing the oldest value from a
non-empty buffer to the shared memory preserves the invariant.

3. Prove correctness: show that the execution of each atomic
instruction preserves the invariant.

9 / 41



Verification of the concurrent counter

Notation: B1 and B2 denote the buffers, X the value in shared
memory, let n1 and n2 the number of writes remaining for each
core.

Invariant: Let Ai = {ai} if ai is in scope, else ∅. The invariant is:

∀v ∈ ({X} ∪B1 ∪B2 ∪A1 ∪A2). v ≤ n1 + n2

Stability: Assume Bi is of the form B′
i ++ [m]. We check that the

affectations Bi ← B′
i and X ← m preserve the invariant.

Correctness: By symmetry, consider only transitions of core 1.
I a = x. The value a1 is less than n1 + n2, because it is read

from either buffer B1 or cell X.
I x = a+1. We check that the affectations B1 ← a1 :: B1 and

n1 ← n1 + 1 preserve the invariant.

10 / 41



Towards modular proofs

x++ y++

I Consider a program that uses two
independent concurrent counters.

I We expect to be able to refer twice to
the verification of a single counter.

I To achieve such modularity, we need to
allow for independent views on the
stores buffered for independent
memory cells.

11 / 41



Notation for per-cell store buffers

Given a memory location x, we write:

I X the value of x in shared memory,

I X̄i the buffer containing the stores at location x performed by
core i.

By splitting the buffers, we gain modularity, but . . .

12 / 41



What have we lost?

By separating store buffers, we lost the ability to reason about the
relative ordering between two store operations performed by a same
core.

Illustration of the problem
// Shared variables
int x = 0
int y = 0

// Code for core 1
void main()

while (true)
x++
y++

// Code for core 2
void main()

while (true)
assert (x >= y)

Idea of the solution

We allow the invariant to express
inequalities between the date at
which store operations stored in
two buffers X̄i and Ȳ i associated
with a same core i are performed.

13 / 41



Program logic for x86-TSO: data structures

For a memory location x:

I X denotes the value of x in shared memory.

I X̄i now denotes a list of pairs made of a value and a
timestamp, representing the buffered stores made by i at
location x.

Moreover, for convenience, we let:

I X̄i denote directly a list of values when timestamps are not
relevant.

I ~Xi denote the list X̄i ++ [X],

I Xi denote the value of x as seen by core i, i.e., the head of
~Xi.

14 / 41



Program logic for x86-TSO: invariant

The invariant is expressed in terms of:
I the program point (line number and values of the local

variables) of each core,
I the shared memory values of each memory location,
I the values contained in the buffers associated with each core

and each memory location,
I comparisons between the timestamps associated with entries in

the buffers, only for pairs of buffers that belong to the same
core.

15 / 41



Program logic for x86-TSO: stability

To prove stability:
I we assume that the invariant holds,
I we consider an arbitrary buffer X̄i of the form (v, t) :: B,
I we assume that t is smaller than the timestamp contained in

any other buffer Ȳ i associated with the same core i,
I we prove that the updates X ← v and X̄i ← B preserve the

invariant.

16 / 41



Program logic for x86-TSO: correctness

To prove correctness,
I we assume that the invariant holds,
I we consider an atomic operation from the code executed by a

core i,
I If the read is a write x← v, then, for an arbitrary timestamp t

greater than any timestamp stored in a buffer of the form Ȳ i,
we show that the update X̄i ← (v, t) :: X̄i preserves the
invariant.

I If the operation consists of a read of the content of x into a
register a, we show that the updates a← head(X̄i ++ [X])
preserves the invariant.

17 / 41



Program logic for x86-TSO: correctness, cont.

I If the operation is a memory fence, we assume all buffers of i
to be empty and we show that stepping to the next program
point preserves the invariant.

I If the operation is a = fetch-and-add(&x, v), we assume all
buffers of i to be empty, and we show that the updates a← v
and X ← X + v preserve the invariant.

I If the operation is a = compare-and-swap(&x, v, w), we
assume all buffers of i to be empty. We show that under the
assumption X = v the updates a← true and X ← w preserve
the invariant, and that under the assumption X 6= v the
update a← false preserves the invariant.

18 / 41



Program logic for x86-TSO: summary

Summary of program verification w.r.t. x86-TSO:
I statement of the invariant,
I stability proof,
I correctness proof.

Completeness: by introducing sufficiently many constraints
betweeen buffers, we can describe any state as accurately as if we
were reasoning directly on the model with a single buffer per core.

19 / 41



Applications

1. Lock implemented using compare-and-swap

2. Reachability in a graph

3. Single-consumer single-producer FIFO

4. Multi-consumer single-producer FIFO

5. Work stealing using compare-and-swap

6. Work stealing without compare-and-swap

20 / 41



Implementation of locks using CAS

Code pattern
...
if (compare_and_swap (&x, 0, 1))
{

// critical section begins
...
x--
// critical section ends

}
...

Invariant

If core i is in the critical section,
then ~Xi = 1 :: nil, and, for any
j 6= i, the core j is not in the
critical section and X̄j = nil.

Otherwise, if i is not in the
critical section, then
~Xi = 0 :: 1 :: nil or ~Xi = 0 :: nil.

Stability: easy. Correctness: if core i succeeds on the CAS, we
have X̄j = nil and X = 0, so no core may already be in the critical
section.

21 / 41



Reachability in graphs
Goal: compute in parallel the set of nodes accessible from a given
source.

I Traditional version: a compare-and-swap operation is used to
ensure that each node is processed at most once.

I Idempotent version: visited node are simply marked using a
write operation, saving the cost of the compare-and-swap
operation at the expense of potentially processing nodes and
edges more than once.

22 / 41



Reachability in graphs, traditional version

Source code
int visited[N]
stack <node_id > to_visit

while true
if ! to_visit.empty()

node_id n = to_visit.pop()
foreach m in edges[n]

if CAS(& visited[m], 0, 1)
to_visit.push(m)

else
perform_load_balancing ()

Invariant

Let x denote the cell visited[n].

I For all i, we have X̄i = nil.
I X = 1 iff there exists a path

from the source to the node
n made of processed edges.

An edge (a, b) is processed if
visited[a] = 1 and, for all i, we
have a /∈ to_visit[i] and if
ni = a then (a, b) has already
been handled by the for loop.

23 / 41



Reachability in graphs, idempotent version

Source code
int visited[N]
stack <node_id > to_visit

while true
if ! to_visit.empty()

node_id n = to_visit.pop()
for each m in edges_from[n]

if visited[m] == 0
visited[m] = 1
to_visit.push(m)

else
perform_load_balancing ()

Invariant

Let x denote the cell visited[n].
For all i, 1 ∈ ~Xi iff there exists a
path from the source to the node
n made of edges processed in the
eye of i.

An edge (a, b) is processed in the
eye of i if [????]
visited[a]i = 1 and, for all i,
we have a /∈ to_visit[i] and if
ni = a then (a, b) has already
been handled by the for loop.

24 / 41



Single-producer single-consumer FIFO

Consumer code
while true

if c.next != null
received.push(c.data)
c = c.next

Producer code
while ! tosend.empty ()

p.data = tosend.pop()
n = new cell()
n.next = null
p.next = n
p = n

25 / 41



Multi-consumer single-producer FIFO

Data structure
array <item > data; int capacity; int size = 0; int next = 0;

Producer code
// assumes(size < capacity)
void push(item v)

data[size] = v
size++

Consumer code
while true

int n = next
if n < size &&

CAS(&next , n, n+1)
process(data[n])

26 / 41



Multi-consumer single-producer FIFO
For simplicity, let core 0 be the producer and 1...(P − 1) be the
consumers.

Invariants
I ∀i ∈ [1, P ). sizei = nil ∧ ∀k. data[k]i = nil
I ∀i ∈ [0, P ). nexti = nil
I ∀k ∈ [0, size0). data[k] = produced[k]

I
−→
size0 is a decreasing list of consecutive integers

I 0 ≤ next ≤ size ≤ size0 < capacity
I If Line(i) > 2 for some i ∈ [1, P ), then ni ∈ [0, size]
I If Line(i) > 3 for some i ∈ [1, P ), then ni ∈ [0, size)
I ⋃

k∈[0,next)

{data[k]} =
⋃

i∈[1,P )

consumedBy[i] ∪
⋃

i ∈ [1, P )
Line(i) = 5

data[ni]

27 / 41



Introduction to the fork-join model

Quick-hull pseudo-code

let rec quick_hull points =
if points.size < cutoff

graham_hull(points)
else

let (p1,p2) = split points
let (h1,h2) = (| quick_hull p1,

quick_hull p2 |)
merge_hulls h1 h2

Computation DAG

28 / 41



Introduction to work stealing

I Each core owns a deque of tasks, and work by popping and
pushing tasks from the bottom of its deque.

I When a core runs out of work, it pops a task from the top of
another core’s deque, selected at random.

→Work stealing performs very well both in theory and in practice.
The expected number of task migration is
O(nbCores ∗ depthOfTheDAG).

29 / 41



Work stealing with concurrent deques

struct Deque = { int size;
item* data }

// per core
Deque* deque
int bottom
int top
// global
Deque* deques[P]

void push_bottom(item v)
int b = bottom
int t = top
Deque* q = deque
if b-t >= q.size -1

expand ()
q = deque

q.data[b % q.size] = v
bottom = b+1

void expand ()
int nb = deque.size
Deque* q = new Deque (2*nb)
for (i = top; i < bottom; i++)

q.data[i % (2*nb)] =
deque.data[i % nb]

deque = q
deques[myid] = q

item pop_bottom ()
int b = bottom -1
Deque* q = deque
bottom = b
store_load_fence
int t = top
if b < t

bottom = t
return EMPTY

item v = q.data[b % q.size]
if b > t

return v
if ! CAS(&top , t, t+1)

return EMPTY
bottom = t+1
return v

item pop_top_from(int id)
int t = top
int b = bottom
Deque* q = deques[id]
if t >= b

return EMPTY
item v = q.data[t % q.size]
if ! CAS(&top , t, t+1)

return ABORT
return v

30 / 41



Work stealing with private deques

Abandon the idea of using a concurrent data structure:
I a private deque associated with each core,
I load balancing is performed using explicit communication,
I local accesses to the deques are faster and more flexible,
I performance is maintained if the communication period is

properly set.

Two strategies:
I Receiver-initiated:

steal requests by idle cores, periodic polling by busy cores.
I Sender-initiated:

idle cores raise their flag, periodic deal attempts by busy cores.

31 / 41



Receiver initiated work stealing

32 / 41



Receiver-initiated work stealing

// per core
queue <task >* deque
// global
int query[P]
task* answer[P]

// called when out of work
void acquire ()

while true
answer[myid] = NONE
int k = random_other_id ()
if CAS(& query[k], NONE , myid)

while answer[myid] == NONE
communicate ()

task* t = answer[myid]
if t != null

deque.push_bottom(t)
return

// called periodically when busy
void communicate ()

int j = query[myid]
if j == NONE then return
if deque.empty ()

answer[j] = null
else

answer[j] = deque.pop_top ()
query[myid] = NONE

33 / 41



Sender-initiated work stealing

34 / 41



Sender-initiated work stealing

// per core
queue <task >* deque
// global communication cells
task* c[P]
// dummy task pointer
const task* SOON = 1

// called when out of work
void acquire ()

c[myid] = null
while c[myid] == null

noop
deque.push_bottom(c[myid])

// called periodically when busy
void communicate ()

if deque.empty () then return
int j = random_other_id ()
if c[j] != null then return
task* t = deque.get_top ()
bool r = CAS(&c[j], null , t)
if r then deque.pop_top ()

35 / 41



Fence-free work stealing

Question: can we efficiently implement work stealing on multicore
architecture without using any locked operation
(compare-and-swap, fetch-and-add, memory fence)?

36 / 41



Fence-free sender-initiated work stealing

37 / 41



Fence-free sender-initiated work stealing

// per core
queue <task >* deque
// global
int round[P]
Query query[P]
task* answer[P]

// called periodically when busy
void communicate ()

// check incoming queries
Query q = query[myid]
if q.round != round[myid]

return
// answer the queries
if deque.size() > 0

answer[q.id] = deque.pop_top ()
// starts a new phase
round[myid ]++

// called to reject/prevent queries
void block()

int r = round[myid]
if query[myid] != Query(myid ,r)

query[myid] = Query(myid ,r+1)
round[myid] = r+1

// 64bit representation of queries
type Query = { 40bits round;

24bits id }

// called when out of work
void acquire ()

answer[myid] = null
while true

int j = random_other_id ()
int r = round[j]
if query[j]. round < r

// send a query
query[j] = Query(i,r)
while round[j] == r

// resend if needed
if query[j]. round < r

query[j] = Query(i,r)
block ()

// receive task if any
task* t = answer[myid]
if t != null

deque.push(t)
round[myid ]++
return

block ()

38 / 41



Fence-free sender-initiated work stealing

39 / 41



Fence-free sender-initiated work stealing

40 / 41



Conclusion

Program verification for x86-TSO
I Model: one buffer per cell and per core, plus time constraints.
I Schema: statement of the invariant, stability proof, correctness

proof.
I Applications: concurrent data structures, algorithms exploiting

races.

Future work
I A tool for mechanizing the proofs,
I Partial inference of the invariants,
I Integration with separation logic.

41 / 41


