Arthur Charguéraud (INRIA)

Pretty-big-step semantics

Arthur Charguéraud
INRIA

ESOP, 2013/03/19

Pretty-big-step semantics

Introduction

Operational semantics fall in two categories: small-step and big-step.
Big-step semantics suffer from a serious duplication problem.

Pretty-big-step semantics solve this duplication problem.

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 2 /24

Why care about big-step semantics?

Papers with Papers with
big-step semantics | small-step semantics
ICFP'11 5 3
POPL'11 7 16
ICFP'12 5 4

Big-step semantics are useful.

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 3/24

Content of this talk

@ Duplication associated with big-step semantics
© From big-step to pretty-big-step semantics

© Scaling up to real languages

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 4 /24

Duplication associated with big-step semantics

Arthur Charguéraud (INRIA) Pretty-big-step semantics

Big-step semantics for loops: regular behavior

Semantics of a C-style loop “for (; t1; ta) {t3}", written “fort; to 3",
in terms of the evaluation judgment ¢/, = v/,

tl/m1 = 1:a|5(3/m2

for t1to t3/m1 = t‘t/m2

tl/ml = true,,,, t?,/m2 = t‘t/ms tz/m3 = t't/m4 fort; to tg/m4 = t't/m5

for tq to t3/m1 = i'lf/ms

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 6 /24

Big-step semantics for loops: exceptions
Exceptions in terms of the judgment ¢/, =% ,./.

tl/ml :>exn/Tn2
fortq to 3 /m, :>exn/m2

tl/ml = true/p,, t3/m2 :>exn/m3

forty to 3 /m, :>exn/m3

tym, = tru€ my t3/my, = W/my 12/m, :>exn/m4
forty ta t3/m1 :>exn/m4

tym, = tru€ my t3/my, = W/my t2/my = /m, forty to 13 /my =N s

forty ta t3/m1 :>exn/m5

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 7 /24

Big-step semantics for loops: divergence

Divergence in terms of the coinductive judgment ¢/, = (Leroy 2006).

t1 /m, =
fOFtl to t3/m1 =

tl/ml = true/p,, t3/m2 =
fort1 to t3/m1 =

tl/ml = true/p, tg/m2 = l'ft/ma t2/m3 =
fortl to t3/m1 =

tl/ml = true/m2 t3/m2 = tt/ma t2/m3 = tt/m4 fort1 to t3/m4 =
fort1 to t3/m1 =

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 8 /24

Big-step semantics for loops: summary

tl/ml = false/m2

forty to tg/ml = tt/m2

Bymy = W/ my 8 /my = Hymg b2 mg = Mymy fortitats my = #/mg

forty to t3/ml = bf/,,ns

exn o0
t/my = /my tl/my =
forty tat3 :>°"“/m2 forty tat3 =

exn o0
tl/m1 = true/m2 t3/m2 = /m3 tl/ml = true/m2 t3/m2 =
forty tats /p, :>““/m3 fort1 ta 3/, =

tl/ml = true/m2 ext'?/mQ = tt/ms tl/ml = t:rue/m2 tgoém2 = tt/ms
t2/mg = /my t2/mg =
forty 23 /pm, :>°"“/m4 forty to t3 /m, =

tl/ml = 1:rue/,m2 t3/m2 = tt/m

tl/ml = |:rue/m2 t3/m2 = tte/xT3
82)my =ty fortitats n,, =70 0 t2)my =)m, fortitats m, =
sxn forty t213/m =
1

fort1 243 /m; =" /my

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 9 /24

Big-step semantics for loops: summary

tl/ml = false/m2

forty to tg/ml = tt/m2

Bymy = W/ my 8 /my = Hymg b2 mg = Mymy fortitats my = #/mg

forty to t3/ml = tt/ms

exn o0
Y /my = /my /my =
exn 3
forty ta t3/m1 = Jmo forty to t3/m1 =
exn o0
tl/m1 = true/m2 t3/m2 = /m3 tl/ml = true/m2 t3/m2 =
forty tats /p, :>““/m3 forty tat3 =
tl/ml = true/m2 e;ﬁ'?/mQ = tt/ms tl/ml = t:rue/m2 tgoém2 = tt/ms
t2/mg = /my t2/mg =
3
forty to t3/m1 :>exn/m4 forty to t3/mq =
tl/ml = true/m2 t3/m2 = tte/XT3 tl/ml = 1:rue/,m2 t3/m2 = tt/m
12)my = Uy, fortitats,, =" t2/mg = Uym, frt1tats m, =
fort1 243 /m; =" /my forty ¢33/, =

— Even with factorization: 9 rules, 21 premises.

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 9 /24

Big-step semantics for loops: summary

tl/ml = 1"a|se/m2

forty to tg/ml = tt/m2

tl/ml = true/m2 t3/m2 = #,/mS

t2/mg = M m, Frtitats m, = #/m,

forty to t3/ml = #/""5

exn
t/my = /my

exn

forty ta t3/m1 = Jmo

exn
tl/ml = true/m2 t3/m2 = /m3

exn

forty to t3/m1 =" /mg

tl/ml = true t3/m2 = ﬁ/mS
t2/mg =7 /my

forty to t3/'m,1 :>exn/m4

tl/ml = true/m2 t3/m2 = tt/ms

exn

t2/.m3 = tt/m4 forty to t3/m4 = /mg

fort1 243 /m; =" /my

=
tl/'ml =
forty to tg/ml =

oo
tl/ml = true/m2 t3/m2 =

fort1 ta 3/, =

tl/ml = t:rue/m2 tgoém2 = tt/ms
t2/m =
3

forty to t3 /my =

tl/ml = 1:rue/,m2 t3/m2 = tt/m
12 /mg = tymy forty to t3/my =

fort to t3/m1 =

— Even with factorization: 9 rules, 21 premises.
— With pretty-big-step: 6 rules, 7 premises.

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 9 /24

Pretty-big-step semantics

Arthur Charguéraud (INRIA) Pretty-big-step semantics

Source language

Grammar of \-terms

v = intn | absxt
t = valv | varz | apptt

Call-by-value big-step semantics (t = v)

t; = absxt to = v [zt =0

v =0 apptite =

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 11 / 24

Towards pretty-big-step rules

A first attempt:

t1 = v1 appuite = v to = wvo appviv2 = v

apptits = v appvity = v

[z = o]t =

app (abszt)v = o

— Similar idea in Cousot and Cousot’s bi-inductive semantics (2007)

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 12 / 24

Intermediate terms

To prevent overlap between the rules, we use intermediate terms:

e = trmt | applut | app2vv

Definition of the judgment e | v, with trm implicit:

t1 4 v apployte I o

v v apptite | v/
to | v app2vive || v [z — o]t | o
appluity | o' app2 (abszt)v | o'

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 13 / 24

Adding exceptions

Value-carrying exceptions and exception handlers
t = ... | raiset | trytt
Two behaviors: return a value or throw an exception carrying a value
el b b = retv | exnv

Updated grammar for intermediate terms

e := trmt | applbt | app2uvb | raiselb | trylbt

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 14 / 24

Adding exceptions

Evaluation rules for applications

t1 4 b applbits || b
apptita | b

to | bo app2vy by |} b
appl (exnv)ts | exnw appl (retvy)ta | b

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 15 / 24

Adding exceptions

Evaluation rules for applications

t1 4 b applbite | b
apptita | b

to | bo app2vy by |} b
appl (exnv)ts | exnw appl (retvy)ta | b

Evaluation rules for exception handlers

t1 | b1 trylbyts | 0 apptv | b
trytita | b tryl (retv)t | retw tryl (exnv)t | b

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 15 / 24

Adding divergence

Grammars:
b := retv | exnv
o := terb | div
e = trmt | applot | app2vo | raiselo | trylot

Two judgments defined by a same set of rules:

el o e o

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 16 / 24

Adding divergence

Grammars:
b := retv | exnv
o := terb | div
e = trmt | applot | app2vo | raiselo | trylot

Two judgments defined by a same set of rules:

el o e o

Theorem (equivalence with big-step)

t | terd & t=0

tediv o t=™

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 16 / 24

Example pretty-big-step rules

t1 4 o1 apploitz o ta 4 oo app2vioz | o
apptits | o appl (ter (retvy))t2 | o
appl (ter (exnv))t | ter (exnwv) appldivt | div

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 17 / 24

Example pretty-big-step rules

t1 4 o apploita | o ta 4 oo app2vioz | o
apptits | o appl (ter (retvy))t2 | o
appl (ter (exnv))t | ter (exnwv) appldivt | div

Factorization of the rules propagating exceptions and divergence:

aborto

applot | o where abort (ter (exnv)) abort div

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 17 / 24

All pretty-big-step rules

Evaluation rules, where val, ret and ter are implicit.

t1 4 o apploita | o

aborto
applot || o

[x =]t o

v{wv apptits | o
to | 09 app2vi 0o b 0 abort o
applvits | o app2vo | o
tl o1 raiselo; | o abort o
raiset || o raiselo | o

t1 J o1 tryloyts | o
trytito | o trylot | v

tryldivt | div

Arthur Charguéraud (INRIA) Pretty-big-step semantics

app2(abszt)v | o

raiselv |} exnv

apptv | o
tryl (exnv)t | o

ESOP, 2013/03/19 18 / 24

Pretty-big-step: scaling up to real languages

Arthur Charguéraud (INRIA) Pretty-big-step semantics

Side-effects

Generalization of terminating outcomes to carry a memory store:

o = termb | div
Evaluation judgment in the form e /,, |} 0. Example rules:

0y 401 apploits jp, J o 2 fmy I 02 app2v1 02 /m, 0
apptita jm, |0 appl (termovy) to Jmy o

appldiviy /p,, | div

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 20 / 24

Pretty-big-step semantics for loops

Intermediate terms: “for; oty tat3”, where i € {1,2,3}.
Evaluation rules, with the judgment e /,,, |} o.

ty ym o1 foriortitats s, Jo

fortytats jm | 0 for (termfalse) ty tat3 /s | term #t
t3 ym b o3 foraoztitats) o taym b o2 forzoatitats) o
fory (termtrue)tytats /py I 0 fory (term)ty tats /I 0
fortitats /m |0 aborto
forg (term i't) t1tat3 Jm/ Jo for; oty tat3 /m o

— From 9 rules and 21 premises to 6 rules with 7 evaluation premises.

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 21 /24

Pretty-big-step semantics for core-Caml

Formalization in Coq of a large subset of Caml:

booleans, integers, tuples, algebraic data types, mutable records, boolean
operators (lazy and, lazy or, negation), integer operators (negation, addition,
subtraction, multiplication, division), comparison operator, functions, recursive
functions, applications, sequences, let-bindings, conditionals (with optional else
branch), for loops and while loops, pattern matching (with nested patterns, as
patterns, or patterns, and when clauses), raise construct, try-with construct with
pattern matching, and assertions.

‘ rules ‘ premises‘ tokens

Big-step without divergence 71 83 1540
Big-step with divergence 113 143 2263
Pretty-big-step 70 60 1361

— Pretty-big-step reduces the size of the definition by 40%.
— Pretty-big-step reduces the number of premises by 60%.

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 22 /24

Pretty-big-step semantics for JavaScript

Formalization in Coq of a large subset of JavaScript (ECMADb):

variable declarations, function declarations, function calls, objects, getters,
setters, new, delete, access, assignment, unary and binary operators, sequence,
conditional, while loop, with construct, this construct, throw, try-catch-finally,
return, break, continue, type conversions, primitive functions on objects.

Not yet covered:

parsing, switch, arrays, for loops, library functions such as regexps.

Language Meta Total

constructs operations
Intermediate terms 97 165 262
Evaluation rules 147 258 432

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 23 /24

Conclusion
In this talk:

@ Duplication associated with big-step semantics
@ From big-step to pretty-big-step semantics
© Scaling up to real languages

Additional results described in the paper:

© Type soundness proofs in pretty-big-step
@ Pretty-big-step semantics with traces

Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 24 /24

Conclusion
In this talk:

@ Duplication associated with big-step semantics
@ From big-step to pretty-big-step semantics
© Scaling up to real languages

Additional results described in the paper:

© Type soundness proofs in pretty-big-step
@ Pretty-big-step semantics with traces

Remaining challenges for pretty-big-step:

@ Unified proofs for terminating and diverging terms
@ Support for arbitrary goto instructions
© Support for concurrency and weak memory models

Thanks!
Arthur Charguéraud (INRIA) Pretty-big-step semantics ESOP, 2013/03/19 24 /24

	Limitations of big-step
	Pretty-big-step semantics
	Scaling up to real languages

