Pretty-big-step semantics

Arthur Charguéraud

INRIA

CNAM, January 2013

Motivation

Formalization of the semantics of JavaScript in Coq

ightarrow with Martin Bodin, Daniele Filaretti, Philippa Gardner, Sergio Maffeis, Daiva Naudziuniene, Alan Schmitt, Gareth Smith

Motivation

Formalization of the semantics of JavaScript in Coq

ightarrow with Martin Bodin, Daniele Filaretti, Philippa Gardner, Sergio Maffeis, Daiva Naudziuniene, Alan Schmitt, Gareth Smith

Previous work:

- Semi-formal small-step semantics for the entire language (jssec.net)
- Informal big-step semantics for the core language (POPL'12)

Current work:

- Formal big-step-style semantics for the entire language
- Interpreter proved correct w.r.t. the semantics

Motivation for big-step

Big-step semantics:

- more faithful to the reference manual
- easier than small-step for proving an interpreter
- easier than small-step for proving a program logic

Motivation for big-step

Big-step semantics:

- more faithful to the reference manual
- easier than small-step for proving an interpreter
- easier than small-step for proving a program logic

Small-step semantics considered better-suited for:

- ullet machine-code semantics o not the case of JS
- ullet type soundness proofs o no types in JS
- ullet concurrent languages o no concurrency in JS

Big-step semantics for loops

Semantics of a C-style loop "for (; t_1 ; t_2) { t_3 }", written "for t_1 t_2 t_3 ", in terms of the evaluation judgment $t_{/m} \Rightarrow v_{/m'}$.

$$\frac{t_{1/m_1} \Rightarrow \mathsf{false}_{/m_2}}{\mathsf{for}\, t_1\, t_2\, t_{3/m_1} \Rightarrow t t_{/m_2}}$$

$$\frac{t_{1/m_1} \, \Rightarrow \, \mathsf{true}_{/m_2} \quad t_{3/m_2} \, \Rightarrow \, tt_{/m_3} \quad t_{2/m_3} \, \Rightarrow \, tt_{/m_4} \quad \mathsf{for} \, t_1 \, t_2 \, t_{3/m_4} \, \Rightarrow \, tt_{/m_5}}{\mathsf{for} \, t_1 \, t_2 \, t_{3/m_1} \, \Rightarrow \, tt_{/m_5}}$$

Big-step semantics for loops: exceptions

Exceptions in terms of the judgment $t_{/m} \Rightarrow^{\text{exn}}_{/m'}$.

$$\begin{array}{c} t_{1/m_1} \Rightarrow^{\text{exn}}_{/m_2} \\ \hline \text{for } t_1 \, t_2 \, t_{3/m_1} \Rightarrow^{\text{exn}}_{/m_2} \\ \\ \frac{t_{1/m_1} \Rightarrow \text{true}_{/m_2} \quad t_{3/m_2} \Rightarrow^{\text{exn}}_{/m_3}}{\text{for } t_1 \, t_2 \, t_{3/m_1} \Rightarrow^{\text{exn}}_{/m_3}} \\ \\ \frac{t_{1/m_1} \Rightarrow \text{true}_{/m_2} \quad t_{3/m_2} \Rightarrow t_{/m_3} \quad t_{2/m_3} \Rightarrow^{\text{exn}}_{/m_4}}{\text{for } t_1 \, t_2 \, t_{3/m_1} \Rightarrow^{\text{exn}}_{/m_4}} \\ \\ \frac{t_{1/m_1} \Rightarrow \text{true}_{/m_2} \quad t_{3/m_2} \Rightarrow t_{/m_3} \quad t_{2/m_3} \Rightarrow t_{/m_4} \quad \text{for } t_1 \, t_2 \, t_{3/m_4} \Rightarrow^{\text{exn}}_{/m_5}}{\text{for } t_1 \, t_2 \, t_{3/m_1} \Rightarrow^{\text{exn}}_{/m_5}} \end{array}$$

Big-step semantics for loops: divergence

Divergence in terms of the coinductive judgment $t_{/m} \Rightarrow^{\infty}$ (Leroy 2006).

$$\begin{array}{c} \frac{t_{1/m_1} \Rightarrow^{\infty}}{\operatorname{for}\, t_1\, t_2\, t_{3/m_1} \Rightarrow^{\infty}} \\ \\ \frac{t_{1/m_1} \Rightarrow \operatorname{true}_{/m_2} \quad t_{3/m_2} \Rightarrow^{\infty}}{\operatorname{for}\, t_1\, t_2\, t_{3/m_1} \Rightarrow^{\infty}} \\ \\ \frac{t_{1/m_1} \Rightarrow \operatorname{true}_{/m_2} \quad t_{3/m_2} \Rightarrow t_{1/m_3} \quad t_{2/m_3} \Rightarrow^{\infty}}{\operatorname{for}\, t_1\, t_2\, t_{3/m_1} \Rightarrow^{\infty}} \\ \\ \underline{t_{1/m_1} \Rightarrow \operatorname{true}_{/m_2} \quad t_{3/m_2} \Rightarrow t_{1/m_3} \quad t_{2/m_3} \Rightarrow t_{1/m_4} \quad \operatorname{for}\, t_1\, t_2\, t_{3/m_4} \Rightarrow^{\infty}} \\ \\ \underline{t_{1/m_1} \Rightarrow \operatorname{true}_{/m_2} \quad t_{3/m_2} \Rightarrow t_{1/m_3} \quad t_{2/m_3} \Rightarrow t_{1/m_4} \quad \operatorname{for}\, t_1\, t_2\, t_{3/m_4} \Rightarrow^{\infty}} \\ \\ \underline{t_{1/m_1} \Rightarrow \operatorname{true}_{/m_2} \quad t_{3/m_2} \Rightarrow t_{1/m_3} \quad t_{2/m_3} \Rightarrow t_{1/m_4} \quad \operatorname{for}\, t_1\, t_2\, t_{3/m_4} \Rightarrow^{\infty}} \\ \\ \underline{t_{1/m_1} \Rightarrow \operatorname{true}_{/m_2} \quad t_{3/m_2} \Rightarrow t_{1/m_3} \quad t_{2/m_3} \Rightarrow t_{1/m_4} \quad \operatorname{for}\, t_1\, t_2\, t_{3/m_4} \Rightarrow^{\infty}} \\ \\ \underline{t_{1/m_1} \Rightarrow \operatorname{true}_{/m_2} \quad t_{3/m_2} \Rightarrow t_{1/m_3} \quad t_{2/m_3} \Rightarrow t_{1/m_4} \quad \operatorname{for}\, t_1\, t_2\, t_{3/m_4} \Rightarrow^{\infty}} \\ \\ \underline{t_{1/m_1} \Rightarrow \operatorname{true}_{/m_2} \quad t_{3/m_2} \Rightarrow t_{1/m_3} \quad t_{2/m_3} \Rightarrow t_{1/m_4} \quad \operatorname{for}\, t_1\, t_2\, t_{3/m_4} \Rightarrow^{\infty}} \\ \\ \underline{t_{1/m_1} \Rightarrow \operatorname{true}_{/m_2} \quad t_{3/m_2} \Rightarrow t_{1/m_3} \quad t_{2/m_3} \Rightarrow t_{1/m_4} \quad \operatorname{for}\, t_1\, t_2\, t_{3/m_4} \Rightarrow^{\infty}} \\ \underline{t_{1/m_1} \Rightarrow \operatorname{true}_{/m_2} \quad t_{3/m_2} \Rightarrow t_{1/m_3} \quad t_{2/m_3} \Rightarrow t_{1/m_4} \quad \operatorname{for}\, t_1\, t_2\, t_{3/m_4} \Rightarrow^{\infty}} \\ \underline{t_{1/m_1} \Rightarrow \operatorname{true}_{/m_2} \quad t_{3/m_2} \Rightarrow t_{1/m_3} \Rightarrow t_{1/m_4} \quad \operatorname{for}\, t_1\, t_2\, t_{3/m_4} \Rightarrow^{\infty}} \\ \underline{t_{1/m_1} \Rightarrow \operatorname{true}_{/m_2} \quad t_{3/m_2} \Rightarrow t_{1/m_3} \Rightarrow t_{1/m_4} \quad \operatorname{for}\, t_1\, t_2\, t_{3/m_4} \Rightarrow^{\infty}} \\ \underline{t_{1/m_1} \Rightarrow \operatorname{true}_{/m_2} \quad t_{3/m_2} \Rightarrow t_{1/m_3} \Rightarrow t_{1/m_4} \quad \operatorname{for}\, t_1\, t_2\, t_{3/m_4} \Rightarrow^{\infty}} \\ \underline{t_{1/m_1} \Rightarrow \operatorname{true}_{/m_2} \quad t_{3/m_2} \Rightarrow t_{1/m_3} \Rightarrow t_{1/m_4} \quad \operatorname{for}\, t_1\, t_2\, t_{3/m_4} \Rightarrow^{\infty}} \\ \underline{t_{1/m_1} \Rightarrow \operatorname{true}_{/m_2} \quad t_{3/m_2} \Rightarrow t_{1/m_3} \Rightarrow^{\infty}} \\ \underline{t_{1/m_1} \Rightarrow \operatorname{true}_{/m_2} \quad t_{3/m_2} \Rightarrow^{\infty}} \\ \underline{t_{1/m_1} \Rightarrow \operatorname$$

Big-step semantics for loops: summary

$$\frac{t_{1/m_1} \,\Rightarrow\, \mathsf{false}_{/m_2}}{\mathsf{for}\, t_1\, t_2\, t_{3/m_1} \,\Rightarrow\, t\!t_{/m_2}}$$

$$\frac{t_{1/m_1} \Rightarrow \mathsf{true}_{/m_2}}{\mathsf{for}\, t_1\, t_2\, t_{3/m_1}} \Rightarrow \frac{t_{1/m_3}}{\mathsf{for}\, t_1\, t_2\, t_{3/m_1}} \Rightarrow \frac{t_{1/m_4}}{\mathsf{for}\, t_1\, t_2\, t_{3/m_1}} \Rightarrow \frac{t_{1/m_5}}{\mathsf{for}\, t_1\, t_2\, t_{3/m_1}}$$

$$\frac{t_{1/m_1} \Rightarrow^{\operatorname{exn}}_{/m_2}}{\operatorname{for} t_1 \ t_2 \ t_{3/m_1} \Rightarrow^{\operatorname{exn}}_{/m_2}}$$

$$\frac{t_{1/m_1} \Rightarrow \mathsf{true}_{/m_2} \quad t_{3/m_2} \Rightarrow^{\mathsf{exn}}_{/m_3}}{\mathsf{for}\, t_1\, t_2\, t_{3/m_1} \Rightarrow^{\mathsf{exn}}_{/m_3}}$$

$$\frac{t_{1/m_1} \Rightarrow \operatorname{true}_{/m_2} t_{3/m_2} \Rightarrow t_{1/m_3}}{t_{2/m_3} \Rightarrow^{\operatorname{exn}}_{/m_4}} \frac{t_{1/m_3}}{\operatorname{for} t_1 t_2 t_{3/m_1} \Rightarrow^{\operatorname{exn}}_{/m_4}}$$

$$\frac{t_{1/m_1} \Rightarrow \mathsf{true}_{/m_2} \quad t_{3/m_2} \Rightarrow t_{/m_3}}{t_{2/m_3} \Rightarrow t_{/m_4} \quad \mathsf{for} \ t_1 \ t_2 \ t_{3/m_4} \Rightarrow^{\mathsf{exn}}_{/m_5}}{\mathsf{for} \ t_1 \ t_2 \ t_{3/m_1} \Rightarrow^{\mathsf{exn}}_{/m_5}}$$

$$\frac{t_{1/m_1} \Rightarrow^{\infty}}{\operatorname{for} t_1 \ t_2 \ t_{3/m_1} \Rightarrow^{\infty}}$$

$$\frac{t_{1/m_1} \Rightarrow \mathsf{true}_{/m_2} \quad t_{3/m_2} \Rightarrow^{\infty}}{\mathsf{for}\, t_1\, t_2\, t_{3/m_1} \Rightarrow^{\infty}}$$

$$\frac{t_{1/m_1} \Rightarrow \mathsf{true}/m_2}{t_{2/m_3} \Rightarrow^{\infty}} \xrightarrow{t_{1/m_3}} \frac{t_{1/m_2} \Rightarrow t_{1/m_3}}{\mathsf{for}\,t_1\,t_2\,t_{3/m_1} \Rightarrow^{\infty}}$$

$$\begin{array}{c} t_{1/m_1} \Rightarrow \mathsf{true}_{/m_2} \quad t_{3/m_2} \Rightarrow t_{/m_3} \\ \underline{t_{2/m_3}} \Rightarrow t_{/m_4} \quad \mathsf{for} \, t_1 \, t_2 \, t_{3/m_4} \Rightarrow \\ \hline \mathsf{for} \, t_1 \, t_2 \, t_{3/m_1} \Rightarrow^{\infty} \end{array}$$

Big-step semantics for loops: summary

$$\frac{t_{1/m_{1}} \Rightarrow \mathsf{false}/m_{2}}{\mathsf{for}\,t_{1}\,t_{2}\,t_{3/m_{1}} \Rightarrow tt/m_{2}}$$

$$\frac{t_{1/m_{1}} \Rightarrow \mathsf{true}/m_{2}}{\mathsf{for}\,t_{1}\,t_{2}\,t_{3/m_{2}} \Rightarrow tt/m_{3}} \quad t_{2/m_{3}} \Rightarrow tt/m_{4}} \quad \mathsf{for}\,t_{1}\,t_{2}\,t_{3/m_{4}} \Rightarrow tt/m_{5}}$$

$$\frac{t_{1/m_{1}} \Rightarrow^{\mathsf{exn}}/m_{2}}{\mathsf{for}\,t_{1}\,t_{2}\,t_{3/m_{1}} \Rightarrow^{\mathsf{exn}}/m_{2}} \qquad \qquad \frac{t_{1/m_{1}} \Rightarrow^{\infty}}{\mathsf{for}\,t_{1}\,t_{2}\,t_{3/m_{1}} \Rightarrow^{\infty}}$$

$$\frac{t_{1/m_{1}} \Rightarrow \mathsf{true}/m_{2}}{\mathsf{for}\,t_{1}\,t_{2}\,t_{3/m_{1}} \Rightarrow^{\mathsf{exn}}/m_{3}} \qquad \qquad \frac{t_{1/m_{1}} \Rightarrow \mathsf{true}/m_{2}}{\mathsf{for}\,t_{1}\,t_{2}\,t_{3/m_{1}} \Rightarrow^{\mathsf{exn}}/m_{3}}$$

$$\frac{t_{1/m_{1}} \Rightarrow \mathsf{true}/m_{2}}{\mathsf{t}\,t_{2/m_{3}} \Rightarrow^{\mathsf{exn}}/m_{4}} \qquad \qquad \frac{t_{1/m_{1}} \Rightarrow \mathsf{true}/m_{2}}{\mathsf{t}\,t_{2/m_{3}} \Rightarrow^{\mathsf{exn}}/m_{4}} \qquad \qquad \frac{t_{1/m_{1}} \Rightarrow \mathsf{true}/m_{2}}{\mathsf{t}\,t_{2/m_{3}} \Rightarrow^{\mathsf{exn}}/m_{4}} \qquad \qquad \frac{t_{1/m_{1}} \Rightarrow \mathsf{true}/m_{2}}{\mathsf{t}\,t_{2/m_{3}} \Rightarrow^{\mathsf{exn}}/m_{4}} \Rightarrow^{\mathsf{exn}}/m_{5}}$$

$$\frac{t_{1/m_{1}} \Rightarrow \mathsf{true}/m_{2}}{\mathsf{for}\,t_{1}\,t_{2}\,t_{3/m_{1}} \Rightarrow^{\mathsf{exn}}/m_{4}} \qquad \qquad \frac{t_{1/m_{1}} \Rightarrow \mathsf{true}/m_{2}}{\mathsf{t}\,t_{2/m_{3}} \Rightarrow^{\mathsf{exn}}/m_{4}} \Rightarrow^{\mathsf{exn}}/m_{5}} \qquad \qquad \frac{t_{1/m_{1}} \Rightarrow \mathsf{true}/m_{2}}{\mathsf{t}\,t_{2/m_{3}} \Rightarrow^{\mathsf{exn}}/m_{4}} \Rightarrow^{\mathsf{exn}}/m_{5}} \qquad \qquad \frac{t_{1/m_{1}} \Rightarrow \mathsf{true}/m_{2}}{\mathsf{t}\,t_{2/m_{3}} \Rightarrow^{\mathsf{exn}}/m_{4}} \Rightarrow^{\mathsf{exn}}/m_{5}} \Rightarrow^{\mathsf{exn}}/m_{5}} \qquad \qquad \frac{t_{1/m_{1}} \Rightarrow \mathsf{true}/m_{2}}{\mathsf{t}\,t_{2/m_{3}} \Rightarrow^{\mathsf{exn}}/m_{4}} \Rightarrow^{\mathsf{exn}}/m_{5}} \Rightarrow^{\mathsf{e$$

 \rightarrow Even with factorization: 9 rules, 21 premises.

Big-step semantics for loops: summary

$$\frac{t_{1/m_{1}} \Rightarrow \mathsf{false}_{/m_{2}}}{\mathsf{for}\,t_{1}\,t_{2}\,t_{3/m_{1}} \Rightarrow t_{1/m_{2}}}$$

$$\frac{t_{1/m_{1}} \Rightarrow \mathsf{true}_{/m_{2}} \quad t_{3/m_{2}} \Rightarrow t_{1/m_{3}} \quad t_{2/m_{3}} \Rightarrow t_{1/m_{4}} \quad \mathsf{for}\,t_{1}\,t_{2}\,t_{3/m_{4}} \Rightarrow t_{1/m_{5}}}{\mathsf{for}\,t_{1}\,t_{2}\,t_{3/m_{1}} \Rightarrow \mathsf{exn}}$$

$$\frac{t_{1/m_{1}} \Rightarrow \mathsf{exn}_{1/m_{2}}}{\mathsf{for}\,t_{1}\,t_{2}\,t_{3/m_{1}} \Rightarrow \mathsf{exn}_{1/m_{2}}} \qquad \frac{t_{1/m_{1}} \Rightarrow^{\infty}}{\mathsf{for}\,t_{1}\,t_{2}\,t_{3/m_{1}} \Rightarrow^{\infty}}$$

$$\frac{t_{1/m_{1}} \Rightarrow \mathsf{true}_{1/m_{2}} \quad t_{3/m_{2}} \Rightarrow^{\mathsf{exn}}_{1/m_{3}}}{\mathsf{for}\,t_{1}\,t_{2}\,t_{3/m_{1}} \Rightarrow^{\mathsf{exn}}_{1/m_{3}}} \qquad \frac{t_{1/m_{1}} \Rightarrow \mathsf{true}_{1/m_{2}} \quad t_{3/m_{2}} \Rightarrow^{\infty}}{\mathsf{for}\,t_{1}\,t_{2}\,t_{3/m_{1}} \Rightarrow^{\infty}}$$

$$\frac{t_{1/m_{1}} \Rightarrow \mathsf{true}_{1/m_{2}} \quad t_{3/m_{2}} \Rightarrow t_{1/m_{3}}}{\mathsf{t}_{2/m_{3}} \Rightarrow^{\mathsf{exn}}_{1/m_{4}}} \qquad \frac{t_{1/m_{1}} \Rightarrow \mathsf{true}_{1/m_{2}} \quad t_{3/m_{2}} \Rightarrow t_{1/m_{3}}}{\mathsf{for}\,t_{1}\,t_{2}\,t_{3/m_{1}} \Rightarrow^{\infty}}$$

$$\frac{t_{1/m_{1}} \Rightarrow \mathsf{true}_{1/m_{2}} \quad t_{3/m_{2}} \Rightarrow t_{1/m_{3}}}{\mathsf{for}\,t_{1}\,t_{2}\,t_{3/m_{1}} \Rightarrow^{\infty}} \qquad \frac{t_{1/m_{1}} \Rightarrow \mathsf{true}_{1/m_{2}} \quad t_{3/m_{2}} \Rightarrow t_{1/m_{3}}}{\mathsf{t}_{2/m_{3}} \Rightarrow t_{1/m_{4}}} \Rightarrow t_{1/m_{1}} \Rightarrow \mathsf{true}_{1/m_{2}} \quad t_{1/m_{1}} \Rightarrow \mathsf{true}_{1/m_{2}} \quad t_{1/m_{2}} \Rightarrow t_{1/m_{3}}}{\mathsf{t}_{2/m_{3}} \Rightarrow t_{1/m_{4}}} \Rightarrow t_{1/m_{1}} \Rightarrow \mathsf{true}_{1/m_{2}} \Rightarrow t_{1/m_{3}} \Rightarrow t_{1/m_{4}} \Rightarrow t_{1/m_{4$$

- \rightarrow Even with factorization: 9 rules, 21 premises.
- \rightarrow With pretty-big-step: 6 rules, 7 premises.

In this talk

- Construction of a pretty-big-step semantics
- Extension with traces
- Applications to core-Caml and JavaScript

Construction of a pretty-big-step semantics

Big-step semantics

Grammar of λ -terms

$$\begin{array}{lll} v & := & \inf n \mid \mathsf{abs}\,x\,t \\ t & := & \mathsf{val}\,v \mid \mathsf{var}\,x \mid \mathsf{app}\,t\,t \end{array}$$

Call-by-value big-step semantics $(t \Rightarrow v)$

$$\frac{t_1 \Rightarrow \mathsf{abs}\,x\,t \qquad t_2 \Rightarrow v \qquad [x \to v]\,t \Rightarrow v'}{\mathsf{app}\,t_1\,t_2 \Rightarrow v'}$$

A first attempt

Big-step rule for applications:

$$\frac{t_1 \, \Rightarrow \, \mathsf{a} \, \mathsf{b} \mathsf{s} \, x \, t \qquad t_2 \, \Rightarrow \, v \qquad [x \to v] \, t \, \Rightarrow \, v'}{\mathsf{a} \, \mathsf{p} \, \mathsf{p} \, t_1 \, t_2 \, \Rightarrow \, v'}$$

A first attempt at pretty-big-step rules:

$$\frac{t_1 \, \Rightarrow \, v_1 \quad \mathsf{app} \, v_1 \, t_2 \, \Rightarrow \, v'}{\mathsf{app} \, t_1 \, t_2 \, \Rightarrow \, v'} \qquad \frac{t_2 \, \Rightarrow \, v_2 \quad \mathsf{app} \, v_1 \, v_2 \, \Rightarrow \, v'}{\mathsf{app} \, v_1 \, t_2 \, \Rightarrow \, v'} \qquad \frac{[x \rightarrow v] \, t \, \Rightarrow \, v'}{\mathsf{app} \, (\mathsf{abs} \, x \, t) \, v \, \Rightarrow \, v'}$$

→ Similar idea in Cousot and Cousot's bi-inductive semantics (2007)

Intermediate terms

To prevent overlap between the rules, we use intermediate terms:

$$e := \operatorname{trm} t \mid \operatorname{app1} v t \mid \operatorname{app2} v v$$

Definition of the judgment $e \downarrow v$, with trm implicit

$$\frac{t_1 \Downarrow v_1 \qquad \operatorname{app1} v_1 t_2 \Downarrow v'}{\operatorname{app} t_1 t_2 \Downarrow v'}$$

$$\frac{t_2 \Downarrow v_2 \qquad \operatorname{app2} v_1 v_2 \Downarrow v'}{\operatorname{app1} v_1 t_2 \Downarrow v'} \qquad \frac{[x \to v] t \Downarrow v'}{\operatorname{app2} (\operatorname{abs} x t) v \Downarrow v'}$$

Adding exceptions

Value-carrying exceptions and exception handlers

$$t := \ldots \mid \mathsf{raise}\,t \mid \mathsf{try}\,t\,t$$

Two behaviors: return a value or throw an exception

$$e \Downarrow b$$
 $b := ret v \mid exn v$

Generalization of intermediate terms

Need to generalize intermediate terms

$$\frac{t_1 \Downarrow b_1 \quad \mathsf{app1}\, b_1\, t_2 \Downarrow b}{\mathsf{app}\, t_1\, t_2 \Downarrow b}$$

$$\frac{t_2 \, \Downarrow \, b_2 \quad \mathsf{app2} \, v_1 \, b_2 \, \Downarrow \, b}{\mathsf{app1} \, (\mathsf{exn} \, v) \, t_2 \, \Downarrow \, \mathsf{exn} \, v} \\ \frac{t_2 \, \Downarrow \, b_2 \quad \mathsf{app2} \, v_1 \, b_2 \, \Downarrow \, b}{\mathsf{app1} \, (\mathsf{ret} \, v_1) \, t_2 \, \Downarrow \, b}$$

New grammar of intermediate terms

$$e := \operatorname{trm} t \mid \operatorname{app1} bt \mid \operatorname{app2} vb \mid \operatorname{raise1} b \mid \operatorname{try1} bt$$

Pretty-big-step rules for exceptions

$$\frac{t_1 \Downarrow b_1 \quad \mathsf{app1} \, b_1 \, t_2 \Downarrow b}{\mathsf{app} \, t_1 \, t_2 \Downarrow b} \quad \frac{\mathsf{app1} \, (\mathsf{exn} \, v) \, t \, \Downarrow \, \mathsf{exn} \, v}{\mathsf{app1} \, (\mathsf{exn} \, v) \, t \, \Downarrow \, \mathsf{exn} \, v}$$

Pretty-big-step rules for exceptions

$$\frac{t_1 \Downarrow b_1 \quad \operatorname{app1} b_1 t_2 \Downarrow b}{\operatorname{app} t_1 t_2 \Downarrow b} \quad \overline{\operatorname{app1} (\operatorname{exn} v) t \Downarrow \operatorname{exn} v}$$

$$\frac{t_2 \Downarrow b_2 \quad \operatorname{app2} v_1 b_2 \Downarrow b}{\operatorname{app1} v_1 t_2 \Downarrow b} \quad \overline{\operatorname{app2} v (\operatorname{exn} v) \Downarrow \operatorname{exn} v} \quad \overline{\operatorname{app2} (\operatorname{abs} x t) v \Downarrow b}$$

$$\frac{t_1 \Downarrow b_1 \quad \operatorname{try1} b_1 t_2 \Downarrow b}{\operatorname{try} t_1 t_2 \Downarrow b} \quad \overline{\operatorname{try1} v t \Downarrow v} \quad \overline{\operatorname{try1} (\operatorname{exn} v) t \Downarrow b}$$

$$\frac{t \Downarrow b_1 \quad \operatorname{raise1} b_1 \Downarrow b}{\operatorname{raise1} b_1 \Downarrow b} \quad \overline{\operatorname{raise1} v \Downarrow \operatorname{exn} v} \quad \overline{\operatorname{raise1} (\operatorname{exn} v) \Downarrow \operatorname{exn} v}$$

Adding divergence

Outcome of an evaluation: termination or divergence

$$o := \operatorname{ter} b \mid \operatorname{div}$$

New grammar of intermediate terms

$$e := \operatorname{trm} t \mid \operatorname{app1} ot \mid \operatorname{app2} vo \mid \operatorname{raise1} o \mid \operatorname{try1} ot$$

Evaluation rules

$$\frac{t_1 \, \Downarrow \, o_1 \quad \mathsf{app1} \, o_1 \, t_2 \, \Downarrow \, b}{\mathsf{app} \, t_1 \, t_2 \, \Downarrow \, b}$$

 $\mathsf{app1}\,\mathsf{div}\,t\,\Downarrow\,\mathsf{div}$

The abort predicate

We want to factorize pairs of similar rules, such as:

$$\overline{\mathsf{app1}\,(\mathsf{exn}\,v)\,t\,\Downarrow\,(\mathsf{exn}\,v)}$$

 $\mathsf{app1}\,\mathsf{div}\,t\,\downarrow\,\mathsf{div}$

The abort predicate

We want to factorize pairs of similar rules, such as:

$$\overline{\mathsf{app1}\,(\mathsf{exn}\,v)\,t\,\Downarrow\,(\mathsf{exn}\,v)}$$

$$\mathsf{app1}\,\mathsf{div}\,t\,\downarrow\,\mathsf{div}$$

Solution:

$$\frac{\mathsf{abort}\,o}{\mathsf{app1}\,o\,t\,\Downarrow\,o}$$

where "abort", defined below, characterizes exceptions and divergence.

abort(exn v)

abort div

Summary: grammars and judgments

Grammars:

$$\begin{array}{lll} b & := & \operatorname{ret} v \mid \operatorname{exn} v \\ o & := & \operatorname{ter} b \mid \operatorname{div} \\ e & := & \operatorname{trm} t \mid \operatorname{app1} ot \mid \operatorname{app2} v \mid \operatorname{raise1} o \mid \operatorname{try1} ot \end{array}$$

Judgments:

abort
$$o$$
 $e \Downarrow o$ $e \Downarrow^{\mathsf{co}} o$

Summary: grammars and judgments

Grammars:

$$\begin{array}{lll} b & := & \operatorname{ret} v \mid \operatorname{exn} v \\ o & := & \operatorname{ter} b \mid \operatorname{div} \\ e & := & \operatorname{trm} t \mid \operatorname{app1} ot \mid \operatorname{app2} v \mid \operatorname{raise1} o \mid \operatorname{try1} ot \end{array}$$

Judgments:

abort
$$o$$
 $e \Downarrow o$ $e \Downarrow^{\mathsf{co}} o$

Theorem (equivalence with big-step)

$$\begin{array}{cccc} t \, \Downarrow \, \mathit{terb} & \Leftrightarrow & t \, \Rightarrow \, b \\ \\ t \, \Downarrow^{\mathit{co}} \, \mathit{div} & \Leftrightarrow & t \, \Rightarrow^{\infty} \end{array}$$

Summary: rules

Extension with traces

Definition of traces

A trace records I/O interactions and ϵ -transitions.

A terminating program has a finite trace.

A diverging program has an infinite trace.

```
\begin{array}{lll} \alpha & := & \epsilon \mid \operatorname{in} n \mid \operatorname{out} n \\ \tau & := & \operatorname{list} \alpha \\ \sigma & := & \operatorname{stream} \alpha \\ o & := & \operatorname{ter} \tau b \mid \operatorname{div} \sigma \end{array}
```

Definition of traces

A trace records I/O interactions and ϵ -transitions.

A terminating program has a finite trace.

A diverging program has an infinite trace.

$$\begin{array}{lll} \alpha & := & \epsilon \mid \operatorname{in} n \mid \operatorname{out} n \\ \\ \tau & := & \operatorname{list} \alpha \\ \\ \sigma & := & \operatorname{stream} \alpha \\ \\ o & := & \operatorname{ter} \tau b \mid \operatorname{div} \sigma \end{array}$$

 \rightarrow We are not using possibly-infinite traces (coinductive lists) like Nakata and Uustalu (2009) and Danielsson (2012).

Operation on traces

Concatenation of a finite trace au to the front

$$\tau \cdot \tau'$$
 $\tau \cdot \sigma$ $\tau \cdot o$

Equivalence of two traces up to finite consecutive insertions of ϵ -transitions

$$\frac{o \approx o'}{\epsilon^n \cdot [\alpha] \cdot o \approx \epsilon^m \cdot [\alpha] \cdot o'}$$

Trace semantics in pretty-big-step

Evaluation rules for expressions include ϵ -transtions to ensure *productivity*.

Trace semantics in pretty-big-step, cont.

I/O operations are recorded in the trace.

$$\frac{t \, \Downarrow \, o_1 \qquad \mathsf{write1} \, o_1 \, \Downarrow \, o}{\mathsf{write} \, t \, \Downarrow \, [\epsilon] \cdot o}$$

$$\mathsf{write1} \, (\mathsf{ter} \, \tau \, n) \, \Downarrow \, \mathsf{ter} \, \tau \cdot [\mathsf{out} \, n] \, \mathit{tt}$$

$$\frac{t \Downarrow o_1 \qquad \mathsf{read1} o_1 \Downarrow o}{\mathsf{read} \ t \Downarrow [\epsilon] \cdot o}$$

$$\mathsf{read1}\left(\mathsf{ter}\,\tau\,tt\right)\,\Downarrow\,\mathsf{ter}\,\tau\cdot\left[\mathsf{in}\;n\right]n$$

Benefits of trace semantics

Theorem (finite traces can only be produced by finite derivations)

 $e \Downarrow^{co} ter \tau v \Leftrightarrow e \Downarrow ter \tau v$

Benefits of trace semantics

Theorem (finite traces can only be produced by finite derivations)

$$e \Downarrow^{co} ter \tau v \Leftrightarrow e \Downarrow ter \tau v$$

So, we do not need the inductive judgment: the coinductive one suffices.

Theorem (equivalence with big-step)

$$t \Downarrow^{co} ter \tau b \iff t \Rightarrow b/\tau$$

$$t \Downarrow^{co} div \sigma \qquad \Leftrightarrow \qquad t \Rightarrow^{\infty} /\sigma$$

Proofs with trace semantics: problems

A typical simulation theorem

$$\llbracket e \rrbracket \Downarrow^{\mathsf{co}} o \longrightarrow \exists o'. o' \approx o \land e \Downarrow^{\mathsf{co}} o'$$

Proofs with trace semantics: problems

A typical simulation theorem

$$\llbracket e \rrbracket \Downarrow^{\mathsf{co}} o \longrightarrow \exists o'. o' \approx o \land e \Downarrow^{\mathsf{co}} o'$$

Coinductive proof? No luck!

- ∃ is not coinductive
- ② ∧ is not coinductive
- o' is not coinductive
- \rightarrow Yet, coinductive reasoning is morally correct.

Proofs with trace semantics: an idea

Prove a full-coverage lemma:

$$\forall e. \exists o. e \Downarrow^{co} o$$

Reformulate the simulation theorem:

$$\llbracket e \rrbracket \Downarrow^{\mathsf{co}} o \land e \Downarrow^{\mathsf{co}} o' \rightarrow o \approx o'$$

 \rightarrow This should generalize to the case of a fixed stream of input actions.

Pretty-big-step: scaling up

Scaling up to real languages

What's next:

- the generic abort rule
- semantics of side-effects
- semantics of loops
- application to core-Caml
- application to JavaScript

Abort rules

Many similar abort rules: can we factorize them?

$$\frac{\mathsf{abort}\,o}{\mathsf{app1}\,o\,t\,\Downarrow\,o}$$

$$\frac{\mathsf{abort}\,o}{\mathsf{app2}\,v\,o\,\Downarrow\,o}$$

$$\frac{\mathsf{abort}\,o}{\mathsf{raise1}\,o\,\downarrow\,o}$$

The generic abort rule

The auxiliary function "getout"

The generic abort rule, which replaces the rules from the previous slide

$$\frac{\mathsf{getout}\, e = \mathsf{Some}\, o \qquad \mathsf{abort}\, o}{e \, \Downarrow \, o}$$

Side-effects

Generalization of terminating outcomes to carry a memory store:

$$o := \operatorname{ter} m \, b \mid \operatorname{div}$$

Evaluation judgment in the form $e_{/m} \Downarrow o$. Example rules:

$$\frac{t_{1\,/m} \Downarrow o_1 \qquad \mathsf{app1}\, o_1\, t_{2\,/m} \Downarrow o}{\mathsf{app}\, t_1\, t_{2\,/m} \Downarrow o}$$

$$\frac{t_{1\,/m} \Downarrow o_1 \quad \mathsf{app1}\, o_1\, t_{2\,/m} \Downarrow o}{\mathsf{app}\, t_1\, t_{2\,/m} \Downarrow o} \qquad \frac{t_{2\,/m'} \Downarrow o_2 \quad \mathsf{app2}\, v_1\, o_{2\,/m'} \Downarrow o}{\mathsf{app1}\, (\mathsf{ter}\, m'\, v_1)\, t_{2\,/m} \Downarrow o}$$

Pretty-big-step semantics for loops

A single intermediate term "for $i \circ t_1 t_2 t_3$ ", where $i \in \{1, 2, 3\}$.

Evaluation rules, with the judgment $e_{/m} \Downarrow o$.

for 3 (ret m tt) t_1 t_2 t_3 $t_{m'}$ $\downarrow o$

$$\frac{t_{1\ /m} \Downarrow o_{1} \qquad \text{for } 1\ o_{1}\ t_{1}\ t_{2}\ t_{3\ /m}\ \Downarrow o}{\text{for } t_{1}\ t_{2}\ t_{3\ /m}\ \Downarrow o} \qquad \frac{\text{for } 1\ (\text{ret } m\ \text{false})\ t_{1}\ t_{2}\ t_{3\ /m'}\ \Downarrow \ \text{ret } m\ tt}{\text{for } 1\ (\text{ret } m\ \text{false})\ t_{1}\ t_{2}\ t_{3\ /m'}\ \Downarrow o} \qquad \frac{t_{2\ /m}\ \Downarrow o_{2} \qquad \text{for } 3\ o_{2}\ t_{1}\ t_{2}\ t_{3\ /m}\ \Downarrow o}{\text{for } 1\ (\text{ret } m\ true})\ t_{1}\ t_{2}\ t_{3\ /m'}\ \Downarrow o} \qquad \frac{t_{2\ /m}\ \Downarrow o_{2} \qquad \text{for } 3\ o_{2}\ t_{1}\ t_{2}\ t_{3\ /m}\ \Downarrow o}{\text{for } 2\ (\text{ret } m\ tt)\ t_{1}\ t_{2}\ t_{3\ /m'}\ \Downarrow o}} \qquad \text{abort } o$$

 \rightarrow From 9 rules and 21 premises to 6 rules with 7 evaluation premises.

for $i \circ t_1 t_2 t_3 /_m \Downarrow o$

Applications to core-Caml and JavaScript

Pretty-big-step semantics for core-Caml

Formalization of core-Caml:

booleans, integers, tuples, algebraic data types, mutable records, boolean operators (lazy and, lazy or, negation), integer operators (negation, addition, subtraction, multiplication, division), comparison operator, functions, recursive functions, applications, sequences, let-bindings, conditionals (with optional else branch), for loops and while loops, pattern matching (with nested patterns, as patterns, or patterns, and when clauses), raise construct, try-with construct with pattern matching, and assertions.

	rules	premises	tokens
Big-step without divergence	71	83	1540
Big-step with divergence	113	143	2263
Pretty-big-step	70	60	1361

- \rightarrow Pretty-big-step reduces the size of the definition by 40%.
- ightarrow Pretty-big-step reduces the number of premises by more than a factor 2.

Pretty-big-step semantics for JavaScript

Formalization of JavaScript:

variable declarations, function declarations, function calls, objects, getters, setters, new, delete, access, assignment, unary and binary operators, sequence, conditional, while loop, with construct, this construct, throw, try-catch-finally, return, break, continue, type conversions, primitive functions on objects, builtin errors.

Not yet covered:

parsing, switch, arrays, for loops, library functions (e.g. for regexps).

	for terms	for meta	total
Intermediate terms	97	165	262
Reduction rules	147	258	432

Certified intepreter: 1300 lines of auxiliary definitions, 1500 lines for "run".

Thanks!