Arthur Charguéraud (INRIA)

Pretty-big-step semantics

Arthur Charguéraud
INRIA

CNAM, January 2013

Pretty-big-step semantics

Motivation

Formalization of the semantics of JavaScript in Coq

— with Martin Bodin, Daniele Filaretti, Philippa Gardner, Sergio Maffeis,
Daiva Naudziuniene, Alan Schmitt, Gareth Smith

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 2 /37

Motivation

Formalization of the semantics of JavaScript in Coq

— with Martin Bodin, Daniele Filaretti, Philippa Gardner, Sergio Maffeis,
Daiva Naudziuniene, Alan Schmitt, Gareth Smith

Previous work:

e Semi-formal small-step semantics for the entire language (jssec.net)

@ Informal big-step semantics for the core language (POPL'12)

Current work:

e Formal big-step-style semantics for the entire language

@ Interpreter proved correct w.r.t. the semantics

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 2 /37

Motivation for big-step

Big-step semantics:
@ more faithful to the reference manual
@ easier than small-step for proving an interpreter

@ easier than small-step for proving a program logic

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 3 /37

Motivation for big-step

Big-step semantics:
@ more faithful to the reference manual
@ easier than small-step for proving an interpreter

@ easier than small-step for proving a program logic

Small-step semantics considered better-suited for:
@ machine-code semantics — not the case of JS
@ type soundness proofs — no types in JS

@ concurrent languages — no concurrency in JS

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 3 /37

Big-step semantics for loops

Semantics of a C-style loop “for (; t1; ta) {t3}", written “fort; to 3",
in terms of the evaluation judgment ¢/, = v/,

tl/m1 = 1:a|5(3/m2

for t1to t3/m1 = t‘t/m2

tl/ml = true,,,, t?,/m2 = t‘t/ms tz/m3 = t't/m4 fort; to tg/m4 = t't/m5

for tq to t3/m1 = i'lf/ms

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 4 /37

Big-step semantics for loops: exceptions
Exceptions in terms of the judgment ¢/, =% ,./.

tl/ml :>exn/Tn2
fortq to 3 /m, :>exn/m2

tl/ml = true/p,, t3/m2 :>exn/m3

forty to 3 /m, :>exn/m3

tym, = tru€ my t3/my, = W/my 12/m, :>exn/m4
forty ta t3/m1 :>exn/m4

tym, = tru€ my t3/my, = W/my t2/my = /m, forty to 13 /my =N s

forty ta t3/m1 :>exn/m5

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 5 /37

Big-step semantics for loops: divergence

Divergence in terms of the coinductive judgment ¢/, = (Leroy 2006).

t1 /m, =
fOFtl to t3/m1 =

tl/ml = true/p,, t3/m2 =
fort1 to t3/m1 =

tl/ml = true/p, tg/m2 = l'ft/ma t2/m3 =
fortl to t3/m1 =

tl/ml = true/m2 t3/m2 = tt/ma t2/m3 = tt/m4 fort1 to t3/m4 =
fort1 to t3/m1 =

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 6 /37

Big-step semantics for loops: summary

tl/ml = false/m2

forty to tg/ml = tt/m2

Bymy = W/ my 8 /my = Hymg b2 mg = Mymy fortitats my = #/mg

forty to t3/ml = bf/,,ns

exn o0
t/my = /my tl/my =
forty tat3 :>°"“/m2 forty tat3 =

exn o0
tl/m1 = true/m2 t3/m2 = /m3 tl/ml = true/m2 t3/m2 =
forty tats /p, :>““/m3 fort1 ta 3/, =

tl/ml = true/m2 ext'?/mQ = tt/ms tl/ml = t:rue/m2 tgoém2 = tt/ms
t2/mg = /my t2/mg =
forty 23 /pm, :>°"“/m4 forty to t3 /m, =

tl/ml = 1:rue/,m2 t3/m2 = tt/m

tl/ml = |:rue/m2 t3/m2 = tte/xT3
82)my =ty fortitats n,, =70 0 t2)my =)m, fortitats m, =
sxn forty t213/m =
1

fort1 243 /m; =" /my

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 7 /37

Big-step semantics for loops: summary

tl/ml = false/m2

forty to tg/ml = tt/m2

Bymy = W/ my 8 /my = Hymg b2 mg = Mymy fortitats my = #/mg

forty to t3/ml = tt/ms

exn o0
Y /my = /my /my =
exn 3
forty ta t3/m1 = Jmo forty to t3/m1 =
exn o0
tl/m1 = true/m2 t3/m2 = /m3 tl/ml = true/m2 t3/m2 =
forty tats /p, :>““/m3 forty tat3 =
tl/ml = true/m2 e;ﬁ'?/mQ = tt/ms tl/ml = t:rue/m2 tgoém2 = tt/ms
t2/mg = /my t2/mg =
3
forty to t3/m1 :>exn/m4 forty to t3/mq =
tl/ml = true/m2 t3/m2 = tte/XT3 tl/ml = 1:rue/,m2 t3/m2 = tt/m
12)my = Uy, fortitats,, =" t2/mg = Uym, frt1tats m, =
fort1 243 /m; =" /my forty ¢33/, =

— Even with factorization: 9 rules, 21 premises.

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013

7 /37

Big-step semantics for loops: summary

tl/ml = 1"a|se/m2

forty to tg/ml = tt/m2

Bymy = W/ my 8 /my = Hymg b2 mg = Mymy fortitats my = #/mg

forty to t3/ml = #/""5
exn o0
t/my = /my tl/my =

forty tat3 :>°"“/m2 forty tat3 =

exn
tl/ml = true/m2 t3/m2 = /m3

fort1 t2t3)y = /my fort1 ta 3/, =

oo
tl/ml = true/m2 t3/m2 =

tl/ml = t:rue/m2 tg/m2 = tt/ms
oo

tl/ml = true t3/m2 = ﬁ/mS
exn + =
2/m3

t2/mg = /my

fort1 6243 /pmy =7 fimy fort1 to t3 /p, =

tl/ml = 1:rue/,m2 t3/m2 = tt/m

tl/ml = true/m2 t3/m2 = tt/ms
forty to t3/7n4 =

exn

t2/.m3 = tt/m4 fortltgtg/m4 = /mg t2/m3 = 1’:t/m4

fort1 243 /m; =" /my forty ¢33/, =

— Even with factorization: 9 rules, 21 premises.
— With pretty-big-step: 6 rules, 7 premises.

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013

7 /37

In this talk

o Construction of a pretty-big-step semantics
@ Extension with traces

@ Applications to core-Caml and JavaScript

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 8 /37

Construction of a pretty-big-step semantics

Arthur Charguéraud (INRIA) Pretty-big-step semantics

Big-step semantics

Grammar of \-terms

v := intn | abszt
t := valv | varx | apptt

Call-by-value big-step semantics (t = v)

t1 = abszt ty = v [z = v]t = o

v =0 apptits = v

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 10 / 37

A first attempt

Big-step rule for applications:

tp = abszt ty = v [z =]t =0

apptity = o'

A first attempt at pretty-big-step rules:

t1 = vy appuity = vV ty = vy appuvivy = v [z —v]t = o

apptits = v/ appuity = v’ app (abszt)v = o'

— Similar idea in Cousot and Cousot’s bi-inductive semantics (2007)

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 11 / 37

Intermediate terms

To prevent overlap between the rules, we use intermediate terms:

e = trmt | applut | app2vv

Definition of the judgment e | v, with trm implicit

t1 4 v apployte I o

v v apptite | v/
to | v app2vive || v [z — o]t | o
appluity | o' app2 (abszt)v | o'

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 12 / 37

Adding exceptions

Value-carrying exceptions and exception handlers
t = ... | raiset | trytt
Two behaviors: return a value or throw an exception

el b b = retv | exnv

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 13 / 37

Generalization of intermediate terms

Need to generalize intermediate terms

t1 4 b applbita | 0
apptita | b

to I} bo app2vi by |} b
appl (exnv)ty || exnwv appl (retvy)to | b

New grammar of intermediate terms

e = trmt | applbt | app2vb | raiseld | tryl bt

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 14 / 37

Pretty-big-step rules for exceptions

t1 I by applbita 4 0

v v apptita | b appl (exnv)t || exnv

ta | by app2vi by | b

[x =]t 4 b

appluits | b app2v (exnv) |} exnv

Arthur Charguéraud (INRIA) Pretty-big-step semantics

app2(absxt)v | b

CNAM, January 2013

15 / 37

Pretty-big-step rules for exceptions

t1 I by applbita 4 0

v v apptita | b appl (exnv)t || exnv
ta | ba app2ui by | b [z —]t b
appluits | b app2v (exnv) |} exnv app2(absxt)v | b
t1 U by trylbyte | b apptv | b
trytito | b trylvt | v tryl (exnv)t || b

t | by raisel by | b
raiset | b raiselv |} exnwv raisel (exnv) |} exnv

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 15 / 37

Adding divergence

Outcome of an evaluation: termination or divergence
o := terb | div
New grammar of intermediate terms
e:=trmt | applot | app2vo | raiselo | trylot
Evaluation rules

t1 4 o1 apploita | b
apptite | b appldivi | div

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 16 / 37

The abort predicate

We want to factorize pairs of similar rules, such as:

appl (exnv)t | (exnv) appldivt | div

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 17 / 37

The abort predicate

We want to factorize pairs of similar rules, such as:

appl (exnv)t | (exnv) appldivt | div

Solution:

aborto
applot | o

where “abort”, defined below, characterizes exceptions and divergence.

abort (exn v) abortdiv

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 17 / 37

Summary: grammars and judgments

Grammars:

b := retv | exnv

o := terb | div

e := trmt | applot | app2vo | raiselo | trylot
Judgments:

aborto el o e %o

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 18 / 37

Summary: grammars and judgments

Grammars:

b := retv | exnv

o := terb | div

e := trmt | applot | app2vo | raiselo | trylot
Judgments:

aborto el o e %o

Theorem (equivalence with big-step)

t | terb & t =0

t < div & t ==

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 18 / 37

Summary: rules

t1 o1 apploits | o

abort o
applot | o

[x =]t o

v v apptitz | o
ty | 02 app2vio2 | o aborto
appluits | o app2vo | o
tl o raiselo; | o aborto
raiset || o raiselo | o

t1 J o1 tryloyts | o
trytits | o trylvt | v

tryldivt | div

Arthur Charguéraud (INRIA) Pretty-big-step semantics

app2 (abszt)v | o

raiselv || exnv

apptv | o
tryl (exnv)t | o

CNAM, January 2013 19 / 37

Extension with traces

Arthur Charguéraud (INRIA) Pretty-big-step semantics

Definition of traces

A trace records 1/O interactions and e-transitions.

A terminating program has a finite trace.
A diverging program has an infinite trace.

:= €| inn | outn
list v
= streama

© 9 3 9
1

terTb | divo

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 21 /37

Definition of traces

A trace records 1/O interactions and e-transitions.

A terminating program has a finite trace.
A diverging program has an infinite trace.

:= €| inn | outn
list v
= streama

© 9 3 9
1

terTb | divo

— We are not using possibly-infinite traces (coinductive lists) like Nakata
and Uustalu (2009) and Danielsson (2012).

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 21 /37

Operation on traces

Concatenation of a finite trace 7 to the front

-7 T O T-0

Equivalence of two traces up to finite consecutive insertions of e-transitions

/
o0~ 0

" la]-o~ ™ la]-d

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 22 /37

Trace semantics in pretty-big-step

Evaluation rules for expressions include e-transtions to ensure productivity.

t1 4 o1 apploits | o aborto
v | terle]v apptita | [e] -0 applot | o
to | 09 app2vi09 | o aborto
appl (terTvy)ta |} 7-0 app2vo || o

[x =]t | o
app2 (absx t) (tertv) |} 70

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 23 /37

Trace semantics in pretty-big-step, cont.

I/O operations are recorded in the trace.

t | o1 writel oy | o
writet || [e] -0 writel (terTn) | ter7 - [outn] tt

tl o1 readlo; | o
readt | [¢] - o readl (ter7 &) | ter7-[inn]n

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 24 / 37

Benefits of trace semantics

Theorem (finite traces can only be produced by finite derivations)
e | tertv & e || tertv J

Arthur Charguéraud (INRIA) Pretty-big-step semantics

Benefits of trace semantics

Theorem (finite traces can only be produced by finite derivations)
e ||°° terTv & el tertv }

So, we do not need the inductive judgment: the coinductive one suffices.

Theorem (equivalence with big-step)

t §Ctertb & t = b/T

t I dive & t => /o

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 25 / 37

Proofs with trace semantics: problems

A typical simulation theorem

[e] V¢ o — Jo'. dmo A e l®d

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 26 / 37

Proofs with trace semantics: problems

A typical simulation theorem
[e] 4<° o — o' =0 AN e |®d

Coinductive proof? No luck!
@ 3 is not coinductive
@ A is not coinductive

@ 0’ is not coinductive

— Yet, coinductive reasoning is morally correct.

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 26 / 37

Proofs with trace semantics: an idea

Prove a full-coverage lemma:

Ve. Jo. e %o

Reformulate the simulation theorem:

[e] U0 A e — o~ o

— This should generalize to the case of a fixed stream of input actions.

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 27 / 37

Pretty-big-step: scaling up

Arthur Charguéraud (INRIA) Pretty-big-step semantics

Scaling up to real languages

What’s next:
@ the generic abort rule
@ semantics of side-effects
@ semantics of loops
@ application to core-Caml
°

application to JavaScript

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 29 / 37

Abort rules

Many similar abort rules: can we factorize them?

aborto aborto aborto

applot | o app2vo | o raiselo | o

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 30 / 37

The generic abort rule

The auxiliary function “getout”

getout (applot) = Someo getout (trmt¢) = None
getout (app2vo) = Someo getout (trylot) = None
getout (raiselo) = Someo

The generic abort rule, which replaces the rules from the previous slide

getout e = Some o aborto

el o

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 31 /37

Side-effects

Generalization of terminating outcomes to carry a memory store:

0 := termb | div

Evaluation judgment in the form e /,,, || 0. Example rules:

t1/mdor apploite)y Yo t2 ymr $ 02 app2vi 02 jpy 0
apptita jm I o appl (term’ vy) ta jm, | 0

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 32 /37

Pretty-big-step semantics for loops

A single intermediate term “foriot; to t3”, where i € {1,2,3}.

Evaluation rules, with the judgment e /,,, |} o.

tl/meol f0r101t1t2t3/mU,0

fortitats jm |0 for 1 (retmfalse) t1 totz /s | retmtt
tg/mU«Og, for203t1t2t3/mlLo tg/mU«OQ for302t1t2t3/mU0
for1 (ret mtrue) t1to t3 /m! U« (0] for2 (retm tt) t1to tg /m/ U« o
for t1to t3 /m ll o aborto
for3(retmtt)t1t2t3/m/UO fOFiOtthtg/mU«O

— From 9 rules and 21 premises to 6 rules with 7 evaluation premises.

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 33 /37

Applications to core-Caml and JavaScript

Arthur Charguéraud (INRIA) Pretty-big-step semantics

Pretty-big-step semantics for core-Caml

Formalization of core-Caml:

booleans, integers, tuples, algebraic data types, mutable records, boolean
operators (lazy and, lazy or, negation), integer operators (negation, addition,
subtraction, multiplication, division), comparison operator, functions, recursive
functions, applications, sequences, let-bindings, conditionals (with optional else
branch), for loops and while loops, pattern matching (with nested patterns, as
patterns, or patterns, and when clauses), raise construct, try-with construct with
pattern matching, and assertions.

‘ rules ‘ premises‘ tokens

Big-step without divergence 71 83 1540
Big-step with divergence 113 143 2263
Pretty-big-step 70 60 1361

— Pretty-big-step reduces the size of the definition by 40%.
— Pretty-big-step reduces the number of premises by more than a factor 2.

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 35 / 37

Pretty-big-step semantics for JavaScript

Formalization of JavaScript:

variable declarations, function declarations, function calls, objects, getters,
setters, new, delete, access, assignment, unary and binary operators, sequence,
conditional, while loop, with construct, this construct, throw, try-catch-finally,

return, break, continue, type conversions, primitive functions on objects, builtin
errors.

Not yet covered:

parsing, switch, arrays, for loops, library functions (e.g. for regexps).

‘ for terms ‘ for meta ‘ total
Intermediate terms 97 165 262
Reduction rules 147 258 432

Certified intepreter: 1300 lines of auxiliary definitions, 1500 lines for “run”.

Arthur Charguéraud (INRIA) Pretty-big-step semantics CNAM, January 2013 36 / 37

Thanks!

Arthur Charguéraud (INRIA) Pretty-big-step semantics

	Construction of the pretty-big-step semantics
	Extension to traces
	Scaling up to real languages
	Applications to core-Caml and JavaScript

