
Towards a programming language

that makes veri�cation easier

Arthur Charguéraud

INRIA

November 2012

Arthur Charguéraud (INRIA) Towards a programming language that makes veri�cation easierNovember 2012 1 / 15

Motivation

Goal: produce code that is correct and e�cient

Correct code:

mechanically-veri�ed

or just more likely to be bug-free

E�cient code:

support for imperative programming

compiled with an optimizing compiler

Arthur Charguéraud (INRIA) Towards a programming language that makes veri�cation easierNovember 2012 2 / 15

Correctness vs e�ciency

Arthur Charguéraud (INRIA) Towards a programming language that makes veri�cation easierNovember 2012 3 / 15

Correctness vs e�ciency

Arthur Charguéraud (INRIA) Towards a programming language that makes veri�cation easierNovember 2012 4 / 15

Correctness vs e�ciency

Arthur Charguéraud (INRIA) Towards a programming language that makes veri�cation easierNovember 2012 5 / 15

(1) Start from an existing programming language

For a given programming language, what is the best way to reason

about programs written in this language?

→ restricting the language and/or developing good reasoning tools

Arthur Charguéraud (INRIA) Towards a programming language that makes veri�cation easierNovember 2012 6 / 15

(2) Start from an existing theorem prover

For a given theorem prover, what is the best programming language

that can be embedded in this prover?

→ Coq, Agda, Ynot

Arthur Charguéraud (INRIA) Towards a programming language that makes veri�cation easierNovember 2012 7 / 15

(3) Design a new programming language

What would be the programming language that allows to describe

e�cient programs and easily prove them correct?

Arthur Charguéraud (INRIA) Towards a programming language that makes veri�cation easierNovember 2012 8 / 15

Veri�cation using CFML

Purely-functional data structures (half of Chris Okasaki's book)

Batched queue
Bankers queue
Physicists queue
Real-time queue
Implicit queue
Bootstrapped queue
Hood-Melville queue

Leftist heap
Pairing heap
Lazy pairing heap
Splay heap
Binominal heap

Unbalanced set
Red-black set
Bottom-up merge
sort
Catenable lists
Binary
random-access lists

Imperative algorithms, data structures and tricky functions

Dijkstra's shortest path
Union-Find
Mutable lists
Sparse arrays

List.iter
compose
gensym
CPS-append
Landin's knot

Arthur Charguéraud (INRIA) Towards a programming language that makes veri�cation easierNovember 2012 9 / 15

Veri�cation w.r.t. representation predicates

Speci�cation of insertion in a purely-functional binary tree

∀T. App insertx t [Btree t T] (λt′. [Btree t′ (T ∪ {x})])

Speci�cation of insertion in a polymorphic binary tree

∀RTX. App insertx t [RxX ∧ BtreeR tT] (λt′. [BtreeR t′ (T ∪ {X})])

Arthur Charguéraud (INRIA) Towards a programming language that makes veri�cation easierNovember 2012 10 / 15

Removing representation predicates

A much more practical speci�cation for proving programs manipulating sets:

∀TX. App insertX T [] (λT ′. [T ′ = T ∪ {X}])

but we are confusing binary trees with �nite sets...

Solution: program directly with mathematical objects (e.g., �nite sets) and
give hints to tell the compiler which concrete implementation to use

Arthur Charguéraud (INRIA) Towards a programming language that makes veri�cation easierNovember 2012 11 / 15

Programming with mathematical objects

Caml implementation Coq mathematical model
(e.g., binary trees) (e.g., �nite sets)

before:

source code −→ veri�cation
lift using
repr. predicates

after:

←− source code and veri�cation
compilation using
repr. hints

Arthur Charguéraud (INRIA) Towards a programming language that makes veri�cation easierNovember 2012 12 / 15

Summary

Program using mathematical objects, not concrete implementations:
I Pure: sequences, sets, maps, graphs, ...
I Imperative: sequences, sets, maps, graphs, ...

When needed, indicate the concrete implementation to use

Prove the correctness of the concrete implementations once and for all

Enjoy simpler speci�cations and simpler proofs!

Arthur Charguéraud (INRIA) Towards a programming language that makes veri�cation easierNovember 2012 13 / 15

Before: typical Caml code

module Pqueue := PriorityQueue(CompareSnd)

let dijkstra g s e =

let n = Array.length g in

let b = Array.make n Infinite in

let v = Array.make n false in

let q = Pqueue.create () in

b.(s) <- Finite 0;

Pqueue.push (s,0) q;

while not (Pqueue.is_empty q) do

let (x,dx) = Pqueue.pop q in

if not v.(x) then begin

v.(x) <- true;

let update (y,w) =

let dy = dx + w in

if (match b.(y) with | Finite d -> dy < d

| Infinite -> true)

then (b.(y) <- Finite dy; Pqueue.push (y,dy) q) in

List.iter update g.(x);

end;

done;

b.(e)

Arthur Charguéraud (INRIA) Towards a programming language that makes veri�cation easierNovember 2012 14 / 15

After: more abstract Caml code

let dijkstra g{adjlist} s e =

let nodes = Graph.nodes g in

let b{array} = ImpMap.init_from_set (fun _ -> Infinite) nodes in

let v{array} = ImpMap.init_from_set (fun _ -> false) nodes in

let q{priority_queue(compare_snd)} = ImpMultiset.empty () in

b[s] <- Finite 0;

ImpMultiset.push (s,0) q;

while not (ImpMultiset.is_empty q) do

let (x,dx) = ImpMultiset.pop_min compare_snd q in

if not v[x] then begin

v[x] <- true;

let update (y,w) =

let dy = dx + w in

if (match b[y] with | Finite d -> dy < d

| Infinite -> true)

then (b[y] <- Finite dy; ImpMultiset.push (y,dy) q) in

Set.iter update (Graph.neighbors g x);

end;

done;

B[e]

Arthur Charguéraud (INRIA) Towards a programming language that makes veri�cation easierNovember 2012 15 / 15

