Pretty-big-step semantics

Arthur Charguéraud
INRIA

October 2012

1/34

Motivation

Formalization of JavaScript

— with Sergio Maffeis, Daniele Filaretti, Alan Schmitt, Martin
Bodin.

Previous work:

» Semi-formal small-step semantics for the entire language
(jssec.net)

» Informal big-step semantics for the core language (POPL’12)

Current work:
» Formal big-step semantics for the entire language

> Interpreter proved correct w.r.t. the semantics

2/34

Motivation for big-step

Big-step semantics:
» more faithful to the reference manual
» easier than small-step for proving an interpreter

» easier than small-step for proving a program logic

Small-step semantics considered better-suited for:
» machine-code semantics — not the case of JS
» type soundness proofs — no types in JS

» concurrent languages — no concurrency in JS

3/34

Big-step semantics for loops

Semantics of a C-style loop “for (; t1; ta) {t3}", written

“for tl t2 t3”,

in terms of the evaluation judgment ¢,,, = v/,

t1/m, = false/p,,

fortq to t3/my = W/m,

tl/ml = true/mg t3/m2 = tt/mg t2/m3 = #/m4

'FOI’tl to tg/m4 = lf't/ms

forty to t3/m1 = tt/m5

4/34

Big-step semantics for loops: exceptions

Exceptions in terms of the judgment ¢,,, =",

. :>exn/m2
fortq to 3 /m, :exn/mz

tl/ml = true,y,, tg/mz :>exn/m3

fortq to 3 /m, :>exn/m3

tl/ml = true/,, t3/m2 = i‘t/mS t2/m3 :>exn/m4
forty tats m, =" /m,

tiym, = true m, t3/my, = Uims t2/ms = ®/m, forty to 13 /my :>exn/m5

exn

for tqto t3/m1 =" /ms

5/34

Big-step semantics for loops: divergence

Divergence in terms of the coinductive judgment ¢, = (Leroy
2006).

tl/ml =
forty to t3/m1 =

tl/ml = true/m2 t3/m2 =

fOI’tl to t3/m1 =

tl/ml = trueyy,, t3/m2 = U /m, tg/m3 =

forty to t3/m1 =

tl/ml = true,, t3/m2 = i‘lf/m3 t2/m3 = i‘t/m4 forty to t3/m4 =

fort ty 3 /m, =

6/34

Big-step semantics for loops: summary

tl/ml = \‘alse/m2

forty to t3/mq = H/m,

Ul my = Uy B3y = g B2y = By, fortitats g, =)/,

forty to tg/ml = 1%/,,”5
exn =}
/my = /my t/my =

forty t2t3 /p, ﬁ““/mz fort1 ta ts /pm, =

exn (=]
tl/ml = true/m2 t3/m2 = /m3 tl/""l = truez/m2 tg/m2 =
forty t2t3 /my =" /iy fortytats my =

tl/ml = true/m2 t3/m2 = ﬁ//mg
=

Uiymy = true my t3/my = %/ mg
exn
12 /mg =

t2/mg = /my

=
forty t2t3)y =7 /iy fortytats /py =
Ujmy = true p, t3/my = t/m

tl/ml = true/p,, t3/m2 = tt/rrw;u3
tg/m3 = tt/m4 fortltgtg/m4 =

éxi
t2/7n3 = tt/m,4 forty to t3/7n4 = /ms

forty to t3 /my :ex“/m{) forty to t3 /mq =

— Even with factorization: 9 rules, 21 premises.
— With pretty-big-step: 6 rules, 7 premises.

7/34

In this talk

Pretty-big-step semantics:
> construction
» extension to traces

» application to core-Caml

= type-soundnessproofs

8/34

Pretty-big-step

9/34

Big-step semantics

Grammar of \-terms

v = intn | absxt
t = valv | varz | apptt

Call-by-value big-step semantics (¢t = v)

t1 = absxt ty = v [z —]t =

V= v apptity = v

10/34

A first attempt

Big-step rule for applications:

ty, = abszt ty = v [zt =0

apptits = v’

A first attempt at pretty-big-step rules:

t1 = vy appuite = vty = vy appvivy = vV [— o]t =

apptity = v’ appvits = v app (abszt)v = v
PP

— Similar idea in Cousot and Cousot’s bi-inductive semantics
(2007)

11/34

Intermediate terms

To prevent overlap between the rules, we use intermediate terms.

e := trmt | applut | app2vv

Definition of the judgment e | v, with trm implicit

t1 4 n appluite | o/

v v apptits | v/
to | vo app2vivg || ' [z — o]t | o
appluity || o/ app2 (abszt)v || v

12 /34

Adding exceptions

Value-carrying exceptions and exception handlers

t = ... | raiset | trytt

Two behaviors: return a value or throw an exception.

el b b := retv | exnv

13/34

Generalization of intermediate terms

Need to generalize intermediate terms

t1 4 b applbits ||
apptita | b

to | bo app2vi by | b
appl (exnv)ty |} exnwv appl(retvy)te | b

New grammar of intermediate terms

e = trmt | applbt | app2uvb | raiselb | trylbt

14 /34

Pretty-big-step rules for exceptions

t1d b applbity | b
v v apptits | b appl(exnv)t || exnv

ta | bo app2vi by |} b
appluits | 0 app2v (exnv) | exnv

[x =v]t b
app2 (abszt)v | b

t1 | b1 trylbits U b apptv | b
trytito | b trylvt | v tryl (exnv)t | b

t | by raiselb; | b
raiset || b raiselv | exnv raisel (exnv) | exnv

15/34

Adding divergence

Outcome of an evaluation: termination or divergence
0 := terb | div
New grammar of intermediate terms
e:=trmt | applot | app2vo | raiselo | trylot
Evaluation rules

t1 o1 apploita | b

apptite | b appldivt | div

16 /34

The abort predicate

We want to factorize pairs of similar rules, such as:

appl (exnv)t | (exnv) appldivt | div
Solution:

aborto

applot | o

where “abort” characterizes exceptions (exnv) and divergence (div).

17 /34

Summary: grammars and judgments

Grammars:

b := retv | exnv

o := terb | div

e := trmt | applot | app2vo | raiselo | trylot
Judgments:

aborto el o e %o

Theorem (equivalence with big-step)
t | terd & t=10

t U div & t=™

18 /34

Summary: rules

t1 U« 01 appl 01 to U, 0 aborto
v v apptita | o applot || o
ta | 09 app2vio02 | o aborto [x =]t o
applvits || o app2vo || o app2(abszt)v | o
tl o1 raiselo; | o abort o
raiset || o raiselo | o raiselv | exnwv
t1 4 01 trylojty | o apptv | o
trytita | o trylvt | v tryl (exnv)t | o

tryldivt | div

19/34

Traces

20/34

Definition of traces

A trace records 1/O interactions and e-transitions.

A terminating program has a finite trace.
A diverging program has an infinite trace.

a €| inn | outn
T = lista

o = streamu«

)

tertb | divo

— We are not using possibly-infinite traces (coinductive lists) like
Nakata and Uustalu (2009) and Danielsson (2012).

21/34

Operation on traces

Concatenation of a finite trace 7 to the front
-7 T-O T-0

Equivalence of two traces up to finite consecutive insertions of
e-transitions

22/34

Trace semantics in pretty-big-step

Every rule appends an e-transtion in order to be productive.

t1 4 o1 apploite | o aborto
v | terle]v apptita | [e] o applot | o
to | 09 app2vi 02 | o aborto
appl (terTvy)ta | 7-0 app2vo | o

[x =]t | o

app2 (absx t) (terTv) | 7-0

23 /34

Trace semantics in pretty-big-step, cont.

I/O operations are recorded in the trace.

t | o1 writelo; | o
writet | [e] -0

tl o1 readlo; | o

writel (ter7n) || tert - [outn] & readt | [e] -0
aborto aborto
readl (ter7 tt) | ter7 - [inn|n readlo | o writelo |} o

24 /34

Benefits of trace semantics

Theorem (finite traces can only be produced by finite
derivations)

e ||°° terTv & e || tertuv

So, we do not need the inductive judgment: the coinductive one
suffices.

Theorem (equivalence with big-step)

t | tertb & t = b/t

t < dive & t => /o

25 /34

Proofs with trace semantics: problems

A typical simulation theorem
[e] U° o — Jo'. dmo A e |®d

Coinductive proof? No luck!
1. I is not coinductive
2. A is not coinductive

3. 0 is not coinductive

— Yet, coinductive reasoning is morally correct.

26 /34

Pretty-big-step: scaling up

27/ 34

Scaling up to real languages

What's next:
> the generic abort rule
» semantics of side-effects
» semantics of loops

» formalization of core-Caml

28 /34

Abort rules

Many similar abort rules: can we factorize them?

aborto aborto aborto

applot | o app2vo | o raiselo | o

29 /34

The generic abort rule

The auxiliary function “getout”

getout (applot) = Someo getout (trmt) = None
getout (app2vo) = Someo getout (trylot) = None
getout (raiselo) = Someo

The generic abort rule, which replaces the rules from the previous
slide

getout e = Some o aborto

el o

30/ 34

Side-effects

Generalization of terminating outcomes to carry a memory store:

o = termb | div

Evaluation judgment in the form e/, |} 0. Example rules:

t1/m o1 apploits o
apptita m 40

to ymr 402 app2v1 02 jpy 0
appl (term/vy) ta / J 0

31/34

Pretty-big-step semantics for loops
A single intermediate term “foriot; to t3”, where i € {1,2,3}.

Evaluation rules, with the judgment e /,,, |} o.

tl/mU01 f0r101t1t2t3/mU0
fort1 to t3 /m U« (0]

for1 (retmfalse) t1 ty t3 /s || retm tt

tg/mUO:g for203t1t2t3/ml}0
for1 (retmtrue)titats /py 0

t2/m»U02 for302t1t2t3/mlio fOrtthtg/mU«O
for2 (retm f,'t) ti1tats /m/ o for3 (retm t't) t1tats /m/ Yo

aborto

forz'otl t2t3 /m ll (0]

32/34

Pretty-big-step semantics for core-Caml
Formalization of core-Caml:
booleans, integers, tuples, algebraic data types, mutable records, boolean
operators (lazy and, lazy or, negation), integer operators (negation,
addition, subtraction, multiplication, division), comparison operator,
functions, recursive functions, applications, sequences, let-bindings,
conditionals (with optional else branch), for loops and while loops,
pattern matching (with nested patterns, as patterns, or patterns, and
when clauses), raise construct, try-with construct with pattern matching,
and assertions.

‘ rules ‘ premises‘ tokens

Big-step without divergence 71 83 1540
Big-step with divergence 113 143 2263
Pretty-big-step 70 60 1361

— Pretty-big-step reduces the size of the definition by 40%.
— Pretty-big-step reduces the number of premises by more than a
factor 2.

33/34

Thanks!

34/34

	Construction of the pretty-big-step semantics
	Extension to traces
	Scaling up to real languages

