
PPS 2012/03/01

Arthur Charguéraud

Characteristic Formulae for the
Verification of Imperative Programs

Max Planck Institute for Software Systems

2

Overview

Proving the correctness of arbitrarily-complex programs

→ given a Coq spec.

characteristic formulae
used to describe the semantics of the code in the logic

→ given a Caml program

→ how can we build
a correctness proof?

3

Interpretation of caracteristic formulae (CF)

source code without any
modification nor annotation

characteristic formula, expressed in
higher-order logic using ∀,∃,∧,⇒,...

CF are sound and complete w.r.t. Hoare logic

application in
higher-order logic

total correctness
Hoare triple

→ in any heap satisfying H, the execution of the code C
terminates and leaves a heap that satisfies H'

heap predicates
(heap → Prop)

4

Properties

→ CF are built automatically

→ CF are built compositionaly

→ CF are of linear size

→ CF support local reasoning (frame rule)

characteristic formulae

→ CF are displayed in a way that resembles source code

→ CF can be manipulated using solely high-level tactics

5

Verification using CFML

Half of Okasaki's book
→ Batched queue, Bankers queue, Physicists queue, Real-
time queue, Implicit queue, Bootstrapped queue, Hood-
Melville queue, Leftist heap, Pairing heap, Lazy pairing heap,
Splay heap, Binominal heap, Unbalanced set, Red-black set,
Bottom-up merge sort, Catenable lists, Binary random-access
lists

Imperative higher-order programs
→ Dijkstra's shortest path algorithm, Union-Find, Sparse arrays, Mutable Lists,

→ Local state, e.g., gensym

→ Effectful higher-order functions, e.g., List.iter or compose

→ CPS functions, e.g., CPS-append

→ Functions in the store, e.g. Landin's knot (recursion through the store)

→ CFML supports core Caml except float, integer modulo, exceptions, objects

6

Related work (1/2)

– Not a verification condition generator (VCG)
→ source code needs not be annotated with invariants
→ invariants are instead provided in interactive proofs
→ CF optimized for interactive proofs

(quick fixes to invariants, readable proof obligations)

– Not a shallow embedding
→ Caml functions are not mapped to Coq functions
→ Source language is Caml, not Coq+monad
→ Auxiliary variables not mixed up with code
→ ≠Ynot: less dependend types, no circularity problem

7

Related work (2/2)

– Not a deep embedding
→ no inductive datatype is used to represent code syntax
→ avoids predicate relating Coq values to Caml values
→ avoids issues related to binders and substitutions

– Not a dynamic logic (e.g., Key)
→ no ad-hoc logic construct to embed source code
→ allows to stay in a standard logic and use existing tools

8

Part 2

(1) Introduction: what CF are and what they are not

(2) Example: verification of Dijkstra's algorithm

(3) Technical insight: how to construct CF

9

let dijkstra g s e =
let n = Array. length g in
let b = Array .make n Infinite in
let v = Array .make n false in
let q = Pqueue .create() in
b.(s) <- Finite 0;
Pqueue .push (s,0) q;
while not (Pqueue .is_empty q) do

let (x,dx) = Pqueue .pop q in
if not v.(x) then begin

v.(x) <- true;
let update (y,w) =

let dy = dx + w in
if (match b.(y) with | Finite d -> dy < d

| Infinite -> true)
then (b.(y) <- Finite dy; Pqueue .push (y,dy) q) in

List .iter update g.(x);
end ;

done ;
b.(e)

Dijkstra's shortest path

mutable data
structures

abstract module

loop

higher-order
function

pattern
matching

10

Generated axioms
Axiom dijkstra : func.

Axiom dijkstra_cf :

(@CFPrint.tag tag_top_fun _ _ (@CFPrint.tag tag_bod y _ _
(forall K : (CFHeaps.loc -> (int -> (int -> ((CFHe aps.hprop
-> ((_ -> CFHeaps.hprop) -> Prop)) -> Prop)))), ((i s_spec_3
K) -> ((forall g : CFHeaps.loc, (forall s : int, (f orall e :
int, ((((K g) s) e) (@CFPrint.tag tag_let_trm (Labe l_create
'n) _ (local (fun H : CFHeaps.hprop => (fun Q : (_ ->
CFHeaps.hprop) => (Logic.ex (fun Q1 : (int -> CFHea ps.hprop)
=> ((Logic.and (((@CFPrint.tag tag_apply _ _ ((((@a pp_1
CFHeaps.loc) int) ml_array_length)...

→ Axioms justified by the soundness theorem (paper proof)

abstract data type used to represent functions

100 more lines like this

shows something that reads like ML code
Print dijkstra_cf.

11

Specification

pre-condition

post-condition

Theorem dijkstra_spec : ∀∀∀∀ g x y G,

nonnegative_edges G ->

x \in nodes G ->

y \in nodes G ->

(App dijkstra g x y)

(g ~> GraphAdjList G)

(fun d => [d = dist G x y]

* g ~> GraphAdjList G)

application

mathematical graph G

x
y

d

(x ~> R) is defined as (R x)

12

Loop invariant
Definition hinv Q B V : hprop :=

g ~> GraphAdjList G G : graph int
* v ~> Array V V : array bool
* b ~> Array B B : array intbar
* q ~> Pqueue Q Q : multiset (int*int)
* [inv Q B V].

Record inv G s Q B V : Prop := {
Bdist: ∀∀∀∀x, x \in nodes G -> V\(x) = true ->

B\(x) = dist G s x;
Bbest: ∀∀∀∀x, x \in nodes G -> V\(x) = false ->

B\(x) = mininf weight (crossing V x);
Qcorr: ∀∀∀∀x, (x,d) \in Q ->

x \in nodes G /\ ∃∃∃∃p, crossing V x p /\ weight p = d;
Qcomp: ∀∀∀∀x p, x \in nodes G -> crossing V x p ->

∃∃∃∃d, (x,d) \in Q /\ d <= weight p;
SizeV: length V = n;
sizeB: length B = n }

13

Main lemma
Lemma inv_update : forall L V B Q x y w dx dy,

x \in nodes G ->
has_edge G x y w ->
dy = dx + w ->
Finite dx = dist G s x ->
inv (V\(x:=true)) B Q (new_crossing x L V) ->
If len_gt (B\(y)) dy

then inv (V\(x:=true)) (B\(y:=Finite dy)) (\{(y, dy)} \u Q) ...
else inv (V\(x:=true)) B Q (new_crossing x ((y,w):: L) V) .

Proof.
introv Nx Ed Dy Eq [Inv SV SB]. sets_eq V': (V\(x:= true)).
lets NegP: nonneg_edges_to_path Neg.
intros z. lets [Bd Bb Hc Hk]: Inv z. tests (z = y).
(* case z = y *)
forwards~ (px&Px&Wx&Mx): (@mininf_finite_inv (path int)) (eq_sym Eq).
lets Ny: (has_edge_in_nodes_r Ed).
sets p: ((x,y,w)::px).
asserts W: (weight p = dy). subst p. rewrite weight _cons. math.
tests (V'\(y)) as C; case_If as Nlt.
(* subcase y visisted, distance improved *)
false. rewrite~ Bd in Nlt. forwards M: mininf_len_g t Nlt p; subst~ p.

rewrite weight_cons in M. math.
(* subcase y visisted, distance not improved *)
...

no reference to CF in this lemma,
but only mathematical reasoning

all the nontrivial reasoning is here;
180 lines across several lemmas;
8 seconds to type-check

14

Theorem dijkstra_spec : ∀∀∀∀ g x y G, ... (App dijkstra g x y) ...
Proof.
xcf. introv Pos Ns De. unfold GraphAdjList at 1.
hdata_simpl. xextract as N Neg Adj. xapp.
intros Ln. rewrite <- Ln in Neg.
xapps. xapps. xapps. xapps*. xapps.
set (data := fun B V Q => g ~> Array N *

v ~> Array V * b ~> Array B * q ~> Heap Q).
set (hinv := fun VQ => let '(V,Q) := VQ in

Hexists B, data B V Q * [inv G n s V B Q (crossing G s V)]).
xseq (# Hexists V, hinv (V,\{})).
set (W := lexico2

(binary_map (count (= true)) (upto n))
(binary_map card (downto 0))).

xwhile_inv W hinv. refine (ex_intro' (_,_)).
unfold hinv,data. hsimpl. applys_eq~ inv_start 2.
permut_simpl. intros [V Q]. unfold hinv.
xextract as B Inv. xwhile_body.
unfold data. xapps. xret.
...
Qed.

Proof script

loop invariant

termination
measure

CFML tactics

use of a lemma
about the invariant

for 20 lines of code, 48 lines of proofs
(including 8 lines of invariants);
checked in 8 seconds

15

Pos : nonnegative_edges G
Ns : s \in nodes G
Ne : e \in nodes G
Neg : nodes_index G n
Adj : forall x y w,

x \in nodes G -> Mem (y, w) (N\(x)) = has_edge G x y w
Nx : x \in nodes G
Vx : ~ V\(x)
Dx : Finite dx = dist G s x
Inv : inv G n s V' B Q (new_crossing G s x L' V)
EQ : N\(x) = rev L' ++ (y, w) :: L
Ew : has_edge G x y w
Ny : y \in nodes G

A typical proof obligation

(Let dy := Ret dx + w in
Let _x38 := App ml_array_get b y ; in

If_ Match
(Case _x38 = Finite d [d] Then Ret (dy '< d) Else
(Case _x38 = Infinite Then Ret true Else Done))

Then (App ml_array_set b y (Finite dy) ;) ;;
App push (y, dy) h ; Else (Ret tt))

(q ~> Pqueue Q * b ~> Array B * v ~> Array V' * g ~> Array N)

(fun _:unit => hinv' L) post-condition

pre-condition

characteristic
formula

hypotheses

16

Part 3

(1) Introduction: what CF are and what they are not

(2) Example: verification of Dijkstra's algorithm

(3) Technical insight: how to construct CF

→ characteristic formula for sequences

→ treatment of functions

→ integration of the frame rule

→ relation with denotational semantics

17

Construction

Hoare logic rule for sequence

Characteristic formula for sequence

Property of characteristic formulae

→ from an inductive to a recursive definition of Hoare Logic

18

Notation

Definition from the previous slide

Characteristic formula for sequence, revisited

Definition of a Coq notation

→ CF generation is simple, compositional and linear-size

19

Tactics

View with notation

Action of tactic xseq defined as (esplit;split)

View without notation

→ CFML can be used without knowledge of CF definitions

After solving first subgoal

a Coq unification variable (evar)

20

Functions

Consider a top-level function definition

Two axioms are generated (func and App are abstract)

Formula for function calls

21

Recursive functions

Specification

Specification of a recursive functions proved by induction

By induction hypothesis

22

Frame rule

Frame rule is not syntax directed; how to integrate it?

Insert a predicate at the head of every node in the CF

→ when no frame is needed, we frame on the empty heap

23

Types

CF are constructed for code well-typed in ML

Arbitrary recursive types also, if recursion below an arrow

Algebraic data types are supported

24

All the rules

Complete set of definitions for ML with side effects

For each construct: formula + notation + tactic

25

CF for purely functional code

→ No pre-condition needed for total correctness

→ CF describes the set of valid post-conditions

In fact, contexts and translations to go from Caml to Coq

26

CF and denotational semantics

Re-interpreting the definition of CF

Logically equivalent to

Re-interpreting post-conditions as set of objects

27

Verification of the CF generator

specification source code machine code

characteristic
formulae

certified compilercertified proof tools

Coq
proofs

not yet verified
CF generator

→ CF generator as a Coq function, for a toy language
→ but need a deep embedding of Coq to reason about

inductive defs, polymorphism (∀A:Type), modules

28

Concurrent program logics

Rely-Guarantee (RG)
Jones '83

Concurrent
Sep. Logic

O'Hearn '04

RG-Sep
Vafeiadis & Parkinson '07

Separation Logic
Reynolds '02

RG-Sep
Dodds, Feng, Vafeiadis,

& Parkinson '09

Local-RG
Feng '09

→ good progress, yet still limited and not implemented

RG for
x86-TSO

Ridge '10

29

Extension to concurrency

I would like to extend CF to support:
→ modular and local reasoning for private resources,
shared resources, and also content of write buffers
→ transitions from private to shared and back
→ verification of sequential terms with minimal overhead
→ simple high-level reasoning rules for, e.g., fork-join

30

Thanks!

Further information

→ ICFP'10 and ICFP'11 papers, my thesis for the proofs
→ examples available on my webpage
→ download and try CFML (open source)

31

CF and CPS

→ CF use implication instead of equality, for weakening

weakening

→ Weakening is crucial for abstract data types

