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Overview

Proving the correctness of arbitrarily-complex programs

→ given a Coq spec.

characteristic formulae
used to describe the semantics of the code in the logic

→ given a Caml program

→ how can we build 
a correctness proof?
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Interpretation of caracteristic formulae (CF)

source code without any 
modification nor annotation

characteristic formula, expressed in 
higher-order logic using ∀,∃,∧,⇒,...

CF are sound and complete w.r.t. Hoare logic

application in 
higher-order logic

total correctness 
Hoare triple

→ in any heap satisfying H, the execution of the code C 
terminates and leaves a heap that satisfies H'

heap predicates  
(heap → Prop)
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Properties

→ CF are built automatically 

→ CF are built compositionaly

→ CF are of linear size

→ CF support local reasoning (frame rule)

characteristic formulae

→ CF are displayed in a way that resembles source code

→ CF can be manipulated using solely high-level tactics
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Verification using CFML

Half of Okasaki's book
→ Batched queue, Bankers queue, Physicists queue, Real-
time queue, Implicit queue, Bootstrapped queue, Hood-
Melville queue, Leftist heap, Pairing heap, Lazy pairing heap, 
Splay heap, Binominal heap, Unbalanced set, Red-black set, 
Bottom-up merge sort, Catenable lists, Binary random-access 
lists

Imperative higher-order programs
→ Dijkstra's shortest path algorithm, Union-Find, Sparse arrays, Mutable Lists,

→ Local state, e.g., gensym

→ Effectful higher-order functions, e.g., List.iter or compose

→ CPS functions, e.g., CPS-append

→ Functions in the store, e.g. Landin's knot (recursion through the store)

→ CFML supports core Caml except float, integer modulo, exceptions, objects
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Related work (1/2)

– Not a verification condition generator (VCG)
→ source code needs not be annotated with invariants
→ invariants are instead provided in interactive proofs
→ CF optimized for interactive proofs

(quick fixes to invariants, readable proof obligations)

– Not a shallow embedding
→ Caml functions are not mapped to Coq functions
→ Source language is Caml, not Coq+monad
→ Auxiliary variables not mixed up with code
→ ≠Ynot: less dependend types, no circularity problem
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Related work (2/2)

– Not a deep embedding
→ no inductive datatype is used to represent code syntax
→ avoids predicate relating Coq values to Caml values
→ avoids issues related to binders and substitutions

– Not a dynamic logic (e.g., Key)
→ no ad-hoc logic construct to embed source code
→ allows to stay in a standard logic and use existing tools
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Part 2

(1) Introduction: what CF are and what they are not

(2) Example: verification of Dijkstra's algorithm

(3) Technical insight: how to construct CF
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let dijkstra g s e =
let n = Array. length g in
let b = Array .make n Infinite in
let v = Array .make n false in
let q = Pqueue .create() in
b.(s) <- Finite 0;
Pqueue .push (s,0) q;
while not ( Pqueue .is_empty q) do

let (x,dx) = Pqueue .pop q in
if not v.(x) then begin

v.(x) <- true;
let update (y,w) =

let dy = dx + w in
if ( match b.(y) with | Finite d -> dy < d

| Infinite -> true)
then (b.(y) <- Finite dy; Pqueue .push (y,dy) q) in

List .iter update g.(x);
end ;

done ;
b.(e)

Dijkstra's shortest path

mutable data 
structures

abstract module

loop

higher-order 
function

pattern 
matching
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Generated axioms
Axiom dijkstra : func.

Axiom dijkstra_cf : 

(@CFPrint.tag tag_top_fun _ _ (@CFPrint.tag tag_bod y _ _ 
(forall K :  (CFHeaps.loc -> (int -> (int -> ((CFHe aps.hprop 
-> ((_ -> CFHeaps.hprop) -> Prop)) -> Prop)))), ((i s_spec_3 
K) -> ((forall g : CFHeaps.loc, (forall s : int, (f orall e : 
int, ((((K g) s) e) (@CFPrint.tag tag_let_trm (Labe l_create 
'n) _ (local (fun H : CFHeaps.hprop => (fun Q : (_ -> 
CFHeaps.hprop) => (Logic.ex (fun Q1 : (int -> CFHea ps.hprop) 
=> ((Logic.and (((@CFPrint.tag tag_apply _ _ ((((@a pp_1 
CFHeaps.loc) int) ml_array_length)... 

→ Axioms justified by the soundness theorem (paper proof)

abstract data type used to represent functions

100 more lines like this

shows something that reads like ML code
Print dijkstra_cf.
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Specification

pre-condition

post-condition

Theorem dijkstra_spec : ∀∀∀∀ g x y G,

nonnegative_edges G ->

x \in nodes G -> 

y \in nodes G ->

(App dijkstra g x y)

(g ~> GraphAdjList G) 

(fun d => [d = dist G x y]  

\* g ~> GraphAdjList G) 

application

mathematical graph G

x
y

d

(x ~> R) is defined as (R x)
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Loop invariant
Definition hinv Q B V : hprop := 

g ~> GraphAdjList G  G : graph int 
\* v ~> Array V         V : array bool 
\* b ~> Array B         B : array intbar 
\* q ~> Pqueue Q        Q : multiset (int*int) 
\* [inv Q B V].

Record inv G s Q B V : Prop := {
Bdist: ∀∀∀∀x, x \in nodes G -> V\(x) = true -> 

B\(x) = dist G s x;
Bbest: ∀∀∀∀x, x \in nodes G -> V\(x) = false -> 

B\(x) = mininf weight (crossing V x);
Qcorr: ∀∀∀∀x, (x,d) \in Q ->

x \in nodes G /\ ∃∃∃∃p, crossing V x p /\ weight p = d;
Qcomp: ∀∀∀∀x p, x \in nodes G -> crossing V x p ->

∃∃∃∃d, (x,d) \in Q /\ d <= weight p;
SizeV: length V = n;
sizeB: length B = n }
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Main lemma
Lemma inv_update : forall L V B Q x y w dx dy,

x \in nodes G ->
has_edge G x y w ->
dy = dx + w ->
Finite dx = dist G s x ->
inv (V\(x:=true)) B Q (new_crossing x L V) -> 
If len_gt (B\(y)) dy 

then inv (V\(x:=true)) (B\(y:=Finite dy)) (\{(y, dy )} \u Q) ...     
else inv (V\(x:=true)) B Q (new_crossing x ((y,w):: L) V) .

Proof.
introv Nx Ed Dy Eq [Inv SV SB]. sets_eq V': (V\(x:= true)).
lets NegP: nonneg_edges_to_path Neg.
intros z. lets [Bd Bb Hc Hk]: Inv z. tests (z = y).
(* case z = y *)
forwards~ (px&Px&Wx&Mx): (@mininf_finite_inv (path int)) (eq_sym Eq).
lets Ny: (has_edge_in_nodes_r Ed).
sets p: ((x,y,w)::px). 
asserts W: (weight p = dy). subst p. rewrite weight _cons. math. 
tests (V'\(y)) as C; case_If as Nlt.
(* subcase y visisted, distance improved *)
false. rewrite~ Bd in Nlt. forwards M: mininf_len_g t Nlt p; subst~ p.

rewrite weight_cons in M. math.
(* subcase y visisted, distance not improved *)
...

no reference to CF in this lemma, 
but only mathematical reasoning

all the nontrivial reasoning is here;
180 lines across several lemmas;
8 seconds to type-check
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Theorem dijkstra_spec : ∀∀∀∀ g x y G, ... (App dijkstra g x y) ...
Proof.
xcf. introv Pos Ns De. unfold GraphAdjList at 1. 
hdata_simpl. xextract as N Neg Adj. xapp. 
intros Ln. rewrite <- Ln in Neg. 
xapps. xapps. xapps. xapps*. xapps.
set (data := fun B V Q => g ~> Array N \* 

v ~> Array V \* b ~> Array B \* q ~> Heap Q).
set (hinv := fun VQ => let '(V,Q) := VQ in

Hexists B, data B V Q \* [inv G n s V B Q (crossing  G s V)]).
xseq (# Hexists V, hinv (V,\{})). 
set (W := lexico2 

(binary_map (count (= true)) (upto n))
(binary_map card (downto 0))).

xwhile_inv W hinv. refine (ex_intro' (_,_)). 
unfold hinv,data. hsimpl. applys_eq~ inv_start 2. 
permut_simpl. intros [V Q]. unfold hinv. 
xextract as B Inv. xwhile_body. 
unfold data. xapps. xret.
...
Qed.

Proof script

loop invariant

termination 
measure

CFML tactics

use of a lemma 
about the invariant

for 20 lines of code, 48 lines of proofs 
(including 8 lines of invariants); 
checked in 8 seconds
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Pos : nonnegative_edges G
Ns : s \in nodes G
Ne : e \in nodes G
Neg : nodes_index G n
Adj : forall x y w,

x \in nodes G -> Mem (y, w) (N\(x)) = has_edge G x y w
Nx : x \in nodes G
Vx : ~ V\(x)
Dx : Finite dx = dist G s x
Inv : inv G n s V' B Q (new_crossing G s x L' V)
EQ : N\(x) = rev L' ++ (y, w) :: L
Ew : has_edge G x y w
Ny : y \in nodes G

A typical proof obligation

(Let dy := Ret dx + w in
Let _x38 := App ml_array_get b y ; in

If_ Match 
(Case _x38 = Finite d [d] Then Ret (dy '< d) Else 
(Case _x38 = Infinite Then Ret true Else Done))

Then (App ml_array_set b y (Finite dy) ;) ;;
App push (y, dy) h ; Else (Ret tt))

(q ~> Pqueue Q \* b ~> Array B \* v ~> Array V' \* g ~> Array N)

(fun _:unit => hinv' L) post-condition

pre-condition

characteristic 
formula

hypotheses
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Part 3

(1) Introduction: what CF are and what they are not

(2) Example: verification of Dijkstra's algorithm

(3) Technical insight: how to construct CF

→ characteristic formula for sequences

→ treatment of functions

→ integration of the frame rule

→ relation with denotational semantics
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Construction

Hoare logic rule for sequence

Characteristic formula for sequence

Property of characteristic formulae

→ from an inductive to a recursive definition of Hoare Logic
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Notation

Definition from the previous slide

Characteristic formula for sequence, revisited

Definition of a Coq notation

→ CF generation is simple, compositional and linear-size
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Tactics

View with notation

Action of tactic xseq defined as (esplit;split)

View without notation

→ CFML can be used without knowledge of CF definitions

After solving first subgoal

a Coq unification variable (evar)
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Functions

Consider a top-level function definition

Two axioms are generated (func and App are abstract)

Formula for function calls
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Recursive functions

Specification

Specification of a recursive functions proved by induction

By induction hypothesis
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Frame rule

Frame rule is not syntax directed; how to integrate it?

Insert a predicate at the head of every node in the CF

→ when no frame is needed, we frame on the empty heap
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Types

CF are constructed for code well-typed in ML

Arbitrary recursive types also, if recursion below an arrow

Algebraic data types are supported
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All the rules

Complete set of definitions for ML with side effects

For each construct: formula + notation + tactic
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CF for purely functional code

→ No pre-condition needed for total correctness

→ CF describes the set of valid post-conditions

In fact, contexts and translations to go from Caml to Coq



26

CF and denotational semantics

Re-interpreting the definition of CF

Logically equivalent to

Re-interpreting post-conditions as set of objects



27

Verification of the CF generator

specification source code machine code

characteristic 
formulae

certified compilercertified proof tools

Coq 
proofs

not yet verified 
CF generator

→ CF generator as a Coq function, for a toy language
→ but need a deep embedding of Coq to reason about

inductive defs, polymorphism (∀A:Type), modules
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Concurrent program logics

Rely-Guarantee (RG)
Jones '83

Concurrent 
Sep. Logic

O'Hearn '04

RG-Sep
Vafeiadis & Parkinson '07

Separation Logic
Reynolds '02

RG-Sep
Dodds, Feng, Vafeiadis, 

& Parkinson '09

Local-RG
Feng '09

→ good progress, yet still limited and not implemented

RG for 
x86-TSO

Ridge '10
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Extension to concurrency

I would like to extend CF to support:
→ modular and local reasoning for private resources, 
shared resources, and also content of write buffers 
→ transitions from private to shared and back
→ verification of sequential terms with minimal overhead
→ simple high-level reasoning rules for, e.g., fork-join
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Thanks!

Further information

→ ICFP'10 and ICFP'11 papers, my thesis for the proofs
→ examples available on my webpage
→ download and try CFML (open source) 
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CF and CPS

→ CF use implication instead of equality, for weakening

weakening

→ Weakening is crucial for abstract data types


