Characteristic Formulae for the Verification of Imperative Programs

Arthur Charguéraud

Max Planck Institute for Software Systems

PPS

Overview

Proving the correctness of arbitrarily-complex programs

 \rightarrow given a Caml program

 \rightarrow given a Coq spec.

 \rightarrow how can we build a correctness proof?

characteristic formulae

used to describe the semantics of the code in the logic

Interpretation of caracteristic formulae (CF)

source code without any modification nor annotation

characteristic formula, expressed in higher-order logic using $\forall, \exists, \land, \Rightarrow, ...$

CF are sound and complete w.r.t. Hoare logic

 $\forall H. \forall H'. \quad \llbracket C \rrbracket H H' \iff \{H\} C \{H'\}$

heap predicates (heap \rightarrow Prop)

application in higher-order logic total correctness Hoare triple

 \rightarrow in any heap satisfying *H*, the execution of the code *C* terminates and leaves a heap that satisfies *H*'

Properties

 $\begin{array}{c} & & \\ & &$

- \rightarrow CF are built automatically
- \rightarrow CF are built compositionaly
- \rightarrow CF are of linear size
- \rightarrow CF support local reasoning (frame rule)
- \rightarrow CF are displayed in a way that resembles source code
- \rightarrow CF can be manipulated using solely high-level tactics

Verification using CFML

 \rightarrow CFML supports core Caml except float, integer modulo, exceptions, objects

Half of Okasaki's book

→ Batched queue, Bankers queue, Physicists queue, Realtime queue, Implicit queue, Bootstrapped queue, Hood-Melville queue, Leftist heap, Pairing heap, Lazy pairing heap, Splay heap, Binominal heap, Unbalanced set, Red-black set, Bottom-up merge sort, Catenable lists, Binary random-access lists

Imperative higher-order programs

- \rightarrow Dijkstra's shortest path algorithm, Union-Find, Sparse arrays, Mutable Lists,
- \rightarrow Local state, e.g., gensym
- \rightarrow Effectful higher-order functions, e.g., List.iter or compose
- \rightarrow CPS functions, e.g., CPS-append
- \rightarrow Functions in the store, e.g. Landin's knot (recursion through the store)

Related work (1/2)

– Not a verification condition generator (VCG)

- \rightarrow source code needs not be annotated with invariants
- \rightarrow invariants are instead provided in interactive proofs
- → CF optimized for interactive proofs (quick fixes to invariants, readable proof obligations)

Not a shallow embedding

- \rightarrow Caml functions are not mapped to Coq functions
- \rightarrow Source language is Caml, not Coq+monad
- \rightarrow Auxiliary variables not mixed up with code
- $\rightarrow \neq$ Ynot: less dependend types, no circularity problem

– Not a dynamic logic (e.g., Key)

 \rightarrow no ad-hoc logic construct to embed source code

 \rightarrow allows to stay in a standard logic and use existing tools

– Not a deep embedding

 \rightarrow no inductive datatype is used to represent code syntax \rightarrow avoids predicate relating Coq values to Caml values \rightarrow avoids issues related to binders and substitutions

Part 2

(1) Introduction: what CF are and what they are not

(2) Example: verification of Dijkstra's algorithm

(3) Technical insight: how to construct CF

Dijkstra's shortest path

Generated axioms

Axiom dijkstra : func.

> abstract data type used to represent functions

Axiom dijkstra_cf :

(@CFPrint.tag tag_top_fun _ _ (@CFPrint.tag tag_body _ _ (forall K : (CFHeaps.loc -> (int -> (int -> ((CFHeaps.hprop -> ((_ -> CFHeaps.hprop) -> Prop)) -> Prop)))), ((is_spec_3 K) -> ((forall g : CFHeaps.loc, (forall s : int, (forall e : int, ((((K g) s) e) (@CFPrint.tag tag_let_trm (Label_create 'n) _ (local (fun H : CFHeaps.hprop => (fun Q : (_ -> CFHeaps.hprop) => (Logic.ex (fun Q1 : (int -> CFHeaps.hprop) => ((Logic.and (((@CFPrint.tag tag_apply _ _ ((((@app_1 CFHeaps.loc) int) ml_array_length)...

► 100 more lines like this

Print dijkstra_cf.

> shows something that reads like ML code

 \rightarrow Axioms justified by the soundness theorem (paper proof)

Specification

Loop invariant

```
Definition hinv Q B V : hprop :=
    q ~> GraphAdjList G
                                                            G : graph int
\ v \sim Array V
                                                            V : array bool
                                                            B : array intbar
O : multiset (int*int)
\ \ \alpha \sim Paueue 0
\  (inv \  O \  B \  V).
Record inv G s Q B V : Prop := {
 Bdist: \forall x, x \setminus in nodes G \rightarrow V \setminus (x) = true \rightarrow
              B(x) = dist G s x;
 Bbest: \forall x, x \setminus in nodes G \rightarrow V \setminus (x) = false \rightarrow V \setminus (x)
              B(x) = mininf weight (crossing V x);
 Qcorr: \forall x, (x,d) \setminus in Q \rightarrow
             x \in G / \exists p, crossing V x p / weight p = d;
 Qcomp: \forall x p, x \setminus in nodes G \rightarrow crossing V x p \rightarrow
              \exists d, (x,d) \setminus in Q / \langle d \rangle <= weight p;
 SizeV: length V = n;
 sizeB: length B = n }
```

Main lemma

```
Lemma inv_update : forall L V B Q x y w dx dy,
  x \in G ->
                                          no reference to CF in this lemma,
  has edge G x y w ->
  dy = dx + w \rightarrow
                                          but only mathematical reasoning
  Finite dx = dist G s x \rightarrow
  inv (V(x:=true)) B Q (new crossing x L V) \rightarrow
  If len qt (B \setminus (y)) dy
    then inv (V \setminus (x:=true)) (B \setminus (y:=Finite dy)) (\setminus \{(y, dy)\} \setminus u Q) ...
    else inv (V \setminus (x:=true)) B Q (new crossing x ((y,w)::L) V).
Proof.
introv Nx Ed Dy Eq [Inv SV SB]. sets eq V': (V \setminus (x:=true)).
lets NegP: nonneg edges to path Neg.
intros z. lets [Bd Bb Hc Hk]: Inv z. tests (z = y).
(* case z = y *)
forwards~ (px&Px&Wx&Mx): (@mininf_fin all the nontrivial reasoning is here;
lets Ny: (has edge in nodes r Ed).
                                          180 lines across several lemmas:
sets p: ((x,y,w)::px).
                                          8 seconds to type-check
asserts W: (weight p = dy). subst p.
tests (V' \setminus (y)) as C; case If as Nlt.
(* subcase y visisted, distance improved *)
false. rewrite~ Bd in Nlt. forwards M: mininf len gt Nlt p; subst~ p.
rewrite weight cons in M. math.
(* subcase y visisted, distance not improved *)
. . .
```

Proof script

Theorem dijkstra spec : \forall g x y G, ... (App dijkstra g x y) ... Proof. **CFML** tactics xcf. introv Pos Ns De. unfold GraphAdjList at 1. hdata simpl. xextract as N Neg Adj. xapp. intros Ln. rewrite <- Ln in Neg. xapps. xapps. xapps. xapps*. xapps. loop invariant set (data := fun B V Q => g \sim Array N * v ~> Array V $\$ b ~> Array B $\$ q ~> Heap Q). set (hinv := fun VO => let '(V,O) := VO in Hexists B, data B V Q \setminus * [inv G n s V B Q (crossing G s V)]). xseq (# Hexists V, hinv $(V, \setminus \{\})$). termination set (W := lexico2 measure (binary map (count (= true)) (upto n)) (binary map card (downto 0))). use of a lemma xwhile_inv W hinv. refine (ex_intro' (_,_)). unfold hinv, data. hsimpl. applys_eq~ inv_start 2. about the invariant permut simpl. intros [V Q]. unfold hinv. xextract as B Inv. xwhile body. unfold data. xapps. xret. for 20 lines of code, 48 lines of proofs . . . (including 8 lines of invariants); Oed. checked in 8 seconds

A typical proof obligation

```
Pos : nonnegative_edges G
Ns : s \in nodes G
Ne : e \in nodes G
Neg : nodes_index G n
Adj : forall x y w,
        x \in nodes G -> Mem (y, w) (N\(x)) = has_edge G x y w
Nx : x \in nodes G
Vx : ~ V\(x)
Dx : Finite dx = dist G s x
Inv : inv G n s V' B Q (new_crossing G s x L' V)
EQ : N\(x) = rev L' ++ (y, w) :: L
Ew : has_edge G x y w
Ny : y \in nodes G
```

Part 3

- (1) Introduction: what CF are and what they are not
- (2) Example: verification of Dijkstra's algorithm

(3) Technical insight: how to construct CF

- \rightarrow characteristic formula for sequences
- \rightarrow treatment of functions
- \rightarrow integration of the frame rule
- \rightarrow relation with denotational semantics

Hoare logic rule for sequence

$$\frac{\{H\} C_1 \{H''\}}{\{H\} (C_1; C_2) \{H'\}}$$

Property of characteristic formulae

 $\forall H. \forall H'. \llbracket C_1; C_2 \rrbracket H H' \iff \{H\} (C_1; C_2) \{H'\}$

Characteristic formula for sequence

 $\llbracket C_1; C_2 \rrbracket \equiv \lambda H. \lambda H'. \exists H''. \llbracket C_1 \rrbracket H H'' \land \llbracket C_2 \rrbracket H'' H'$

 \rightarrow from an inductive to a recursive definition of Hoare Logic

Definition from the previous slide $\llbracket C_1; C_2 \rrbracket \equiv \lambda H. \lambda H'. \exists H''. \llbracket C_1 \rrbracket H H'' \land \llbracket C_2 \rrbracket H'' H'$

Definition of a Coq notation

 $(\mathcal{F}_1;;\mathcal{F}_2) \equiv \lambda H. \lambda H'. \exists H''. \mathcal{F}_1 H H'' \wedge \mathcal{F}_2 H'' H'$

Characteristic formula for sequence, revisited $\llbracket C_1 ; C_2 \rrbracket \equiv \llbracket C_1 \rrbracket ; ; \llbracket C_2 \rrbracket$

 \rightarrow CF generation is simple, compositional and linear-size

View with notation

 $(\mathcal{F}_1 ;; \mathcal{F}_2) H H'_?$

a Coq unification variable (evar)

View without notation

 $\exists H''. \mathcal{F}_1 H H'' \land \mathcal{F}_2 H'' H'_?$

Action of tactic xseq defined as (esplit;split)

 $\mathcal{F}_1 H H_?'' \qquad \qquad \mathcal{F}_2 H_?'' H_?'$

After solving first subgoal

 $\mathcal{F}_2 H'' H'_?$

 \rightarrow CFML can be used without knowledge of CF definitions

Consider a top-level function definition function $f(x) \{C\}$

Two axioms are generated (func and App are abstract)

Axiom f: func. Axiom F: $\forall x H H'$. $\llbracket C \rrbracket H H' \Rightarrow \operatorname{App} f x H H'$.

Formula for function calls

$$\llbracket f(v) \rrbracket \equiv \lambda H. \lambda H'. \operatorname{App} f v H H'$$

Specification of a recursive functions proved by induction function f(n) { if n > 0 then {x := x + 1; f(n - 1)} } $x \hookrightarrow a$ $x \hookrightarrow a + 1$ $x \hookrightarrow a + 1$

Specification

$$\forall n. \ \forall a. \ n \ge 0 \ \Rightarrow \ \mathsf{App} f n \ (x \hookrightarrow a) \ (x \hookrightarrow a+n)$$

By induction hypothesis

$$\mathsf{App}\,f\,(n-1)\,(x \hookrightarrow a+1)\,(x \hookrightarrow (a+1) + (n-1))$$

Frame rule is not syntax directed; how to integrate it? $\frac{\{H_1\} C \{H'_1\}}{\{H_1 * H_2\} C \{H'_1 * H_2\}}$

Insert a predicate at the head of every node in the CF

$$\begin{bmatrix} C_1 ; C_2 \end{bmatrix} \equiv \operatorname{local} (\lambda H. \lambda H'. \ldots)$$

$$\operatorname{local} \mathcal{F} \equiv \lambda H. \lambda H'. \exists H_1 H'_1 H_2. \begin{cases} \mathcal{F} H_1 H'_1 \\ H = H_1 * H_2 \\ H' = H'_1 * H_2 \end{cases}$$

 \rightarrow when no frame is needed, we frame on the empty heap

Types

CF are constructed for code well-typed in ML

$$\begin{array}{lll} \langle \mathsf{int} \rangle & \equiv & \mathsf{Int} \\ \langle \tau_1 \times \tau_2 \rangle & \equiv & \langle \tau_1 \rangle \times \langle \tau_2 \rangle \\ \langle \tau_1 + \tau_2 \rangle & \equiv & \langle \tau_1 \rangle + \langle \tau_2 \rangle \\ \langle \tau_1 \to \tau_2 \rangle & \equiv & \mathsf{Func} \\ \langle \mathsf{ref} \, \tau \rangle & \equiv & \mathsf{Loc} \end{array}$$

Algebraic data types are supported

Arbitrary recursive types also, if recursion below an arrow

$$\langle \mu A. A \to B \rangle = \mathsf{Func}$$

 $\langle \mu A. A \times B \rangle$ not supported

All the rules

Complete set of definitions for ML with side effects

	\equiv	local $(\lambda HQ. \ H \triangleright Q \lceil v \rceil)$
$\llbracket v_1 v_2 \rrbracket$	\equiv	local $(\lambda HQ. \operatorname{App}[v_1][v_2]HQ)$
$\llbracket \operatorname{let} x = t_1 \operatorname{in} t_2 \rrbracket$	\equiv	local $(\lambda HQ. \exists Q'. \llbracket t_1 \rrbracket HQ' \land \forall x. \llbracket t_2 \rrbracket (Q'x)Q)$
$[\![t_1; t_2]\!]$	Ξ	local $(\lambda HQ, \exists Q', \llbracket t_1 \rrbracket HQ' \land \llbracket t_2 \rrbracket (Q' tt) Q)$
$\llbracket \operatorname{let} \operatorname{rec} f = \Lambda \overline{A} . \lambda x . t_1 \text{ in } t_2 \rrbracket$	\equiv	$local\left(\lambda HQ. \ \forall f. \ (\forall \overline{A}xH'Q'. \llbracket t_1 \rrbracket H'Q' \Rightarrow App \ f \ x \ H'Q') \Rightarrow \llbracket t_2 \rrbracket HQ\right)$
$\llbracket if v then t_1 else t_2 \rrbracket$	\equiv	$local\left(\lambda HQ. ([v] = true \Rightarrow \llbracket t_1 \rrbracket HQ) \land ([v] = false \Rightarrow \llbracket t_2 \rrbracket HQ)\right)$
[[crash]]	Ξ	local $(\lambda HQ.$ False)
$\llbracket \operatorname{let} x = \Lambda \overline{A}. v \operatorname{in} t \rrbracket$	\equiv	$local\left(\lambda HQ. \ \forall x. \ x = \lambda \overline{A}. \lceil v \rceil \Rightarrow \llbracket t \rrbracket HQ\right)$

For each construct: formula + notation + tactic

CF for purely functional code

 \rightarrow No pre-condition needed for total correctness \rightarrow CF describes the set of valid post-conditions

 $\begin{bmatrix} t \end{bmatrix} : (T \to \mathsf{Prop}) \to \mathsf{Prop}$ $\begin{bmatrix} v \end{bmatrix} \equiv \lambda P. P v$ $\begin{bmatrix} v v' \end{bmatrix} \equiv \lambda P. \operatorname{App} v v' P$ $\begin{bmatrix} \mathsf{let} x = t \operatorname{in} t' \end{bmatrix} \equiv \lambda P. \exists P'. \llbracket t \rrbracket P' \land (\forall x. P' x \Rightarrow \llbracket t' \rrbracket P)$ $\begin{bmatrix} \mathsf{let} f = \lambda x. t \operatorname{in} t' \rrbracket \equiv \lambda P. \forall f. (\forall x P'. \llbracket t \rrbracket P' \Rightarrow \operatorname{App} f x P') \Rightarrow \llbracket t' \rrbracket P$

In fact, contexts and translations to go from Caml to Coq $\llbracket v \rrbracket^{\Gamma} \equiv \lambda P. P [v]^{\Gamma}$ $\llbracket \text{let } x = t \text{ in } t \rrbracket^{\Gamma} \equiv \lambda P. \exists P'. \llbracket t \rrbracket^{\Gamma} P' \land (\forall X. P' X \Rightarrow \llbracket t' \rrbracket^{(\Gamma, x \mapsto X)} P)$

CF and denotational semantics

Re-interpreting post-conditions as set of objects $\llbracket t \rrbracket P \quad \Leftrightarrow \quad \mathcal{D}(t) \in P$

Re-interpreting the definition of CF

 $\operatorname{App} V V' P \equiv V(V') \in P$

$$\begin{split} \mathcal{D}^{\Gamma}(v) &\in P & \Leftrightarrow \mathcal{D}^{\Gamma}(v) \in P \\ \mathcal{D}^{\Gamma}(v \, v') &\in P & \Leftrightarrow \left(\mathcal{D}^{\Gamma}(v) \right) \left(\mathcal{D}^{\Gamma}(v') \right) \in P \\ \mathcal{D}^{\Gamma}(\operatorname{let} x = t \operatorname{in} t') &\in P & \Leftrightarrow \exists P'. \ \mathcal{D}^{\Gamma}(t) \in P' \ \land \ (\forall X \in P'. \ \mathcal{D}^{(\Gamma, x \mapsto X)}(t') \in P) \\ \mathcal{D}^{\Gamma}(\operatorname{let} f = \lambda x. t \operatorname{in} t') \in P & \Leftrightarrow \forall F. \ (\forall x P'. \ \mathcal{D}^{(\Gamma, x \mapsto X)}(t) \in P' \Rightarrow F(X) \in P') \Rightarrow \mathcal{D}^{(\Gamma, f \mapsto F)}(t') \in P \end{split}$$

Logically equivalent to

$$\mathcal{D}^{\Gamma}(\operatorname{let} x = t \operatorname{in} t') = \mathcal{D}^{(\Gamma, x \mapsto \mathcal{D}^{\Gamma}(t))}(t')$$
$$\mathcal{D}^{\Gamma}(\operatorname{let} f = \lambda x. t \operatorname{in} t') = \{\mathcal{D}^{(\Gamma, f \mapsto F)}(t') \mid \forall X. F(X) = \mathcal{D}^{(\Gamma, x \mapsto X)}(t)\}$$

Verification of the CF generator

→ CF generator as a Coq function, for a toy language
 → but need a deep embedding of Coq to reason about inductive defs, polymorphism (∀A:Type), modules

Concurrent program logics

 \rightarrow good progress, yet still limited and not implemented

I would like to extend CF to support:

- \rightarrow modular and local reasoning for private resources, shared resources, and also content of write buffers
- \rightarrow transitions from private to shared and back
- \rightarrow verification of sequential terms with minimal overhead
- \rightarrow simple high-level reasoning rules for, e.g., fork-join

Thanks!

Further information

- \rightarrow ICFP'10 and ICFP'11 papers, my thesis for the proofs
- \rightarrow examples available on my webpage
- \rightarrow download and try CFML (open source)

CF and CPS

 \rightarrow CF use implication instead of equality, for weakening \rightarrow Weakening is crucial for abstract data types