Characteristic Formulae for the Verification of Imperative Programs

Arthur Charguéraud

Max Planck Institute for Software Systems

Harvard University

Proving the correctness of arbitrarily-complex programs

 \rightarrow take an existing program written, say, in Caml

 \rightarrow specify and verify it using Coq

Characteristic formulae

used to describe the semantics of the code in the logic

Properties of characteristic formulae (CF)

 $\begin{array}{c} & & \\ & &$

- \rightarrow CF are built automatically
- \rightarrow CF are built compositionaly
- \rightarrow CF are of linear size
- \rightarrow CF are displayed in a way that resembles source code
- \rightarrow CF can be manipulated using solely high-level tactics
- \rightarrow CF are not just sound but also complete
- \rightarrow CF support local reasoning and modular verification

Verification using CFML

Half of Okasaki's book

→ Batched queue, Bankers queue, Physicists queue, Realtime queue, Implicit queue, Bootstrapped queue, Hood-Melville queue, Leftist heap, Pairing heap, Lazy pairing heap, Splay heap, Binominal heap, Unbalanced set, Red-black set, Bottom-up merge sort, Catenable lists, Binary random-access lists

Imperative higher-order programs

 \rightarrow Dijkstra's shortest path algorithm, Counter generator, Append for mutable lists, CPS-append, Iterators on mutable lists, Sparse arrays, Union-Find, Composition function, Landin's knot (recursion through the store)

Structure of the talk

(1) Introduction: what CF are and what they are not
 (2) Example: verification of Dijkstra's algorithm
 (3) Technical insight: how to construct CF

Generation of characteristic formulae

$$C \longrightarrow \llbracket C \rrbracket$$

source code without any modification nor annotation

characteristic formula, expressed in higher-order logic using $\forall, \exists, \land, \Rightarrow, \ldots$

CF are sound and complete w.r.t. Hoare logic

$$\forall H. \forall H'. \quad \llbracket C \rrbracket H H' \iff \{H\} C \{H'\}$$

heap predicates (heap \rightarrow Prop)

application in higher-order logic total correctness Hoare triple

 \rightarrow capturing that, in any heap satisfying *H*, the execution of the code *C* terminates and leaves a heap that satisfies *H'*.

CF: what they are not

– Not a verification condition generator (VCG)

- \rightarrow the source code is not annotated with invariants
- \rightarrow instead, invariants are provided in interactive proofs

– Not a dynamic logic

- \rightarrow there is no ad-hoc logic construct to embed source code
- \rightarrow allows to stay in a standard logic and use existing tools

– Not a deep embedding

 \rightarrow no inductive datatype is used to represent code syntax \rightarrow avoids low-level details and issues related to binders

Not a shallow embedding

 \rightarrow Caml functions are not represented as Coq functions \rightarrow avoids a mismatch between partial and total functions

Comparison with Ynot

Heap predicates similar to those from Ynot

Source language is Caml, not Coq + monad operators
 → more flexible, in particular for binders
 → support verification of existing code

 Verification is not established through type-checking the code with dependent types

– Auxiliary variables are never mixed with the code

Structure of the talk

(1) Introduction: what CF are and what they are not

(2) Example: verification of Dijkstra's algorithm

- \rightarrow source code
- \rightarrow specification
- \rightarrow invariant
- \rightarrow main mathematical lemma
- \rightarrow verification proof script
- \rightarrow example of a proof obligation
- (3) Technical insight: how to construct CF

Source code

Material generated by CFML

Axiom dijkstra : func.

Axiom dijkstra_cf :

func is the abstract data type used to represent functions

(@CFPrint.tag tag_top_fun _ _ (@CFPrint.tag tag_body _ _ (forall K : (CFHeaps.loc -> (int -> (int -> ((CFHeaps.hprop -> ((_ -> CFHeaps.hprop) -> Prop)) -> Prop)))), ((is_spec_3 K) -> ((forall g : CFHeaps.loc, (forall s : int, (forall e : int, ((((K g) s) e) (@CFPrint.tag tag_let_trm (Label_create 'n) _ (local (fun H : CFHeaps.hprop => (fun Q : (_ -> CFHeaps.hprop) => (Logic.ex (fun Q1 : (int -> CFHeaps.hprop) => ((Logic.and (((@CFPrint.tag tag_apply _ _ ((((@app_1 CFHeaps.loc) int) ml_array_length)...

(** goes on for about 100 more lines *)

 \rightarrow These axioms are justified by the soundness theorem

Specification for Dijkstra's shortest path

Remark: the representation predicate GraphAdjList is a user-defined predicate (it is not built in the system)

Main invariant

```
Definition hinv Q B V : hprop :=
                                                                                                                                                                                                                                                                                                                                                     G : graph int
                             g ~> GraphAdjList G
                                                                                                                                                                                                                                                                                                                                                     V : array bool
 \ v \sim Array V
                                                                                                                                                                                                                                                                                                                                                     B : array intbar
 \ b \sim Array B
                                                                                                                                                                                                                                                                                                                                                     Q : multiset (int*int)
 \ \ q \sim > Pqueue Q
 \* [inv Q B V].
Record inv Q B V : Prop := {
       Bdist: \forall x, x \setminus in nodes G \rightarrow V \setminus (x) = true \rightarrow
                                                                              B(x) = dist G s x;
        Bbest: \forall x, x \setminus in nodes G \rightarrow V \setminus (x) = false \rightarrow V \cap (x) = false \rightarrow
                                                                              B \setminus (x) = mininf weight (crossing V x);
         Ocorr: \forall x, (x,d) \setminus in 0 \rightarrow
                                                                             x \in nodes G /\ \exists p, crossing V x p /\ weight p = d;
         Qcomp: \forall x p, x \setminus in nodes G \rightarrow crossing V x p \rightarrow
                                                                               \exists d, (x,d) \setminus in O / \land d \leq weight p;
         SizeV: length V = n;
          sizeB: length B = n }
```

Main lemma about the invariant

```
Lemma inv_update : forall L V B Q x y
                                         no reference to charact. formulae
  x \in G ->
  has edge G x y w ->
                                         maths-style reasoning
  dy = dx + w \rightarrow
  Finite dx = dist G s x \rightarrow
                                         in terms of multisets
  inv (V (x:=true)) B Q (new crossing ...
  If len qt (B \setminus (y)) dy
    then inv (V \setminus (x:=true)) (B \setminus (y:=Finite dy)) (\setminus \{(y, dy)\} \setminus u Q) ...
    else inv (V \setminus (x:=true)) B Q (new crossing x ((y,w)::L) V).
Proof.
introv Nx Ed Dy Eq [Inv SV SB]. sets
                                         all the nontrivial reasoning is there
lets NegP: nonneg edges to path Neg.
intros z. lets [Bd Bb Hc Hk]: Inv z. tests (z = y).
(* case z = y *)
forwards~ (px&Px&Wx&Mx): (@mininf fin
                                         180 lines across several lemmas
lets Ny: (has edge in nodes r Ed).
sets p: ((x,y,w)::px).
                                         (1/3 \text{ of the lines in this lemma})
asserts W: (weight p = dy). subst p. <u>rewrite weight cons.</u>
tests (V' \setminus (y)) as C; case If as Nlt.
(* subcase y visisted, distance impro
false. rewrite~ Bd in Nlt. forwards M
rewrite weight cons in M. math.
(* subcase y visisted, distance not improved *)
. . .
```

Proof script for Dijkstra's algorithm

```
Theorem dijkstra spec : \forall g x y G, ... (App dijkstra g x y) ...
Proof.
                                                        specialized CFML
xcf. introv Pos Ns De. unfold GraphAdjList at 1.
                                                        tactic
hdata simpl. xextract as N Neg Adj. xapp.
intros Ln. rewrite <- Ln in Neg.
xapps. xapps. xapps. xapps*. xapps.
                                                      loop invariant
set (data := fun B V Q => g \sim Array N \*
  v ~> Array V \ b ~> Array B \ q ~> Heap Q).
set (hinv := fun VO => let '(V,O) := VO in
Hexists B, data B V Q \setminus* [inv G n s V B Q (crossing G s V)]).
xseq (# Hexists V, hinv (V, \setminus \{\})).
                                                        termination
set (W := lexico2
                                                        measure
           (binary map (count (= true)) (upto n))
           (binary map card (downto 0))).
                                                        reference to one
xwhile_inv W hinv. refine (ex_intro' (_,_)).
unfold hinv, data. hsimpl. applys eq~ inv start 2.
                                                        mathematic lemma
permut simpl. intros [V Q]. unfold hinv.
xextract as B Inv. xwhile body.
unfold data. xapps. xret.
. . .
Oed.
```

 \rightarrow 48 lines of proofs, including 8 lines of invariants; checked in 8 seconds

A typical proof obligation

```
Pos : nonnegative_edges G
Ns : s \in nodes G
Ne : e \in nodes G
Neg : nodes_index G n
Adj : forall x y w,
        x \in nodes G -> Mem (y, w) (N\(x)) = has_edge G x y w
Nx : x \in nodes G
Vx : ~ V\(x)
Dx : Finite dx = dist G s x
Inv : inv G n s V' B Q (new_crossing G s x L' V)
EQ : N\(x) = rev L' ++ (y, w) :: L
Ew : has_edge G x y w
Ny : y \in nodes G
```

Summary of CFML

What you need to use CFML

- \rightarrow learn Coq in case you don't know it yet
- \rightarrow learn about the 25 tactics specific to CFML
- \rightarrow take a Caml program and feed it to CFML
- \rightarrow write down the specification of the program
- \rightarrow write down the invariants of your program (hardest part)
- \rightarrow complete the proofs interactively

Not supported (yet)

- \rightarrow modulo and floatting-point arithmetics
- \rightarrow exceptions, objects and concurrency

Structure of the talk

- (1) Introduction: what CF are and what they are not
- (2) Example: verification of Dijkstra's algorithm

(3) Technical insight: how to construct CF

 \rightarrow characteristic formula for sequences

\rightarrow function definitions and function calls

 \rightarrow integration of the frame rule

CF construction for sequence

Hoare logic rule for sequence $\frac{\{H\} C_1 \{H''\} \{H''\} C_2 \{H'\}}{\{H\} (C_1; C_2) \{H'\}}$

Property of characteristic formulae $\forall H. \forall H'. \llbracket C_1; C_2 \rrbracket H H' \iff \{H\} (C_1; C_2) \{H'\}$

Characteristic formula for sequence

 $\begin{bmatrix} C_1 ; C_2 \end{bmatrix} \equiv \lambda H \cdot \lambda H' \cdot \exists H'' \cdot \begin{bmatrix} C_1 \end{bmatrix} H H'' \wedge \begin{bmatrix} C_2 \end{bmatrix} H'' H'$

Definition from previous slide $\begin{bmatrix} C_1 ; C_2 \end{bmatrix} \equiv \lambda H. \lambda H'. \exists H''. \begin{bmatrix} C_1 \end{bmatrix} H H'' \land \begin{bmatrix} C_2 \end{bmatrix} H'' H'$

Definition of a Coq notation

$$(\mathcal{F}_1 ;; \mathcal{F}_2) \equiv \lambda H. \lambda H'. \exists H''. \mathcal{F}_1 H H'' \land \mathcal{F}_2 H'' H'$$

Characteristic formula for sequence, revisited $\llbracket C_1 ; C_2 \rrbracket \equiv \llbracket C_1 \rrbracket ; ; \llbracket C_2 \rrbracket$

Other language constructs are handled in a similar way

$$\begin{bmatrix} C_1 ; C_2 \end{bmatrix} \equiv \begin{bmatrix} C_1 \end{bmatrix} ; [C_2]$$

$$\begin{bmatrix} \text{while } C_1 \text{ do } C_2 \end{bmatrix} \equiv \text{While } \begin{bmatrix} C_1 \end{bmatrix} \text{ Do } \begin{bmatrix} C_2 \end{bmatrix}$$

As a result:

- \rightarrow CF are fully compositional
- \rightarrow CF are easy to generate
- \rightarrow CF are of linear size

Moreover, thanks to tactics, notation need not be unfolded

Example of a recursive function

We don't need to add anything to support recursion: the specification of a recursive functions can be proved by induction, using Coq's induction principles

Consider the following recursive function

function $f(n) \{ \text{ if } n > 0 \text{ then } \{ x := x + 1; f(n - 1) \} \}$

We prove its specification by induction on *n*

 $\forall n. \ \forall a. \ n \geq 0 \ \Rightarrow \ \mathsf{App} \, f \, n \, (x \hookrightarrow a) \, (x \hookrightarrow a+n)$

The frame rule is not syntax directed; how to integrate it? $\begin{cases}
H_1 \\ C \\
\\
H_1' \\
\end{cases}$ $\frac{\{H_1 \\ H_2 \\ C \\
\\
H_1' \\ H_2 \\
\end{cases}$

Insert a predicate at the head of every node in the CF

$$\llbracket C_1; C_2 \rrbracket \equiv \operatorname{local}(\lambda H, \lambda H', \ldots)$$

This *local* predicate supports application of the frame rule at any time and it can be eliminated by framing the empty heap

$$\operatorname{local} \mathcal{F} \equiv \lambda H. \lambda H'. \quad \exists H_1 H_1' H_2. \begin{cases} \mathcal{F} H_1 H_1' \\ H = H_1 * H_2 \\ H' = H_1' * H_2 \end{cases}$$

Further information

Homepage

 \rightarrow examples at http://arthur.chargueraud.org/softs/cfml

 \rightarrow download and try CFML (open source)

ICFP'11 paper

 \rightarrow more on how to build characteristic formulae

 \rightarrow examples of first-class imperative functions

Thesis

 \rightarrow more on representation predicates (e.g., GraphAdjList)

 \rightarrow proofs of soundness and completeness

Thanks!