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Overview

Proving the correctness of arbitrarily-complex programs

→ specify and verify 
it using Coq

characteristic formulae
used to describe the semantics of the code in the logic

→ take an existing program
written, say, in Caml
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Properties of characteristic formulae (CF)

→ CF are built automatically 

→ CF are built compositionaly

→ CF are of linear size

→ CF are displayed in a way that resembles source code

→ CF can be manipulated using solely high-level tactics

→ CF are not just sound but also complete

→ CF support local reasoning and modular verification

characteristic formulae
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Verification using CFML

Half of Okasaki's book
→ Batched queue, Bankers queue, Physicists queue, Real-
time queue, Implicit queue, Bootstrapped queue, Hood-
Melville queue, Leftist heap, Pairing heap, Lazy pairing heap, 
Splay heap, Binominal heap, Unbalanced set, Red-black set, 
Bottom-up merge sort, Catenable lists, Binary random-access 
lists

Imperative higher-order programs
→ Dijkstra's shortest path algorithm, Counter generator, 
Append for mutable lists, CPS-append, Iterators on mutable 
lists, Sparse arrays, Union-Find, Composition function, 
Landin's knot (recursion through the store)
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Structure of the talk

(1) Introduction: what CF are and what they are not

(2) Example: verification of Dijkstra's algorithm

(3) Technical insight: how to construct CF
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CF: what they are

Generation of characteristic formulae

source code without any 
modification nor annotation

characteristic formula, expressed in 
higher-order logic using ∀,∃,∧,⇒,...

CF are sound and complete w.r.t. Hoare logic

application in 
higher-order logic

total correctness 
Hoare triple

→ capturing that, in any heap satisfying H, the execution of 
the code C terminates and leaves a heap that satisfies H'.

heap predicates  
(heap → Prop)
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CF: what they are not

– Not a verification condition generator (VCG)
→ the source code is not annotated with invariants
→ instead, invariants are provided in interactive proofs

– Not a deep embedding
→ no inductive datatype is used to represent code syntax
→ avoids low-level details and issues related to binders

– Not a shallow embedding
→ Caml functions are not represented as Coq functions
→ avoids a mismatch between partial and total functions

– Not a dynamic logic
→ there is no ad-hoc logic construct to embed source code
→ allows to stay in a standard logic and use existing tools
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Comparison with Ynot

– Heap predicates similar to those from Ynot

– Source language is Caml, not Coq + monad operators
→ more flexible, in particular for binders
→ support verification of existing code

– Verification is not established through type-checking 
the code with dependent types

– Auxiliary variables are never mixed with the code
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Structure of the talk

(1) Introduction: what CF are and what they are not

(2) Example: verification of Dijkstra's algorithm

→ source code

→ specification

→ invariant

→ main mathematical lemma

→ verification proof script

→ example of a proof obligation

(3) Technical insight: how to construct CF
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let dijkstra g s e =
let n = Array. length g in
let b = Array .make n Infinite in
let v = Array .make n false in
let q = Pqueue .create() in
b.(s) <- Finite 0;
Pqueue .push (s,0) q;
while not ( Pqueue .is_empty q) do

let (x,dx) = Pqueue .pop q in
if not v.(x) then begin

v.(x) <- true;
let update (y,w) =

let dy = dx + w in
if ( match b.(y) with | Finite d -> dy < d

| Infinite -> true)
then (b.(y) <- Finite dy; Pqueue .push (y,dy) q) in

List .iter update g.(x);
end ;

done ;
b.(e)

Source code

mutable data 
structures

abstract data 
structure (argument 
of the functor)

loop

higher-order 
function

pattern 
matching
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Material generated by CFML
Axiom dijkstra : func.

Axiom dijkstra_cf : 

(@CFPrint.tag tag_top_fun _ _ (@CFPrint.tag tag_bod y _ _ 
(forall K :  (CFHeaps.loc -> (int -> (int -> ((CFHe aps.hprop 
-> ((_ -> CFHeaps.hprop) -> Prop)) -> Prop)))), ((i s_spec_3 
K) -> ((forall g : CFHeaps.loc, (forall s : int, (f orall e : 
int, ((((K g) s) e) (@CFPrint.tag tag_let_trm (Labe l_create 
'n) _ (local (fun H : CFHeaps.hprop => (fun Q : (_ -> 
CFHeaps.hprop) => (Logic.ex (fun Q1 : (int -> CFHea ps.hprop) 
=> ((Logic.and (((@CFPrint.tag tag_apply _ _ ((((@a pp_1 
CFHeaps.loc) int) ml_array_length)... 

(** goes on for about 100 more lines *)

→→→→ These axioms are justified by the soundness theorem

func is the abstract data type 
used to represent functions
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Specification for Dijkstra's shortest path

pre-condition

post-condition

Theorem dijkstra_spec : ∀∀∀∀ g x y G,

nonnegative_edges G ->

x \in nodes G -> 

y \in nodes G ->

(App dijkstra g x y)

(g ~> GraphAdjList G) 

(fun d => [d = dist G x y]  

\* g ~> GraphAdjList G) 

application

mathematical graph G

x
y

d

Remark: the representation predicate GraphAdjList is a 
user-defined predicate (it is not built in the system)
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Main invariant
Definition hinv Q B V : hprop := 

g ~> GraphAdjList G  G : graph int 
\* v ~> Array V         V : array bool 
\* b ~> Array B         B : array intbar 
\* q ~> Pqueue Q        Q : multiset (int*int) 
\* [inv Q B V].

Record inv Q B V : Prop := {
Bdist: ∀∀∀∀x, x \in nodes G -> V\(x) = true -> 

B\(x) = dist G s x;
Bbest: ∀∀∀∀x, x \in nodes G -> V\(x) = false -> 

B\(x) = mininf weight (crossing V x);

Qcorr: ∀∀∀∀x, (x,d) \in Q ->
x \in nodes G /\ ∃∃∃∃p, crossing V x p /\ weight p = d;

Qcomp: ∀∀∀∀x p, x \in nodes G -> crossing V x p ->
∃∃∃∃d, (x,d) \in Q /\ d <= weight p;

SizeV: length V = n;

sizeB: length B = n }
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Main lemma about the invariant
Lemma inv_update : forall L V B Q x y w dx dy,

x \in nodes G ->
has_edge G x y w ->
dy = dx + w ->
Finite dx = dist G s x ->
inv (V\(x:=true)) B Q (new_crossing x L V) -> 
If len_gt (B\(y)) dy 

then inv (V\(x:=true)) (B\(y:=Finite dy)) (\{(y, dy )} \u Q) ...     
else inv (V\(x:=true)) B Q (new_crossing x ((y,w):: L) V) .

Proof.
introv Nx Ed Dy Eq [Inv SV SB]. sets_eq V': (V\(x:= true)).
lets NegP: nonneg_edges_to_path Neg.
intros z. lets [Bd Bb Hc Hk]: Inv z. tests (z = y).
(* case z = y *)
forwards~ (px&Px&Wx&Mx): (@mininf_finite_inv (path int)) (eq_sym Eq).
lets Ny: (has_edge_in_nodes_r Ed).
sets p: ((x,y,w)::px). 
asserts W: (weight p = dy). subst p. rewrite weight _cons. math. 
tests (V'\(y)) as C; case_If as Nlt.
(* subcase y visisted, distance improved *)
false. rewrite~ Bd in Nlt. forwards M: mininf_len_g t Nlt p; subst~ p.

rewrite weight_cons in M. math.
(* subcase y visisted, distance not improved *)
...

no reference to charact. formulae

180 lines across several lemmas 
(1/3 of the lines in this lemma)

maths-style reasoning
in terms of multisets

8 seconds to type-check in Coq

all the nontrivial reasoning is there
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Theorem dijkstra_spec : ∀∀∀∀ g x y G, ... (App dijkstra g x y) ...
Proof.
xcf. introv Pos Ns De. unfold GraphAdjList at 1. 
hdata_simpl. xextract as N Neg Adj. xapp. 
intros Ln. rewrite <- Ln in Neg. 
xapps. xapps. xapps. xapps*. xapps.
set (data := fun B V Q => g ~> Array N \* 

v ~> Array V \* b ~> Array B \* q ~> Heap Q).
set (hinv := fun VQ => let '(V,Q) := VQ in

Hexists B, data B V Q \* [inv G n s V B Q (crossing  G s V)]).
xseq (# Hexists V, hinv (V,\{})). 
set (W := lexico2 

(binary_map (count (= true)) (upto n))
(binary_map card (downto 0))).

xwhile_inv W hinv. refine (ex_intro' (_,_)). 
unfold hinv,data. hsimpl. applys_eq~ inv_start 2. 
permut_simpl. intros [V Q]. unfold hinv. 
xextract as B Inv. xwhile_body. 
unfold data. xapps. xret.
...
Qed.

Proof script for Dijkstra's algorithm

loop invariant

termination 
measure

specialized CFML 
tactic

reference to one 
mathematic lemma

→ 48 lines of proofs, including 8 lines of invariants; checked in 8 seconds
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Pos : nonnegative_edges G
Ns : s \in nodes G
Ne : e \in nodes G
Neg : nodes_index G n
Adj : forall x y w,

x \in nodes G -> Mem (y, w) (N\(x)) = has_edge G x y w
Nx : x \in nodes G
Vx : ~ V\(x)
Dx : Finite dx = dist G s x
Inv : inv G n s V' B Q (new_crossing G s x L' V)
EQ : N\(x) = rev L' ++ (y, w) :: L
Ew : has_edge G x y w
Ny : y \in nodes G

A typical proof obligation

(Let dy := Ret dx + w in
Let _x38 := App ml_array_get b y ; in

If_ Match 
(Case _x38 = Finite d [d] Then Ret (dy '< d) Else 
(Case _x38 = Infinite Then Ret true Else Done))

Then (App ml_array_set b y (Finite dy) ;) ;;
App push (y, dy) h ; Else (Ret tt))

(q ~> Pqueue Q \* b ~> Array B \* v ~> Array V' \* g ~> Array N)

(fun _:unit => hinv' L) post-condition

pre-condition

characteristic 
formula

hypotheses
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Summary of CFML

What you need to use CFML
→ learn Coq in case you don't know it yet
→ learn about the 25 tactics specific to CFML
→ take a Caml program and feed it to CFML
→ write down the specification of the program
→ write down the invariants of your program (hardest part)
→ complete the proofs interactively

Not supported (yet)
→ modulo and floatting-point arithmetics 
→ exceptions, objects and concurrency
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Structure of the talk

(1) Introduction: what CF are and what they are not

(2) Example: verification of Dijkstra's algorithm

(3) Technical insight: how to construct CF

→ characteristic formula for sequences

→ function definitions and function calls 

→ integration of the frame rule
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CF construction for sequence

Hoare logic rule for sequence

Characteristic formula for sequence

Property of characteristic formulae
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Notation system for CF

Definition from previous slide

Characteristic formula for sequence, revisited

Definition of a Coq notation
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Generalization

Other language constructs are handled in a similar way

As a result:

→ CF are fully compositional

→ CF are easy to generate 

→ CF are of linear size

Moreover, thanks to tactics, notation need not be unfolded

...
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Function definitions

For the following definition

we generate two axioms 

where func is an abstract type and Appan abstract predicate

Characteristic formula for function calls
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Example of a recursive function

Consider the following recursive function

We prove its specification by induction on n

We don't need to add anything to support recursion: 
the specification of a recursive functions can be proved 
by induction, using Coq's induction principles
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This local predicate supports application of the frame rule at 
any time and it can be eliminated by framing the empty heap

Frame rule

The frame rule is not syntax directed; how to integrate it?

Insert a predicate at the head of every node in the CF
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Further information

Homepage
→ examples at http://arthur.chargueraud.org/softs/cfml
→ download and try CFML (open source) 

Thanks!

ICFP'11 paper
→ more on how to build characteristic formulae
→ examples of first-class imperative functions

Thesis
→ more on representation predicates (e.g., GraphAdjList)
→ proofs of soundness and completeness


