
Imperial College, London 2011/08/23

Arthur Charguéraud

Characteristic Formulae for
Mechanized Program Verification

Max Planck Institute for Software Systems

2

Correctness as a theorem

– Using a proof assistant, one can state (virtually) any
theorem and (possibly with some effort) build a proof
of this theorem that the proof assistant can check.

– So, in theory, proof assistants can be used to build
machine-checked proofs of program correctness.

– A statement of the form "this programs satisfies this
specification" can be viewed as the statement of a
theorem.

The question is: how?

3

Logical representation of programs

From a logical point of view, what is a program?

– syntactic view: a program is just a piece of syntax

– semantic view: a binary relation between states

– Hoare logic view: a relation between state predicates
(possibly presented as a predicate transformer)

The three views can be formalized in the logic;
but we don't want to manipulate syntax explicitly;
moreover we prefer manipulating predicates directly,
as they allow for abstraction.

Remaining question: can we find an algorithm
that produces, given an arbitrary program, the
corresponding predicate transformer?

4

Characteristic formulae

Program
(Caml code)

Char.Formulae
(Coq axioms)

CFML tool
generates

Verification
(Coq proof)

I have developed an approach to program verification
based on the generation of characteristic formulae (CF)

Specification
(Coq theorem)

Interactive
Coq proof

5

Closely related work

– Hennessy-Milner logic (1980): two processes are
bisimilar iff their characteristic formulae are equivalent

Origins of Characteristic Formulae:

– Honda, Berger & Yoshida (2004,2006): one can build
a most-general specification (i.e. Hoare triple) of any
PCF program, without referring to a representation of
syntax.

→ strong logic: completeness with higher-order fcts

→ yet ad-hoc logic, making it hard to reuse proof tools

6

Characteristic formulae in this work

1) CF expressed in a standard higher-order logic
→ accomodates a standard proof assistant

2) CF with Separation Logic style specification
→ supports modular verification

3) CF of linear size and easy to read
→ allows the approach to scale up

4) Implementation of a CF generator
→ supports verification of real Caml code

7

Proof assistants

No mistake possible:

If all the steps involved in the proof of theorem
are accepted, then the theorem is true

User writes:

– definitions

– statement of theorems

– key steps of reasoning

Proof assistant checks:

– well-formedness of
definitions and statements

– legitimacy of each step
of reasoning

8

Coq at a glance

Theorem statement

Sequence of tactics

Hypotheses

Proof obligations

Current position

9

Specification

Heap h: finite map from locations to values

h : heap heap := fmap loc dyn

dyn := {A:Type; v:A}

Heap predicate H: description of a heap state

H : hprop hprop := heap → Prop

Hoare triple: {H} t {Q} asserts that, in an initial
heap satisfying the predicate H, the evaluation of the
term t terminates and produces a value v such that
the final heap satisfies the predicate (Q v).

H is the pre-condition and Q is the post-condition

10

Characteristic formulae

The characteristic formula of a term , written ,

is a higher-order predicate such that:

→ obtain a predicate capturing the behavior of a
program but not referring to the syntax of its code

→→→→ translates source code into logical predicates

Note that has type "hprop → (A → hprop) → Prop"

11

Soundness and completeness

Soundness: if the CF of a program holds of a
specification, then the program satisfies this spec.

Completeness: if a program satisifies a specification,
then the CF of that program holds of that specification

12

Dijkstra's shortest path algorithm

x

y

v : bool array marking of treated nodes

b : intbar array storing best known distances

q : (int*int) pqueue ordering the nodes to treat

where intbar = Finite of int | Infinite

13

val dijkstra : ((int*int)list)array -> int -> int -> intbar
let dijkstra g s e =

let n = Array. length g in
let b = Array .make n Infinite in
let v = Array .make n false in
let q = Pqueue .create() in
b.(s) <- Finite 0;
Pqueue .push (s,0) q;
while not (Pqueue .is_empty q) do

let (x,dx) = Pqueue .pop q in
if not v.(x) then begin

v.(x) <- true;
let update (y,w) =

let dy = dx + w in
if (match b.(y) with | Finite d -> dy < d

| Infinite -> true)
then (b.(y) <- Finite dy; Pqueue .push (y,dy) q) in

List .iter update g.(x);
end ;

done ;
b.(e)

Implementation

mutable
structures

abstract data
structure

loop

higher-order
function

pattern
matching

14

Material generated by CFML
Module Dijkstra (Pqueue : PqueueSig).

Axiom dijkstra : func.

Axiom dijkstra_cf :
(@CFPrint.tag tag_top_fun _ _ (@CFPrint.tag tag_bod y _ _ (forall K :
(CFHeaps.loc -> (int -> (int -> ((CFHeaps.hprop -> ((_ -> CFHeaps.hprop) ->
Prop)) -> Prop)))), ((is_spec_3 K) -> ((forall g : CFHeaps.loc, (forall s :
int, (forall e : int, ((((K g) s) e) (@CFPrint.tag tag_let_trm (Label_create
'n) _ (local (fun H : CFHeaps.hprop => (fun Q : (_ -> CFHeaps.hprop) =>
(Logic.ex (fun Q1 : (int -> CFHeaps.hprop) => ((Log ic.and (((@CFPrint.tag
tag_apply _ _ ((((@app_1 CFHeaps.loc) int) ml_array _length)...

(** goes on for about 100 more lines *)

End Dijkstra.

→ The axioms are justified by the soundness theorem

func = datatype used
to represent functions

characteristic
formula

15

Shortest path specification

Theorem dijkstra_spec : ∀∀∀∀ g x y G,

nonnegative_edges G ->

x \in nodes G ->

y \in nodes G ->

(App dijkstra g x y)

(g ~> GraphAdjList G)

(fun d => [d = dist G x y]

* g ~> GraphAdjList G)

mathematical graph

pre-condition

post-condition

→ Understanding the specification does not require
particular skills with proof assistants

16

Main invariant
Definition hinv Q B V : hprop :=

g ~> GraphAdjList G (* G : graph int *)
* v ~> Array V (* V : array bool *)
* b ~> Array B (* B : array intbar *)
* q ~> Pqueue Q (* Q : multiset(int*int) *)
* [inv Q B V].

Record inv Q B V : Prop := {
Bdist: ∀∀∀∀x, x \in nodes G -> V\(x) = true ->

B\(x) = dist G s x;

Bbest: ∀∀∀∀x, x \in nodes G -> V\(x) = false ->
B\(x) = mininf weight (crossing V x);

Qcorr: ∀∀∀∀x, (x,d) \in Q ->
x \in nodes G /\ ∃∃∃∃p, crossing V x p /\ weight p = d;

Qcomp: ∀∀∀∀x p, x \in nodes G -> crossing V x p ->
∃∃∃∃d, (x,d) \in Q /\ d <= weight p;

SizeV: length V = n;

sizeB: length B = n }

17

Main lemma about invariant
Lemma inv_update : forall L V B Q x y w dx dy,

x \in nodes G ->
has_edge G x y w ->
dy = dx + w ->
Finite dx = dist G s x ->
inv (V\(x:=true)) B Q (new_crossing x L V) ->
If len_gt (B\(y)) dy

then inv (V\(x:=true)) (B\(y:=Finite dy)) (\{(y, dy)} \u Q) ...
else inv (V\(x:=true)) B Q (new_crossing x ((y,w):: L) V) .

Proof.
introv Nx Ed Dy Eq [Inv SV SB]. sets_eq V': (V\(x:= true)).
lets NegP: nonneg_edges_to_path Neg.
intros z. lets [Bd Bb Hc Hk]: Inv z. tests (z = y).
(* case z = y *)
forwards~ (px&Px&Wx&Mx): (@mininf_finite_inv (path int)) (eq_sym Eq).
lets Ny: (has_edge_in_nodes_r Ed).
sets p: ((x,y,w)::px).
asserts W: (weight p = dy). subst p. rewrite weight _cons. math.
tests (V'\(y)) as C; case_If as Nlt.
(* subcase y visisted, distance improved *)
false. rewrite~ Bd in Nlt. forwards M: mininf_len_g t Nlt p; subst~ p.

rewrite weight_cons in M. math.
(* subcase y visisted, distance not improved *)
...

no reference to CF

180 lines of proofs in
total for the invariant
(a third in this lemma)

maths-style reasoning
in terms of multisets

8 seconds to check

All the nontrivial
reasoning is there

18

Verification of the code
Theorem dijkstra_spec : ∀∀∀∀ g x y G, ... (App dijkstra g x y) ...
Proof.
xcf. introv Pos Ns De. unfold GraphAdjList at 1. hdata_s impl.
xextract as N Neg Adj. xapp . intros Ln. rewrite <- Ln in Neg.
xapps. xapps. xapps. xapps*. xapps.
set (data := fun B V Q => g ~> Array N *

v ~> Array V * b ~> Array B * q ~> Heap Q).
set (hinv := fun VQ => let '(V,Q) := VQ in

Hexists B, data B V Q * [inv G n s V B Q (crossing G s V)]).
xseq (# Hexists V, hinv (V,\{})).
set (W := lexico2 (binary_map (count (= true)) (upt o n))

(binary_map card (downto 0))).
xwhile_inv W hinv.
(* -- initial state satisfies the invariant -- *)
refine (ex_intro' (_,_)). unfold hinv,data. hsimpl.

applys_eq~ inv_start 2. permut_simpl.
(* -- verification of the loop -- *)
intros [V Q]. unfold hinv. xextract as B Inv. xwhile_body .
(* ---- loop condition -- *)
unfold data. xapps. xret.
(* ---- loop body -- *)
...
Qed.

invariants

termination

x-tactics

lemma
application

40 lines of proofs +
8 lines of invariants

15 seconds
to check

19

Pos : nonnegative_edges G
Ns : s \in nodes G
Ne : e \in nodes G
Neg : nodes_index G n
Adj : forall x y w : int,

x \in nodes G -> Mem (y, w) (N\(x)) = has_edge G x y w
Nx : x \in nodes G
Vx : ~ V\(x)
Dx : Finite dx = dist G s x
Inv : inv G n s V' B Q (new_crossing G s x L' V)
EQ : N\(x) = rev L' ++ (y, w) :: L
Ew : has_edge G x y w
Ny : y \in nodes G
______________________________________(1/6)
(Let dy := Ret dx + w in

Let _x38 := App ml_array_get b y ; in
If_ Match

(Case _x38 = Finite d [d] Then Ret (dy '< d) Else
(Case _x38 = Infinite Then Ret true Else Done))

Then (App ml_array_set b y (Finite dy) ;) ;;
App push (y, dy) h ; Else (Ret tt))

(q ~> Pqueue Q * b ~> Array B * v ~> Array V' * g ~> Array N)
(fun _:unit => hinv' L)

Example of a proof obligation

well-named hypotheses

char. formula

pre-condition

post-condition

20

Programs verified

Purely functional data structures:
examples from Okasaki's book, including
red-black trees, splay heaps, binomial
heaps, pairing heaps, realtime queues,
bootstrapped queues, random access lists

Interaction between effects and functions:

– higher-order iterators on mutable structures (iter)

– closure with private local state (counter function)

– CPS functions (Reynold's CPS-append challenge)

– recursion through the store (Landin's knot)

Imperative algorithms & data structures: dijsktra's
shortest path, mutable lists, union-find, sparse arrays

21

Example of specification

Thus, the Hoare triple {H} t {Q} is true

t = let x = !r + 1 in s := x + 2

H = (r ~~> 3) * (s ~~> 9)

Q' = fun v => [v = 4] * (r ~~> 3) * (s ~~> 9)

The Hoare triple {H} t1 {Q'} is true

t1 t2

Q' x = [x = 4] * (r ~~> 3) * (s ~~> 9)

Q = fun _:unit => (r ~~> 3) * (s ~~> 6)

The Hoare triple {Q' x} t2 {Q} is true

22

CF for let-expressions

Rule:

Goal:

Definition:

23

Notation system for CF

CF for let-binding:

Definition of a Coq notation:

CF for let-binding, reformulated:

→→→→ translate a source code into a logical predicate

24

Summary of CF generation

→ Characteristic formulae are easy to generate

→ Characteristic formulae are of linear size

→ Characteristic formulae read like source code

→ The user never needs to unfold the definitions

25

Conclusion

– A new, practical approach to program verification

– Soundness and completeness proofs

– Implementation: CFML, from Caml to Coq

– Examples: verification can be achieved at fairly
reasonable cost even for complex algorithms

The end!

Further information and examples: http://arthur.chargueraud.org/

