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Correctness as a theorem

– Using a proof assistant, one can state (virtually) any 
theorem and (possibly with some effort) build a proof 
of this theorem that the proof assistant can check.

– So, in theory, proof assistants can be used to build 
machine-checked proofs of program correctness.

– A statement of the form "this programs satisfies this 
specification" can be viewed as the statement of a 
theorem.

The question is: how?
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Logical representation of programs

From a logical point of view, what is a program?

– syntactic view: a program is just a piece of syntax

– semantic view: a binary relation between states

– Hoare logic view: a relation between state predicates
(possibly presented as a predicate transformer)

The three views can be formalized in the logic; 
but we don't want to manipulate syntax explicitly; 
moreover we prefer manipulating predicates directly, 
as they allow for abstraction.

Remaining question: can we find an algorithm 
that produces, given an arbitrary program, the 
corresponding predicate transformer?
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Characteristic formulae

Program
(Caml code) 

Char.Formulae 
(Coq axioms)

CFML tool
generates

Verification
(Coq proof)

I have developed an approach to program verification 
based on the generation of characteristic formulae (CF)

Specification 
(Coq theorem)

Interactive 
Coq proof
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Closely related work 

– Hennessy-Milner logic (1980): two processes are 
bisimilar iff their characteristic formulae are equivalent

Origins of Characteristic Formulae:

– Honda, Berger & Yoshida (2004,2006): one can build 
a most-general specification (i.e. Hoare triple) of any 
PCF program, without referring to a representation of 
syntax. 

→ strong logic: completeness with higher-order fcts

→ yet ad-hoc logic, making it hard to reuse proof tools
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Characteristic formulae in this work

1) CF expressed in a standard higher-order logic
→ accomodates a standard proof assistant

2) CF with Separation Logic style specification
→ supports modular verification

3) CF of linear size and easy to read
→ allows the approach to scale up

4) Implementation of a CF generator
→ supports verification of real Caml code
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Proof assistants

No mistake possible: 

If all the steps involved in the proof of theorem 
are accepted, then the theorem is true

User writes:

– definitions

– statement of theorems

– key steps of reasoning

Proof assistant checks:

– well-formedness of 
definitions and statements

– legitimacy of each step 
of reasoning
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Coq at a glance

Theorem statement

Sequence of tactics

Hypotheses

Proof obligations

Current position
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Specification

Heap h: finite map from locations to values

h : heap heap := fmap loc dyn       

dyn := {A:Type; v:A}

Heap predicate H: description of a heap state

H : hprop hprop := heap → Prop

Hoare triple:  {H} t {Q}  asserts that, in an initial 
heap satisfying the predicate H, the evaluation of the 
term t terminates and produces a value v such that 
the final heap satisfies the predicate (Q v).

H is the pre-condition and Q is the post-condition
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Characteristic formulae

The characteristic formula of a term   , written     , 

is a higher-order predicate such that:

→ obtain a predicate capturing the behavior of a 
program but not referring to the syntax of its code

→→→→ translates source code into logical predicates

Note that       has type "hprop → (A → hprop) → Prop"
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Soundness and completeness

Soundness: if the CF of a program holds of a 
specification, then the program satisfies this spec.

Completeness: if a program satisifies a specification, 
then the CF of that program holds of that specification
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Dijkstra's shortest path algorithm

x

y

v : bool array marking of treated nodes

b : intbar array storing best known distances 

q : (int*int) pqueue ordering the nodes to treat

where intbar = Finite of int | Infinite
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val dijkstra : ((int*int)list)array -> int -> int ->  intbar
let dijkstra g s e =

let n = Array. length g in
let b = Array .make n Infinite in
let v = Array .make n false in
let q = Pqueue .create() in
b.(s) <- Finite 0;
Pqueue .push (s,0) q;
while not ( Pqueue .is_empty q) do

let (x,dx) = Pqueue .pop q in
if not v.(x) then begin

v.(x) <- true;
let update (y,w) =

let dy = dx + w in
if ( match b.(y) with | Finite d -> dy < d

| Infinite -> true)
then (b.(y) <- Finite dy; Pqueue .push (y,dy) q) in

List .iter update g.(x);
end ;

done ;
b.(e)

Implementation

mutable 
structures

abstract data 
structure

loop

higher-order 
function

pattern 
matching
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Material generated by CFML
Module Dijkstra (Pqueue : PqueueSig).

Axiom dijkstra : func.

Axiom dijkstra_cf : 
(@CFPrint.tag tag_top_fun _ _ (@CFPrint.tag tag_bod y _ _ (forall K :  
(CFHeaps.loc -> (int -> (int -> ((CFHeaps.hprop -> ((_ -> CFHeaps.hprop) -> 
Prop)) -> Prop)))), ((is_spec_3 K) -> ((forall g : CFHeaps.loc, (forall s : 
int, (forall e : int, ((((K g) s) e) (@CFPrint.tag tag_let_trm (Label_create 
'n) _ (local (fun H : CFHeaps.hprop => (fun Q : (_ -> CFHeaps.hprop) => 
(Logic.ex (fun Q1 : (int -> CFHeaps.hprop) => ((Log ic.and (((@CFPrint.tag 
tag_apply _ _ ((((@app_1 CFHeaps.loc) int) ml_array _length)... 

(** goes on for about 100 more lines *)

End Dijkstra.

→ The axioms are justified by the soundness theorem

func = datatype used 
to represent functions

characteristic 
formula
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Shortest path specification

Theorem dijkstra_spec : ∀∀∀∀ g x y G,

nonnegative_edges G ->

x \in nodes G -> 

y \in nodes G ->

(App dijkstra g x y)

(g ~> GraphAdjList G) 

(fun d => [d = dist G x y] 

\* g ~> GraphAdjList G) 

mathematical graph

pre-condition

post-condition

→ Understanding the specification does not require 
particular skills with proof assistants
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Main invariant
Definition hinv Q B V : hprop := 

g ~> GraphAdjList G  (* G : graph int *)
\* v ~> Array V         (* V : array bool *)
\* b ~> Array B         (* B : array intbar *)
\* q ~> Pqueue Q        (* Q : multiset(int*int) *)
\* [inv Q B V].

Record inv Q B V : Prop := {
Bdist: ∀∀∀∀x, x \in nodes G -> V\(x) = true -> 

B\(x) = dist G s x;

Bbest: ∀∀∀∀x, x \in nodes G -> V\(x) = false -> 
B\(x) = mininf weight (crossing V x);

Qcorr: ∀∀∀∀x, (x,d) \in Q ->
x \in nodes G /\ ∃∃∃∃p, crossing V x p /\ weight p = d;

Qcomp: ∀∀∀∀x p, x \in nodes G -> crossing V x p ->
∃∃∃∃d, (x,d) \in Q /\ d <= weight p;

SizeV: length V = n;

sizeB: length B = n }
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Main lemma about invariant
Lemma inv_update : forall L V B Q x y w dx dy,

x \in nodes G ->
has_edge G x y w ->
dy = dx + w ->
Finite dx = dist G s x ->
inv (V\(x:=true)) B Q (new_crossing x L V) -> 
If len_gt (B\(y)) dy 

then inv (V\(x:=true)) (B\(y:=Finite dy)) (\{(y, dy )} \u Q) ...     
else inv (V\(x:=true)) B Q (new_crossing x ((y,w):: L) V) .

Proof.
introv Nx Ed Dy Eq [Inv SV SB]. sets_eq V': (V\(x:= true)).
lets NegP: nonneg_edges_to_path Neg.
intros z. lets [Bd Bb Hc Hk]: Inv z. tests (z = y).
(* case z = y *)
forwards~ (px&Px&Wx&Mx): (@mininf_finite_inv (path int)) (eq_sym Eq).
lets Ny: (has_edge_in_nodes_r Ed).
sets p: ((x,y,w)::px). 
asserts W: (weight p = dy). subst p. rewrite weight _cons. math. 
tests (V'\(y)) as C; case_If as Nlt.
(* subcase y visisted, distance improved *)
false. rewrite~ Bd in Nlt. forwards M: mininf_len_g t Nlt p; subst~ p.

rewrite weight_cons in M. math.
(* subcase y visisted, distance not improved *)
...

no reference to CF

180 lines of proofs in 
total for the invariant 
(a third in this lemma)

maths-style reasoning
in terms of multisets

8 seconds to check

All the nontrivial 
reasoning is there
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Verification of the code
Theorem dijkstra_spec : ∀∀∀∀ g x y G, ... (App dijkstra g x y) ...
Proof.
xcf. introv Pos Ns De. unfold GraphAdjList at 1. hdata_s impl. 
xextract as N Neg Adj. xapp . intros Ln. rewrite <- Ln in Neg. 
xapps. xapps. xapps. xapps*. xapps.
set (data := fun B V Q => g ~> Array N \* 

v ~> Array V \* b ~> Array B \* q ~> Heap Q).
set (hinv := fun VQ => let '(V,Q) := VQ in

Hexists B, data B V Q \* [inv G n s V B Q (crossing  G s V)]).
xseq (# Hexists V, hinv (V,\{})). 
set (W := lexico2 (binary_map (count (= true)) (upt o n))

(binary_map card (downto 0))).
xwhile_inv W hinv. 
(* -- initial state satisfies the invariant -- *)
refine (ex_intro' (_,_)). unfold hinv,data. hsimpl.

applys_eq~ inv_start 2. permut_simpl.
(* -- verification of the loop -- *) 
intros [V Q]. unfold hinv. xextract as B Inv. xwhile_body . 
(* ---- loop condition -- *) 
unfold data. xapps. xret.
(* ---- loop body -- *)
...
Qed.

invariants

termination

x-tactics

lemma 
application

40 lines of proofs + 
8 lines of invariants

15 seconds 
to check



19

Pos : nonnegative_edges G
Ns : s \in nodes G
Ne : e \in nodes G
Neg : nodes_index G n
Adj : forall x y w : int,

x \in nodes G -> Mem (y, w) (N\(x)) = has_edge G x y w
Nx : x \in nodes G
Vx : ~ V\(x)
Dx : Finite dx = dist G s x
Inv : inv G n s V' B Q (new_crossing G s x L' V)
EQ : N\(x) = rev L' ++ (y, w) :: L
Ew : has_edge G x y w
Ny : y \in nodes G
______________________________________(1/6)
(Let dy := Ret dx + w in

Let _x38 := App ml_array_get b y ; in
If_ Match 

(Case _x38 = Finite d [d] Then Ret (dy '< d) Else 
(Case _x38 = Infinite Then Ret true Else Done))

Then (App ml_array_set b y (Finite dy) ;) ;;
App push (y, dy) h ; Else (Ret tt))

(q ~> Pqueue Q \* b ~> Array B \* v ~> Array V' \* g ~> Array N)
(fun _:unit => hinv' L)

Example of a proof obligation

well-named hypotheses

char. formula

pre-condition

post-condition
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Programs verified

Purely functional data structures: 
examples from Okasaki's book, including 
red-black trees, splay heaps, binomial 
heaps, pairing heaps, realtime queues, 
bootstrapped queues, random access lists 

Interaction between effects and functions:

– higher-order iterators on mutable structures (iter)

– closure with private local state (counter function)

– CPS functions (Reynold's CPS-append challenge)

– recursion through the store (Landin's knot)

Imperative algorithms & data structures: dijsktra's 
shortest path, mutable lists, union-find, sparse arrays
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Example of specification

Thus, the Hoare triple {H} t {Q} is true

t = let x = !r + 1 in s := x + 2

H = (r ~~> 3) \* (s ~~> 9)

Q' = fun v => [v = 4] \* (r ~~> 3) \* (s ~~> 9) 

The Hoare triple {H} t1 {Q'} is true

t1 t2

Q' x = [x = 4] \* (r ~~> 3) \* (s ~~> 9)

Q = fun _:unit => (r ~~> 3) \* (s ~~> 6) 

The Hoare triple {Q' x} t2 {Q} is true
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CF for let-expressions

Rule:

Goal:

Definition:
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Notation system for CF

CF for let-binding:  

Definition of a Coq notation:

CF for let-binding, reformulated:

→→→→ translate a source code into a logical predicate
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Summary of CF generation

→ Characteristic formulae are easy to generate

→ Characteristic formulae are of linear size

→ Characteristic formulae read like source code

→ The user never needs to unfold the definitions
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Conclusion

– A new, practical approach to program verification

– Soundness and completeness proofs

– Implementation: CFML, from Caml to Coq

– Examples: verification can be achieved at fairly 
reasonable cost even for complex algorithms



The end!

Further information and examples: http://arthur.chargueraud.org/


