Characteristic Formulae for
Mechanized Program Verification

Arthur Charguéraud

Max Planck Institute for Software Systems

Imperial College, London 2011/08/23

Correctness as a theorem

— Using a proof assistant, one can state (virtually) any
theorem and (possibly with some effort) build a proof
of this theorem that the proof assistant can check.

— A statement of the form "this programs satisfies this
specification” can be viewed as the statement of a

theorem.

- So, in theory, proof assistants can be used to build
machine-checked proofs of program correctness.

The question is: how?

Logical representation of programs

From a logical point of view, what is a program?
- syntactic view: a program is just a piece of syntax
- semantic view: a binary relation between states

- Hoare logic view: a relation between state predicates
(possibly presented as a predicate transformer)

The three views can be formalized in the logic;
but we don't want to manipulate syntax explicitly;

moreover we prefer manipulating predicates directly,
as they allow for abstraction.

Remaining question: can we find an algorithm
that produces, given an arbitrary program, the
corresponding predicate transformer?

Characteristic formulae

I have developed an approach to program verification
based on the generation of characteristic formulae (CF)

d \f

-

Program Char.Formulae Specification
(Caml code) (Coq axioms) (Coq theorem)
U Interactive
CFML tool Coq proof
generates

Verification
(Coq proof)

Closely related work

Origins of Characteristic Formulae:

— Hennessy-Milner logic (1980): two processes are
bisimilar iff their characteristic formulae are equivalent

— Honda, Berger & Yoshida (2004,2006): one can build
a most-general specification (i.e. Hoare triple) of any

PCF program, without referring to a representation of
syntax.

- strong logic: completeness with higher-order fcts
- yet ad-hoc logic, making it hard to reuse proof tools

Characteristic formulae in this work

1) CF expressed in a standard higher-order logic
-~ accomodates a standard proof assistant

2) CF with Separation Logic style specification
- supports modular verification

3) CF of linear size and easy to read
- allows the approach to scale up

4) Implementation of a CF generator
- supports verification of real Caml code

Proof assistants

User writes: Proof assistant checks:

— definitions — well-formedness of
definitions and statements

— |legitimacy of each step
of reasoning

— statement of theorems
— key steps of reasoning

No mistake possible:

If all the steps involved in the proof of theorem
are accepted, then the theorem is true

Coqg at a glance

Lok Coglder®

i
E
E

File Edit MNawvigation Try Tactics Templates Queries Display Compile Windows

E:J E& {1 Y i% :: £} e3 o

<~ LibListw | ¢ LibFix.v

Help

consistent set E 8§ ->
(forall fi, & f£fi -> partial fixed point E F fi) ->

Theorem statement ===

exists f:A-->B, lub (extends E) 8§ £ /\ partial fixed poinf—

| ¥

Sequence of tactics ...«

SELE Ui [LUll X —F EBXISLE 1I,; TOVELES X L[IJ.

exists (Build partial f D). split. split.

(* proof that £ is an upper bound *)

intres f£f' Sf'. split; simpl.

intros x Dx. exists- f'.

intres x D'x. unfold f. destruct if as Dx.

spec epsilon~ f£' as fi [Si Domi]. apply=~ Cons.

(* proof that f is the smallest upper bound *#)
intros f' Upper'. split; simpl.

intros x (fi&Ci&Di). apply~ (Upper' £i C€i).

intres x Dx. unfold f. destruct if.

spec_epsilo as fi [Si Domi]. apply~ (Upper' fi).
(* proof that is a fixed point *)

intres £' Eg'. s

imtira r Tidwr Saocoarto~ Thwre {T9 xrh

sets f: (fun x => if classicT (D x) then epsilon (covers

pls. intros = Dx. lets (f£i&Ci&Di): Dx.

x)

apply=~ (Fixi cC/f2
apply~ (trans el

2o ezsiton-:o CUFFE@NTE position

ed.

subgoals

: Type

: Type

t Inhabited B

: binary B

tA -> B) —> &

oo H W e R

s
Equiv : equiwv E
Cons :
Fizxi 1 forall fi
F fi

covers := fun (x

t A ~> &k =—> B => Prop

=>
A =>
bitrary : A2 -> B

=]
b
el

Upper' : upper bound (extends E) 5 f°'

A --> B -> Prop

consistent set E S

Hypotheses

o B

: A -—-> B, 8 fi -> partial fixed point E
: A) (fi : A --> B) => § fi /\ dom fi x

exists fi, covers x fi : A -> Prop
If D x then epsilon (covers x) x else ar

partial fixed po

Proof obligations

]

|4

|»]

Ready, proving lub_of consistent set

Line: 299 Char: 4 Coglde startee, ﬂ

Specification

Heap h: finite map from locations to values
h : heap heap := fmap loc dyn
dyn := {A:Type; v:A}

Heap predicate H: description of a heap state
H : hprop hprop := heap - Prop

Hoare triple: {H} t {Q} asserts that, in an initial
heap satisfying the predicate H, the evaluation of the
term t terminates and produces a value v such that
the final heap satisfies the predicate (Q v).

H is the pre-condition and Q is the post-condition

Characteristic formulae

The characteristic formula of a term {, written [[t]],
is a higher-order predicate such that:

VH.YQ. [IJHQ < {H}t{Q)

- obtain a predicate capturing the behavior of a
program but not referring to the syntax of its code

- translates source code into logical predicates

Note that [¢] has type "hprop — (A - hprop) - Prop"

10

Soundness and completeness

Soundness: if the CF of a program holds of a
specification, then the program satisfies this spec.

(ti| H { , U/n
4 1] H Q —~ Ju.3n. " b vy
Hh QUi

4

Completeness: if a program satisifies a specification,
then the CF of that program holds of that specification

tgdng, = [t] [] (Ax. [x = n])

11

Dijkstra's shortest path algorithm

y
X
v : bool array marking of treated nodes
b : intbar array storing best known distances

g : (int*int) pqueue ordering the nodes to treat

where intbar = Finite of int | Infinite

12

Implementation

val dijkstra : ((int*int)list)array -> int -> int -> intbar
let dijkstragse=
let n= Array. lengthg in mutable
let b= Array .make n Infinite in / structures
let v= Array .make n false in
let q= Pqueue.create() In |00p
b.(s) <- Finite 0; /
Pqueue .push (s,0) g;
while not (Pqueue.is_empty q) do patte!‘n
let (x,dx)= Pqueue.popq in matching
If not v.(xX) then begin
Vv.(X) <- true; higher-order
let update (y,w) = function
let dy=dxg In
if (match b.(y) ' Finited ->dy <d
| Infinite -> true)
then (b. -~ Finite dy; Pqueue .push (y,dy) q)
List .iter update g.(x);
end; abstract data
done;
b.(e) structure

in

13

Material generated by CFML

Module Dijkstra (Pqueue : PgueueSig).

Axiom dijkstra : func.

Axiom dijkstra_cf:

func = datatype used
to represent functions

(@CFPrint.tag tag_top_fun __ (@CFPrint.tag tag_bod

y _ (forall K:
((_ -> CFHeaps.hprop) ->

(CFHeapS_loc -> (int > (int > ((CEHeane hnran ->

Prop)) -> Prop)))), ((is_spec
int, (forall e : int, (K g) S) €

'n) _ (local (fun H : CFHeap!

characteristic
formula

CFHeaps.loc, (forall s :
tag_let trm (Label_create
-> CFHeaps.hprop) =>

(Logic.ex (fun Q1 : (int->C

rNncays.Tipruy) = Uy

tag_apply __ ((((@app_1 CFHeaps.loc) int) ml_array
(** goes on for about 100 more lines *)

End Dijkstra.

-~ The axioms are justified by the

ic.and (((@CFPrint.tag
_length)...

soundness theorem

14

Shortest path specification

Theorem dijkstra_spec : O gxyG,
nonnegative_edges G -> \
x\in nodes G -> mathematical graph
y \in nodes G ->
(App dijkstra g x y) pre-condition

(g ~> GraphAdijList G)
(fund =>[d =dist G x Y]
* g ~> GraphAdjList G)

post-condition

- Understanding the specification does not require
particular skills with proof assistants

Main invariant

Definition hinv Q BV : hprop =

g ~> GraphAdjList G (* G : graphint *)
* v ~> Array V (* V : array bool *)
* b ~> Array B (* B : array intbar *)
* g ~> Pqueue Q (* Q : multiset(int*int) *)
* [inv Q B V].

Record InvQ BV : Prop :={
Bdist: [x, x \in nodes G -> V\(x) = true ->
B\(x) = dist G s x;
Bbest: [x, x\in nodes G -> V\(x) = false ->
B\(x) = mininf weight (crossing V x);
Qcorr: [0Ox, (x,d)\in Q ->

x \in nodes G /\ [, crossing V x p/\ weight p =d;

Qcomp: 0Ox p, x\in nodes G -> crossing V x p ->
[d, (x,d)\in Q A d <= weight p;

SizeV: length V = n;

sizeB: length B =n}

16

Main lemma about invariant

Lemma inv_update : foralLVB Qxywdxd
x\in nodes G ->

no reference to CF

has edge G xyw ->

dy =dx +w ->

Finite dx = dist G s x ->

inv (V\(x:=true)) B Q (new_crossing x L V) ->

maths-style reasoning
in terms of multisets

If len_gt (B\(y)) dy

}

then inv (V\(x:=true)) (B\(y:=Finite dy)) (\{(y, dy N} \uQ) ...
else inv (V\(x:=true)) B Q (new_crossing x ((y,w):: L) V).

Proof.

introv Nx Ed Dy Eq [Inv SV SB]. sets_eq V": (V\(x:
lets NegP: nonneg_edges to path Neg.

intros z. lets [Bd Bb Hc HK]: Inv z. tests (z = y).

All the nontrivial
reasoning is there

(*casez=y?*

forwards~ (px&Px&Wx&MX): (@mininf_finite_inv (
lets Ny: (has_edge_in_nodes_r Ed).

sets p: ((X,y,w)::px).

asserts W: (weight p = dy). subst p. rewrite weight

180 lines of proofs in
total for the invariant
(a third in this lemma)

tests (V'\(y)) as C; case_|If as NIt.

(* subcase y visisted, distance improved *)
false. rewrite~ Bd in Nlt. forwards M: mininf_len_g

8 seconds to check

rewrite weight_cons in M. math.
(* subcase y visisted, distance not improved *)

Verification of the code

Theorem dijkstra_spec . O gxyG,...(App dijkstrag xy) ...

Proof x-tactics
xcf. introv Pos Ns De. unfold GraphAdijList . as impl.
xextract as N Neg Adj. xapp . #ros Ln. rewrite <- Ln in Neg.

Xapps. Xapps. xapps. Xxapps*. xapps. - -
set (data := fun BV Q => g ~> Array N * Invariants

v ~> Array V * b ~> Array B * g ~> Heap Q).
set (hinv ;= fun VQ =>let '(V,Q) :=VQ in

—
Hexists B, data BV Q * [inv G ns V B Q (crossing i i
— termination
0

xseq (# Hexists V, hinv (V,\{})).
set (W :=lexico2 (binary_map (count (= true)) (upt n))
(binary_map card (downto 0))).
xwhile_inv W hinv. lemma

(* -- Initial state satisfies the invariant -- *) a pplication

refine (ex_intro' . unfold W
applys_eqg~ iny_start 2. pefmut_simpl.

(* -- verification of the loop -- *)

intros [V Q]. unfold hinv. .)
(— loop condition -) | 40 lines of proofs + ~ 15 seconds

unfold data. ~ xapps. xre/ 8 |jnes of invariants to check

(* ---- loop body -- *)

ded.

Example of a proof obligation

Pos : nonnegative_edges G

NS - 5 \in nodes G —— Wwell-named hypotheses

Ne : e\in nodes G
Neg : nodes_index G n
Adj : forall x y w : int,

x \in nodes G -> Mem (y, w) (N\(x)) = has_edge G x y W

Nx : X \in nodes G
VX @ ~ V\(X)
Dx : Finite dx = dist G s x

Inv:invGnsV BQ (new crossing GsxL'V)

EQ:N\(x)=rev L ++(y,w):L
Ew : has_edge G xyw
Ny : y \in nodes G

(1/6)

(Letdy ;= Retdx + win
Let x38 :=App ml _array getby;in
If Match

— char. formula

(Case x38 = Finite d [d] Then Ret (dy '< d) Else
(Case x38 = Infinite Then Ret true Else Done))

Then (App ml_array _set b y (Finite dy) ;) ;;
App push (y, dy) h ; Else (Ret tt))

.~ Ppre-condition

(g ~> Pqueue Q * b ~> Array B * v ~> Array V' * g ~> Array N)

(fun _:unit => hinv' L) —

post-condition o

Programs verified

Purely functional data structures: Purel functiona
Jata dtructures

biris Ohasahi E0eE
4

examples from Okasaki's book, including
red-black trees, splay heaps, binomial
heaps, pairing heaps, realtime queues,
bootstrapped queues, random access lists

Imperative algorithms & data structures: dijsktra's
shortest path, mutable lists, union-find, sparse arrays

Interaction between effects and functions:

— higher-order iterators on mutable structures (iter)
— closure with private local state (counter function)
— CPS functions (Reynold's CPS-append challenge)
— recursion through the store (Landin's knot)

20

Example of specification

t = let x =Ir+1 n s = x+2
—— \ v J
t, L,
H = (r~~>3)*(s~~>9)
Q' = funv=>[v=4]*(r~~>3)*(s~~>09)

The Hoare triple {H} t, {Q'} is true

Q' X = [x=4]*(r~~>3)*(s~~>09)
Q = fun _:unit=>(r ~~>3) * (s ~~> 6)

The Hoare triple {Q' x} &, {Q} is true

Thus, the Hoare triple {H} t {Q} is true

21

CF for let-expressions

Rule: (HY t; {Q'} V. {Q x} t2 {Q}
{H} (letx =t1ints) {Q}

Goal: VH.VQ. [t|HQ <+<— {H}t{Q}

Definition:
[[Iet:z:‘ = 11 intg]] =

ANH. Q. JQ)'. [[tl]]HQ’ N V. [[tg]] (Q!.CL‘) Q

22

Notation system for CF

CF for let-binding:
[[Iet:z; = intg]] —

ANH.AQ. Q. [t H Q" N Va. [t2] (Q'x) Q
Definition of a Coq notation:
(Let © = F1 in F3) =

AH Q. 3Q'. FIHQ A Va. Fo(Q'2) Q
CF for let-binding, reformulated:

lletx =ti1ints] = (Let x = [t1] in [t2])

- translate a source code into a logical predicate

23

Summary of CF generation

=4 0O 0O 0O

i
]

if vthent, else 5]

letrec fax =tiints]
crash]
while t1 dszﬂ

€
[f
[
[letx =ty ints]
|
|
|
I

fori = atobdot]

haracteristic formu
haracteristic formu
haracteristic formu

Ret v

App fv

If v then [t;] else [t5]
Let x = [t1] in [t5]

Let rec f o = [ti] in [ts]
Crash

While [[?fl]] Do [[?fg]]

For i = a To b Do [t]

ae are easy to generate
ae are of linear size
ae read like source code

ne user never needs to unfold the definitions

24

Conclusion

- A new, practical approach to program verification
- Soundness and completeness proofs
- Implementation: CFML, from Caml to Coq

- Examples: verification can be achieved at fairly
reasonable cost even for complex algorithms

25

The end!

Further information and examples: http://arthur.chargueraud.org/

