Oracle Scheduling: Controlling Granularity
In Implicitly Parallel Languages

Arthur Charguéraud
with Umut Acar and Mike Rainey

Max Planck Institute for Software Systems Saarbrick€11/06/17
1

Quick summary (1/2)

Parallelism is expressed through parallel tuples
(| t1, t2])

Computations are represented using series-parall®@AGs

W :"work" S: "span”
= nb nodes = length of
/ critical path
/ °

\4

Average parallelism: P = W/S (equal to the maximum speedup)

Parallelism is plenty when P)) P (i.e. "parallel slackness")

Quick summary (2/2)

A ready taskis a task that is waiting to be executed

already

< executed
currently

executing — »

~ ready task

4

not yet
discovered

.

A greedy schedulemever leaves a processor idle if there is a readggk

Brent's theorem: any greedy scheduler achieves
Tpo<sWP+S
where T is the execution time orP processors

Plan of this talk

— Brent's theorem and generalization
— Granularity control using an oracle
— Implementation

— Results

BFS achieves Brent's theorem

Consider a breadth-first scheduling policy for exeating tasks
Let us prove that this policy achieves Brent's bouth T, < W/P + S

- lay out the SP-dag according to the depth of thsks the root

assume P=2

depth levels

T

['W./P]
)
<1 step
< 2 steps
< 2 steps
< 3 steps
< 2 steps
<1 step
<1 step
<1 step

W =19
Proof:

S S
Wi Z'—l Wi
1) < =
Z(5 +1) < S

< 13 steps

W
< 45

P

Limitation of unit costs

In the model used so far, every task has a unit cos

In reality, tasks may have very different costs:
basic operation 1 cycle
memory read, cache hit 10 cycles
memory read, cache miss 100 cycles

function call 100 cycles
fork/join operation 500 cycles
cost of a steal > 1000 cycles

Note: it is not correct to encode a task of size 2 asgaiential corposition
of two unit tasks, because "preemption” is notvedld: the scheduler cannot

suspend the task in the middle of its execution

Weighted SRlags

We thus generalize the model to have a cost for eydask:

W : "work" S: "span"
= sum of the weight = weight of the
) heaviest path

Question: does Brent's theorem still hold in this gneralized model?

Proof of the generalized Brent's theorem

. | < .
fhe goatis o prove Tp< WP +S time

Divide the execution time: T, = Tl + Tpartial \where
—THl': the amount of time during which all processors ag busy
—Tratial - the time during which at least one processor islle

*) During time T™I exactly P processors are working, thus executing a
total of PO work, which cannot exceed the total work\. Thus,

Tl < W/P

*) So, there remains to establish
Trartal <« §

Proving the inequality onrftal

Idea of the proof: find a path tin the SP-dag such that covergrarta

— In the sense that, for any time at which not all th processors are
busy, a task from the pathrtis executing

N —

time

N

E—

" task from
the patht

Once we find such a path, we can conclude as follew

T partial

weight of the pathTt
maximum weight of a path
S

I IA A

Graham diagrams

A Graham diagram can be used to represent a schedud) of tasks
— blocks indicate scheduling of a task on a given poessor
— arrows indicate task dependencies: they go from lefo right

time
P1
P2
P3

D
Processors /zluration of the tavs>\

start of a task end of the task

10

Construction of a path coveringapral

Construct the path tthat coversTratia packwards from the end

‘:|-fu||

*) Task starting in a full-activity period (gray background)
— must depend on another task immediately preceeding
*) Task starting in a partial-activity period (whit e background)
- must depend on a task executing at the beginning

11

Summary

For a SP-dag with workW and spansS, any greedy scheduler achieves:

TP — TfuII + Tpartial

<
<
<

WI/P + weight of a particular path 1t
W/P + maximum weight of a path
WI/P + S

12

— Brent's theorem and generalization
— Granularity control using an oracle
— Implementation

— Results

13

Scheduling decisions

On a parallel tuple(| t1, t2 |), the scheduler has two options:

1) Create two parallel tasks,
execute the fork and the join

— this induces an extra cost
"scheduling cost" T

&

W=W1+W2+1
S =max(S1,52) *

2) Turn the tuple into a sequential
tuple(t 1, t2)

— this reduces the amount of
parallelism available

W =W1+ W2
S =5S1+82

14

Case of a small branch

If one of the two branches of the parallel tupld | t1, t2 |)
Involves less thart work, then it is clearly better to sequentialize

Run in parallel: Run in sequence:

smaller work and
smaller span

15

Scheduling policy for granularity control

On a parallel tuple(| t1, t2 |), distinguish two cases:

If both task involve more thank
work, schedule a parallel tuple

&

If one branch involves less thaix
work, schedule a sequential tuple

wherek iIs some constant greater tham

Question 1: how much can the span increase, at m@st
Question 2: can we get a bound on the total time spt on scheduling?
Question 3: what is an appropriate choice for the alue ofk?

16

Maximum increase Iin depth

Original SP-dag: SP-dag produced by the policy:
O
0
OR
0 > ntimes
0
)
S=nt S=nkK

In general, the span can be multiplied by up to aalctor K/t

17

Typical increase In depth

Original SP-dag: SP-dag produced by the policy:

> n nodes

only the leaves are sequentialized,;
/ they have work x, withk < x < 2k

S =nt S<nNTt+ X

In relatively-balanced computations, the span typially only augments
by a constant (instead of being multiplied by a catant)

18

Raw work/ span v.s. total work/span

To investigate the total scheduling costs, we deértwo versions of work
and span: one version without scheduling costs ande version with

W : raw work
S: raw span

W : total work
S: total span

In the example: W =w +13and S=s +2

19

Maximum Increase In total work

For a divide-and-conquer algorithm with recursive alls in parallel, if
we do not control granularity, then we typically have the following:

only pay for Total costs: also pay for

Raw costs: . "
function call (T = 500) th/e fork-join

(note: we will only draw the top half of the SP-dagm now on)

Total costs is multiplied by 6; this means that waeed at least 6
processors in order to possibly outperform a run bya single processor!

20

Effect of granularity control

When leaves become small enough, they get execuseduentially

Raw costs: Total costs: (for = 500)

With granularity control, we only pay for t on the upper nodes

21

Bound In the scheduling costs: example

Shape of a typical SP-dag after our scheduling paly has been applied:

pay fort in every
~_— parallel tuple

~_ leaves have been
sequentialized,
they contain at
leastk raw work

We pay for T on every node

The number of nodes is roughly equal to the numbeof leaves
Since leaves involve at least work, there are at mostw/k leaves
So the total scheduling cost does not excega/k

So,W<(1 +T/AK)M/ (the costt gets amortized on leaves of sia¢

- If we take K - 201 then the scheduling overhead is less than 5%.
22

Bound In the scheduling costs: formally

For any SP-dag, we can prove by induction the folleing inequality:

11)—:‘*’6+
W < w+r[< " J

" maximal number of
leaves in a SP-dag of
raw work w where sub-
dags of less thakwork
have been sequentialized

where x " is equal to x if © > 0 or 0 otherwise

We can then derive the same bound as on the previ®sglide:

W < wAT— < (1—|—I)-w

K K

23

— Brent's theorem and generalization
— Granularity control using an oracle
— Implementation

— Results

24

Implementation

Question 1:how to estimate the sequential running time of a &k?
— combine complexity annotations and runtime profilirg

Question 2:how to produce code implementing the scheduling poly?
— perform a source-to-source translation

Question 3:how to pick an appropriate value fork?
— measure the value of for the target machine

Question 4:how to extend the theory to model the cost of thaacle?
— the theory generalizes under a reasonable assumptio

25

Complexity annotations

We require the programmer to annotate every functimm with an
expression that computes the asymptotic complexiyf the raw work

|l et qsort t =
costs (let n =sizet inn* log n);
let p =first t
let (t1,t2,t3) = partition p t
let (ul,u3) = (| gsort t1, gsort t3 |)
Node (ul, Node (t2, u3))

26

Basic translation

~assume for now that we

| et gsort_cnst = — know the constant
ref (.. value of the constant ..)

l et gsort _cost t = . the cost function
let n =sizet inn* log n

|l et qsort t =
let p =first t

let (t1,t2,t3) = partitionpt task size prediction
let (u1,u3) =
| et sizel = 1gsort _cnst * gsort_cost t1

| et size2 = !qgsort _cnst * gsort _cost t2
I f (sizel > k) and (size2 > K) + _ .
else (gsort tl1, gsort t3)
Node (ul, Node (t2, u3))

27

Measuring sequential runs

l et gsort t = If a branch is small, then it
S / should get executed sequentially

//
_—

| et sizel = !qsort_gnsf/* gsort _cost t1l
let branchl =
I f (sizel > K)
then (fun () -> gsort t1l)

el Sle (fun () -> _ for sequential run, measure
qggri(t_ltl Tel) the execution time, and
let v = time() then report the measure to
report gsort _cnst sizel (y-x)) update the constant
|l et size2 = ...
| et branch2 = ...

'f (sizel > k) and (size2 > K) . execute the branches

then (| branchl(), branch2() |)
el se (branchl(), branch2())

28

Optimization of the code for seqguential run

let gsort par t = . definition of the parallel version

| et sizel = !qgsort _cnst * gsort _cost t1l
let branchl = for a big task, call the

I f sizel > K — el .
then (fun () -> gsort_par t1) paraliel version

else (fun () ->
let x = time() ~ for a small task, call the

gsort_seq t1 “ sequential version
let y = time()
report qsort_cnst sizel (y-Xx))

| ot t , . definition of the sequential version
et gsort_seqt =

let p =first t

let (t1,t2,t3) = partition p t

let (ul,u3) = (gsort _seq tl1l, qsort _seq t3)
Node (ul, Node (t2, u3))

29

Implementation of constant estimators

Naive idea #1:use one shared data structure to store the constant
Problem: high cost due to frequent write in a sharé memory cell

Naive idea #2:use one different constant per processor
Problem: takes a lot more time to get accurate pradtions

Our approach:
— one shared memory cell where every processor re#ite constant

— one local structure for each processor accumulatgnsome statistics
— every 10*P measures, the processor reports its v to the main cell
—"reporting"” consists in updating the cell with a weighted average

30

Example where time predictions are costly

Most of the exec. time could get spent on computirtgne predictions...

f?b
~we have to pay for the time
Q?g/ prediction at every fork
- ™~ yet this cost cannot be
amortized if the leaves
Q?b involves only little work

We need to make the assumption that the work doe®hdecrease too
much between two successive time predictions

31

Regularity in parallel programs

We want to ensure that the raw work does not decres by more than a
constant factor between two successive time predichs

/@\ o branch with raw work w

wW,/W, <y

the right branch -

Formally:

A program is y-regular if for any two branches of workw, and w,, one
iImmediately nested in the other, we have eithew, 2w, /y or w,>>kK

32

Example of regularity

*) Reqularity of balanced binary trees is2:

oy

*) Reqularity of typical n log ndivide and conquer is also aboug:

~__—branch with raw work w

«—branch with raw work w/2

(2nlog 2n)/(nlogn)= 2*(logn+1)/(logn)=2*(1+1/logn)= 2

Note: to amortize the scheduling costs, we actually require that
programs be regular on average, so we can tolsoate imbalance

33

Formalizing the cost and errors of the oracle

Assume that:
— a time prediction and a time measure induce a cotat cost@
— the time predictions are correct up to a multipliative factor p

— recursive calls make the work decrease by no motkan a factory
(l.e. the program isy-regular)

Then:

— span increases at most by a factap + @

— everyTt cost gets amortized on at least/p work

— every@cost gets amortized on at least/(y) work

Our grand theorem:

T 0, w |
Ip < (1! |)——I—(l—l—mi,—l—@)d
ki &/ (py)) P

34

Choice for the cutoff

We want to ensure that scheduling costs do not exaxt 5%

To that end, it suffices to pick the smallesk satisfying:

T 0, _
— + < H%
i/ k() T

Thus, we define:

P T+ QU
| 5%
Example of concrete figures:
T = 90 nano-seconds =2
¢@= 180 nano-seconds y=3

- K = 25 000 nano-seconds (0.025 milli-seconds)

35

— Brent's theorem and generalization
— Granularity control using an oracle
— Implementation

— Results

36

Convergence of the measure of constants

DDS I I I I I I I I i I N
k CsT=sum
Ky

0045 | | .
0.04 | -
0035 - -

0.03 - i, -

ﬁ* At 4+t

+. .
A S b T e g
0.025 - Hy AT * R
-

constant

002 - .

0.015 - .

001 .

0.005 | .

0 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

measures

After a few measures, the constant converges to agfty accurate value

37

Execution time on a single processor

5.00
4.50
4.00
3.50
3.00
2.50
2.00
1.50
1.00 -
0.50 -
0.00

execution time (normalized)

barnes—hut quickhull quicksort dmm smvm

With oracle scheduling, overheads do not exceed 1366 the sequential
execution time, whereas with work stealing it couldbe as much as 380%

38

Speedup curve for quicksort

16 | | | | | | |
14 optimal -
12 | speedup ~, Ours-
S 1or /K
O 8
2 &l
w
4 - e work stealing -
2 ke only-
0 | 1 | l |] |

0O 2 4 6 8 10 12 14 16
processors

Oracle scheduling appears to scale up with the nunap of processors as
well as work stealing, yet with a better constant&ctor

39

Speedup on 16 processors

16.00 ,

| ———— e e .
work stealing ours

12-[}0 """"""""""" Only ------ / ------------ il

10.00 \ o .. I

8.00
6.00 ---
4.00 ---
2.00 -
0.00

speedup

barnes—hut quickhull quicksort dmm smvm

By reducing the task creation overheads, oracle selduling improves
over work stealing and achieves 6x to 15x speedups 16 processors

40

Conclusion

1) Using asymptotic complexity annotations and prating, we are able
to find out whether a task is big or small

2) By sequentializing small tasks, we ensure thatenamortize the cost
of the forks without increasing the span too much

3) Combining this with the generalization of Brents theorem, we get a
provably good method that can be used on top of aryreedy scheduler

— For further information, read our paper:
Oracle Scheduling: Controlling Granularity in Ingilly Parallel Languages

Umut A. Acar, Arthur Charguéraud and Mike Rainey
OOPSLA, April 2011

41

