
1

Max Planck Institute for Software Systems Saarbrücken, 2011/06/17

Arthur Charguéraud

with Umut Acar and Mike Rainey

Oracle Scheduling: Controlling Granularity
in Implicitly Parallel Languages

2

Quick summary (1/2)
Parallelism is expressed through parallel tuples

(| t1, t2 |)

Computations are represented using series-parallel DAGs

Parallelism is plenty when P 〉〉〉〉〉〉〉〉 P (i.e. "parallel slackness")

Average parallelism: P = W/S (equal to the maximum speedup)

W : "work"
= nb nodes

S : "span"
= length of
critical path

3

Quick summary (2/2)

ready task

currently
executing

already
executed

not yet
discovered
not yet
discovered

A ready task is a task that is waiting to be executed

A greedy scheduler never leaves a processor idle if there is a ready task

Brent's theorem: any greedy scheduler achieves

TP ≤≤≤≤ W/P + S
whereTP is the execution time onP processors

4

Plan of this talk

– Brent's theorem and generalization

– Granularity control using an oracle

– Implementation

– Results

5

BFS achieves Brent's theorem

→ lay out the SP-dag according to the depth of tasks from the root

depth levels

Proof:

W1 = 1
W2 = 2
W3 = 4
W4 = 5
W5 = 3
W6 = 2
W7 = 1
W8 = 1

≤ 1 step
assume P=2

≤ 2 steps
≤ 2 steps
≤ 3 steps
≤ 2 steps
≤ 1 step
≤ 1 step
≤ 1 step

≤ 13 steps

Wi/P

W = 19

Consider a breadth-first scheduling policy for executing tasks

Let us prove that this policy achieves Brent's bound: TP ≤≤≤≤ W/P + S

6

Limitation of unit costs
In the model used so far, every task has a unit cost

In reality, tasks may have very different costs:

basic operation 1 cycle

memory read, cache hit 10 cycles

memory read, cache miss 100 cycles

function call 100 cycles

fork/join operation 500 cycles

cost of a steal > 1000 cycles

Note: it is not correct to encode a task of size 2 as a sequential composition
of two unit tasks, because "preemption" is not allowed: the scheduler cannot
suspend the task in the middle of its execution

7

Weighted SP-dags
We thus generalize the model to have a cost for every task:

Question: does Brent's theorem still hold in this generalized model?

3

54

6 7

16

16

54

7
5

3

1

18

W : "work"
= sum of the weights

S : "span"
= weight of the
heaviest path

8

Proof of the generalized Brent's theorem
The goal is to prove: TP ≤≤≤≤ W/P + S

Divide the execution time:TP = Tfull + Tpartial where

– Tfull : the amount of time during which all processors are busy
– Tpartial : the time during which at least one processor is idle

time

*) During time Tfull exactly P processors are working, thus executing a
total of P⋅⋅⋅⋅Tfull work, which cannot exceed the total workW. Thus,

Tfull ≤≤≤≤ W/P

*) So, there remains to establish

Tpartial ≤≤≤≤ S

9

Proving the inequality on Tpartial

time

Once we find such a path, we can conclude as follows:

Tpartial

≤≤≤≤ weight of the path ππππ
≤≤≤≤ maximum weight of a path
= S

Idea of the proof: find a path ππππ in the SP-dag such that covers Tpartial

→→→→ in the sense that, for any time at which not all the processors are
busy, a task from the path ππππ is executing

task from
the path π

10

Graham diagrams

time

A Graham diagram can be used to represent a scheduling of tasks

→→→→ blocks indicate scheduling of a task on a given processor

→→→→ arrows indicate task dependencies: they go from left to right

P1
P2
P3

processors duration of the task

start of a task end of the task

11

Construction of a path covering Tpartial

*) Task starting in a full-activity period (gray background)

→→→→ must depend on another task immediately preceeding it
*) Task starting in a partial-activity period (whit e background)

→→→→ must depend on a task executing at the beginning

Construct the path ππππ that covers Tpartial backwards from the end

Tfull

12

Summary

TP = Tfull + Tpartial

≤≤≤≤ W/P + weight of a particular path ππππ
≤≤≤≤ W/P + maximum weight of a path
≤≤≤≤ W/P + S

For a SP-dag with work W and span S, any greedy scheduler achieves:

13

– Brent's theorem and generalization

– Granularity control using an oracle

– Implementation

– Results

14

Scheduling decisions

On a parallel tuple (| t1, t2 |), the scheduler has two options:

τ

..
.

G2G1

..
.

G2

G1

..
.

..
.

W = W1 + W2 + ττττ
S = max(S1,S2) + ττττ

W = W1 + W2
S = S1 + S2

1) Create two parallel tasks,
execute the fork and the join

→→→→ this induces an extra cost
"scheduling cost" ττττ

2) Turn the tuple into a sequential
tuple(t1,t2)

→→→→ this reduces the amount of
parallelism available

15

Case of a small branch

τ

..
.

G2G1

..
.

If one of the two branches of the parallel tuple (| t1, t2 |)
involves less than ττττ work, then it is clearly better to sequentialize

..
.

G2

G1

..
.

Run in parallel: Run in sequence:

smaller work and
smaller span

16

Scheduling policy for granularity control

On a parallel tuple (| t1, t2 |), distinguish two cases:

τ
..

.

G2G1

..
.

G2

G1

..
.

..
.

If both task involve more than κκκκ
work, schedule a parallel tuple

If one branch involves less than κκκκ
work, schedule a sequential tuple

where κκκκ is some constant greater than ττττ

Question 1: how much can the span increase, at most?

Question 2: can we get a bound on the total time spent on scheduling?

Question 3: what is an appropriate choice for the value of κκκκ?

17

Maximum increase in depth

Original SP-dag: SP-dag produced by the policy:

τ

κ τ

κ τ

κ τ

κ τ

κ ...

n times

S ≈≈≈≈ n ττττ

κ

κ

κ

κ

κ

...

n times

S ≈≈≈≈ n κκκκ

In general, the span can be multiplied by up to a factor κκκκ / ττττ

18

Typical increase in depth

Original SP-dag: SP-dag produced by the policy:

S = n ττττ S ≤≤≤≤ n ττττ + 2κκκκ

In relatively-balanced computations, the span typically only augments
by a constant (instead of being multiplied by a constant)

τ

τ

τ τ

x x x x

τ

τ τ

x x x x

τ

τ

τ τ

τ τ τ τ

τ

τ τ

τ τ τ τ

...

n nodes

only the leaves are sequentialized;
they have work x, with κ ≤ x ≤ 2κ

19

Raw work/ span v.s. total work/span
To investigate the total scheduling costs, we define two versions of work
and span: one version without scheduling costs and one version with

3

2

6 7

9

3

8

7
5

3

1

5

w : raw work
s : raw span

In the example: W = w + 3τ, and S = s + 2τ

W : total work
S : total span

6 7

9

3 7
5

3

1

5

3+τ

2+τ

8+τ

20

Maximum increase in total work
For a divide-and-conquer algorithm with recursive calls in parallel, if
we do not control granularity, then we typically have the following:

100

100

100 100

Raw costs: Total costs:
(τ = 500)

...

Total costs is multiplied by 6; this means that we need at least 6
processors in order to possibly outperform a run by a single processor!

100 100 100 100

100

100 100

100 100 100 100

600

600

600 600

...
600 600 600 600

600

600 600

600 600 600 600

(note: we will only draw the top half of the SP-dag from now on)

only pay for
function call

also pay for
the fork-join

21

Effect of granularity control
When leaves become small enough, they get executed sequentially

100

100

100 100

Raw costs: Total costs: (for τ = 500)

...
100 100 100 100

100

100 100

100 100 100 100

600

600

100

...

600

100

100

...

100

100

...

100

100

...

100

100

100 100 100

With granularity control, we only pay for τ on the upper nodes

22

Bound in the scheduling costs: example

We pay for ττττ on every node
The number of nodes is roughly equal to the number of leaves

Since leaves involve at least κκκκ work, there are at most w/κκκκ leaves

So the total scheduling cost does not exceed ττττ⋅w/κκκκ

τ

τ

τ τ

>κ >κ >κ >κ

τ

τ τ

>κ >κ >κ >κ

pay for τ in every
parallel tuple

Shape of a typical SP-dag after our scheduling policy has been applied:

leaves have been
sequentialized;
they contain at
least κ raw work

So,W ≤≤≤≤ (1 + ττττ/κκκκ)⋅w (the cost ττττ gets amortized on leaves of sizeκκκκ)

→→→→ If we take κκκκ = 20⋅ττττ then the scheduling overhead is less than 5%.

23

Bound in the scheduling costs: formally

We can then derive the same bound as on the previous slide:

For any SP-dag, we can prove by induction the following inequality:

maximal number of
leaves in a SP-dag of
raw work w where sub-
dags of less than κ work
have been sequentialized

24

– Brent's theorem and generalization

– Granularity control using an oracle

– Implementation

– Results

25

Implementation
Question 1:how to estimate the sequential running time of a task?

→→→→ combine complexity annotations and runtime profiling

Question 2:how to produce code implementing the scheduling policy?

→→→→ perform a source-to-source translation

Question 3:how to pick an appropriate value for κκκκ?

→→→→ measure the value of ττττ for the target machine

Question 4:how to extend the theory to model the cost of the oracle?

→→→→ the theory generalizes under a reasonable assumption

26

Complexity annotations

let qsort t =
costs (let n = size t in n * log n);
let p = first t
let (t1,t2,t3) = partition p t
let (u1,u3) = (| qsort t1, qsort t3 |)
Node (u1, Node (t2, u3))

We require the programmer to annotate every function with an
expression that computes the asymptotic complexity of the raw work

27

Basic translation

let qsort_cnst =
ref (.. value of the constant ..)

let qsort_cost t =
let n = size t in n * log n

let qsort t =
let p = first t
let (t1,t2,t3) = partition p t
let (u1,u3) =

let size1 = !qsort_cnst * qsort_cost t1
let size2 = !qsort_cnst * qsort_cost t2
if (size1 > κκκκ) and (size2 > κκκκ)

then (| qsort t1, qsort t3 |)
else (qsort t1, qsort t3)

Node (u1, Node (t2, u3))

assume for now that we
know the constant

the cost function

scheduling condition

task size prediction

28

Measuring sequential runs
let qsort t =

...

let size1 = !qsort_cnst * qsort_cost t1
let branch1 =

if (size1 > κκκκ)
then (fun () -> qsort t1)
else (fun () ->

let x = time()
qsort t1
let y = time()
report qsort_cnst size1 (y-x))

let size2 = ...
let branch2 = ...

if (size1 > κκκκ) and (size2 > κκκκ)
then (| branch1(), branch2() |)
else (branch1(), branch2())

execute the branches

if a branch is small, then it
should get executed sequentially

for sequential run, measure
the execution time, and
then report the measure to
update the constant

29

Optimization of the code for sequential run
let qsort_par t =

...
let size1 = !qsort_cnst * qsort_cost t1
let branch1 =

if size1 > κκκκ
then (fun () -> qsort_par t1)
else (fun () ->

let x = time()
qsort_seq t1
let y = time()
report qsort_cnst size1 (y-x))

...

let qsort_seq t =
let p = first t
let (t1,t2,t3) = partition p t
let (u1,u3) = (qsort_seq t1, qsort_seq t3)
Node (u1, Node (t2, u3))

for a big task, call the
parallel version

for a small task, call the
sequential version

definition of the parallel version

definition of the sequential version

30

Implementation of constant estimators
Naive idea #1:use one shared data structure to store the constant

Problem: high cost due to frequent write in a shared memory cell

Naive idea #2:use one different constant per processor

Problem: takes a lot more time to get accurate predictions

Our approach:

– one shared memory cell where every processor read the constant
– one local structure for each processor accumulating some statistics

– every 10*P measures, the processor reports its value to the main cell
– "reporting" consists in updating the cell with a weighted average

31

Example where time predictions are costly

...

we have to pay for the time
prediction at every fork

yet this cost cannot be
amortized if the leaves
involves only little work

We need to make the assumption that the work does not decrease too
much between two successive time predictions

Most of the exec. time could get spent on computing time predictions...

32

Regularity in parallel programs

branch with raw work w1

Formally:

A program is γγγγ-regular if for any two branches of work w1 and w2, one
immediately nested in the other, we have either w2 ≥≥≥≥ w1 / γγγγ or w2 >> κκκκ

branch with raw work w2

We want to ensure that the raw work does not decrease by more than a
constant factor between two successive time predictions

w1/w2 ≤ γ

next fork point in
the right branch

33

Example of regularity

branch with raw work w

*) Regularity of balanced binary trees is 2:

branch with raw work w/2

*) Regularity of typical n log n divide and conquer is also about 2:

(2n log 2n) / (n log n) = 2 * (log n + 1) / (log n) = 2 * (1 + 1 / log n) ≈≈≈≈ 2

Note: to amortize the scheduling costs, we actually only require that
programs be regular on average, so we can tolerate some imbalance

34

Formalizing the cost and errors of the oracle

Then:

– span increases at most by a factor κ⋅µκ⋅µκ⋅µκ⋅µ + φφφφ
– every ττττ cost gets amortized on at least κκκκ/µµµµ work
– every φφφφ cost gets amortized on at least κκκκ/(µγµγµγµγ) work

Assume that:

– a time prediction and a time measure induce a constant cost φφφφ
– the time predictions are correct up to a multiplicative factor µµµµ
– recursive calls make the work decrease by no more than a factor γ γ γ γ

(i.e. the program isγγγγ-regular)

Our grand theorem:

35

Choice for the cutoff

Thus, we define:

We want to ensure that scheduling costs do not exceed 5%

To that end, it suffices to pick the smallest κκκκ satisfying:

Example of concrete figures:

ττττ = 90 nano-seconds µµµµ = 2
φφφφ = 180 nano-seconds γγγγ = 3

→→→→ κκκκ = 25 000 nano-seconds (0.025 milli-seconds)

36

– Brent's theorem and generalization

– Granularity control using an oracle

– Implementation

– Results

37

Convergence of the measure of constants

After a few measures, the constant converges to a pretty accurate value

38

Execution time on a single processor

With oracle scheduling, overheads do not exceed 13% of the sequential
execution time, whereas with work stealing it could be as much as 380%

work
stealing
only

ourssequential
(no overhead)

39

optimal
speedup ours

work stealing
only

Speedup curve for quicksort

Oracle scheduling appears to scale up with the number of processors as
well as work stealing, yet with a better constant factor

40

Speedup on 16 processors

By reducing the task creation overheads, oracle scheduling improves
over work stealing and achieves 6x to 15x speedups on 16 processors

work stealing
only

ours

41

Conclusion

1) Using asymptotic complexity annotations and profiling, we are able
to find out whether a task is big or small

2) By sequentializing small tasks, we ensure that we amortize the cost
of the forks without increasing the span too much

3) Combining this with the generalization of Brent's theorem, we get a
provably good method that can be used on top of any greedy scheduler

→→→→ For further information, read our paper:

Oracle Scheduling: Controlling Granularity in Implicitly Parallel Languages
Umut A. Acar, Arthur Charguéraud and Mike Rainey
OOPSLA, April 2011

