Characteristic Formulae for Mechanized Program Verification

Arthur Charguéraud

Max Planck Institute for Software Systems

INRIA Rennes 2011/06/01

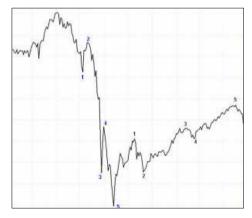
Big programs everywhere

Programs are everywhere Programs are ever-more complex

→ 10 million lines of code in your pocket

What if one of those lines was incorrect?

Cell phones are not the only devices that may crash...



Bugs everywhere

If suffices to have one single line incorrect to end up with a buggy system. How can we prevent that?

1) Code review

→ extremely hard for humans to catch all bugs

2) Test

- → find some bugs, but others remain undetected
- 3) Static analysis (e.g. type checking)
- \rightarrow find all the bugs of a particular kind

4) Mechanized verification

→ use a machine to prove the absence of bug

Specification

Definition: a specification is a description of what a program is intended to compute, regardless of how the program computes its result

Examples of specifications:

- the definition let $n = \dots$ produces a value n that is the smallest prime number greater than 90
- the function let f x = ..., when given a nonnegative integer x, returns an integer equal to x!
- the function **let incr** $\mathbf{r} = ...$, when called in a state where the location \mathbf{r} contains an integer \mathbf{n} , changes the memory so that the location \mathbf{r} contains $\mathbf{n+1}$

Correctness as a theorem

The statement "this program is free of bug" can be formulated as a formal theorem:

"This program admits that specification"

- → In general, we cannot expect a machine to automatically prove theorems of this form
- → Some form of human intervention is needed
- → One possibility is to use a **proof assistant** (e.g., Coq, Isabelle, HOL4, ...)

Proof assistants

User writes:

- definitions
- statement of theorems
- key steps of reasoning

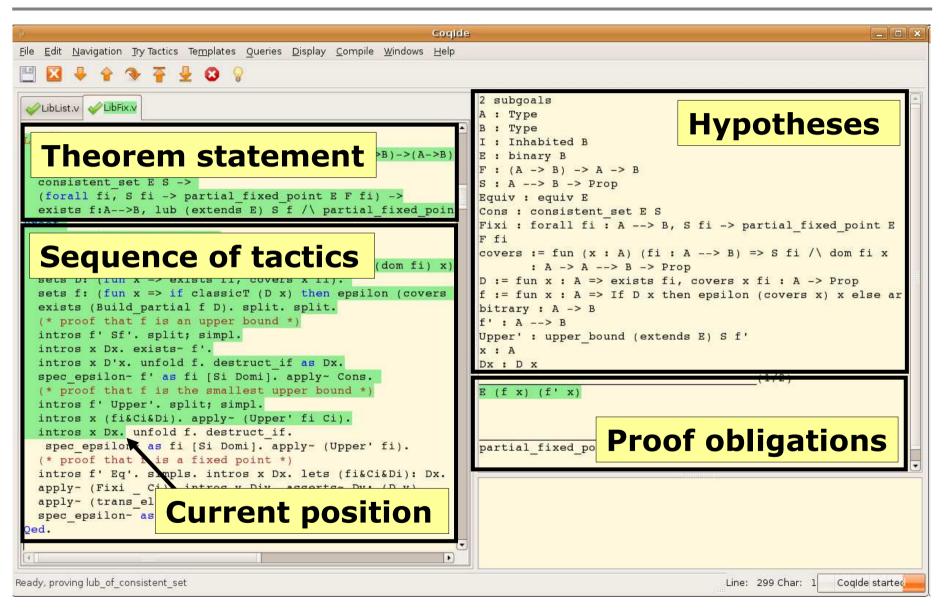
Proof assistant checks:

- well-formedness of definitions and statements
- legitimacy of each step of reasoning

No mistake possible:

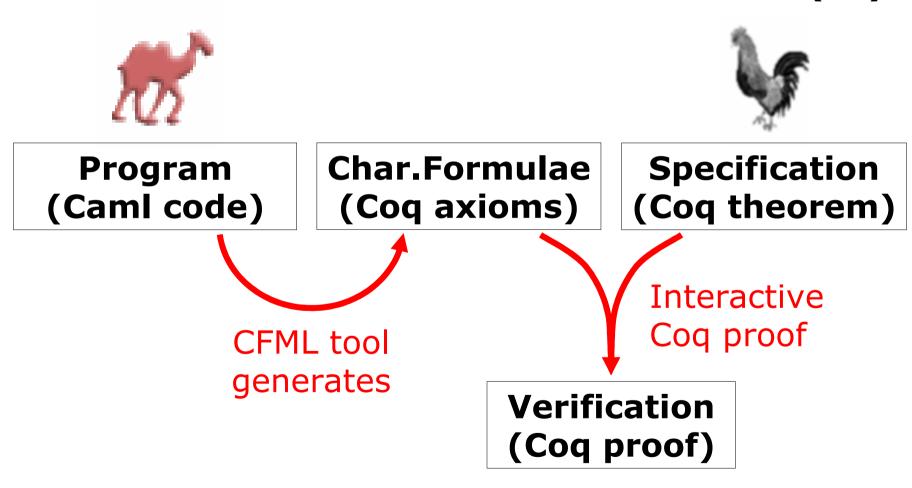
If all the steps involved in the proof of theorem are accepted, then the theorem is true

Coq at a glance



Characteristic formulae

In this thesis: a new, practical approach to program verification based on **Characteristic Formulae (CF)**



- Introduction

- Theory: construction of CF
 - specification language
 - description of values in Coq
 - CF for let-bindings
 - notation system for CF
 - soundness and completeness
- Practice: Dijkstra's algorithm
- CF in the design space
- Conclusion

Specification

Heap h: finite map from locations to values

```
h: heap heap := fmap loc dyn
dyn := {A:Type; v:A}
```

Heap predicate *H***:** description of a heap state

```
H: hprop \qquad hprop := heap \rightarrow Prop
```

Hoare triple: $\{H\}$ t $\{Q\}$ asserts that, in an initial heap satisfying the predicate H, the evaluation of the term t terminates and produces a value v such that the final heap satisfies the predicate (Q v).

H is the pre-condition and Q is the post-condition

Example of specification

$$t = let x = !r + 1 in s := x + 2$$

$$H = (r \sim 3) \ \ (s \sim 9)$$

$$Q' = fun v => [v = 4] \ \ (r \sim 3) \ \ (s \sim 9)$$
The Hoare triple $\{H\} t_1 \{Q'\}$ is true
$$Q' x = [x = 4] \ \ (r \sim 3) \ \ (s \sim 9)$$

$$Q = fun := (r \sim 3) \ \ (s \sim 9)$$

The Hoare triple $\{Q'x\}$ t_2 $\{Q\}$ is true

Thus, the Hoare triple $\{H\}$ t $\{Q\}$ is true

Representation of values

Caml values are represented as Coq values

- Base values are translated directly: a Caml value of type bool list becomes a Coq value of type list bool
- A Caml reference of type T ref is described in Coq as a value of type loc (r has type loc in r ~~> 3)
- A Caml function of type $T_1 \rightarrow T_2$ is described in Coq as a value of an abstract type called **func**, and it is specified with help of an abstract predicate called **App**

Note: for simplicity, the type "int" is mapped to "Z"

Characteristic formulae

The characteristic formula of a term t, written $[\![t]\!]$, is a higher-order predicate such that:

$$\forall H. \forall Q. \quad \llbracket t \rrbracket H Q \quad \iff \quad \{H\} \ t \ \{Q\}$$

- → obtain a predicate capturing the behavior of a program but not referring to the syntax of its code
- → translates source code into logical predicates

Note that $\llbracket t
rbracket$ has type "hprop ightarrow (A ightarrow hprop) ightarrow Prop"

CF for let-expressions

Rule:

$$\frac{\{H\}\ t_1\ \{Q'\}\qquad \forall x.\ \{Q'\ x\}\ t_2\ \{Q\}\}}{\{H\}\ (\text{let } x=t_1\ \text{in } t_2)\ \{Q\}}$$

Goal: $\forall H. \forall Q. \quad \llbracket t \rrbracket HQ \iff \{H\} \ t \ \{Q\}$

Definition:

$$[\![let \ x = t_1 \ in \ t_2]\!] \equiv \lambda H. \ \lambda Q. \ \exists Q'. \ [\![t_1]\!] \ H \ Q' \ \land \ \forall x. \ [\![t_2]\!] \ (Q' \ x) \ Q$$

Notation system for CF

CF for let-binding:

$$[\![let \ x = t_1 \ in \ t_2]\!] \equiv \lambda H. \ \lambda Q. \ \exists Q'. \ [\![t_1]\!] \ H \ Q' \ \land \ \forall x. \ [\![t_2]\!] \ (Q' \ x) \ Q$$

Definition of a Coq notation:

(Let
$$x = \mathcal{F}_1$$
 in \mathcal{F}_2) \equiv
 $\lambda H. \lambda Q. \exists Q'. \mathcal{F}_1 H Q' \land \forall x. \mathcal{F}_2 (Q'x) Q$

CF for let-binding, reformulated:

$$[\![let x = t_1 in t_2]\!] \equiv (\mathbf{Let} \ x = [\![t_1]\!] \mathbf{in} \ [\![t_2]\!])$$

→ translate a source code into a logical predicate

Summary of CF generation

- → Characteristic formulae are easy to generate
- → Characteristic formulae are of linear size
- → Characteristic formulae read like source code
- → The user never needs to unfold the definitions

Soundness and completeness

Soundness: if the CF of a program holds of a specification, then the program satisfies this spec.

$$\begin{cases}
\llbracket t \rrbracket H Q \\
H h
\end{cases} \Rightarrow \exists v. \exists h'. \begin{cases}
t_{/h} \Downarrow v_{/h'} \\
Q v h'
\end{cases}$$

Completeness: if a program satisifies a specification, then the CF of that program holds of that specification

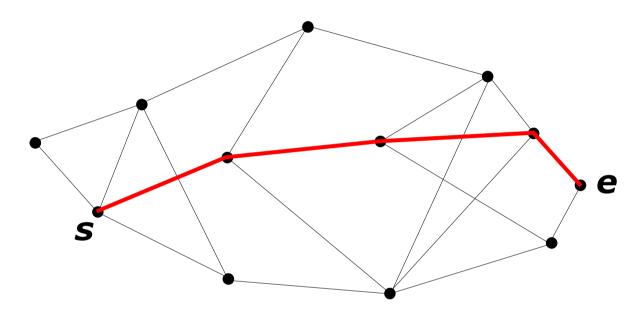
$$t_{/\emptyset} \Downarrow n_{/h} \Rightarrow [t] [] (\lambda x. [x = n])$$

Meaning: characteristic formulae tell all the truth, and nothing but the truth, about the behavior of a program

- Introduction
- Theory: construction of CF
- **-**
- Practice: Dijkstra's algorithm
 - overview of the source code
 - material generated by CFML
 - specification and invariants
 - overview of the proof scripts
 - other examples formalized
- CF in the design space
- Conclusion

Dijkstra's shortest path algorithm

Path of minimum weight from a node s to a node e



v: bool array

b: intbar array

marking of treated nodes

storing best known distances

q: (int*int) pqueue ordering the nodes to treat

where intbar = Finite of int | Infinite

Implementation

```
val dijkstra : ((int*int)list)array -> int -> int -> intbar
let dijkstra g s e =
                                                mutable
   let n = Array.length g in
                                              structures
   let b = Array.make n Infinite in
   let v = Array.make n false in
  let q = Pqueue.create() in
                                                  loop
  b.(s) <- Finite 0;
  Pqueue.push (s,0) q;
                                                pattern
  while not (Pqueue.is_empty q) do
                                               matching
      let(x,dx) = Pqueue.pop q in
      if not v.(x) then begin
                                           higher-order
        v.(x) \leftarrow true;
         let update (y,w)
                                              function
           let dy = dx + w in
                                 Finite d -> dy < d
           if (match b.(y) with
                                  Infinite -> true)
             then (b, (y) <- Finite dy; Pqueue.push (y,dy) q) in
        List.iter update q.(x);
      end:
                                           abstract data
  done:
                                             structure
  b.(e)
```

Material generated by CFML

Module Dijkstra (Pqueue : PqueueSig). func = datatype used Axiom dijkstra : func. to represent functions Axiom dijkstra_cf : (@CFPrint.tag tag_top_fun _ _ (@CFPrint.tag tag_body _ _ (forall K : (CFHeaps.loc -> (int -> (int -> (CFHeaps horon -> ((-> CFHeaps.hprop) -> Prop)) -> Prop)))), characteristic : CFHeaps.loc, (forall s : ag tag let trm (Label create int, (forall e : int formula (_ -> CFHeaps.hprop) => 'n) _ (local (fun H (Logic.ex (fun Q1: \(\frac{\text{tnc} -> \text{crneaps.nprop}\) -> (\(\text{Logic.and}\) ((@CFPrint.tag) tag_apply _ _ ((((@app_1 CFHeaps.loc) int) ml_array_length)... (** goes on for about 100 more lines *) End Dijkstra.

→ Axioms are justified by the soundness theorem

Verification of functors

→ Modular verification of modular code

Shortest path specification

→ Not very far from an informal specification: can be understood without knowledge of Coq

Main invariant

```
Definition hinv Q B V : hprop :=
  g ~> GraphAdjList G (* G : graph int *)
\* [inv Q B V].
Record inv Q B V : Prop := {
Bdist: \forall x, x \in nodes G -> V(x) = true ->
         B(x) = dist G s x;
Bbest: \forall x, x \in nodes G -> V(x) = false ->
       B(x) = mininf weight (crossing V x);
Ocorr: \forall x, (x,d) \in 0 ->
       x \in nodes G /\ \existsp, crossing V x p /\ weight p = d;
Qcomp: \forall x p, x \in G \rightarrow Crossing V x p \rightarrow
       \exists d, (x,d) \in \emptyset /\ d \le weight p;
SizeV: length V = n;
sizeB: length B = n }
```

Main lemma about invariant

```
Lemma inv_update : forall L V B Q x y
                                         no reference to CF
 x \in nodes G ->
 has edge G x y w ->
                                      maths-style reasoning
 dy = dx + w \rightarrow
 Finite dx = dist G s x ->
                                        in terms of multisets
  inv (V\(x:=true)) B Q (new crossing
  If len gt (B\setminus(y)) dy
    then inv (V\setminus (x:=true)) (B\setminus (y:=Finite dy)) (\setminus \{(y, dy)\}\setminus u Q) ...
    else inv (V\setminus(x:=true)) B Q (new crossing x ((y,w)::L) V).
Proof.
                                          All the nontrivial
introv Nx Ed Dy Eq [Inv SV SB]. sets
lets NegP: nonneg edges to path Neg.
                                         reasoning is there
intros z. lets [Bd Bb Hc Hk]: Inv z.
(* case z = y *)
                                       180 lines of proofs in
forwards~ (px&Px&Wx&Mx): (@mininf fin
lets Ny: (has edge in nodes r Ed).
                                       total for the invariant
sets p: ((x,y,w)::px).
                                      (a third in this lemma)
asserts W: (weight p = dy). subst p.
tests (V'\setminus (y)) as C; case If as Nlt.
(* subcase y visisted, distance impro
                                         8 seconds to check
false, rewrite~ Bd in Nlt, forwards M
rewrite weight cons in M. math.
(* subcase y visisted, distance not improved *)
```

Verification of the code

```
Theorem dijkstra spec : \forall g x y G, ... (App dijkstra
                                                      x-tactics
Proof.
xcf. introv Pos Ns De. unfold GraphAd List at 1. hdata simpl.
xextract as N Neg Adj. xapp. Intros Ln. rewrite <- Ln in Neg.
xapps. xapps. xapps. xapps.
                                                     invariants
set (data := fun B V Q => g ~> Array N \*
 v \sim Array V \wedge b \sim Array B \wedge q \sim Heap Q).
set (hinv := fun VO => let '(V,O) := VO in
Hexists B, data B V Q \* [inv G n s V B Q (crossing termination
xseq (# Hexists V, hinv (V, \setminus \{\})).
set (W := lexico2 (binary map (count (= true)) (upto n))
                  (binary map card (downto 0))).
                                                        lemma
xwhile inv W hinv.
                                                     application
(* -- initial state satisfies the invariant -
refine (ex_intro' ( , )). unfold hinv, data. hsimpl.
applys eq~ inv start 2. permut simpl.
(* -- verification of the loop -- *)
intros [V Q]. unfold
(* ---- loop conditio 40 lines of proofs +
                                                    15 seconds
unfold data. xapps. x 8 lines of invariants
                                                   to check
(* ---- loop body --
Oed.
```

Example of a proof obligation

```
Pos: nonnegative edges G
                                    well-named hypotheses
Ns : s \in nodes G
Ne : e \in nodes G
Neg: nodes index G n
Adj: forall x y w: int,
     x \in N nodes G \to Mem(y, w)(N(x)) = has edge <math>G \times y \in M
Nx : x \in nodes G
Vx : \sim V \setminus (x)
Dx : Finite dx = dist G s x
Inv : inv G n s V' B Q (new crossing G s x L' V)
EQ : N(x) = rev L' ++ (y, w) :: L
Ew: has edge G x y w
Ny : y \in nodes G
                                      (1/6)
(Let dy := Ret dx + w in
                                                  char. formula
 Let x38 := App ml array get b y ; in
   If Match
       (Case x38 = Finite d [d] Then Ret (dy '< d) Else
       (Case x38 = Infinite Then Ret true Else Done))
   Then (App ml array set b y (Finite dy););;
                                                  pre-condition
        App push (y, dy) h ; Else (Ret tt))
(q ~> Pqueue Q \* b ~> Array B \* v ~> Array V' \* g ~> Array N)
(fun :unit => hinv' L)
                                  post-condition
```

Purely functional data structures

Trees: unbalanced, red-black

Heaps: splay, leftist, binomial, pairing

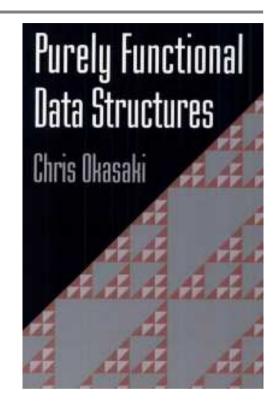
Queues: batched, lazy, realtime,

bootstrapped, HoodMelville

Dequeues: bankers

Lists: concatenable, random access

. . .



- \rightarrow proofs \approx code + spec + invariants (in nb. of lines)
- → Program Verification Through Characteristic formulae (ICFP 2010)

Verified imperative programs

Algorithms and data structures:

- dijsktra's shortest path
- mutable lists (C-style lists)
- union-find (implements a partial equivalence relation)
- sparse arrays (arrays without initialization overhead)

Interaction between effects and functions:

- higher-order iterators on mutable structures (iter)
- closure with private local state (counter function)
- CPS functions (Reynold's CPS-append challenge)
- recursion through the store (Landin's knot)
- → Characteristic formulae for the Verification of Imperative Programs (ICFP 2011)

- Introduction
- Theory: construction of CF
- Practice: Dijkstra's algorithm
- CF in the design space
 - Conclusion

Interpreting the theorem

"This piece of code admits that specification"

How to state and prove such a theorem?

- → A problem studied over the past 50 years
- → Five main approches, summarized next

1-Verification Condition Generators

In the traditional "Verification Condition Generator" approach, no correctness theorem is stated explicitly

source code
specification
invariants

generation
proof obligations

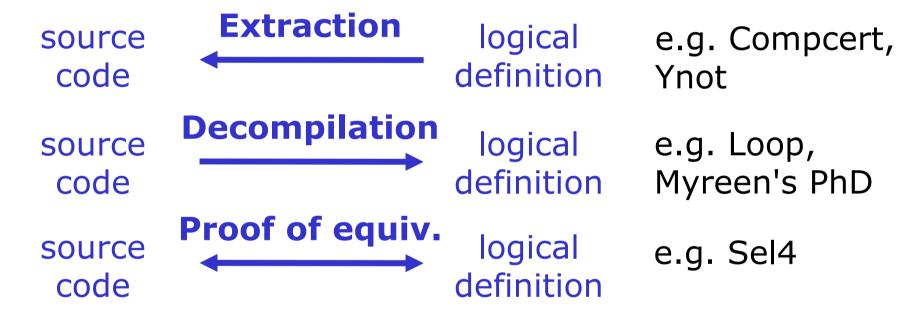
- → Quite effective when proofs can be automated
- → If not, need more invariants (but it takes time)
- → or need a proof assistant (but obligations are not so easy to read and not robust on change)

(Examples of modern VCGs: Why, Boogie, Jahob, VCC)

2 – Shallow embeddings

"this logical definition admits this specification"

Three ways to relate the logical definition to the code



- → Large-scale projects successfully formalized
- → Partial functions and side-effects need to be encapsulated in a monad (like in Haskell code)

3 – Dynamic logics

Create new mathematical logics in which the statement "This piece of code admits that specification" has a meaning.

Example: the Key tool, and other dynamic logics

- → Need to build a new proof assistant: overwhelming implementation effort
- → Custom tool using custom logic: less trustworthy than a standard proof assistant

4- Deep embeddings

"This piece of syntax, when executed according to such reduction rules, admits that specification"

- e.g. Mehta & Nipkow, Shao et al, etc...
- → During the 2nd year of my PhD, I built a deep embedding of the pure fragment of Caml in Coq
- → Very expressive: can prove any true property
- → Far from perfect: the explicit representation of syntax exposes many technical details
- → Characteristic formulae can be viewed as an abstract layer built on top of a deep embedding, keeping the expressiveness but hiding the details

5 - Characteristic formulae

"the characteristic formula of this piece of code is a predicate that holds of such specification"

Origins of Characteristic Formulae:

- Hennessy-Milner logic (1980): two processes are bisimilar iff their characteristic formulae are equivalent
- Honda, Berger & Yoshida (2004,2006): one can build a most-general specification (i.e. Hoare triple) of any PCF program, without referring to a representation of syntax. (Specifications expressed in an ad-hoc logic.)

Characteristic formulae in this work

- 1) CF expressed in a standard higher-order logic
 - → accomodates a standard proof assistant
- 2) CF with Separation Logic style specification
 - → supports modular verification
- 3) CF of linear size and easy to read
 - → allows the approach to scale up
- 4) Implementation of a CF generator
 - → supports verification of real Caml code

- Introduction
- Theory: construction of CF
- Practice: Dijkstra's algorithm
- CF in the design space
- Conclusion
 - summary
 - future work

Conclusion

- A new, pratical approach to program verification
- Soundness and completeness proofs
- Implementation: CFML, from Caml to Coq
- Examples: verification can be achieved at fairly reasonable cost even for complex algorithms
- → **Thesis:** generating the characteristic formula of a program and exploiting that formula in an interactive proof assistant provides an effective approach to proving that the program satisfies its specification

Future work

Direct extensions:

- support integer and real number arithmetic
- support catchable exceptions

Additional reasoning rules:

- complexity analysis (time credits)
- hidden state (anti-frame rule)
- concurrency (shared invariants)

Other languages as target:

- probabilistic and cryptographic algorithms
- low-level languages (C or assembly)
- object-oriented languages (e.g., Java)

Towards a fully-verified chain

Specification

Mechanically-verified proofs

Characteristic formula

Soundness proof on paper

Mechanically-verified characteristic formulae

Source code

already works for a toy imperative language

OCaml compiler

Mechanically-verified compiler already works for

Machine code

the C language

The end!

Further information and examples: http://arthur.chargueraud.org/