Characteristic Formulae for Mechanized Program Verification

Arthur Charguéraud

Advisor: François Pottier

PhD Defense, Université Paris Diderot

Paris, 2010/12/16

Big programs everywhere

Programs are everywhere Programs are ever-more complex

 \rightarrow 10 million lines of code in your pocket What if one of those lines was incorrect?

Bugs everywhere

If suffices to have one single line incorrect to end up with a buggy system. How can we prevent that?

1) Code review

 \rightarrow extremely hard for humans to catch all bugs

2) Test

 \rightarrow find some bugs, but others remain undetected

3) Static analysis (e.g. type checking)

 \rightarrow find all the bugs of a particular kind

4) Mechanized verification

 \rightarrow use a machine to prove the absence of bug

Specification

Definition: a specification is a description of what a program is intended to compute, regardless of how the program computes its result

Examples of specifications:

- the definition let $n = \dots$ produces a value *n* that is the smallest prime number greater than 90

- the function let f x = ..., when given a nonnegative integer x, returns an integer equal to x!

- the function let incr r = ..., when called in a state where the location r contains an integer n, changes the memory so that the location r contains n+1

Correctness as a theorem

The statement "such program is free of bug" can be formulated as a formal theorem:

"Such program admits such specification"

 \rightarrow In general, we cannot expect a machine to automatically prove theorems of this form

 \rightarrow Some form of human intervention is needed

 \rightarrow One possibility is to use a **proof assistant** (e.g., Coq, Isabelle, HOL4, ...)

Proof assistants

User writes:

- definitions
- statement of theorems
- key steps of reasoning

Proof assistant checks:

- well-formedness of definitions and statements
- legitimacy of each step of reasoning

The user does not always need to give all the details: easy steps of reasoning can be proved automatically

No mistake possible:

If all the steps involved in the proof of theorem are accepted, then the theorem is true

Coq at a glance

Characteristic formulae

In this thesis: a new, practical approach to program verification based on **Characteristic Formulae (CF)**

- Introduction

- CF in the design space
 - Theory: construction of CF
 - Practice: Dijkstra's algorithm
 - Representation predicates
 - Conclusion

Interpreting the theorem

"Such piece of code admits such specification"

- How to state and prove such a theorem?
- \rightarrow A problem studied over the past 50 years
- \rightarrow Five main approches, summarized next

1-Verification Condition Generators

In the traditional "Verification Condition Generator" approach, no correctness theorem is stated explicitly

→ Quite effective when proofs can be automated
→ If not, need more invariants (but it takes time)
→ or need a proof assistant (but obligations are not so easy to read and not robust on change)
(Examples of modern VCGs: Why, Boogie, Jahob, VCC)

2– Shallow embeddings

"such logical definition admits such specification"

Three ways to relate the logical definition to the code

 \rightarrow Large-scale projects successfully formalized

 \rightarrow Partial functions and side-effects need to be encapsulated in a monad (like in Haskell code)

3– Dynamic logics

Create new mathematical logics in which the statement "Such piece of code admits such specification" has a meaning.

Example: the Key tool, and other dynamic logics

 \rightarrow Key tool: interactive verification of real code

→ Need to build a new proof assistant: overwhelming implementation effort

 \rightarrow Custom tool using custom logic: less trustworthy than a standard proof assistant

4– Deep embeddings

"Such piece of syntax, when executed according to such reduction rules, admits such specification"

e.g. Mehta & Nipkow, Shao et al, etc...

 \rightarrow During the 2nd year of my PhD, I built a deep embedding of the pure fragment of Caml in Coq

 \rightarrow Very expressive: can prove any true property

 \rightarrow Far from perfect: the explicit representation of syntax exposes many technical details

 \rightarrow Characteristic formulae can be viewed as an abstract layer built on top of a deep embedding, keeping the expressiveness but hiding the details

5- Characteristic formulae

"the characteristic formula of this piece of code is a predicate that holds of such specification"

Origins of Characteristic Formulae:

– Hennessy-Milner logic (1980): two processes are bisimilar iff their characteristic formulae are equivalent

 Graf & Sifakis (1986): there exists an algorithm for computing the characteristic formula of any process

 Honda, Berger & Yoshida (2004,2006): one can build a most-general specification (i.e. Hoare triple) of any PCF program, without referring to a representation of syntax. (Specifications expressed in an ad-hoc logic.)

Overview of the contribution

- **1) CF expressed in a standard higher-order logic** \rightarrow accomodates a standard proof assistant
- **2) CF with Separation Logic style specification** \rightarrow supports modular verification
- **3) CF are of linear size and easy to read** \rightarrow allows the approach to scale up

 \rightarrow **Thesis:** generating the characteristic formula of a program and exploiting that formula in an interactive proof assistant provides an effective approach to proving that the program satisfies its specification

– Introduction

- CF in the design space

– Theory: construction of CF

- specification language
- description of values in Coq
- CF for let-bindings
- notation system for CF
- soundness and completeness
- Practice: Dijkstra's algorithm
- Representation predicates
- Conclusion

Specification

Heap predicate *H***:** description of a heap state H : hprop hprop := heap \rightarrow Prop

Hoare triple: {*H*} *t* {*Q*} asserts that, in an initial heap satisfying the predicate *H*, the evaluation of the term *t* terminates and produces a value *v* such that the final heap satisfies the predicate (*Q v*).

H is the *pre-condition* and *Q* is the *post-condition*

Example of specification

$$t = \text{let } x = \underbrace{!r + 1}_{t_1} \text{ in } \underbrace{s := x + 2}_{t_2}$$

 $H = (r \sim 3) \setminus (s \sim 9)$

 $Q' = fun v => [v = 4] \setminus * (r \sim 3) \setminus * (s \sim 9)$

The Hoare triple $\{H\} t_1 \{Q'\}$ is true

$$Q' X = [x = 4] \setminus * (r \sim 3) \setminus * (s \sim 9)$$

 $Q = fun _:unit => (r ~~> 3) \setminus * (s ~~> 6)$

The Hoare triple {Q'x} t₂ {Q} is true

Thus, the Hoare triple **{H} t {Q}** is true

Representation of values

Caml values are represented as Coq values

- Base values are translated directly: a Caml value of type *bool list* becomes a Coq value of type **list bool**
- A Caml reference of type *T ref* is described in Coq as a value of type loc (r has type loc in r ~~> 3)

– A Caml function of type $T_1 \rightarrow T_2$ is described in Coq as a value of an abstract type called **func**, and it is specified with help of an abstract predicate called **App**

Note: for simplicity, the type "int" is mapped to "Z"

Characteristic formulae

The characteristic formula of a term t, written [t], is a higher-order predicate such that:

 $\forall H. \forall Q. \qquad \llbracket t \rrbracket H Q \quad \iff \quad \{H\} \ t \ \{Q\}$

 \rightarrow obtain a predicate capturing the behavior of a program but not referring to the syntax of its code

 \rightarrow translates source code into logical predicates

Note that $\llbracket t \rrbracket$ has type "hprop \rightarrow (A \rightarrow hprop) \rightarrow Prop"

CF for let-expressions

Rule:

$$\frac{\{H\} t_1 \{Q'\} \quad \forall x. \{Q'x\} t_2 \{Q\}}{\{H\} (\det x = t_1 \inf t_2) \{Q\}}$$

 $Goal: \quad \forall H. \forall Q. \quad \llbracket t \rrbracket H Q \iff \{H\} t \{Q\}$

Definition:

 $\begin{bmatrix} [\text{let } x = t_1 \text{ in } t_2]] \equiv \\ \lambda H. \lambda Q. \quad \exists Q'. \quad [t_1] \mid H \mid Q' \land \forall x. \quad [t_2] \mid (Q' \mid x) \mid Q \end{bmatrix}$

Notation system for CF

CF for let-binding: $\llbracket \text{let } x = t_1 \text{ in } t_2 \rrbracket \equiv$ $\lambda H. \lambda Q. \exists Q'. \llbracket t_1 \rrbracket H Q' \land \forall x. \llbracket t_2 \rrbracket (Q' x) Q$ **Definition of a Coq notation:** $(\mathbf{Let} \ x = \mathcal{F}_1 \ \mathbf{in} \ \mathcal{F}_2) \equiv$ $\lambda H. \lambda Q. \exists Q'. \mathcal{F}_1 H Q' \land \forall x. \mathcal{F}_2 (Q' x) Q$ **CF for let-binding, reformulated:**

 $\llbracket [[let x = t_1 in t_2]] \equiv (Let x = \llbracket t_1]] in \llbracket t_2])$

 \rightarrow translate a source code into a logical predicate

Summary of CF generation

- $\begin{bmatrix} v \end{bmatrix} \equiv \operatorname{Ret} v$ $\begin{bmatrix} f v \end{bmatrix} \equiv \operatorname{App} f v$ $\begin{bmatrix} if v \operatorname{then} t_1 \operatorname{else} t_2 \end{bmatrix} \equiv \operatorname{If} v \operatorname{then} \llbracket t_1 \rrbracket \operatorname{else} \llbracket t_2 \rrbracket$ $\begin{bmatrix} \operatorname{let} x = t_1 \operatorname{in} t_2 \rrbracket \equiv \operatorname{Let} x = \llbracket t_1 \rrbracket \operatorname{in} \llbracket t_2 \rrbracket$ $\begin{bmatrix} \operatorname{let} \operatorname{rec} f x = t_1 \operatorname{in} t_2 \rrbracket \equiv \operatorname{Let} \operatorname{rec} f x = \llbracket t_1 \rrbracket \operatorname{in} \llbracket t_2 \rrbracket$ $\begin{bmatrix} \operatorname{crash} \rrbracket \equiv \operatorname{Crash}$ $\begin{bmatrix} \operatorname{while} t_1 \operatorname{do} t_2 \rrbracket \equiv \operatorname{While} \llbracket t_1 \rrbracket \operatorname{Do} \llbracket t_2 \rrbracket$ $\begin{bmatrix} \operatorname{for} i = a \operatorname{to} b \operatorname{do} t \rrbracket \equiv \operatorname{For} i = a \operatorname{To} b \operatorname{Do} \llbracket t \rrbracket$
- \rightarrow Characteristic formulae are easy to generate
- \rightarrow Characteristic formulae are of linear size
- \rightarrow Characteristic formulae read like source code
- \rightarrow The user never needs to unfold the definitions

Soundness and completeness

Soundness: if the CF of a program holds of a specification, then the program satisfies this spec.

$$\begin{cases} \llbracket t \rrbracket H Q \\ H h \end{cases} \Rightarrow \exists v. \exists h'. \begin{cases} t_{/h} \Downarrow v_{/h'} \\ Q v h' \end{cases}$$

Completeness: if a program satisifies a specification, then the CF of that program holds of that specification

$$t_{/\emptyset} \Downarrow n_{/h} \quad \Rightarrow \quad \llbracket t \rrbracket \; [\;] \; (\lambda x. \; [x = n])$$

Meaning: characteristic formulae tell all the truth, and nothing but the truth, about the behavior of a program

– Introduction

- CF in the design space
- Theory: construction of CF

Practice: Dijkstra's algorithm

- overview of the source code
- material generated by CFML
- specification and invariants
- overview of the proof scripts
- Representation predicates
- Conclusion

Dijkstra's shortest path algorithm

Path of minimum weight from a node *s* to a node *e*

- **v** : bool array marking of treated nodes
- **b** : intbar array
- **q** : (int*int) pqueue ordering the nodes to treat

storing best known distances

where intbar = Finite of int | Infinite

Implementation

Material generated by CFML

Module Dijkstra (Pqueue : PqueueSig).

Axiom dijkstra : func.

func = datatype used to represent functions

Axiom dijkstra_cf :

End Dijkstra.

 \rightarrow Axioms are justified by the soundness theorem

Verification of functors

\rightarrow Modular verification of modular code

Shortest path specification

 \rightarrow Not very far from an informal specification: can be understood without knowledge of Coq

Main invariant

```
Definition hinv Q B V : hprop :=
    g ~> GraphAdjList G (* G : graph int *)
\ v \sim Array V
                             (* V : array bool *)
\* b ~> Array B (* B : array intbar *)
\* q ~> Pqueue Q (* Q : multiset(int*int) *)
\* [inv Q B V].
Record inv Q B V : Prop := {
 Bdist: \forall x, x \setminus in nodes G \rightarrow V \setminus (x) = true \rightarrow V \setminus (x)
              B \setminus (x) = dist G s x;
 Bbest: \forall x, x \setminus in nodes G \rightarrow V \setminus (x) = false \rightarrow V \setminus (x)
            B \setminus (x) = mininf weight (crossing V x);
 Ocorr: \forall x, (x,d) \setminus in 0 \rightarrow
           x \in nodes G /\ \exists p, crossing V x p /\ weight p = d;
 Qcomp: \forall x p, x \setminus in nodes G \rightarrow crossing V x p \rightarrow
            \exists d, (x,d) \setminus in Q / \langle d \rangle <= weight p;
 SizeV: length V = n;
 sizeB: length B = n }
```

Main lemma about invariant

. . .

Verification of the code

Example of a proof obligation

– Introduction

- CF in the design space
- Theory: construction of CF
- Practice: Dijkstra's algorithm

– Representation predicates

- definition of "GraphAdjList"
- composition of predicates
- treatment of sharing
- relationship with capabilities
- Conclusion

Representation of graphs

Representation predicates: relate a data structure with the mathematical structure it describes

```
g ~> GraphAdjList G
```

Representation predicates are user-defined:

```
x ~> s x is equivalent to s x x
```

```
Definition GraphAdjList (G:graph int) (g:loc) :=
Hexists (N:array(list(int*int))),
    g ~> Array N
    \* [∀x, x \in nodes G <-> index N x]
    \* [∀x y w, x \in nodes G ->
        (x,y,w) \in edges G <-> Mem (y,w) (N\(x))]
```

Basic data structures

Representation in Coq

Recursive ownership

Representation in Coq

- g ~> ArrayOf Mlist N
- (g : loc) (N : array (list edge))

g ~> Array N = g ~> ArrayOf Id N

No limits, e.g., t ~> ArrayOf (MlistOf Array) T

Sharing

Representation in Coq:

(g ~> Array N) * (GroupOf Mlist M)

(g : loc) (N : array loc) (M : fmap loc (list edge))

Capabilities

Representation predicates like **ArrayOf** and **GroupOf** are the Coq counterpart of the "capabilities" involved in the type system developed in the 1st year of my PhD

→ Functional Translation of a Calculus of Capabilities (published at ICFP 2008, with François Pottier)

This type system has been used by:

- Pottier (2008) (antiframe rule)
- Pilkiewicz & Pottier (2010)
- Protzenko & Pottier (ongoing) (l
- Birkedal et al (2009, 2010)
- (monotonic state)
- (language design)
- (Kripke model)

– Introduction

- CF in the design space
- Theory: construction of CF
- Practice: Dijkstra's algorithm
- Representation predicates

Conclusion

- examples formalized
- future work
- summary

Purely functional data structures

Trees: unbalanced, red-black
Heaps: splay, leftist, binomial, pairing
Queues: batched, lazy, realtime, bootstrapped, HoodMelville
Dequeues: bankers
Lists: concatenable, random access
Covers more than half of the book

(825 lines of Caml)

Purely Functional Data Structures Chris Okasaki

- \rightarrow **proofs** \approx **code + spec + invariants** (in nb. of lines)
- \rightarrow Program Verification Through Characteristic formulae (published at ICFP 2010)

Verified imperative programs

Algorithms:

- Dijsktra's shortest path
- Union-find (implements a partial equivalence relation)
- Sparse arrays (arrays without initialization overhead)

Tricky functions:

- Reynold's CPS-append function for mutable lists
- Landin's knot (recursion through the store)

Future work

Direct extensions:

- support more language features (e.g., exceptions)
- generalize the proof to non-deterministic programs

Additional reasoning rules:

- complexity analysis (time credits)
- hidden state (anti-frame rule)
- concurrency (shared invariants)

Other languages as target:

- low-level languages (C or assembly)
- object-oriented languages (e.g., Java)

Conclusion

- A new, pratical approach to program verification
- Soundness and completeness proofs
- Implementation: CFML, from Caml to Coq
- **Examples**: verification can be achieved at fairly reasonable cost even for complex algorithms

 \rightarrow **Thesis:** generating the characteristic formula of a program and exploiting that formula in an interactive proof assistant provides an effective approach to proving that the program satisfies its specification

The end!

Further information and examples: <u>http://arthur.chargueraud.org/</u>