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Big programs everywhere

Programs are everywhere

Programs are ever-more complex

→ 10 million lines of code in your pocket

What if one of those lines was incorrect?

Cell phones are not the only devices that may crash...
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Bugs everywhere

If suffices to have one single line incorrect to end up 
with a buggy system. How can we prevent that?

1) Code review

→ extremely hard for humans to catch all bugs

2) Test

→ find some bugs, but others remain undetected

3) Static analysis (e.g. type checking)

→ find all the bugs of a particular kind

4) Mechanized verification

→ use a machine to prove the absence of bug
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Specification

Definition: a specification is a description of what a 
program is intended to compute, regardless of how the 
program computes its result

Examples of specifications:

– the definition let n = ... produces a value n that is 
the smallest prime number greater than 90

– the function let f x = ..., when given a nonnegative 
integer x, returns an integer equal to x! 

– the function let incr r = ..., when called in a state 
where the location r contains an integer n, changes 
the memory so that the location r contains n+1
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Correctness as a theorem

The statement "such program is free of bug" can 
be formulated as a formal theorem:

"Such program admits such specification"

→ In general, we cannot expect a machine to 
automatically prove theorems of this form

→ Some form of human intervention is needed

→ One possibility is to use a proof assistant 
(e.g., Coq, Isabelle, HOL4, ...)
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Proof assistants

No mistake possible: 

If all the steps involved in the proof of theorem 
are accepted, then the theorem is true

User writes:

– definitions

– statement of theorems

– key steps of reasoning

Proof assistant checks:

– well-formedness of 
definitions and statements

– legitimacy of each step 
of reasoning

The user does not always need to give all the details: 
easy steps of reasoning can be proved automatically
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Coq at a glance

Theorem statement

Sequence of tactics

Hypotheses

Proof obligations

Current position
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Characteristic formulae

Program
(Caml code) 

Char.Formulae 
(Coq axioms)

CFML tool
generates

Verification
(Coq proof)

In this thesis: a new, practical approach to program 
verification based on Characteristic Formulae (CF)

Specification 
(Coq theorem)

Interactive 
Coq proof
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– Introduction

– CF in the design space  

– Theory: construction of CF

– Practice: Dijkstra's algorithm

– Representation predicates

– Conclusion
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Interpreting the theorem

"Such piece of code admits such specification"

How to state and prove such a theorem?

→ Five main approches, summarized next

→ A problem studied over the past 50 years
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1–Verification Condition Generators

In the traditional "Verification Condition Generator" 
approach, no correctness theorem is stated explicitly

→→→→ If not, need more invariants (but it takes time)

(Examples of modern VCGs: Why, Boogie, Jahob, VCC)

source code

specification

invariants

generation
proof obligations

→→→→ Quite effective when proofs can be automated

→→→→ or need a proof assistant (but obligations are 
not so easy to read and not robust on change)
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2– Shallow embeddings

"such logical definition admits such specification"

Three ways to relate the logical definition to the code

→→→→ Partial functions and side-effects need to be 
encapsulated in a monad (like in Haskell code)

Extraction logical 
definition

source 
code

Decompilation

Proof of equiv.

e.g. Compcert,
Ynot

e.g. Loop,
Myreen's PhD

e.g. Sel4

logical 
definition

source 
code

logical 
definition

source 
code

→→→→ Large-scale projects successfully formalized



13

3– Dynamic logics

Create new mathematical logics in which the statement

"Such piece of code admits such specification"

has a meaning.

→→→→ Custom tool using custom logic: less 
trustworthy than a standard proof assistant

Example: the Key tool, and other dynamic logics

→→→→ Need to build a new proof assistant: 
overwhelming implementation effort

→→→→ Key tool: interactive verification of real code
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4– Deep embeddings

"Such piece of syntax, when executed according 
to such reduction rules, admits such specification"

→→→→ Very expressive: can prove any true property

e.g. Mehta & Nipkow, Shao et al, etc...

→ During the 2nd year of my PhD, I built a deep 
embedding of the pure fragment of Caml in Coq

→→→→ Characteristic formulae can be viewed as an 
abstract layer built on top of a deep embedding, 
keeping the expressiveness but hiding the details

→→→→ Far from perfect: the explicit representation of 
syntax exposes many technical details 
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5– Characteristic formulae 

"the characteristic formula of this piece of code 
is a predicate that holds of such specification"

– Hennessy-Milner logic (1980): two processes are 
bisimilar iff their characteristic formulae are equivalent

Origins of Characteristic Formulae:

– Honda, Berger & Yoshida (2004,2006): one can build 
a most-general specification (i.e. Hoare triple) of any 
PCF program, without referring to a representation of 
syntax. (Specifications expressed in an ad-hoc logic.)

– Graf & Sifakis (1986): there exists an algorithm for 
computing the characteristic formula of any process



16

Overview of the contribution

1) CF expressed in a standard higher-order logic
→ accomodates a standard proof assistant

2) CF with Separation Logic style specification
→ supports modular verification

3) CF are of linear size and easy to read
→ allows the approach to scale up

→→→→ Thesis: generating the characteristic formula of a 
program and exploiting that formula in an interactive 
proof assistant provides an effective approach to 
proving that the program satisfies its specification
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– Introduction

– CF in the design space  

– Theory: construction of CF

– specification language

– description of values in Coq

– CF for let-bindings

– notation system for CF

– soundness and completeness

– Practice: Dijkstra's algorithm

– Representation predicates

– Conclusion
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Specification

Heap h: finite map from locations to values

h : heap heap := fmap loc dyn       

dyn := {A:Type; v:A}

Heap predicate H: description of a heap state

H : hprop hprop := heap → Prop

Hoare triple:  {H} t {Q}  asserts that, in an initial 
heap satisfying the predicate H, the evaluation of the 
term t terminates and produces a value v such that 
the final heap satisfies the predicate (Q v).

H is the pre-condition and Q is the post-condition
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Example of specification

Thus, the Hoare triple {H} t {Q} is true

t = let x = !r + 1 in s := x + 2

H = (r ~~> 3) \* (s ~~> 9)

Q' = fun v => [v = 4] \* (r ~~> 3) \* (s ~~> 9) 

The Hoare triple {H} t1 {Q'} is true

t1 t2

Q' x = [x = 4] \* (r ~~> 3) \* (s ~~> 9)

Q = fun _:unit => (r ~~> 3) \* (s ~~> 6) 

The Hoare triple {Q' x} t2 {Q} is true
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Representation of values

Caml values are represented as Coq values

– Base values are translated directly: a Caml value of 
type bool list becomes a Coq value of type list bool

Note: for simplicity, the type "int" is mapped to "Z"

– A Caml reference of type T ref is described in Coq as 
a value of type loc (r has type loc in  r ~~> 3 )

– A Caml function of type T1→→→→T2 is described in Coq as 
a value of an abstract type called func, and it is 
specified with help of an abstract predicate called App
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Characteristic formulae

The characteristic formula of a term   , written     , 

is a higher-order predicate such that:

→ obtain a predicate capturing the behavior of a 
program but not referring to the syntax of its code

→→→→ translates source code into logical predicates

Note that       has type "hprop → (A → hprop) → Prop"
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CF for let-expressions

Rule:

Goal:

Definition:
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Notation system for CF

CF for let-binding:  

Definition of a Coq notation:

CF for let-binding, reformulated:

→→→→ translate a source code into a logical predicate
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Summary of CF generation

→ Characteristic formulae are easy to generate

→ Characteristic formulae are of linear size

→ Characteristic formulae read like source code

→ The user never needs to unfold the definitions
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Soundness and completeness

Soundness: if the CF of a program holds of a 
specification, then the program satisfies this spec.

Completeness: if a program satisifies a specification, 
then the CF of that program holds of that specification

Meaning: characteristic formulae tell all the truth, and 
nothing but the truth, about the behavior of a program
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– Introduction

– CF in the design space  

– Theory: construction of CF

– Practice: Dijkstra's algorithm

– overview of the source code

– material generated by CFML

– specification and invariants

– overview of the proof scripts

– Representation predicates

– Conclusion
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Dijkstra's shortest path algorithm

s

e

Path of minimum weight from a node s to a node e

v : bool array marking of treated nodes

b : intbar array storing best known distances 

q : (int*int) pqueue ordering the nodes to treat

where intbar = Finite of int | Infinite
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val dijkstra : ((int*int)list)array -> int -> int ->  intbar
let dijkstra g s e =

let n = Array. length g in
let b = Array .make n Infinite in
let v = Array .make n false in
let q = Pqueue .create() in
b.(s) <- Finite 0;
Pqueue .push (s,0) q;
while not ( Pqueue .is_empty q) do

let (x,dx) = Pqueue .pop q in
if not v.(x) then begin

v.(x) <- true;
let update (y,w) =

let dy = dx + w in
if ( match b.(y) with | Finite d -> dy < d

| Infinite -> true)
then (b.(y) <- Finite dy; Pqueue .push (y,dy) q) in

List .iter update g.(x);
end ;

done ;
b.(e)

Implementation

mutable 
structures

abstract data 
structure

loop

higher-order 
function

pattern 
matching
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Material generated by CFML
Module Dijkstra (Pqueue : PqueueSig).

Axiom dijkstra : func.

Axiom dijkstra_cf : 
(@CFPrint.tag tag_top_fun _ _ (@CFPrint.tag tag_bod y _ _ (forall K :  
(CFHeaps.loc -> (int -> (int -> ((CFHeaps.hprop -> ((_ -> CFHeaps.hprop) -> 
Prop)) -> Prop)))), ((is_spec_3 K) -> ((forall g : CFHeaps.loc, (forall s : 
int, (forall e : int, ((((K g) s) e) (@CFPrint.tag tag_let_trm (Label_create 
'n) _ (local (fun H : CFHeaps.hprop => (fun Q : (_ -> CFHeaps.hprop) => 
(Logic.ex (fun Q1 : (int -> CFHeaps.hprop) => ((Log ic.and (((@CFPrint.tag 
tag_apply _ _ ((((@app_1 CFHeaps.loc) int) ml_array _length)... 

(** goes on for about 100 more lines *)

End Dijkstra.

→→→→ Axioms are justified by the soundness theorem

func = datatype used 
to represent functions

characteristic 
formula
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Verification of functors

Pqueue :
PqueueSig

Dijkstra

PqueueVerif :
PqueueSpec

DijkstraVerif

→→→→ Modular verification of modular code
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Shortest path specification
Theorem dijkstra_spec : ∀∀∀∀ g x y G,

nonnegative_edges G ->

x \in nodes G -> 

y \in nodes G ->

(App dijkstra g x y)

(g ~> GraphAdjList G) 

(fun d => [d = dist G x y] 

\* g ~> GraphAdjList G) 

→→→→ Not very far from an informal specification: 
can be understood without knowledge of Coq

mathematical graph

pre-condition

post-condition
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Main invariant
Definition hinv Q B V : hprop := 

g ~> GraphAdjList G  (* G : graph int *)
\* v ~> Array V         (* V : array bool *)
\* b ~> Array B         (* B : array intbar *)
\* q ~> Pqueue Q        (* Q : multiset(int*int) *)
\* [inv Q B V].

Record inv Q B V : Prop := {
Bdist: ∀∀∀∀x, x \in nodes G -> V\(x) = true -> 

B\(x) = dist G s x;
Bbest: ∀∀∀∀x, x \in nodes G -> V\(x) = false -> 

B\(x) = mininf weight (crossing V x);

Qcorr: ∀∀∀∀x, (x,d) \in Q ->
x \in nodes G /\ ∃∃∃∃p, crossing V x p /\ weight p = d;

Qcomp: ∀∀∀∀x p, x \in nodes G -> crossing V x p ->
∃∃∃∃d, (x,d) \in Q /\ d <= weight p;

SizeV: length V = n;

sizeB: length B = n }
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Main lemma about invariant
Lemma inv_update : forall L V B Q x y w dx dy,

x \in nodes G ->
has_edge G x y w ->
dy = dx + w ->
Finite dx = dist G s x ->
inv (V\(x:=true)) B Q (new_crossing x L V) -> 
If len_gt (B\(y)) dy 

then inv (V\(x:=true)) (B\(y:=Finite dy)) (\{(y, dy )} \u Q) ...     
else inv (V\(x:=true)) B Q (new_crossing x ((y,w):: L) V) .

Proof.
introv Nx Ed Dy Eq [Inv SV SB]. sets_eq V': (V\(x:= true)).
lets NegP: nonneg_edges_to_path Neg.
intros z. lets [Bd Bb Hc Hk]: Inv z. tests (z = y).
(* case z = y *)
forwards~ (px&Px&Wx&Mx): (@mininf_finite_inv (path int)) (eq_sym Eq).
lets Ny: (has_edge_in_nodes_r Ed).
sets p: ((x,y,w)::px). 
asserts W: (weight p = dy). subst p. rewrite weight _cons. math. 
tests (V'\(y)) as C; case_If as Nlt.
(* subcase y visisted, distance improved *)
false. rewrite~ Bd in Nlt. forwards M: mininf_len_g t Nlt p; subst~ p.

rewrite weight_cons in M. math.
(* subcase y visisted, distance not improved *)
...

no reference to CF

180 lines of proofs in 
total for the invariant 
(a third in this lemma)

maths-style reasoning
in terms of multisets

8 seconds to check

All the nontrivial 
reasoning is there
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Verification of the code
Theorem dijkstra_spec : ∀∀∀∀ g x y G, ... (App dijkstra g x y) ...
Proof.
xcf. introv Pos Ns De. unfold GraphAdjList at 1. hdata_s impl. 
xextract as N Neg Adj. xapp . intros Ln. rewrite <- Ln in Neg. 
xapps. xapps. xapps. xapps*. xapps.
set (data := fun B V Q => g ~> Array N \* 

v ~> Array V \* b ~> Array B \* q ~> Heap Q).
set (hinv := fun VQ => let '(V,Q) := VQ in

Hexists B, data B V Q \* [inv G n s V B Q (crossing  G s V)]).
xseq (# Hexists V, hinv (V,\{})). 
set (W := lexico2 (binary_map (count (= true)) (upt o n))

(binary_map card (downto 0))).
xwhile_inv W hinv. 
(* -- initial state satisfies the invariant -- *)
refine (ex_intro' (_,_)). unfold hinv,data. hsimpl.

applys_eq~ inv_start 2. permut_simpl.
(* -- verification of the loop -- *) 
intros [V Q]. unfold hinv. xextract as B Inv. xwhile_body . 
(* ---- loop condition -- *) 
unfold data. xapps. xret.
(* ---- loop body -- *)
...
Qed.

invariants

termination

x-tactics

lemma 
application

40 lines of proofs + 
8 lines of invariants

20 seconds 
to check
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Pos : nonnegative_edges G
Ns : s \in nodes G
Ne : e \in nodes G
Neg : nodes_index G n
Adj : forall x y w : int,

x \in nodes G -> Mem (y, w) (N\(x)) = has_edge G x y w
Nx : x \in nodes G
Vx : ~ V\(x)
Dx : Finite dx = dist G s x
Inv : inv G n s V' B Q (new_crossing G s x L' V)
EQ : N\(x) = rev L' ++ (y, w) :: L
Ew : has_edge G x y w
Ny : y \in nodes G
______________________________________(1/6)
(Let dy := Ret dx + w in

Let _x38 := App ml_array_get b y ; in
If_ Match 

(Case _x38 = Finite d [d] Then Ret (dy '< d) Else 
(Case _x38 = Infinite Then Ret true Else Done))

Then (App ml_array_set b y (Finite dy) ;) ;;
App push (y, dy) h ; Else (Ret tt))

(q ~> Pqueue Q \* b ~> Array B \* v ~> Array V' \* g ~> Array N)
(fun _:unit => hinv' L)

Example of a proof obligation

well-named hypotheses 
(for robustness)

char. formula

pre-condition

post-condition



36

– Introduction

– CF in the design space  

– Theory: construction of CF

– Practice: Dijkstra's algorithm

– Representation predicates

– definition of "GraphAdjList"

– composition of predicates

– treatment of sharing

– relationship with capabilities

– Conclusion
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Representation of graphs

Representation predicates: relate a data structure 
with the mathematical structure it describes

g ~> GraphAdjList G

Representation predicates are user-defined:

x ~> S X is equivalent to S X x

Definition GraphAdjList (G:graph int) (g:loc) :=   
Hexists (N:array(list(int*int))),   

g ~> Array N
\* [ ∀∀∀∀x, x \in nodes G <-> index N x ]
\* [ ∀∀∀∀x y w, x \in nodes G -> 

(x,y,w) \in edges G <-> Mem (y,w) (N\(x)) ]
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Basic data structures

g

Representation in Coq  

g ~> Array N

(g : loc) (N : array (list edge))

Caml type:
(edge list) array

where:
edge = int*int 

"array" here denotes a Coq 
finite map of domain [0..n(
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Recursive ownership

g ~> Array N  =  g ~> ArrayOf Id N

Representation in Coq

g ~> ArrayOf Mlist N

(g : loc) (N : array (list edge))

g

No limits, e.g., t ~> ArrayOf (MlistOf Array) T

Caml type:
(edge mlist) array

where:
'a mlist 
= ('a * mlist) ref    
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Sharing

Representation in Coq:

(g ~> Array N) \* ( GroupOf Mlist M )

(g : loc) (N : array loc ) (M : fmap loc (list edge) )

Caml type:
(edge mlist) array

where:
'a mlist 
= ('a * mlist) ref    

g
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Capabilities

Representation predicates like ArrayOf and GroupOf 
are the Coq counterpart of the "capabilities" involved in 
the type system developed in the 1st year of my PhD

→ Functional Translation of a Calculus of Capabilities
(published at ICFP 2008, with François Pottier)

This type system has been used by:

– Pottier (2008) (antiframe rule)

– Pilkiewicz & Pottier (2010) (monotonic state)

– Protzenko & Pottier (ongoing) (language design)

– Birkedal et al (2009, 2010)  (Kripke model)
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– Introduction

– CF in the design space  

– Theory: construction of CF

– Practice: Dijkstra's algorithm

– Representation predicates

– Conclusion

– examples formalized

– future work

– summary
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Purely functional data structures

Trees: unbalanced, red-black

Heaps: splay, leftist, binomial, pairing

Queues: batched, lazy, realtime, 

bootstrapped, HoodMelville

Dequeues: bankers

Lists: concatenable, random access

Covers more than half of the book 
(825 lines of Caml) 

→ proofs ≈≈≈≈ code + spec + invariants (in nb. of lines)

→ Program Verification Through Characteristic formulae
(published at ICFP 2010)
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Verified imperative programs

Algorithms:

– Dijsktra's shortest path 

– Union-find (implements a partial equivalence relation)

– Sparse arrays (arrays without initialization overhead)

Tricky functions:

– Reynold's CPS-append function for mutable lists

– Landin's knot (recursion through the store)
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Future work

Direct extensions:

– support more language features (e.g., exceptions)

– generalize the proof to non-deterministic programs

Additional reasoning rules:

– complexity analysis (time credits)

– hidden state (anti-frame rule)

– concurrency (shared invariants)

Other languages as target:

– low-level languages (C or assembly)

– object-oriented languages (e.g., Java)
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Towards a fully-verified chain

Source code

Machine code

Mechanically-verified 
compiler

Specification

Characteristic formula

Mechanically-verified 
proofs

Mechanically-verified 
characteristic formulae

Soundness proof 
on paper

OCaml compiler

already works for a toy 
imperative language

already works for 
the C language
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Conclusion

– A new, pratical approach to program verification

– Soundness and completeness proofs

– Implementation: CFML, from Caml to Coq

– Examples: verification can be achieved at fairly 
reasonable cost even for complex algorithms

→→→→ Thesis: generating the characteristic formula of a 
program and exploiting that formula in an interactive 
proof assistant provides an effective approach to 
proving that the program satisfies its specification



The end!

Further information and examples: http://arthur.chargueraud.org/


