
Dagstuhl Seminar Dagstuhl, 2010/08/31

Arthur Charguéraud

Reasoning on Imperative Programs
Through Characteristic Formulae

INRIA

2

Motivation

– Verification of Caml programs

Call-by-value, sequential, deterministic

First class functions, polymorphic recursion,

Data types, pattern matching,

Mutable references, null pointers, strong updates

– Through interactive Coq proofs

Total correctness, higher-order logic specifications

Working with heap predicates and the frame rule

3

Describing Caml programs in Coq

– Not a deep embedding

→ Formulae do not refer to Caml syntax

– Not a shallow embedding

→ Caml functions not represented as Coq functions

– Related to Berger, Honda and Yoshida’s TCAPs

→ Sound and complete description of programs

Caml program
without annotation

Characteristic formula
(CF) expressed in Coq

generator

4

Interpretation of CF

Hoare triple: {H} t {Q}

where (H : Hprop) and (Q : A → Hprop)

where "Hprop" abbreviates "Heap → Prop"

Total correctness interpretation: in a piece of heap
satisfying H, the term t terminates and returns a value
and a heap satisfying Q.

Characteristic formulae: ║t║ H Q

where ║t║: Hprop → (A → Hprop) → Prop

Difference: {H} t {Q} is a three place relation that
refers to the syntax of t, whereas ║t║ is a predicate
expressed directly in terms of basic higher-order logic
connectives (e.g., ∧∧∧∧, ⇒⇒⇒⇒, ∀∀∀∀, ∃∃∃∃).

5

Implementation and examples

½ of Okasaki's purely functional data structures:

– 825 lines of Caml verified through 5.000 lines of Coq

– local ratio "proofs/(code+spec)" between 1.0 and 2.0

– the entire set of files compiles in about 2 minutes

Recently extended to imperative programs:

– In-place list reversal

– Copy of a mutable tree

– Append and CPS-append functions

– Higher-order iterators: iter, map, fold (on-going)

– Landin's knot

Implementation of CFML:

– CF generator: 3.000 lines of Caml (+ type-checker)

– Coq lemmas, tactics and notation: 4.000 lines of Coq

6

CF for a let-binding

Hoare logic:

Characteristic formula:

Introduction of notation:

Characteristic formula generator:

7

Interest of characteristic formulae

1) CF generation is really straightforward

→ all you need is to is type-check the input program

2) CF generation is entirely compositional

→ reasoning on programs is thus also compositional

3) Proof obligations read like source code

→ they take the form ║t║ H Q, so it displays as the
source code followed by a pre- and a post-condition

8

Integration of the frame rule

Hoare logic:

Updated definition:

Predicate presentation:

where

The predicate "local" generalizes "frame". It supports
the rules of consequence and of garbage collection, as
well as extraction of quantifiers and propositions.

9

Translation of types

The Caml type T is reflected as the Coq type 〈〈〈〈T〉〉〉〉

A heap is a map from location to dependent pairs
made of a type and a value of that type.

Model : a Coq value of type Func corresponds to
the source code of a well-typed Caml function

10

Breaking the circularity

Models for higher-order stores are tricky

Type ≈≈≈≈ World → Pred(Values)

World ≈≈≈≈ Loc → Type

The circularity is here somehow avoided:

– references are represented by their memory location

– functions are represented by their source code

The equations become:

Rtype ≈≈≈≈ 〈〈〈〈 CamlType 〉〉〉〉 (Rtype ⊂⊂⊂⊂ CoqType)

Heap ≈≈≈≈ Loc → (ΣA:Rtype. A)

Values of type Loc or Func may be stored in the heap
since they do not refer to the type "Heap" in any way.

11

Specification of functions

The abstract predicate AppReturns f x H Q asserts
that the application of f to the value v admits H as
pre-condition and Q as post-condition.

Type of AppReturns:

∀A. ∀B. Func → A → Hprop → (B → Hprop) → Prop

Characteristic formulae for applications:

Example: for any location r and integer n,

AppReturns incr r (r ~~> n) (fun _ => r ~~> n+1)

12

CF for function definitions

Instances of the predicate AppReturns:

– have to be provided for reasoning on applications,

– are provided by the CF of a function definition.

Characteristic formulae for (recursive) functions:

Remark: no explicit treatment of recursivity; recursive
functions are proved correct by induction.

13

Characteristic formula generation

is entailment on
heap predicates

14

Characteristic formula generation

For-loop: invariant of type "int → Hprop"

While-loop: invariants of type "A → Hprop" and of
type "A → bool → Hprop", for some type A.

15

Integration of CF in Coq

For one single closed term:

Definition CF := ║t ║. (* generated *)

Lemma specif : CF H Q. (* specification *)
Proof. ... Qed. (* verification *)

For a set of top-level functions:

Axiom f : Func. (* generated *)
Axiom f_CF : (* generated *)

forall x H Q, ║t ║ H Q -> AppReturns f x H Q

Lemma f_spec : (* specification *)
Proof. (* verification *)

apply f_CF.
...

Qed.
... the rest of the script may refer to f ...

16

Example: destructive append

Lemma append_spec : forall A,
Spec append (l1:loc) (l2:loc) |R>>

forall (L1 L2:list A),
R (l1 ~> Mlist L1 * l2 ~> Mlist L2)

(fun l' => l' ~> Mlist (L1 ++ L2)).
Proof.

xcf. intros.
xif. ...
...
xwhile (fun L12 => Hexists L11 e,

[L1 = L11 ++ L12] * (l1 ~> MlistSeg e L11)
* (h ~~> e) * (e ~> Mlist L12) * [L2 <> nil])
(@list_sub A).

...
Qed.

l1 l2e
L11

L2

L12

L1

17

Soundness and completeness

Soundness theorem: V takes Coq values into Caml

Completeness theorem: (slightly simplified)

Completeness, special case:

18

Related work

Comparison with:

– Hoare Logic and Separation Logic

– Honda, Berger and Yoshida's TCAPs

– Shallow embeddings and Ynot

– Deep embeddings

19

Hoare Logic and Separation Logic

Compared with Hoare Logic:

– No need to apply inductive reasoning rules

– CF not intented for VCG but for interactive proofs

– Total correctness is completely primitive in CF

Compared with Separation Logic:

– All the reasoning takes place in "Hprop", not "Heap"

– Heap predicates are implemented in Coq (standard)

– The frame rule takes the form of a predicate

20

Honda, Berger and Yoshida's TCAPs

Total characteristic assertion pair:

– (Hw,Qs) TCAP if Hw is weakest pre, Qs strongest post

– Algorithm for generating the TCAP of any PCF term

– Idea: to prove {H}t{Q}, it suffices to check

H => Hw and H ∧ Qs => Q

→ TCAP are sound and complete and do not refer to t

Characteristic formulae build on a similar idea.

– TCAPs are expressed in an ad-hoc logic, where
values of the logic are PCF values (including functions)
and equality is observational equivalence and
→ I represent functions using the type Func

– Functions are specified with {H} f • v = x {H'}
→ Same as the proposition AppReturns f v H (λx'. H')

21

Shallow embeddings

Representing Caml programs as Coq definitions

→ CF also benefit from program values being
represented as Coq values (e.g. Caml list as Coq list)

→ CF view functions as object of type Func, and not as
Coq functions, which must be total

→ CF are very flexible w.r.t. the syntax of the source
language

Compared with Ynot:

→ CF need not involve a monad for side-effects

→ CF separates code from specifications, whereas
specifications are imbricated in the code in Ynot

→ CF offer a simple direct treatment of ghost variables

22

Deep embeddings

Representing Caml syntax and semantics in Coq

(I have applied this standard technique to pure-Caml)

1) Axiomatized semantics: t/h ⇓⇓⇓⇓ v'/h'

2) Special case of functions: (f v)/h ⇓⇓⇓⇓ v'/h'

3) Function specification: AppEval f v h v' h'

4) Lift v and v' but not f: AppEval f V h V' h'

5) Use heap predicates: AppReturns f V H Q

23

Deep embeddings

CF brought three major improvements:

1) translation of Caml values into Coq becomes implicit

2) the application of reasoning rules becomes implicit,
(in particular no need to compute reduction contexts)

3) reasoning tactics are much simpler to implement

CF can be viewed as an abstract layer built on top
of a deep embeeding.

Thanks!

Further information on characteristic formulae for pure programs:

Program Verification Through Characteristic Formulae

Arthur Charguéraud, to appear at ICFP'10

http://arthur.chargueraud.org/research/2010/cfml

More complete presentation and treatment of imperative programs in:

My thesis

Expected in a week or two.

Please come to me if you wish a copy of the current draft.

