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Recursive definitions in the logic
1) To use Coq as a programming language

→ used to reflect the "let-rec" construct
Fixpoint length l := match l with 

| nil => 0
| a::l' => 1 + length l'

2) To use Coq as a specification/proof language

a) To define recursive predicates (sometimes more 
appropriate than a corresponding inductive definition)

Fixpoint In x l := match l with
| nil => False
| a::l' => x = a \/ In x l'

b) To define co-inductive values, functions, predicates
(e.g. traces of diverging programs, recursive types)
CoFixpoint seq n : stream nat := n:::(seq (n+1))
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Restrictions on recursive definitions
1) Cannot allow arbitrary recursive functions 

Fixpoint f x := 1 + f x.

→ Accepting this definition would be unsound: 
f x  ≡ 1 + f x implies  f x = 1 + f x implies  0 = 1

What are the restrictions implemented in Coq?

2) Cannot allow arbitrary co-recursive functions

CoFixpoint f x := f x.

→ If accepted, the function f would basically be a 
proof term for any co-inductive proposition
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Restrictions on recursive functions
Recursive calls allowed on strict subterms only

→ This is a very basic syntactic check. The argument 
of a recursive call must be a pattern variable bound 
from a case analysis on the decreasing argument.

Fixpoint length l := match l with 
| nil => 0 
| a::t => 1 + length t                 (* accepted *)

Fixpoint length l := match l with 
| nil => 0 
| _ => 1 + length (tail l) (* rejected *)

Fixpoint sorted l := match l with 
| nil => True
| a::nil => True
| a::b::t => (a <= b) /\ sorted (b::t) (* rejected *)
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Restrictions on co-recursive func.
Co-recursive calls to be guarded by constructors

→ Again, a very basic syntactic check. The argument 
of a corecursive call must be guarded by constructors 
and only by constructors. Examples:

CoFixpoint s := 1 ::: s.

CoFixpoint seq n := n ::: seq(n+1).

CoFixpoint map f s := 
let '(x:::t) := s in
f x ::: map f t.

CoFixpoint s := 0 ::: map succ s. (* rejected *)

CoFixpoint f n := 
if is_prime n then n ::: f(n+1) 

else f (n+1).    (* rejected *)
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Existing techniques
For recursive definitions:

1) Recursion on the structure of proofs objects 

2) Same but using subset types (Sozeau)

3) The domain-predicate approach (Dubois & Donzeau-
Gouge, Bove & Capretta, Krauss)

4) Contraction conditions (Matthews & Krstić)

For co-recursive definitions:

1) Transformations to make some co-recursive 
definitions fit the guard condition (Bertot et al.)

2) A technique based on another form of contraction 
conditions (Matthews)
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The subset-types approach
let rec f x  =  if x = 0 then 0 else f (f (x - 1))

Program Fixpoint f (x:nat) {measure id x} 
: { y : nat | y = 0 } :=

match x with | O => O
| S x' => f (f x')  end.

Next Obligation.
x : nat
f : {x' : nat | id x' < id x} -> {y : nat | y = 0}
x' : nat
Heq_x : S x' = x
----------------------------------------------------
`f (exist (fun x'0 => x'0 < x) x' (f_obligation_2 f Heq_x))) < x

invoke an appropriate tactic here.

|- forall z,  z = 0  ->  z < x.   omega proves it.

f  :  nat -> {y : nat | y = 0}
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The inductive graph approach
→ In Isabelle's Function package, by A.Krauss

Function: Definition Z :=  (fun x => εy. (x,y) ∈ GZ)

(user input)
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Pros/cons of the two approaches
Subset-types approach:

+ applies to a large class of recursive functions

+ constructive thus compatibile with extraction

– the function now admits a dependent type 

– full specification may need to appear in the type 

– proof of termination to be given at definition time

Inductive graph approach:

+ applies to a large class of recursive functions

+ clear separation between definitions and spec/proofs

+ good automation for proofs of termination

– can only process a set of top-level equations 

– heavy implementation (lot of work to do it in Coq)
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Motivation 
I investigated the third main approach to 
recursive definitions: "contraction conditions"

Goal:

→ support for a very large class of circular definitions

→ ability to deal with co-recursive definitions

Contraints:

→ no modification of the type of the functions defined 

→ complete separation between definitions and proofs
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Towards a generic combinator
We want to define generic combinator Fix that 
can be applied to any functional.

Definition Log log x := 
if x <= 1 then 0 else 1 + log (x/2).

Definition log := Fix Log.

Lemma log_fix : forall x, log x = Log log x.

The above fixed point equation can then be used to 
unfold the body of the recursive function at any time.

log x <= x rewrite log_fix. 

Log log x <= x unfold Log.

(if x <= 1 then 0 else 1 + log(x/2)) <= x

How to define Fix? How to prove log_fix?
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Contraction conditions
– used to prove fixed point in Banach spaces

|| F(x) - F(y) ||  <  α · || x - y ||     with α < 1

– used by Paulson (1992) to implement the theory of 
inductive definitions in Isabelle

– used by Matthews (1999) to formalize non-guarded 
co-recursive definitions

– used by Matthews & Krstić (2003) to formalize 
recursive functions with nested calls, like f(f(x))

One of our contribution is to generalize and unify 
the various forms of contraction conditions

→ First, let me introduce contraction conditions by 
explaining how I rediscovered this notion.
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Bounded recursion
Bounded recursion: bounds the number of calls

let rec log x =
if x <= 1 then 0 else 1 + log (x/2).

Fixpoint log' n x :=
match n with
| O => arbitrary
| S n' => if x <= 1 then 0 else 1 + log'(n-1)(x/2).

Definition log x := log' x x.

The definition of log relies on the fact that x steps are 
sufficient to compute the logarithm of x, in the sense 
that the value arbitrary will never be returned.

Problem: the auxiliary variable n shows up when 
we unfold the definition of the function log.
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A combinator based on measures
The idea: hide the bound inside a combinator

Fixpoint Fixn_run F n x :=
match n with
| O => arbitrary
| S n' => F (Fixn_run F n') x

Definition Fixn F mu x := Fixn_run F (1+mu x) x.

Definition Log log x := 
if x <= 1 then 0 else 1 + log (x/2).

Definition log := Fixn Log (fun x => x).

→ How to prove the fixed point equation?
Lemma log_fix : forall x, log x = Log log x.



15

Contraction condition for Fixn
Use this theorem to derive fixed point equations:

Lemma Fix_eq : forall f F mu,
f = Fixn F mu ->
(forall f1 f2 x, 

(forall y, mu y < mu x -> f1 y = f2 y) ->
F f1 x = F f2 x) ->

(forall x, f x = F f x).

Let's apply it to the functional Log.
Hypothesis: forall y, mu y < mu x -> f1 y = f2 y

Goal: Log f1 x = Log f2 x

Goal: (if x <= 1 then 0 else 1 + f1(x/2))
= (if x <= 1 then 0 else 1 + f2(x/2))

Subgoal: x <= 1  |- 0 = 0
Subgoal: x > 1   |- 1 + f1(x/2) = 1 + f2(x/2)

Apply the hypothesis to y = x/2, and check (x/2) < x
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Key idea

The contraction condition captures the fact that 
recursive calls are made on smaller arguments.

forall f1 f2 x, 
(forall y, mu y < mu x -> f1 y = f2 y) ->
F f1 x = F f2 x
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Generalization to well-founded rec.
Replace the recursion on the structure of the 
bound n with a recursion on a proof of well-
foundedness of the termination relation.

Definition Fixwf (F:(A->B)->(A->B)) (R:A->A->bool) 
(W:well_founded R) (x:A) :=

Acc_rect _ (fun x _ f =>
let f' y := match sumbool_of_bool (R y x) with

| left H => f y H
| _ => arbitrary 
end in

F f’ x) (W x).

Example:
Definition log := Fixwf Log lt lt_wf.

→ Cool, it's entirely constructive! 
→ Remark: the evaluation of R may be quite inefficient

(but who cares?)
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More on contraction conditions

How can contraction conditions support:

1) Partial recursive functions, where the function may 
diverge on arguments outside the domain

2) Nested recursion, like  

let rec f x = ... f(f(y)) ...

3) Higher-order recursion, like

let rec f x =  ... map f ys ...
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Fixed point: partial functions
It suffices to restrict the values to a domain D:

Lemma Fix_eq' : forall f F R (W:well_founded R) D,
f = Fixwf F R W ->
(forall f1 f2 x, D x ->

(forall y, D y -> y < x -> f1 y = f2 y) ->
F f1 x = F f2 x) ->

(forall x, D x -> f x = F f x).

→ All recursive calls must be made to values in D.

→ The guarded fixed point equation allows to unfold 
the definition of the fixed point f whenever the 
function is applied to an argument that belongs to D.
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Fixed point: nested recursion
The basic contraction condition does not suffice.

Definition F f x =
if x = 0 then 0 else f(f(x-1)).

Lemma f_fix : forall x, f x = F f x. 
apply the fixed point theorem.

Hypothesis: forall y, y < x -> f1 y = f2 y

Goal: F f1 x = F f2 x

Goal: (if x = 0 then 0 else f1(f1(x-1))
= (if x = 0 then 0 else f2(f2(x-1))

Subgoal: x > 0  |- f1(f1(x-1)) = f2(f2(x-1))

The hypothesis with y = x-1 gives f1(x-1) = f2(x-1).

But there is no way to prove f1 y = f2 y for
y = f1(x-1), because we don't know that f1(x-1) < x.
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Fixed point: nested recursion
The solution is to include an invariant.

Lemma Fix_eq : forall f F R (W:well_founded R) Q,
f = Fixwf F R W ->
(forall f1 f2 x, 

(forall y, y < x -> f1 y = f2 y /\ Q y (f1 y)) ->
F f1 x = F f2 x /\ Q x (f1 x)) ->

(forall x, f x = F f x /\ Q x (f x)).

Invariant: Definition Q x r := (r = 0).

Hypothesis: forall y < x, f1 y = f2 y /\ Q y (f1 y)

Goal: F f1 x = F f2 x /\ Q x (f x)

Goal: (if x = 0 then 0 else f1(f1(x-1))
= (if x = 0 then 0 else f2(f2(x-1))

/\ (if x = 0 then 0 else f1(f1(x-1)) = 0

Taking y = x-1, we derive f1(x-1) = f2(x-1) = 0
Taking y = 0, we derive f1(f1(x-1)) = f2(f1(x-1)) = 0
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Fixed point: higher-order recursion
Higher-order recursion is supported right away
type tree = Leaf of nat | Node of list tree

Definition Succ_tree succ_tree x := match x with
| Leaf n => Leaf (n+1)
| Node xs => Node (List.map succ_tree xs)

Hypothesis: forall y < x, f1 y = f2 y

Goal: Succ_tree f1 x = Succ_tree f2 x 

Subgoal: Leaf (n+1) = Leaf (n+1)
Subgoal: Node (List.map f1 xs) = Node (List.map f2 xs)

Exploit this "congruence rule": forall f1 f2 l,
(forall a, In a l -> f1 a = f2 a) ->
List.map f1 l = List.map f2 l

Definition on the well-founded termination relation:
Inductive (<) : tree -> tree -> Prop :=
| subtree : forall y xs, In y xs -> y < (Node xs).
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Contraction conditions: summary
We have introduced two combinators
– Fixn F mu is the fixed point of F for a measure mu

– Fixwf F R W produces the fixed point of F given a 
decidable relation R and a proof of well-foundedness W

Compared with previous work

– The combinators are defined constructively
– Slight improvement in the case of nested recursion

We used contraction conditions to prove that the 
fixed point equations holds on given domains

– The reasoning about termination is here carried out 
completely inside the logic, without any external tool

– This approach allows for the formalization of a very 
large class of recursive functions
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Why we want to go further
We want to write f = Fix F, without providing 
the well-founded relation in the definition of f
(Fixn F mu and Fixwf F R W is not good enough) 

Why is Fixwf not quite satisfying?
– Settling on a relation R at the time of definition 
means that one must have in mind the domain of f
and its termination proof when definining f.

– Proving R to be decidable can be very tedious. 

– Proving R to be well-founded before definining f does 
not allow to separate specifications from proofs.
– Fixwf is helpless for building cofixpoints.

→ Yet, Fixwf F R W for a decidable relation R seems 
to be the best we can hope for in a constructive world.
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A combinator for total functions
One can define a satisfying combinator for total 
recursive functions, using Hilbert's epsilon. 

Definition Fix_total F := 
εg. (forall x, g x = F g x).

1) Define the fixed point: Definition f := Fix_total F. 

2) Prove that F satisfies the contraction condition with 
respect to some well-founded relation R of our choice. 

(exploited, e.g., 
by Matthews)

3) As seen earlier, it follows that  Fixwf F R W
satisfies the fixed point equation for the functional F.

4) Since there exists at least one function g such that 
forall x, g x = F g x, we can deduce that Fix_total F 
also satisfies this fixed point equation. Hence,

forall x, f x = F f x
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Two solutions for partial functions
The previous approch does not work immediately 
apply to partial recursive functions.

First solution: make the function total by testing if 
the argument is inside the domain explicitly. 

Definition Div div (x,y) := 
if y = 0 then arbitrary else
if x < y then 0 else 1 + div (x - y, y)

→ Not satisfying: the code of the function is altered

Second solution: change the fixed point combinator
Definition Fix_partial F D := 

εg. (forall x, D x -> g x = F g x).

→ The domain need to be known at the time of 
definition, which is not always easy and practical
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Try harder

Fix F D is not good enough!

We want to write  Fix F, and nothing else...

→ The key difficulty is to find a way to define the 
domain D of the fixed point of F in terms of F.

→ Intuitively, we want to pick the largest domain D
such that F admits a unique fixed point on D. 
But does such a largest domain always exists?

→ In the following, we rely on a powerful theorem to 
address this question and to give a definition for Fix.
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Maximal inductive fixed points

→ In fact, there exists a much older and much more 
general theorem defining the domain of a functional.

Theorem [Matthews & Krstić, 2003]: (& Gonthier?)

(Slightly simplified statement) For any functional F, 
there exists a largest domain D such that we can find a 
well-founded relation R for which F satisfies the 
contraction condition with respect to R on the domain D

→ This theorem could be exploited to define the 
domain associated with the functional F.

→ Intuitively, it is the largest domain on which F can 
be proved to terminate.
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Good old papers can get lost...

(especially in Gaston's library!)
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Theory of optimal fixed points
Theorem [Manna & Shamir*, 1975]:

Any functional F admits an optimal fixed point

(*) Adi Shamir is the "S" from the "RSA" protocol;
He developed "optimal fixed points" during his thesis.

Definition: a fixed point f of F is generally-consistent
if it is consistent with any other fixed point f' of F.

Note: two partial functions f and f' are consistent if 
they agree on the intersection of their domains, i.e. 

∀x ∈ (dom f ∩ dom f'), f x = f' x

Definition: a function f is the optimal fixed point of F
if it is the generally-consistent fixed point of F with the 
largest domain.
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Some more intuition

Properties of the optimal fixed point

→ Any generally-consistent fixed point is a restriction 
of the optimal fixed point to a smaller domain

→ The optimal fixed point captures the maximal 
amount of non-ambiguous information contained in F

Properties of generally-consisted fixed points

→ The domain of a generally-consistent fixed point 
includes only points whose image is uniquely defined

i.e. if f1 and f2 are two fixed points of F such that 
f1 x ≠ f2 x for some x, then x does not belong to the 
domain of any generally-consistent fixed point

→ We thus exclude ambiguous points from the domain
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Interest of optimal fixed points

2) Given a functional F, we build f := Fix F.

3) We later prove F to satisfy the contraction condition 
for some well-founded relation R on some domain D.

6) Thus, f satisfies the fixed point equation on D, i.e.
forall x, D x → f x = F f x.

4) We deduce that F admits a generally-consistent 
fixed point on the domain D.

5) Because f is the generally-consistent fixed point of 
F with the largest domain, the domain of f contains D.

The big picture of this work:

1) We define Fix as a combinator that picks an 
optimal fixed point, using Hilbert's epsilon operator.
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The optimal fixed point combinator
Definition of the combinator:
Definition Fix A B `{Inhabited B} (F:(A->B)->(A->B)) :=

εf. (optimal_fixed_point_of F f).

(the typeclass `{Inhabited B} is needed for soundness)

Specification of the combinator:
Lemma Fix_spec : forall A B `{Inhabited B} F f R D,

f = Fix F ->
well_founded R ->
(forall f1 f2 x, D x ->

(forall y, D y -> R y x -> f1 y = f2 y) ->
F f1 x = F f2 x) ->

(forall x, D x -> f x = F f x).

(can be extended with invariants, for nested recursion)
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That's it!
Example with the log function

Definition Log log x := 
if x <= 1 then 0 else 1 + log (x/2).

Definition log := Fix Log.

Lemma log_fix : forall x, log x = Log log x.
Proof. 

applys~ (Fix_spec lt). introv H. unfolds.
case_if~. fequals. apply H. apply~ div2_lt.

Qed.

– lt is the relation used to argue for termination,
– H is the hypothesis from the contraction condition,
– div2_lt is the lemma used to prove  x/2 < x.
–The symbol "~" stands for a call to automation.
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What I haved formalized

4) Proof that contraction conditions imply the existence 
of a generally-consistent fixed point

→ adapted from the proof that maximal inductive fixed 
points are generally-consistent (Krstić, 2004).

1) Formalization of partial functions in Coq

→ represent them as pairs of type (A→Prop) * (A->B)

2) Formal definition of the notion of optimal fixed point

→ definition of order on partial functions, consistency

3) Proof that the optimal fixed point always exists

→ formalize entirely the proof of Manna and Shamir
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Summary
The combinator Fix:

– can be used to define recursive functions,

– even partial functions without giving their domain 
nor their termination relation at time of definition,

– it supports nested recursion, higher-order recursion,

– n-ary recursive functions and mutually-recursive 
functions can be defined easily through encodings with 
pairs and sums, respectively.

Next: corecursive values and functions
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C.o.f.e.'s
Developed by Matthews (1999), later polished by 
Di Gianantonio and Miculan (2003):

Complete Ordered Families of Equivalences

Example with the stream 0:::1:::2:::3:::4:::...

Definition F x := 0 ::: map succ x.

Definition x := FixVal (≈) F.

Lemma x_fix : forall x, x ≈ F x.

→ s ≈ s' means that s and s' are bisimilar streams

→ FixVal (≈) F picks a value x such that x ≈ F x
whenever there exists a unique such value
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Contraction condition for streams
The fixed point equation x ≈ F x is derived from the 
following contraction condition:

forall x1 x2 i, x1  ≈i x2 → F x1  ≈i+1 F x2

where s ≈i s' iff s and s' agree up to their i-th item.

Let's prove the contraction condition for our functional. 
Definition F x := 0 ::: map succ x.

Hypothesis: x1  ≈i x2 

Goal: F x1  ≈i+1 F x2 
Goal: 0:::map succ x1  ≈i+1 0:::map succ x2 
Goal: map succ x1  ≈i map succ x2 

Conclude using the following properties of map:
x1  ≈i x2  ->  map succ x1  ≈i map succ x2 

(i.e. "map succ" preserves "similarity up to depth i")
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Key idea

The contraction condition captures the fact that 
the co-recursive definition is productive.

forall x1 x2 i, x1  ≈i x2 → F x1  ≈i+1 F x2
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Counter-example
The next definition does not specify a stream:

Definition F x := 0 ::: tail x.  (* accepted *)
Definition x := FixVal (≈) F.    (* accepted *)

Let's see what the contraction condition would give.
Hypothesis: x1  ≈i x2 

Goal: F x1  ≈i+1 F x2 

Goal: 0:::tail x1  ≈i+1 0:::tail x2 

Goal: tail x1  ≈i tail x2 

Here we are stuck, because all we can prove is that:
x1  ≈i+1 x2  ->  tail x1  ≈i tail x2 

but our hypothesis x1  ≈i x2 is weaker than x1  ≈i+1 x2 

Lemma x_fix : forall x, x ≈ F x. (* cannot prove it *)
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General presentation of c.o.f.e.'s
More generally, the contraction condition:

forall i x1 x2,
(forall j < i, x1  ≈j x2) ->
F x1  ≈i F x2

imples the existence of a unique fixed point x
modulo (≈) (i.e. such that  x ≈ F x ) when:

– F has type A→B

– I is a type, ordered with < (transitive well-founded)

– (≈i)i:I is a family of equivalence relations 

–  ≈ is the intersection of all the relations ≈i

– any coherent sequence (ui)i:I of values of type A
admit a limit l in the sense that forall i, ui ≈i l.
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Completeness in c.o.f.e.'s
For streams, completeness asserts the existence 
of a limit to any coherent sequence of streams

u1 = a ::: _ ::: _ ::: _ ::: _ ::: _ ::: ...
u2 = a ::: b ::: _ ::: _ ::: _ ::: _ ::: ...
u3 = a ::: b ::: c ::: _ ::: _ ::: _ ::: ...
u4 = a ::: b ::: c ::: d ::: _ ::: _ ::: ...
u5 = a ::: b ::: c ::: d ::: e ::: _ ::: ...
...                                                  ...
u∞ = a ::: b ::: c ::: d ::: e ::: f ::: ...

The limit can be constructed by diagonalization

forall i, ui ≈i u∞

For example, u4 is similar to the limit u∞ up to length 4.
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Adding invariants
The previous contraction condition is not quite strong 
enough to capture advanced co-recursive definitions.

→ Example: Hamming's sequence (point out by Knuth)

Definition F x :=
1 ::: merge (map (mult 2) x) (map (mult 3) x).

where merge merges two sorted streams.

→ Simpler example for the sake of presentation
Definition F x := 2 ::: filter ( ≥ 1) x.

→ Remark: the following does not define a stream 
Definition F x := 0 ::: filter ( ≥ 1) x.
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Adding invariants
→ The generalized strengthen contraction condition:

∀ x1 x2 i, (x1  ≈i x2 ∧ Q i x1 ∧ Q i x2) →
F x1  ≈i+1 F x2 ∧ Q i (F x1)

Let's prove it holds for our functional. 
Definition F x := 2 ::: filter ( ≥ 1) x.

Invariant: Q i x := (∀j ≤ i, nth j x  ≥ 1)

Hypothesis: x1  ≈i x2 ∧ Q i x1 ∧ Q i x2

Goal 1: F x1  ≈i+1 F x2 
Goal 1: 2 ::: filter ( ≥ 1) x1  ≈i+1 2 ::: filter ( ≥ 1) x1 
Goal 1: filter ( ≥ 1) x1  ≈i filter ( ≥ 1) x2 

Goal 2: Q i (F x1)  
Goal 2: ∀j ≤ i+1, nth j (2::x1) ≥ 1
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Key idea about invariants

– Reasoning about a recursive function with 
nested calls requires the ability to specify results
of the function (Q x (f x)).

– Reasoning on a non-trivial co-recursive value 
requires the ability to specify arbitrarily-long 
prefixes of this value (Q i x).
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Contraction conditions for functions
Example of a co-recursive function: 

Definition F f x := x ::: f (x + 1).

Definition f := FixFun (≈) F.

Lemma f_fix : forall x, f x ≈ F f x.

(FixFun (≈) is like Fix, but it takes (≈) as argument)

Contraction condition for corecursive functions:

forall f1 f2 x i,
(forall y, f1 y  ≈i f2 y) ->
F f1 x  ≈i+1 F f2 x

– s ≈ s' means that s and s' are bisimilar streams.
– s ≈i s' iff s and s' agree up to their i-th element.
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Contraction conditions for functions
One can prove the fixed point equation for f.

Definition F f x := x ::: f (x + 1).

forall f1 f2 x i,
(forall y, f1 y  ≈i f2 y) ->
F f1 x  ≈i+1 F f2 x

Goal: F f1 x   ≈i+1 F f2 x

Goal: x ::: f1(x+1)  ≈i+1 x ::: f2(x+1)

Goal: f1(x+1)  ≈i f2(x+1)

Conclude using the hypothesis with y = x+1

→ The fixed point equation holds modulo bisimilarity:
Lemma f_fix : forall x, f x ≈ F f x.
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Partial co-recursion: stream filter
let rec filter x =    // where P is a given predicate 
let a:::y = x in 
if P a then a ::: filter y 
else filter y

Matthews could only deal with total functions:

Definition Filter filter x :=
if (never P x) then arbitrary else
let '(a:::y) := x in 
if P a then a ::: filter y else filter y.

With the optimal fixed point combinator Fix, we have:
Definition Filter filter x :=

let '(a:::y) := x in 
if P a then a ::: filter y else filter y.

Definition filter := FixFun (≈) Filter. 
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Partial co-recursion: stream filter
The domain of the filter function is made of streams 
which contain infinitely many values satisfying P.

Definition Filter filter x :=
let '(a:::y) := s in 
if P a then a ::: filter y else filter y.

The filter function does not produce a head value at 
each call: a bounded number of recursive calls may be 
required before the head value is exhibited.

→ Generalize contraction condition to be used:
forall f1 f2 x i, D x ->

(forall y j, (j,y)<(i,x) -> D y -> f1 y  ≈j f2 y) ->
F f1 x  ≈i F f2 x

where (j,y)<(i,x) is a lexicographical comparison, 
and y < x holds if the next element satisfying P is 
closer in the stream y than in stream x.
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Fixed point equation for filter

Proof of the contraction condition:
Hypotheses:

– D x
– forall y j, (j,y)<(i,x) -> D y -> f1 y  ≈j f2 y

Goal: F f1 s  ≈i F f2 s

Goal:  (if P a then a ::: f1 y else f1 y)
≈i(if P a then a ::: f2 y else f2 y)

Definition Filter filter x :=
let '(a:::y) := s in 
if P a then a ::: filter y else filter y.

Sugoal if (P a):  a ::: f1 y ≈i a ::: f2 y
follows from f1 y ≈i-1 f2 y taking j = i-1 

Sugoal if (~ P a):  f1 y ≈i f2 y
follows from the hypothesis taking j = i 
and checking that y < x (next "good" item is closer).
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Unifying contraction conditions
If the following hypotheses hold

– F is a functional of type A->A (where A is inhabited)

– (A,I,<,≈i) is a c.o.f.e.

– Q is a continuous property of type I->A->Prop

– The following contraction condition holds

∀ i x1 x2,
(∀j < i, x1  ≈j x2 ∧ Q j x1 ∧ Q j x2) →
F x1  ≈i F x2 ∧ Q i (F x1)

Then we can deduce that

– F admits a unique fixed point x modulo ≈

– Moreover x satisfies the invariant, i.e. ∀i, Q i x
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Unifying the combinators
So far we have used three combinators:

– FixVal (≈) F picks the unique fixed point x modulo ≈

∀y, y ≈ x → y ≈ F y

– FixFun (≈) F picks the optimal fixed point f modulo ≈

∀x, f x ≈ F f x

– Fix F picks the optimal fixed point for recursive 
functions. It is defined as FixFun (=) F.

∀x, f x = F f x

Can we unify FixVal and FixFun somehow?
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The "best fixed point" combinator
We define a combinator FixBest such that FixVal
and FixFun are both instances of it.

– FixBest ( ) (≈) F picks the greatest "fixed point x
modulo ≈" with respect to .

greatest ( ) (fun x => ∀y, y ≈ x → y ≈ F y)

– FixVal (≈) F := FixBest (≈) (≈) F

returns the unique x s.t. (∀y, y ≈ x → y ≈ F y)

– FixFun (≈) F := FixBest (≈) (∠F) F

where ∠F is a comparison function on fixed points of F
designed such that its greatest element is exactly the 
optimal fixed point of F.
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Recovering extraction

By moving to a non-constructive logic, 

we break the extraction mechanism.

How can we recover extraction?
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Extraction of fixed points
Fix is not constructive: it relies on Hilbert's epsilon. 
Yet, we can manually extract fixed points towards 
executable code using a let-rec construct. Intuitively:

From Coq:
Definition Log log x := 

if x <= 1 then 0 else 1 + log (x/2).

Definition log := Fix Log.

To Caml: (assuming uppercase identifiers are accepted by Caml)

let Log log x =
if x <= 1 then 0 else 1 + log (x/2)

let rec log = Log log

→ How can we implement this in a systematic manner?
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Extraction of the combinators
In Haskell:
Extract Constant FixBest => 

"(\F -> let x = F x in x)".

In Caml: (where lazy types are explicit)
Extract Constant FixFun => 

"(fun F -> let rec f x = F f x in f)".

Extract Constant FixVal =>
"(fun F -> let rec x = lazy (Lazy.force (F x)) in x)".

Remark: proof that types are inhabited are all erased 
through the extraction process.
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Summary and conclusion
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Some examples formalized
Recursion: Lines of proofs
– log function 2
– gcd function 3
– div function 3
– nested zero function 3
– trees with list of subtrees 4
– Ackermann's function 3
– McCarthy's function 8

Co-recursion: (≈ 100 lines to establish a new c.o.f.e.)
– constant stream 3
– mutually-defined streams 9
– filter on streams 13
– "product" of infinite trees 3+14+7
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Contribution
1) Spot the interest of the optimal fixed point
→ and implement the first formal proof of this theory
→ first proper support for partial corecursive functions

2) Invariants in contraction condition for c.o.f.e.'s
→ many more co-inductive definitions are supported

3) Unify the theory of contraction conditions
→ proved that all contraction conditions can be derived 
from the contr. condition for c.o.f.e.'s with invariants

4) Unify the generic fixed point combinators
→ FixFun and FixVal derivable from FixGreatest
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Things are now sorted out!



61

Conclusion
Optimal fixed points:
– little use as a theory of circular program definitions
– tool of choice to justify circular logical definitions

Generic fixed point combinators: 
– allow to separate definitions from their justification
– allow to encode let-rec in a systematic manner
– extraction is simple because the functional is explicit

Contraction conditions:
– all contraction conditions derivable from a single one
– support a very large scope of circular definitions
– while reasoning entirely within the logic of the prover
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Future Work
Generate corollaries automatically
– given the arity of the function
– given the number of mutually recursive values
– with or without invariant
– for partial or for total functions

Applications of the combinator 
– release a Coq library exporting the combinators
– implement a tool to convert from pure-Caml to Coq

Tactics to help proving contraction conditions
– proofs typically follows the structure of the code
– automation possible if Ltac could analyse "match"
– automate the construction of a c.o.f.e.



Thanks!

For more information: The Optimal Fixed Point Combinator
http://arthur.chargueraud.org/research/2010/fix
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Restrictions implemented in Coq
→ There is one little exception to termination criteria: 
higher-order functions can be unfolded on-the fly. This 
allows Coq to accept definitions such as:

Fixpoint size t := match t with 
| Leaf => 1
| Node ts => 

List.fold_right (fun t' a => a + size t') 1 ts

→ While this is convenient, it also has a drawback:

Definition ignore (n:nat) := 0.
Fixpoint f x := ignore (f x). (* accepted *)
let rec f x = ignore (f x). (* extracted code *)

→ The extracted code can diverge in call-by-value!
Strong normalization is preserved only with lazy eval.
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Contr. condition and divergence
Contraction conditions don't ensure termination.

Definition F f x := ignore (f x).

Contraction condition:
forall f1 f2 x, 

(forall y, y < x -> f1 y = f2 y) ->
F f1 x = F f2 x

Hypothesis: forall y, y < x -> f1 y = f2 y
Goal: F f1 x = F f2 x
Goal: ignore (f1 x) = ignore (f2 x)
Goal: 0 = 0

→ It is not possible to state, inside the logic of Coq, a 
proposition that characterizes only terms that 
terminate under call-by-value evaluation.
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Interest of recursive predicates
1) Can be more compact than an inductive def.

Inductive sorted : list A -> Prop :=
| sorted_nil : sorted nil
| sorted_one : forall x, sorted (x::nil)
| sorted_two : forall x y l,

(x <= y) -> sorted (y::l) -> sorted (x::y::l).

Fixpoint sorted l := match l with 
| x::y::l' => (x <= y) /\ sorted (x::l') | _ => True.

2) Fixpoints support negative occurences
Inductive models := 
| models_arrow : forall i v T1 T2, 

(∀x, ∀j<i, models j x T1 -> models j (v x) T2) ->
models f (Arrow T1 T2).             (* rejected *)

Fixpoint models i v T := match T with
| Arrow T1 T2 => forall x, forall j < i,

models j x T1 -> models j (v x) T2. (* accepted *)
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Origins of the contraction condition
How to come up with the contraction condition?

(forall f1 f2 x, 
(forall y, mu y < mu x -> f1 y = f2 y) ->
F f1 x = F f2 x)

Start from the fixed point equation:
log x = Log log x

Unfolding the definition of log, we have to prove:

Fixn_run Log (1 + mu x) x 
= Log (fun y => Fixn_run Log (1 + mu y) y) x

Unfolding the definition of Fixn_run, it becomes:

Log (fun y => Fixn_run Log (mu x) y) x
= Log (fun y => Fixn_run Log (1 + mu y) y) x

This suggests a proof by induction, on something like 
Log f1 x = Log f2 x, with hypotheses on f1 and f2.
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Another presentation
Fix can be applied on the fly to any functional

Definition log := Fix (fun log x => 
if x <= 1 then 0 else 1 + log (x/2)).

Lemma log_fix : forall x, 
log x  =  if x <= 1 then 0 else 1 + log (x/2).

The unfolding of the definition is more direct. However, 
the price to pay is a duplication of the source code.

x > 0  |- log x < x

rewrite log_fix. 

x > 0  |- (if x <= 1 then 0 else 1 + log(x/2)) < x


