Formal Reasoning on
Imperative ML Programs

Arthur Charguéraud

Joint work with Francois Pottier
INRIA-Rocquencourt

Meeting CeProMi Orsay, 2008-03-20

Overview

Our goal: design a type system that deals with non-aliasing
and ownership transfers, supporting local reasoning, in order
to ease the reasoning on higher-order imperative programs.

- =~ &

Imperative Typing Functional Higher-order Coq proof
language derivations language formula script
compilation, specification,
execution certification

— Presentation: type system and type-directed translation

— lllustration: factorial, mutable lists, union-find,
quicksort, eratosthene, mutable queues 2

Ingredients

The type system extends System F with two ingredients.

Regions: are sets of one or several values (resp. ¢ or p)
— [a] is the type of inhabitant of region a

— for a singleton region o, [c] is a singleton type

Capabilities: are written {c:0} or {p:6}

— describe ownership of regions,
I.e. the exclusive right to read or write in a region

— give the type 0 of the corresponding piece of state
— C, * C,Is the separating conjunction of C;, and C,

3

Grammar of Types

Values types (non-linear):

T = L |T|unit|[p]|[o]]|x1— Xx2|T1+T2|T1 X7

Memory types (linear):
6 = L|T|unit|[p]|[o]|x1— x2]|01+602|601 %02]|refd

Computation types (linear):

x = 3dp.7xC

Typing judgments: / T:T
— for values: Ay r:7 y:C

— for terms: | I ol A%

Typing References, Effects

Typing rules for reference primitives:

ref T — do.|o| x {o :ref 7}
get o] x {0 :ref7} — 7% {0 :ref 7}
set

(o] X 72) x{o : ref 74 } — unit * {o : ref 72}
Reference with linear contents:
{1 :ref 0} = dos. {01 : ref oz} x {02 : 6}

{c, - ref 6} {o, : ref [o,1}

/\ - Gl

J o : {o, 1 6}
2
o

Connection with Effects

Effect-style notation: // (should be a star symbol)

a—. 3 = alNe— [BANe

map : (a —.) — list a —, list 3

Derivable rules:

gEt : {P] —{pref 7} T
set : |p]xT— {p:ref 7} unit
ref T —ipaetr} O]

Original rules:
ref : 17— do.|o]*x{o:ref7}
get : |o]x{o:refT} > T7x {0 :refT}
set 1 ([o] X 72) % {o :ref 1} — unit x {0 : ref 7}

Type-directed Translation

Idea: static capabilities from the source are given a runtime
representation in the translated program.

Typed imperative program: Functional translation:
let T x {C1} {C2} = let T x cl c2 =
let y {C3} = g x {C2} 1In let y,c3 = g x c2 1In
y {C1} {C3} 1n y,cl,c3 In

— a singleton capability {c:0} Is translated simply as a value,
— a value of type [o] Is translated as unit.

— a group capability {p:6} is translated as a map indexed by keys,
— a value of type [p] is translated as a key.

Properties of the Translation

1) A program and a translation have similar behaviours

= to reason about a well-typed imperative program,
It suffices to reason on its functional translation

2) Translation is the identity on pure System F terms
= the framework adds no overcost on pure components

3) Translated programs are well-typed in System F

— allow to describe a structured store by a map
without requiring dependent types

Example 1: Factorial

Typing

Imperative program: Typing:
let rec facto n = facto : Int -> iInt
let r = ref 1 iIn n int
for 1 = 2 to n do r [R]
letp=1* (get r) In i int
set p r; p - iInt
done; {R : ref Int}
get r (R is a region name)

Typing of primitives: Let ¢ stand for {R : ref int} In

ref - Int -=> 3R, [R] =* ¢

get : [R] ->, iInt

set : Int -> [R] ->, unit

for-loop - iInt -> int -> (int ->_ unit) ->_ unit

10

Translation

Imperative program:

let rec facto n =

Functional Program:

let rec facto n =

let r = ref 1 In flet r,R1 = (),1 1In

for 1 = 2 to n do let R2 = fold 2 n
letp=1* (get r) In (fun 1 R ->
let) =set p r in letp=1*RIn
O let R*™ = p 1in

done; R*") R1 1n

get r R2

Comments:

— The capability {R : ref int} Is materialized in output code.
— For loop is translated as a fold on a sequence of integers.

11

Specification

Specification of the function in Coq:

Lemma facto prop : forall n, n >= 0 ->
result facto n (eq (factorial n)).

— factorial n Is a defined in the logic as the generalized
product of naturals in the set [1,n]

— again, result f n (eq r) means that the application of
function f to argument n is safe and returns the value r

Note: the proof would involve the two properties of factorial

Lemma factorial O : factorial 0 = 1.
Lemma factorial n : forall n, n > 0 ->
factorial n = n * factorial (n-1).

12

Example 2: Mutable lists

13

Definition and Constructors

mlistd := puL.ref (unit + 6 x L)
> pL.(unit + [0 x L)

empty V6. unit — do. [o] * {o : mlist 6}
.= A().ref (inj' ()
> AQ)-(0),inj" ()
cons . VOo,o0.[0z] X [07] * {0z : 0} x {0y : mlist 6}
— do. [o] * {0 : mlist 0}
.= A\(h,t). ref (inj* (h, t))
> AR, t). ((), (inj* (R, 1))

14

Iterator and Reverse

iter : VOe. (Vor.[02] —ex{o,:01 unit)
— Vo. [J] Hex{a:mlist 0} unit

reverse Vo 6.lo] % {o : mlist 0} — Jo’. [0'] * {c’ : mlist 6}
= let f = paux.\(l,p). match (get l) with
[inj” () = p
| inj? (h,t) = set (I,inj* (h,p)); auz (t,1)
in Al (f (I, empty ()))
> let f = paux.A((),(),l,p). matchl with
[inj” () = ((0),p)
[inj® (h,t) =
let I’ = inj® (h,p) in
o au((.0.00)
in A((),1). (f (0), (), !, empty ()))

15

Example 3: Union-find

16

Creation of a new node

node p —
>

new_node

ref (unit + [p]) 1p]
unit + key I {p : node p}

Vp. unit — ¢ .node p 1p]
A(). ref (inj" ()
A0,).

let K = map_fresh r in
let 7’ = map_add r k (inj' ()) in
(k, ")

A new reference is allocated and is then adopted by region p.

17

Others operations

find : \?(p [p] —7{p:modep} [p]

Modifies the map translating the capability on region p
by reading and writing into that map.

unify : Vp.[p] X [p] = {pnode,p} unit

Calls "find" twice and then update the map.

are_unified Vp. [p] X [p] = {pmode p+ boOI

Calls "find" twice. The comparison of two pointers in
the source translates as the comparison of two keys.

18

Example 4: Eratosthene

19

Typing of Imperative Source

let rec 1ter _primes n T = {P:ref bool}
IT (n < 2) then () else begin
let p = ref true In ¢
let g m = ////

(if nmod m =0 then p := false ; fm in
iter _prime (n-1) g;
1T Ip then £ n
end

Types involved:
iter_primes : Ve, int -> (int ->_ int) ->_ unit
p - [P] with {P - ref bool}

Recursive call to iter_primes at type:
int -> (int _>s*{P:ref bool} int) _>s*{P:ref bool} unit

20

Translation

let rec 1ter _primes n T el =
IT (n < 2) then el else begin
et pl = true iIn
let gm(e"l,p"l) =
flet p"2 = 1T nmod m = 0O then false else p"1 In
let e"2 = fme"l In
(e"2,p"2) 1In
let e2,p2 = 1ter_primes (n-1) g (el,pl) iIn
let e3 = 1T p2 then (f n e2) else e2 In
e3
end

: Va, Int -> (int -> a -> Int*a) -> a -> o

(was) - Ve, Int -> (int ->, Int) ->_unit

21

Example 5: Quicksort

22

Imperative Source

Imperative program:

let quicksort smaller tab =

left right
let split left right = . .
 sp _p|l >p
left right
let sort_left right = _ _ .
let piv = split left right | <p >p
sort Ieft pivs _ _ sort .
sort (piv+l) right; %%ZW j/f sort 4%ZW
_ sorted o

sort 0 (size tab)

23

Typing and Translation

Type of source in System F + imperative features:
quicksort: Va, (a -> a -> bool) -> array a -> unit
Type of source in System F + regions & capabilities:

-> Vo, [c] ~Z{c : array a} unit

Type of translation in System F:

quicksort: Va, (a -> o -> bool) -> array® a -> array" o

where array* is the type of purely applicative arrays.

24

Specification of Quicksort

Lemma quicksort spec : forall A tab smaller Smaller,
total order.rel Smaller ->
correspond2 smaller Smaller ->
result2 (quicksort A) smaller tab (fun tab®" =>
permut tab tab®" /\ sorted Smaller tab").

25

In-bounds Checks

Accesses to a cell of the array is garrantied inbound by typing.

An integer can be cast into a valid array cell pointer,
generating a proof obligation at that point.

Given
<p:array> garranties that the region 1s an array
{p:ref 6} the capability i1s translated as map h

Subtyping operation is
shift : [p] > Int -> [?p]
cast : [?p] <= [p]
iIf translation 1s k then the cast generates
assert k e dom(h)

26

Sub-arrays for Recursive Calls

Recursive calls to the sort <p >p

function thread only a submap
of the map describing the entire sorted

array. ___ sorted _

This gives us for free the fact
that other cells of the array
have not been modified. sorted

//// sorted / sorted ////

//// sorted ////

{p:ref 6} = Fp", {p:ref 6 \K} * {p":ref 06}
* <p" C p> * <pjk < p">
where K set of keys
cast : [p"] <= [p] 1s for free
cast : [p] <= [p"] generates assert k e dom(h)

27

Example 6: Mutable Queues

28

Typing in ML

cell o = Tail | Node of a * node «

node a = ref (cell o)

queue o = { mutable head : node a;
mutable tail : node o }

Typing and Translation of Types

[pg]

.Ir;\] tail
head
T . . -
(Ref) | Ref| | Ref) [Ref)
h .\\54_ : '.k‘a’..-.. - -ﬂ“u..-.._ o Kx._
[et [V)) (Tail
___ .__-'\\a- B L _\’?- B 1 —
| e) o [o) P
p— s P
Types In source: Pa

cell a p = Tarl | Node of a * node a p
node a p = [pl
queue o p = { mutable head : node a p;
mutable tail : node a p }
Queue a = Jp. (queue a p) * {p* - ref (cell a p)}

Types in translation:

cell o = Tail | Node of o * key

node a = key

queue o = { head : node a; tail - node a }

Queue a = (map key (cell a)) * queue a 30

Operations

Type In source:

create :
: [X] —> [Q)*{X:a}*{Q:Queue o} -> unit+{Q:Queue o}
- [Q]*{0Q:Queue a} -> IX.[X]*{X:a}*{0Q:Queue o}

push
pPop

append :

unit -> 30.[Q]*{Q:Queue o}

([Q1]1x[Q2])*{Q1:Queue o}*{0Q2:Queue a}
-> unit+*{Q1l:Queue o}

Type in translation:

Ccreate :
- B -> Queue B -> Queue B
 Queue B -> B * Queue B
© Queue B -> Queue B -> Queue B

push

Pop
append

unit -> Queue P

31

Pop: Cut Regions

Reminder: Queue a = 3p. (queue a p) * {p* : ref (cell a p)}

Before:

[c]

{c:Queue o}

After:

[c]

{o:Queue o}

[c]
{c, :a} |

Append: Merge Regions

Before: [6.]1 {oc,:Queue o} [Gz] {Gz Queue o}

s

K A

DIRCOR

{c,:Queue o} @ @ @

A

After: S

A Few Typing Rules

34

Main Typing Rules

VAR FUN

(r:7) € A Ayz:xiIFt: x2 B u

Atz:7 B x AF (Az.t) : (x1 — x2) B (Az.u)

VAL FRAME

AFv:7T B w T'lFt:x & u

AlFv: 7[> w (T,x:C)Ht: (x*xC) & (u,x)

APP

AkFwv:(x1—x2) B w AT IFE: x1 B u

AT IF (vt) : x2 B (wu)

LET

AT Hti:yvi B w A, z:yx, a2 bt xv2 B uz

A, T, T2 F (letx =tiint2) : x2 B (letz = w1 inuz)

35

Conclusions

36

Related Work

Reqgions and Capabilities

— Stack of Region, Tofte, Talpin, and later effects type systems

— Calculus of Capabilities, Crary, Walker, Morrisset

— Alias Types, Smith, Walker, Morrisset

— Adoption & Focus, Fahndrich, DeLine

— Connecting Effects & Uniqueness with Adoption, Boyland, Retert

Other Related Works
— Separation Logic, Stateful Views — Monads, Monadic Translation
— The "Why" tool, Filliatre

— Linear Language with Locations, Linear Regions are all You Need

— From Algol to Poly. Linear A-calculus, O'Hearn, Reynolds
— Logics for higher-order functions, Honda and al

— Hoare Logic for CBV Function Programs, Pottier, Regis-Gianas;;

Future Work

Soon

— Formalization of advanced features of the type system.

— Setting up of a convenient way to reason about functional
programs using Coq (using strongest post-condition?).

Then
— Partial type inference, user-level syntax.

— Implementation.

— Realistic demos.

38

Thanksl!

