
Meeting CeProMi Orsay, 2008-03-20

Arthur Charguéraud

Formal Reasoning on
Imperative ML Programs

Joint work with François Pottier

INRIA-Rocquencourt

2

Overview

– Presentation: type system and type-directed translation

– Illustration: factorial, mutable lists, union-find,
quicksort, eratosthene, mutable queues

Imperative
language

Coq proof
script

Functional
language

Typing
derivations

HOL
Higher-order

formula

compilation,
execution

specification,
certification

Our goal: design a type system that deals with non-aliasing
and ownership transfers, supporting local reasoning, in order
to ease the reasoning on higher-order imperative programs.

3

Ingredients

The type system extends System F with two ingredients.

Regions: are sets of one or several values (resp. σ or ρ)

– [α] is the type of inhabitant of region α

– for a singleton region σ, [σ] is a singleton type

Capabilities: are written {σ:θ} or {ρ:θ}

– describe ownership of regions,
i.e. the exclusive right to read or write in a region

– give the type θ of the corresponding piece of state

– C1 ∗ C2 is the separating conjunction of C1 and C2

4

Grammar of Types

Values types (non-linear):

Memory types (linear):

Computation types (linear):

Typing judgments:

– for values:

– for terms:

5

Typing References, Effects

Typing rules for reference primitives:

Reference with linear contents:

ref

θ

{σ2 : θ}

{σ1 : ref θ}

ref

θ

σ1
σ1

σ2

{σ1 : ref [σ2]}

6

Connection with Effects

Derivable rules:

Effect-style notation:

Original rules:

(should be a star symbol)

7

Type-directed Translation

Idea: static capabilities from the source are given a runtime
representation in the translated program.

– a singleton capability {σ:θ} is translated simply as a value,
– a value of type [σ] is translated as unit.

– a group capability {ρ:θ} is translated as a map indexed by keys,
– a value of type [ρ] is translated as a key.

let f x {C1} {C2} =
...
let y {C3} = g x {C2} in
...
y {C1} {C3} in

let f x c1 c2 =
...
let y,c3 = g x c2 in
...
y,c1,c3 in

Typed imperative program: Functional translation:

8

Properties of the Translation

1) A program and a translation have similar behaviours
⇒ to reason about a well-typed imperative program,

it suffices to reason on its functional translation

2) Translation is the identity on pure System F terms
⇒ the framework adds no overcost on pure components

3) Translated programs are well-typed in System F
⇒ allow to describe a structured store by a map

without requiring dependent types

9

Example 1: Factorial

10

Typing

let rec facto n =
let r = ref 1 in
for i = 2 to n do
let p = i * (get r) in
set p r;

done;
get r

facto : int -> int
n : int
r : [R]
i : int
p : int
{R : ref int}

(R is a region name)

Imperative program: Typing:

ref : int -> ∃ R, [R] ∗ ε
get : [R] ->ε int
set : int -> [R] ->ε unit
for-loop : int -> int -> (int -> ε unit) -> ε unit

Typing of primitives: Let ε stand for {R : ref int} in

11

Translation

let rec facto n =
let r = ref 1 in
for i = 2 to n do
let p = i * (get r) in
let () = set p r in
()

done;
get r

Imperative program: Functional Program:

let rec facto n =
let r,R1 = (),1 in
let R2 = fold 2 n
(fun i R ->
let p = i * R in
let R' = p in
R') R1 in

R2

Comments:
– The capability {R : ref int} is materialized in output code.
– For loop is translated as a fold on a sequence of integers.

12

Specification
Specification of the function in Coq:

Lemma facto_prop : forall n, n >= 0 ->
result facto n (eq (factorial n)).

– factorial n is a defined in the logic as the generalized
product of naturals in the set [1,n]
– again, result f n (eq r) means that the application of
function f to argument n is safe and returns the value r

Note: the proof would involve the two properties of factorial

Lemma factorial_0 : factorial 0 = 1.
Lemma factorial_n : forall n, n > 0 ->

factorial n = n * factorial (n-1).

13

Example 2: Mutable lists

14

Definition and Constructors

15

Iterator and Reverse

16

Example 3: Union-find

17

Creation of a new node

A new reference is allocated and is then adopted by region ρ.

18

Others operations

Modifies the map translating the capability on region ρ
by reading and writing into that map.

Calls "find" twice and then update the map.

Calls "find" twice. The comparison of two pointers in
the source translates as the comparison of two keys.

19

Example 4: Eratosthene

20

Typing of Imperative Source

Types involved:
iter_primes : ∀ε, int -> (int ->ε int) ->ε unit
p : [P] with {P : ref bool}

Recursive call to iter_primes at type:
int -> (int ->ε∗{P:ref bool} int) ->ε∗{P:ref bool} unit

{P:ref bool}

ε

let rec iter_primes n f =
if (n < 2) then () else begin
let p = ref true in
let g m =

if n mod m = 0 then p := false ; f m in
iter_prime (n-1) g;
if !p then f n

end

21

let rec iter_primes n f e1 =
if (n < 2) then e1 else begin
let p1 = true in
let g m (e'1,p'1) =

let p'2 = if n mod m = 0 then false else p'1 in
let e'2 = f m e'1 in
(e'2,p'2) in

let e2,p2 = iter_primes (n-1) g (e1,p1) in
let e3 = if p2 then (f n e2) else e2 in

e3
end

Translation

: ∀α, int -> (int -> α -> int*α) -> α -> α

(was) : ∀ε, int -> (int ->ε int) ->ε unit

22

Example 5: Quicksort

23

Imperative Source

let quicksort smaller tab =

let split left right =
...

let sort left right =
let piv = split left right
sort left piv;
sort (piv+1) right;

sort 0 (size tab)

Imperative program:

p≤ p > p

left right

p≤ p > p

sort

sort

left right

sorted

24

Typing and Translation

Type of source in System F + imperative features:

quicksort: ∀α, (α -> α -> bool) -> array α -> unit

Type of source in System F + regions & capabilities:

quicksort: ∀α, (∀σ1 σ2, [σ1] -> [σ2] ->!{σ1:α}!{σ2:α} bool)
-> ∀σ, [σ] ->{σ : array α} unit

Type of translation in System F:

quicksort: ∀α, (α -> α -> bool) -> arrayF α -> arrayF α

where arrayF is the type of purely applicative arrays.

25

Specification of Quicksort

Lemma quicksort_spec : forall A tab smaller Smaller,
total_order.rel Smaller ->
correspond2 smaller Smaller ->
result2 (quicksort A) smaller tab (fun tab' =>
permut tab tab' /\ sorted Smaller tab').

26

In-bounds Checks

Accesses to a cell of the array is garrantied inbound by typing.
An integer can be cast into a valid array cell pointer,
generating a proof obligation at that point.

Given

<ρ:array> garranties that the region is an array
{ρ:ref θ} the capability is translated as map h

Subtyping operation is

shift : [ρ] -> int -> [?ρ]
cast : [?ρ] <= [ρ]

if translation is k then the cast generates

assert k ∈ dom(h)

27

Sub-arrays for Recursive Calls

≤ p > pp

sorted

sorted

sorted

sorted sorted

sorted

Recursive calls to the sort
function thread only a submap
of the map describing the entire
array.
This gives us for free the fact
that other cells of the array
have not been modified.

{ρ:ref θ} ≡ ∃ρ', {ρ:ref θ \K} ∗ {ρ':ref θ}
∗ <ρ' ⊂ ρ> ∗ <ρ|K ⊂ ρ'>

where K set of keys

cast : [ρ'] <= [ρ] is for free
cast : [ρ] <= [ρ'] generates assert k ∈ dom(h)

28

Example 6: Mutable Queues

29

Typing in ML
cell α = Tail | Node of α * node α
node α = ref (cell α)
queue α = { mutable head : node α;

mutable tail : node α }

Tail

q

α ρ

σ

Ref

Nd

α

Ref

Nd

α

Ref

Nd

Ref

[σ]

head

tail

30

Typing and Translation of Types

Types in source:
cell α ρ = Tail | Node of α * node α ρ
node α ρ = [ρ]
queue α ρ = { mutable head : node α ρ;

mutable tail : node α ρ }
Queue α = ∃ρ. (queue α ρ) ∗ {ρ* : ref (cell α ρ)}

Types in translation:
cell α = Tail | Node of α * key
node α = key
queue α = { head : node α; tail : node α }
Queue α = (map key (cell α)) * queue α

31

Operations

Type in source:

create : unit -> ∃Q.[Q]∗{Q:Queue α}
push : [X] -> [Q]∗{X:α}∗{Q:Queue α} -> unit∗{Q:Queue α}
pop : [Q]∗{Q:Queue α} -> ∃X.[X]∗{X:α}∗{Q:Queue α}
append : ([Q1]x[Q2])∗{Q1:Queue α}∗{Q2:Queue α}

-> unit∗{Q1:Queue α}

Type in translation:

create : unit -> Queue β
push : β -> Queue β -> Queue β
pop : Queue β -> β * Queue β
append : Queue β -> Queue β -> Queue β

32

Pop: Cut Regions

Tail

qu

α

ρ

Nd Nd Nd

α α

[σ]
{σ:Queue α} head

tail

σ

Tail

qu

α

ρ'

Nd Nd

α α

[σ]
{σ:Queue α} head

tail

σ

Before:

After:

σx

[σx]
{σx:α}

σ1 ρ'

Reminder: Queue α = ∃ρ. (queue α ρ) ∗ {ρ* : ref (cell α ρ)}

33

Append: Merge Regions

α

ρ1

Nd Nd Nd

α α

Tail

qu

Nd Nd

α α
[σ1]

{σ1:Queue α}

head

tail
σ1

After:

Before:

Tail

qu

α

ρ1

Nd Nd Nd

α α

σ2

Tail

ρ2

Nd Nd

α α

qu

[σ1] {σ1:Queue α} [σ2] {σ2 :Queue α}

σ1

34

A Few Typing Rules

35

Main Typing Rules

36

Conclusions

37

Related Work
Regions and Capabilities

– Stack of Region, Tofte, Talpin, and later effects type systems

– Calculus of Capabilities, Crary, Walker, Morrisset

– Alias Types, Smith, Walker, Morrisset

– Adoption & Focus, Fahndrich, DeLine

– Connecting Effects & Uniqueness with Adoption, Boyland, Retert

Other Related Works

– Separation Logic, Stateful Views – Monads, Monadic Translation

– The "Why" tool, Filliâtre

– Linear Language with Locations, Linear Regions are all You Need

– From Algol to Poly. Linear λ-calculus, O'Hearn, Reynolds

– Logics for higher-order functions, Honda and al

– Hoare Logic for CBV Function Programs, Pottier, Regis-Gianas

38

Future Work

Soon

– Formalization of advanced features of the type system.

– Setting up of a convenient way to reason about functional
programs using Coq (using strongest post-condition?).

Then

– Partial type inference, user-level syntax.

– Implementation.

– Realistic demos.

Thanks!

