
Types, Logics and Semantics for State Dagstuhl, 2008-02-04

Arthur Charguéraud

Formal Reasoning on
Imperative ML Programs

Joint work with François Pottier

INRIA-Rocquencourt

2

Overview

Imperative
language

Coq proof
script

Functional
language

Typing
derivations

– Running example: factorial

– Additional examples: quicksort, mutable queues

HOL
Higher-order

formula

compilation,
execution

specification,
certification

Our goal: design a type system that deals with non-aliasing
and ownership transfers, supporting local reasoning, in order
to ease the reasoning on higher-order imperative programs.

3

1) Typing Imperative Programs

A type system that extends System F with two ingredients.

Regions: are sets of values,
[ρ] is the type of a value that belongs to region ρ.

Capabilities: – describe ownership of regions,
(the exclusive right to read or write in a region)

– give the type of the corresponding piece of state.

{ρ:θ} is a singleton region (thus [ρ] singleton type)
{ρ*:θ} is a group region (used for aliasing).

Mechanisms for merging a singleton region into a group region
and reverse are provided, extending the "Adoption and Focus"
techniques (Fahndrich and DeLine 2002).

4

1) Typing Imperative Programs

Values types (non-linear):

Memory types (linear):

Computation types (linear):

Typing judgments:

– for values
– for terms

5

1) Typing References

Our typing rules for reference primitives:

Rules derivable in our system:

Effect-style notation:

ref

θ

{ρ1 : ref [ρ2]}
 ∧ {ρ2 : θ}

{ρ1 : ref θ}

ref

θ

ρ1

ρ1

ρ2

6

1) Factorial: Typing

let rec facto n =
let r = ref 1 in
for i = 2 to n do
let p = i * (get r) in
set p r;

done;
get r

facto : int -> int
n : int
r : [R]
i : int
p : int
{R : ref int}

(R is a region name)

Imperative program: Typing:

ref : int -> exists R, [R] ∧ ε
get : [R] ->ε int
set : int -> [R] ->ε unit
for-loop : int -> int -> (int -> ε unit) -> ε unit

Typing of primitives: Let ε stand for {R : ref int} in

7

2) Type-directed Translation

Idea: static capabilities from the source are given a runtime
representation in the translated program.

Interesting cases:
A singleton capability {ρ:θ} is translated as a single value.
A group capability {ρ*:θ} is translated as a map indexed by keys.
A value of type [ρ] is translated as a key,
and it is usually erased if it is a singleton type.

let f x {C1} {C2} =
...
let y {C3} = g x {C2} in
...
y {C1} {C3} in

let f x c1 c2 =
...
let y,c3 = g x c2 in
...
y,c1,c3 in

Typed imperative program: Functional translation:

8

2) Factorial: Translation

let rec facto n =
let r = ref 1 in
for i = 2 to n do
let p = i * (get r) in
let () = set p r in
()

done;
get r

Imperative program: Functional Program:

let rec facto n =
let r,R1 = 1,() in
let R2 = fold 2 n
(fun i R ->
let p = i * R in
let R' = p in
R') R1 in

R2

– Capability {R : ref int} is materialized in output code.
– Value r : [R] is erased during translation.
– For loop is translated as a "fold" on a sequence of integers.

9

3) Factorial: Description

let rec facto n =
let R1 = 1 in
let body i R =
let R' = i * R in
R' in

let R2 = fold 2 n body R1 in
R2

Functional program: Higher-order logic formula:

Axiom facto : int -> int.

Axiom facto_descr : ∀ n,
∃ R1, R1 = 1 ∧
∃ body, (∀ i, ∀ R,

∃ R', R' = i * R ∧
result2 body i R (= R')) ∧

Let R2 =app4 fold 2 n body R1 in
result1 facto n (= R2).

result f x (= n) defined as safe f x /\ f x = n

the application of function f to x is safe and returns n.

Let y =app f x in P defined as safe f x -> ∃ y, y = f x /\ P

if the application of f to x is safe then y is bound to f x in P

10

3) Strongest Post-Condiction

Idea: given a functional program, generate a higher-order logic
formula that fully characterizes its behaviour.

is an abstract predicate (in Coq) that holds iff
function f terminates without error on the input x.

is the strongest post-condition of value v, in which
r is the logical name associated to value v.

is the strongest post-condition for term t, in which
– s is a proposition provable iff t terminates
without error (s describes the "safety" of t),
– if s holds, then r is the logical name associated
to the result of the evaluation of t.

11

3) Strongest Post-Condiction

A value, reflected by r:

A term, with safety reflected by s, and result by r:

12

4) Factorial: Certification

Lemma facto_prop : forall n, n >= 0 ->
result1 facto n (= (factorial n)).

Certification of function facto for the following specification:

– factorial n is a defined in the logic as the generalized
product of naturals in the set [1,n]
– again, result1 f n (= r) means that the application of
function f to argument n is safe and returns the value r

Proof is short and simple, and involves the two properties:

Lemma factorial_0 : factorial 0 = 1.
Lemma factorial_n : forall n, n > 0 ->

factorial n = n * factorial (n-1).

13

Demo 2: Quicksort

14

1) Imperative Source

let quicksort smaller tab =

let split left right =
...

let sort left right =
let piv = split left right
sort left piv;
sort (piv+1) right;

sort 0 (size tab)

Imperative program:

p≤ p > p

left right

p≤ p > p

sort

sort

left right

sorted

15

2) Typing, Translation, Description
Type of source in System F + imperative features:
quicksort: ∀α, (α -> α -> bool) -> array α -> unit

Type of source in System F + regions & capabilities:
quicksort: ∀α, (∀ρ1 p2, [p1] -> [p2] !{ρ1:α}!{ρ2:α} -> bool) ->

∀ρ, [ρ] {ρ : array α} -> unit {ρ : array α}

Type of translation in System F:
quicksort: ∀α, (α -> α -> bool) -> arrayF α -> arrayF α

Type of reflected function in Coq:
quicksort: ∀α:obj, (α -> α -> bool) -> arrayF α -> arrayF α.

– arrayF is the type of functional arrays (i.e. purely applicative),
– obj is a subtype Set restricted to inhabited comparable types.

16

3) Description, Specification
Description axioms:
Axiom quicksort:
forall (A:obj), (A -> A -> bool) -> arrayF A -> arrayF A.

Axiom quicksort_descr: forall (A:obj) smaller tab,

exists split, ... ∧ exists sort, ... ∧
Let tab' =app3 sort 0 (size tab) tab in
result2 (quicksort A) smaller tab (= tab')

Last 2 lines imply:
tab' = quicksort A smaller tab ->
permut tab tab' /\ sorted smaller tab'

Property proved about quicksort:
Lemma quicksort_spec : forall A smaller tab,
total2 smaller ->
total_order.rel smaller ->
result2 (quicksort A) smaller tab (fun tab' =>
permut tab tab' /\ sorted smaller tab').

17

4) Comments About the Proof
– Accesses to a cell of the array is garrantied inbound by typing.
An integer can be cast into a valid array cell pointer, generating a
proof obligation at that point.

– Safety (termination without error) of the recursive function
sort is proved by application of a strong induction principle (in
Coq), since the size of the array strictly decreases on rec. calls.

≤ p > pp

sorted

sorted

sorted

sorted sorted

sorted

– Recursive calls to the sort
function thread only a submap
of the map describing the
entire array. This gives us for
free the fact that other cells of
the array have not been
modified.

18

Demo 3: Mutable Queues

19

1) Typing
Types in ML
cell α = Tail | Node of α * node α
node α = ref (cell α)
queue α = { mutable head : node α;

mutable tail : node α }

Tail

q

α ρ

ρq

Ref

Nd

α

Ref

Nd

α

Ref

Nd

Ref

[ρq]

head

tail

20

1) Typing, continued

Types in source:
cell α ρ = Tail | Node of α * node α ρ
node α ρ = [ρ]
queue α ρ = { mutable head : node α ρ;

mutable tail : node α ρ }
Queue α = ∃ρ. {ρ* : ref (cell α ρ)}. queue α ρ

Types in translation:
cell α = Tail | Node of α * key
node α = key
queue α = { head : node α; tail : node α }
Queue α = (map key (cell α)) * queue α

21

2) Push Operation

Type in source:
push : ∀α, [X] -> [Q] {X:α}{Q:Queue α} -> unit {Q:Queue α}

Type in translation:
push : ∀α, α -> Queue α -> Queue α

Specification:
push_spec : forall (A:obj) x q L,
isQueue q L ->
result2 push x q (fun q' => isQueue q' (L ++ x::nil))

where:
"isQueue q L" is an inductive relation that holds if the object q
(of type (map key (cell α))*{head:key;tail:key}) describes a
queue whose elements are the value from list L (of type list α).

22

3) Pop Operation

Tail

qu

α

ρ

Nd Nd Nd

α α

[ρq]
{ρq: Queue α} head

tail

ρq

Tail

qu

α

ρ'

Nd Nd

α α

[ρq]
{ρq: Queue α} head

tail

ρq

Before:

After:

ρx

[ρx]
{ρx: α}

ρ1 ρ'

Reminder: Queue α = ∃ρ. {ρ* : ref (cell α ρ)}. queue α ρ

23

4) Append Operation

α

ρ1

Nd Nd Nd

α α

Tail

qu

Nd Nd

α α
[ρq1]

{ρq1: Queue α}

head

tail
ρq1

After:

Before:

Tail

qu

α

ρ1

Nd Nd Nd

α α

ρq2

Tail

ρ2

Nd Nd

α α

qu

[ρq1] {ρq1: Queue α} [ρq2] {ρq2: Queue α}

ρq1

24

Related Work
Regions and Capabilities

– Stack of Region, Tofte, Talpin, and later effects type systems

– Calculus of Capabilities, Crary, Walker, Morrisset

– Alias Types, Smith, Walker, Morrisset

– Adoption & Focus, Fahndrich, DeLine

– Connecting Effects & Uniqueness with Adoption, Boyland, Retert

Other Related Works

– Separation Logic, Stateful Views

– Monads, Monadic Translation

– Linear Language with Locations, Linear Regions are all You Need

– From Algol to Poly. Linear λ-calculus, O'Hearn and Reynolds

– Logics for higher-order functions, Honda and al

– The "Why" tool, Hoare Logic for CBV Function Programs

25

Conclusion

Results:
– could be a practical way for reasoning on imperative programs,

– which may lead to nice-looking specifications and proofs.

– which adds no overcost when reasoning on pure components,

– which reuses Coq as a target logic and as a proof-assistant,

Main components of our type system and translation in the draft:

Functional Translation of a Calculus of Capabilities (Pottier & I).

Future work:
– formalization of advanced features of the type system,

– formalization of the strongest post-condition algorithm,

– proving coherence of adding such axioms to Coq,

– implementations of the several tools involved.

Thanks!

