Engineering Formal Metatheory

Arthur Charguéraud

Joint work with Brian Aydemir, Benjamin C. Pierce, Randy Pollack and Stephanie Weirich

San Francisco, 2008-01-10

POPL'08

Motivation

A metatheory paper proof

A metatheory mechanized proof

- many tedious cases
- never 100% confident
- hard to reuse

- use automation
 - machine-checked
 - re-run proof script

The POPLMark Challenge

How to formalize metatheory:

- with a generally applicable method,
- faithful to informal practice style,

- with reasonable infrastructure overhead,
- and using a technology with low cost of entry ?

Our contribution is the proposal of a novel style for formalizing metatheory that achieve these goals.

- 1) Locally nameless representation of syntax
- 2) Cofinite quantification of free variable names

1– Locally Nameless

Representation of Binders

Two basic approaches:

- first-order: represents variables "concretely"
- higher-order: encode object language binders into the function space of another language

Lot of work have been completed with both approaches.

The general perception is that first-order approaches require a lot more low-level work.

 \rightarrow Our goal: make this as light as possible.

First-Order Representations

- Names, α -quotiented
 - \rightarrow quotient, α -conversion, capture
 - names without quotient → severe restrictions
 - nominal techniques significant tool support
- De Bruijn indices \rightarrow shifting of indices
- Distinguishing bound and free variables
 - locally named $\rightarrow \alpha$ -conversion
 - locally nameless \rightarrow our choice...

Locally Nameless Syntax

Representation:

- bound variables represented by de Bruijn indices
- free variables represented by names
 - t := bvar i | fvar x | app t1 t2 | abs t

Benefits:

– each λ -term has a unique representation

 \rightarrow no quotient structure, no α -conversion

straight-forward implementation of substitution

 \rightarrow no shifting necessary, no variable capture

β-reduction in Locally Nameless

This is a textual replacement: no renaming, no shifting.

Operations on Syntax

The definitions of these operations are simple, and it follows that their properties have simple proofs.

Restriction to Terms

Problem:

The locally nameless syntax contains objects that do not correspond to a lambda term, e.g. (bvar 3).

Solution:

We define the predicate "term" to characterize objects in which all bound variables resolve to a binder.

	term t_1	term t_2	term (t^x)
term (fvar x)	term (ap	op t_1 $t_2)$	$term \ (abs \ t)$

- Definitions \rightarrow relations restricted to terms
- Infrastructure \rightarrow operations compatible with term
- Core proofs \rightarrow obligations handled by automation

2- Cofinite Quantification

How to Introduce Free Names?

$$\frac{\text{Quantify}(x) \quad (E, x:T_1) \vdash (t^x) : T_2}{E \vdash (\mathsf{abs} \ t) : T_1 \to T_2}$$

<u>Quantification</u>	Introduction	Elimination
$\begin{array}{c} Existential \\ x \notin FV(t) \end{array}$	maximally strong	very weak
Universal $\forall x \notin dom(E)$	very weak	maximally strong
Cofinite	nearly always	strong enough,

sufficient; easy to

strengthen if not

 $\forall x \notin L$

provided cofinite

used everywhere

Cofinite Quantification in Practice

 $\begin{array}{l} \begin{array}{l} \text{TYPING-ABS} \\ \forall x \notin L. \ (E, x:T_1) \vdash (t^x) : T_2 \\ \hline E \vdash (\mathsf{abs} \ t) : T_1 \rightarrow T_2 \end{array} \begin{array}{c} \begin{array}{l} \text{TERM-ABS} \\ \forall x \notin L. \ \mathsf{term} \ (t^x) \\ \hline \mathsf{term} \ (\mathsf{abs} \ t) \end{array} \end{array}$

1) state all rules using cofinite quantification \rightarrow no need to worry about freshness details

2) induction and inversion principles are available
→ automatically generated (in Coq)

3) to apply: instantiate L so as to avoid name clashes \rightarrow a generic tactic automates this

Developments Completed

A step is defined as the application of a non-trivial tactic (i.e. not "intro" or "auto" or a simple variations of these two).

Conclusion

Formalize programming language metatheory with: locally nameless + cofinite quantification

- this leads to a generally applicable method,
- directly usable in general-purpose theorem provers,
- proofs closely follow their informal equivalents,
- amount of infrastructure required is reasonable,
- support by the OTT tool is work in progress.

Give it a try!

Developments scripts: http://arthur.chargueraud.org Tutorial material: http://plclub.org/popl08-tutorial