Functional Translation of a
Calculus of Capabilities

Arthur Charguéraud

Joint work with Francois Pottier
INRIA-Rocquencourt

Workshop on Effects and Type Theory 2007-12-13

Overview

typing translation analysis

Imperative Typing with Functional HO logical
language capabilities language formula

A type system
System-F plus regions and linearly-treated capabilities (static)
A capability is an exclusive read-and-write permission

A type-directed translation
From imperative code towards an equivalent functional code
The state is represented by the translation of capabilities

Simple Reference - Typing

Imperative source: Typing of values:

let x = ref7 7 :int X :[R]

let y = getx y : int 'c’ :char

let _ = set(x,'c') _ounit

Typing of primitives : region R
ref T — dpA{p : ref 7} [p) @

get : {p:refr}p| = {p:ref 7} 7
{p:ref 7} ([p] X 72) — {p: ref 7} unit

set

[
c‘
\
|
\
\
\

=
q

N

Typing with capabilities:

let
let
let

{R:ref int}
{R:ref int}
{R:ref char}

X = ref7
y = get {R:refint} X
_ = set {R:refint} (x,'c)

Simple Reference — Translation

Typing with capabilities:

let {R:ref int} X = ref7
let {R:ref int} y = get {R:iref int} X
let {R:ref char} _ = set {R:ref int} (x,'c

Functional translation:

let Rlx = (Aa.(a, 1)) 7
let R2y = (A(a, 1).(a,a) (R1,x)
let R3,_ = (A@L(1a2)).(a2,(0)) (R2,(x,'c"))

set : {p:ref 7} (|p] X) — {p: ref 7} unit

After some reductions: Recall the imperative code:
let Rlx = 7,1 let x = ref7

let R2y = RLR1 | x : [R] ety = getx

let R3 = 'C let = set(x,'c")

Reference with Linear Contents

T ranges over non-linear "value types". Thus, "get" is restricted.

get : {p:ref7}|p]| = {p:ref 7} 7

This restriction is relieved through the "open" operation:

{ p, : refrefint} {p, :ref|[p,l}
X / \ X /\
— A p, :refint}
(@
A close | |

OPEN-REF : {p;:ref 0} = Fpo.{ps : ref [pp]} A {p2: 0}

6 ranges over linear "memory types" 5

Matrices as 2D-arrays

ML type: Corresponding memory graph:

X :array (array int)

In our system:

X [R]

@
\

{R :array (array int)} | @ @ @ |
I

Type in translation: @@@@@@

R rarray F (array F int) | m;fgix

Matrices with Aliasable Rows

ML type:

X :array (array int)

In our system:

X [R]

{R rarray[pl}
{ p*: array int}

Type in translation:

R :array F key
p : map key (array Fint)

Corresponding memory graph:

Adoption

x:[Pz] 1P, 6}

1% 6} X[p {py*: 6}

//////\\\\\\ adopt

/

ADOPT : {p1*: 0{ps: 6} [po] < {p1*:0}[pi]

Translation:

A(h,z,1).let k = map_fresh hin (map_add (h, k, z), k)

\ the coercion function corresponding to the subtyping rule 8

Focus and Unfocus

{p *: 6
focus

| —
h

/ unfocus

X[_Pz] e

FOCUS-RGN @ {p1*: 0} [p1] < Jpa{p1™: 0\ p2}{p2: 0} [p2]
UNFOCUS-RGN : {p1*: 0\ po}{p2:0} <A{p1*:6}

Focus is implemented with map_get and unfocus with map_set.

9

Summary of the Key Ideas

The memory graph is partitioned into regions.

- Singleton region (1 item) {p:6} - a value
— Group region (n= 0 items) {p*:6} -~ amap
An item from region p admits type [p] - a key

A logical operation to transform regions - a coercion

10

Capabilities and Types

Capabilities:

empty pair singleton group suspended

C o= 0| CAG | {p:8) | {o°:6} | {pr": 6\ p)

Value types: "at-rho"
%/_/
T = unit |+ 71| X 7|01 — o2 | |[p)
e

ois a pair (C,1)

Memory types:

references
%/_/

6 := unit |60, +65 |0, xb| 0, — 0y |p]]|refb

11

Typing Judgements

Typing of values:

' o7

h/% i)
r.:T <« —— Avariable must have a value type: it

is ultimately substituted by a value

Typing of terms:

input output
capability capability Call this pattern a
i T "computation type"
I''CFt: (35_0’_?-) and write it o

\ J Functions have a type
of the form o, - o,

If t evaluatestov, then F v : 7T

12

Typing Rules

Typing of values: I'F v : 7 Typingofterms: I'; C H t : o

' o7
C;{}Fov:r

Value, viewed as a term:

z:7);CkHLt:0o

Abstraction: —
' (Mx.t) : (3p.C.7) — 0

'+ wv: (0p — 09) I'CkFt:o
['CF (vt) : o9

Application:

13

The Frame Typing Rule

I':CyHt:o
F, (01/\02) -t (01/\0')

"Frame" rule:

"Let" rule, combining frame (derivable):

_— —

_— >
I'; Ci F ¢y 2 (3p.Ca.7) L5 2:7); (CoANC3) F g i o
['; (CLACs) F (letz =tinty) : G’)

14

Translation Judgements

Translation of values: I'F v : 7 > w

Translation of terms: I C > chkHt:0 > u
t t

¢ translates C u translates t:o

Abstraction:

~__y is the translation
| of capability C

Cyz:7);C >yFt:o Il/&‘,

15

Subtyping Rules

Weaken result type: Strengthen input capability:
' CHt:o o < 09 [';Co Ft:o Cy <

[':C Ft: oy I''Cy Ht:o
Associated translations:

I'C peckEt:of > u o < 09 Dw

[C >cecbkt:oy > (wu)

[C, >(we) Ft:o > u C; < Cy >Dw
ICy >peckFt:io D> u

16

Simulation Diagram

reduction step in the
imperative language

t/m -t/ m'
typing typing
translation | translation
u + > u

reduction steps in the
functional language

17

Related Work

Line of work on regions and capabilities:

94 — Tofte & Talpin: allocation in a stack of regions

99 — Calculus of Capabilities: capability = right to deallocate regions
00 — Alias Types: types in capabilities on singleton regions

02 — Adoption & Focus: group regions, adoption and focus operations
05 — Boyland: per-field adoption

More related work:

— Separation Logic, Stateful Views: separating conjunction, frame
— Monads, Effects: static control of access to regions (less expr.)
— Monadic Translation, Why tool: does not support aliasing

18

Conclusions

Our contribution: validation of the concept of
"translation of capabilities”

- merge and extend earlier works on calculi of capabilities,
— introduce a functional translation, directed by typing derivations.

On-going work:

— support for arrays, including pointer arithmetics,

— support operations such as fusion and splitting of regions,

— add some type inference to diminish the need for annotations,

- lift a logic for reasoning on functional programs, and become
able to state properties about imperative programs directly.

19

Thanks!

