
Workshop on Effects and Type Theory 2007-12-13

Arthur Charguéraud

Functional Translation of a 
Calculus of Capabilities

Joint work with François Pottier

INRIA-Rocquencourt



2

Overview

Imperative 
language

HO logical 
formula

Functional 
language

typing translation analysis

A type-directed translation

From imperative code towards an equivalent functional code

The state is represented by the translation of capabilities

Typing with 
capabilities

A type system

System-F plus regions and linearly-treated capabilities (static)

A capability is an exclusive read-and-write permission



3

Simple Reference – Typing

let x = ref 7

let y = get x

let _ = set (x,'c')

Imperative source:

7 : int     x : [R]

y : int    'c' : char

_ : unit

Typing of values:

Typing with capabilities:

Typing of primitives :

let {R:ref int} x = ref 7

let {R:ref int} y = get {R:ref int} x

let {R:ref char} _ = set {R:ref int} (x,'c')

ref

int

region R
x



4

Simple Reference – Translation

Typing with capabilities:

let R1,x = ( λλλλa.(a, 1 )) 7

let R2,y = ( λλλλ(a, 1 ).(a,a)) ( R1,x)  

let R3,_ = ( λλλλ(a1,( 1,a2)).(a2,())) ( R2,(x,'c'))

let {R:ref int} x = ref 7

let {R:ref int} y = get {R:ref int} x

let {R:ref char} _ = set {R:ref int} (x,'c')

Functional translation:

let R1,x = 7, 1

let R2,y = R1,R1

let R3 = 'c'

After some reductions:

let x = ref 7

let y = get x

let _ = set (x,'c')

Recall the imperative code:

x : [R]



5

Reference with Linear Contents

ref

{ ρρρρ1 : ref ref int} { ρρρρ1 : ref [ ρρρρ2]}

ref

int

ref

ref

int

{ ρρρρ2 : ref int}

x x

τ ranges over non-linear "value types". Thus, "get" is restricted.

This restriction is relieved through the "open" operation:

open

close

θ ranges over linear "memory types"



6

Matrices as 2D-arrays

x : array (array int)

ML type:

x : [R]

{R : array (array int)}

In our system:

Corresponding memory graph:

R : array F (array F int)

Type in translation:

x
tab

tab tab tab

int int int int int int

region R

matrix 
3x2



7

Matrices with Aliasable Rows

x : [R]

{R : array [ ρρρρ]}

{ ρρρρ*: array int}

R : array F key

ρρρρ : map key (array F int)

Type in translation:

tab

tab

tab

tab

int int

int int

int int

tab

int int

region ρρρρ

region Rx

Corresponding memory graph:

x : array (array int)

ML type:

In our system:



8

Adoption

x:[ ρρρρ2]

θθθθ
{ ρρρρ1*: θθθθ}

{ ρρρρ2:  θ θ θ θ}

Translation:

θθθθ

θθθθ
θθθθ

θθθθ
θθθθ

θθθθ
θθθθ

x:[ ρρρρ1]

adopt

{ ρρρρ1*: θθθθ}

the coercion function corresponding to the subtyping rule



9

Focus and Unfocus

x:[ ρρρρ1]

Focus is implemented with map_get and unfocus with map_set.

θθθθ

{ ρρρρ1*: θθθθ}

θθθθ

θθθθ
θθθθ

θθθθ θθθθ

θθθθ
θθθθ

{ ρρρρ2:  θ θ θ θ}

{ ρρρρ1*: θθθθ\ ρρρρ2}

focus

unfocus

x:[ ρρρρ2]



10

Summary of the Key Ideas

The memory graph is partitioned into regions.

– Singleton region (1 item) {ρ:θ} → a value

– Group region (n ≥ 0 items) {ρ*:θ} → a map

An item from region ρ admits type [ρ] → a key

A logical operation to transform regions → a coercion



11

Capabilities and Types

Capabilities:

Value types:

singleton grouppair

"at-rho"

empty

Memory types: references

suspended

σ is a pair (C,ττττ)



12

Typing Judgements

Typing of values:

Typing of terms:

input 
capability

output 
capability

If t evaluates to v, then

Call this pattern a 
"computation type" 

and write it σσσσ

Functions have a type 
of the form σσσσ1 → σσσσ2

A variable must have a value type: it 
is ultimately substituted by a value



13

Typing Rules

Abstraction:

Value, viewed as a term:

Typing of values: Typing of terms:

Application:



14

The Frame Typing Rule

"Frame" rule:

"Let" rule, combining frame (derivable):



15

Translation Judgements

Abstraction:
y is the translation 
of capability C

c translates C

Translation of values:

Translation of terms:

u translates t:σ



16

Subtyping Rules

Weaken result type:

Associated translations:

Strengthen input capability:



17

Simulation Diagram

+

typing typing

translationtranslation

reduction step in the 
imperative language

reduction steps in the
functional language



18

Related Work

Line of work on regions and capabilities:

– Tofte & Talpin: allocation in a stack of regions

– Calculus of Capabilities: capability = right to deallocate regions

– Alias Types: types in capabilities on singleton regions

– Adoption & Focus: group regions, adoption and focus operations

– Boyland: per-field adoption

94

99

00

02

05

More related work:

– Separation Logic, Stateful Views: separating conjunction, frame

– Monads, Effects: static control of access to regions (less expr.) 

– Monadic Translation, Why tool: does not support aliasing 



19

Conclusions

Our contribution: validation of the concept of

"translation of capabilities"

– merge and extend earlier works on calculi of capabilities,

– introduce a functional translation, directed by typing derivations.

On-going work:

– support for arrays, including pointer arithmetics,

– support operations such as fusion and splitting of regions,

– add some type inference to diminish the need for annotations,

– lift a logic for reasoning on functional programs, and become 
able to state properties about imperative programs directly.



Thanks!


