
Talk at PPS Paris, 2007-12-06

Arthur Charguéraud

Engineering Formal Metatheory

Joint work with Brian Aydemir, Benjamin C. Pierce,

Randy Pollack and Stephanie Weirich

Motivation

– many tedious cases

– never 100% confident

– hard to reuse

A metatheory
paper proof

A metatheory
mechanized proof

use automation

machine-checked

reusable

Mechanize

– certified type-checkers? a first step...

The POPLMark Challenge [1]

How to formalize metatheory with:

– a generally applicable method,

– faithful to informal practice style,

– reasonable infrastructure overhead,

– and using a technology with low cost of entry ?

[1] Brian Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan
Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey
Washburn, Stephanie Weirich, and Steve Zdancewic; TPHOLs 2005.

Our contribution is the proposal of a novel style for
formalizing metatheory that achieve these goals.

Representations of Bindings

– With names: α-equivalence, variable capture

– With distinguished bound and free variables: ok?

– With de Bruijn indices: shifting of indices

(x1:T1)..(x2:T2) ├ ...λx3...λx4...x3...x2

T1 .. T2 ├ ...λ.....λ.....1....2

(x1:T1)..(x2:T2) ├ ...λ.....λ.....1....x2

t := bvar i | fvar x | app t1 t2 | abs t

Locally Nameless

t := bvar i | fvar x | app t1 t2 | abs t

– Bound variables are represented using indices
⇒ no α-equivalence

– Free variables are represented using names
⇒ no shifting

– Bound and free variables are distinguished
⇒ no capture

Only catch: the syntax allows ill-formed terms.
We need all bound variables to resolve to a binder.
For instance, "abs (bvar 2)" is not a valid term.

Opening Binders

λ(...λ...1...λ...0...y...2...)

Opening of the body of a term with some term u

gives
(...λ...u...λ...0...y...u...)

If t is the body of an abstraction, tu is the result of
opening it with u. Notation: we write tx for t(fvar x).

Opening Binders – Test!

Reduction rule for reducing below abstractions?

Representation
with names:

Locally nameless:

Implementation of Opening

Opening t with u: where:

λ(...λ...1...λ...0...y...2...)

(...λ...u...λ...0...y...u...)

Implementation of subst and FV

Substitution from variable z to term u:

Set of free variables in a term:

Properties of Operations

Substitution for a fresh name is the identity:

Substitution distributes over open:

Substitution commutes with open (on ≠ names):

Substitution is used to decompose opening:

Proof of Preservation

Case beta-reduction:

Well-formed Terms

Operations preserve well-formedness:

Relations are restricted to well-formed terms:

(This gives us a natural induction principle for terms.)

Predicate "term t" caracterizes well-formed terms.

Restriction to Well-formed Terms

Call-by-value reduction for λ-calculus:

Typing Relation in STLC

An environment E has type list (var × type), and
ok E tells that variables are bound at most once.

Results in STLC

Substitution lemma:

Preservation theorem:

Lemma typing_subst : forall F U E t T z u,
(E & z ~ S & F) |= t ~: T -> E |= u ~: S ->
(E & F) |= [z ~> u]t ~: T.

Theorem preservation : forall E t t' T,
E |= t ~: T -> t --> t' -> E |= t' ~: T.

Which Quantification?

Existential

Introduction Elimination

Universal

Cofinite

very
weak

maximally
strong

maximally
strong

very
weak

 maximally strong,
provided cofinite
used everywhere

nearly always
sufficient; easy to
strenghten if not

Quantification

Cofinite Quantification in Practice

4) [if necessary] derive the strong introduction form.
⇒ this proof is only two lines

2) induction and inversion principles are available
⇒ automatically generated

3) to apply: instantiate L so as to avoid name clashes
⇒ a generic tactic automates this

1) state all rules using cofinite quantification
⇒ no need to worry about freshness details

| term_abs : forall L t,
(forall x, x \notin L -> term (t^x)) -> term (abs t)

DEMO

DEMO:
Simply typed λ-calculus

Proof of Preservation

Case beta-reduction:

Main Developments

System F<:
– binder-intensive: a good stress test,
– some proofs turn out shorter than on paper!
– others have shown that using specialized tactics,

and further automation can shorten scripts a lot.

DEMO:
Calculus of Construction

DEMO:
ML + reference, exceptions, datatypes, patterns

Complexity of Developments

Measured in number of steps: a step is defined as the application of one
tactic which is not "intro" or "auto" or a simple variations of these two.

Related to Locally Nameless

– De Bruijn (1972): representation with indices and
suggestion of locally nameless.

– Huet (1989): The Constructive Engine. Source of
inspiration for the implementations of Coq, LEGO,
HOL4, Isabelle, EPIGRAM.

– Gordon (1993): locally nameless as an underlying
representation for named terms.

– McKinna and Pollak (1993-1997): distinguish
bound and free variables, but with names for both.

– Leroy (2006): POPLMark, locally nameless, in Coq;
later variations on his solution by others.

Related to Cofinite Quantification

– Universal quantification appears in McKinna and
Pollak (1993-1997) and Leroy (2006).

– Gordon (1993): strengthened induction principle.
case-abs: ∃L, finite L ∧ ∀x, x∉L ∧ P(t) ⇒ P(λx.t)

– Krivine (1990), Ford and Mason (2001): cofinite
quantification in definitions of alpha-equivalence.

– Gabbay and Pitts' Nominal Logic (1999-2003): idea
of reasoning about the freshness of names by
considering all but those in some finite set.

– Urban et al (2000-2007): Nominal Package for
Isabelle/HOL: quotiented named terms, with a tool
that generates induction principles.

Conclusion

Formalize programming language metatheory with:

locally nameless + cofinite quantification

– this leads to a generally applicable method,
– directly usable in general-purpose theorem provers,
– proofs closely follow their informal equivalents,
– the amount of infrastructure required is reasonable,
– and several templates provided as starting points.

Try it yourself!

The full paper and the documented Coq proof scripts
are available from "http://arthur.chargueraud.org".

Freshness Side Conditions

Named representation: Locally nameless:

As an introduction form

premise(x)
 ⇒ conclusion(x)

premise(x) ∧ x∉FV(t)
⇒ conclusion

As an elimination form

conclusion(x) ∧ x∉dom E
⇒ premise(x)

conclusion ∧ x∉dom E
⇒ premise(x)

