Engineering Formal Metatheory

Arthur Charguéraud

Joint work with Brian Aydemir, Benjamin C. Pierce, Randy Pollack and Stephanie Weirich

Motivation

A metatheory paper proof

- many tedious cases
- never 100\% confident
- hard to reuse
- certified type-checkers?

A metatheory mechanized proof

\longrightarrow use automation
\longrightarrow machine-checked
\longrightarrow reusable
\longrightarrow a first step...

The POPLMark Challenge ${ }^{[1]}$

How to formalize metatheory with:

- a generally applicable method,
- faithful to informal practice style,

- reasonable infrastructure overhead,
- and using a technology with low cost of entry ?

Our contribution is the proposal of a novel style for formalizing metatheory that achieve these goals.

[1] Brian Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve Zdancewic; TPHOLs 2005.

Representations of Bindings

- With names: α-equivalence, variable capture
- With de Bruijn indices: shifting of indices

$$
\mathbf{T}_{1} \ldots \mathbf{T}_{2} \vdash \ldots \lambda \ldots \lambda \ldots 1 \ldots \mathbf{2}
$$

- With distinguished bound and free variables: ok?

$$
\begin{aligned}
& \left(x_{1}: T_{1}\right) \ldots\left(x_{2}: T_{2}\right) \vdash \ldots \lambda \ldots \lambda \ldots x_{2} \\
& t:=\text { bvar } i \mid \text { fvar } x \mid \text { app t1 t2 } \mid \text { abs } t
\end{aligned}
$$

Locally Nameless

```
t := bvar i | fvar x | app t1 t2 | abs t
```

- Bound variables are represented using indices \Rightarrow no α-equivalence
- Free variables are represented using names \Rightarrow no shifting
- Bound and free variables are distinguished
\Rightarrow no capture

Only catch: the syntax allows ill-formed terms. We need all bound variables to resolve to a binder.
For instance, "abs (bvar 2)" is not a valid term.

Opening Binders

Opening of the body of a term with some term u

$$
\left.\lambda^{2} \ldots \lambda \ldots 1 \ldots \lambda_{\ldots} \ldots y \ldots 2 \ldots\right)
$$

gives

If t is the body of an abstraction, ${ }^{4}$ is the result of opening it with u. Notation: we write t^{\times}for $t^{(f v a r x)}$.

RED-BETA
$\overline{\operatorname{app}(\operatorname{abs} t) u \longmapsto\left(t^{u}\right)}$

TYPING-ABS
$\frac{(E, x: S) \vdash\left(t^{x}\right): T}{E \vdash(\text { abs } t): S \rightarrow T}$

Opening Binders - Test!

Reduction rule for reducing below abstractions?

Representation with names:

$$
\frac{t_{1} \longmapsto t_{2}}{\lambda x . t_{1} \longmapsto \lambda x . t_{2}}
$$

Locally nameless:

Implementation of Opening

Opening t with $\mathrm{u}: \quad t^{u} \equiv\{0 \rightarrow u\} t \quad$ where:

$$
\begin{array}{r}
\left.\lambda^{2} \ldots \lambda \ldots 1 \ldots \lambda_{\ldots} \ldots \ldots y \ldots 2 \ldots\right) \\
(\ldots \lambda \ldots u \ldots \lambda \ldots 0 \ldots y \ldots u \ldots . \ldots)
\end{array}
$$

$\{k \rightarrow u\}($ bvar $i)=$ if $i=k$ then u else bvar i
$\{k \rightarrow u\}($ fvar $x)=$ fvar x
$\{k \rightarrow u\}\left(\operatorname{app} t_{1} t_{2}\right)=\operatorname{app}\left(\{k \rightarrow u\} t_{1}\right)\left(\{k \rightarrow u\} t_{2}\right)$
$\{k \rightarrow u\}($ abs $t)=a \operatorname{abs}(\{(k+1) \rightarrow u\} t)$

Implementation of subst and FV

Substitution from variable z to term u :

$$
\begin{array}{ll}
{[z \rightarrow u](\text { bvar } i)} & =\text { bvar } i \\
{[z \rightarrow u](\text { fvar } x)} & =\text { if } x=z \text { then } u \text { else fvar } x \\
{[z \rightarrow u]\left(\operatorname{app} t_{1} t_{2}\right)} & =\text { app }\left([z \rightarrow u] t_{1}\right)\left([z \rightarrow u] t_{2}\right) \\
{[z \rightarrow u](\operatorname{abs} t)} & =\text { abs }([z \rightarrow u] t)
\end{array}
$$

Set of free variables in a term:

$$
\begin{array}{ll}
\mathrm{FV}(\text { bvar } i) & =\varnothing \\
\mathrm{FV}(\text { fvar } x) & =\{x\} \\
\mathrm{FV}\left(\text { app } t_{1} t_{2}\right) & =\mathrm{FV}\left(t_{1}\right) \cup \mathrm{FV}\left(t_{2}\right) \\
\mathrm{FV}(\text { abs } t) & =\mathrm{FV}(t)
\end{array}
$$

Properties of Operations

Substitution for a fresh name is the identity:

$$
x \notin \mathrm{FV}(t) \quad \Rightarrow \quad[x \rightarrow u] t=t
$$

Substitution distributes over open:

$$
[x \rightarrow u]\left(t^{w}\right)=([x \rightarrow u] t)^{([x \rightarrow u] w)}
$$

Substitution commutes with open (on \neq names):

$$
[x \rightarrow u]\left(t^{y}\right)=([x \rightarrow u] t)^{y} \quad \text { when } x \neq y
$$

Substitution is used to decompose opening:

$$
[x \rightarrow u]\left(t^{x}\right)=t^{u} \quad \text { when } x \notin \mathrm{FV}(t)
$$

Proof of Preservation

Case beta-reduction:

$$
\begin{aligned}
& \text { TYPING-ABS } \frac{(E, x: S) \vdash\left(t^{x}\right): T}{E \vdash(\text { abs } t): S \rightarrow T} \quad E \vdash u: S \\
& \text { TYPING-APP } \frac{E(\operatorname{app}(\text { abs } t) u): T}{} \\
& \quad \text { SUBSTITUTE } \frac{(E, x: S) \vdash\left(t^{x}\right): T \quad E \vdash u: S}{E \vdash[x \rightarrow u]\left(t^{x}\right): T} \\
& \quad \text { REWRITE } \frac{T \vdash\left(t^{u}\right): T}{}
\end{aligned}
$$

Well-formed Terms

Predicate "term t" caracterizes well-formed terms.

TERM-VAR	$\begin{aligned} & \text { TERM-APP } \\ & \text { term } t_{1} \end{aligned} \text { term } t_{2}$	$\begin{aligned} & \text { TERM-ABS } \\ & \text { term }\left(t^{x}\right) \end{aligned}$
term (fvar x)	term (app $\left.t_{1} t_{2}\right)$	term (abs t)

(This gives us a natural induction principle for terms.)
Relations are restricted to well-formed terms:

$$
\begin{array}{ll}
E \vdash t: T & \Rightarrow \text { term } t \\
t \longmapsto t^{\prime} & \Rightarrow \text { term } t \wedge \text { term } t^{\prime}
\end{array}
$$

Operations preserve well-formedness:

$$
\begin{array}{ll}
\text { term }(\text { abs } t) \wedge \operatorname{term} u & \Rightarrow \operatorname{term}\left(t^{u}\right) \\
\text { term } u \wedge \operatorname{term} t & \Rightarrow \operatorname{term}([x \rightarrow u] t)
\end{array}
$$

Restriction to Well-formed Terms

Call-by-value reduction for λ-calculus:

VALUE-ABS term $($ abs $t)$ value $($ abs $t)$	RED-BETA term $($ abs $t)$$\quad$ value u
app $($ abs $t) u \longmapsto t^{u}$	

$\frac{$| RED-APP- 1 |
| :--- |
| t_{1} |
| app $t_{1} t_{2} \longmapsto t_{1}^{\prime}$ | term$t_{2}}{\text { app } t_{1}^{\prime} t_{2}}$

$\frac{$| RED-APP-2 |
| :---: |
| value t_{1} |$t_{2} \longmapsto t_{2}^{\prime}}{\text { app } t_{1} t_{2} \longmapsto \operatorname{app} t_{1} t_{2}^{\prime}}$

Typing Relation in STLC

An environment E has type list (var \times type), and ok E tells that variables are bound at most once.

$$
\begin{aligned}
& \frac{\text { TYPING-VAR }}{\text { ok } E} \begin{array}{l}
(x: T) \in E \\
\\
\quad \frac{(E, x: S) \vdash\left(t^{x}\right): T}{E \vdash(\text { fvar } x): T} \quad \frac{\text { TYPING-APP }}{E \vdash t_{1}: S \rightarrow T} \quad E \vdash t_{2}: S \\
\\
\\
\quad \text { TYPING-ABS app } t_{1} t_{2}: T \\
\text { (for } x \text { fresh) }
\end{array}
\end{aligned}
$$

Results in STLC

Preservation theorem:

$$
E \vdash t: T \quad \Rightarrow \quad t \longmapsto t^{\prime} \quad \Rightarrow \quad E \vdash t^{\prime}: T
$$

Theorem preservation : forall E t t' T,
E |= t ~: T -> t --> t' -> E |= t' ~: T.

Substitution lemma:

$$
\begin{aligned}
& E, z: S, F \vdash t: T \quad \Rightarrow \quad E \vdash u: S \quad \Rightarrow \\
& E, F \vdash[z \rightarrow u] t: T
\end{aligned}
$$

Lemma typing_subst : forall F U E t T z u, ($\mathrm{E} \& \mathrm{z} \sim \mathrm{S} \& \mathrm{~F}$) |= t ~: $\mathrm{T} \quad$-> $\mathrm{E} \mid=\mathrm{u} \sim: ~ \mathrm{~S}$-> (E \& F) $\mid=[\mathrm{Z} \sim \mathrm{C}] \mathrm{t} \sim: \mathrm{T}$.

Which Quantification?

$$
\frac{\operatorname{Quantify}(x) \quad\left(E, x: T_{1}\right) \vdash\left(t^{x}\right): T_{2}}{E \vdash(\text { abs } t): T_{1} \rightarrow T_{2}}
$$

Quantification
Introduction
maximally strong
very
weak
Existential $x \notin \mathrm{FV}(t)$

Universal
$\forall x \notin \operatorname{dom}(E)$

Elimination
very weak
maximally strong

Cofinite
$\forall x \notin L$
nearly always sufficient; easy to strenghten if not
nearly always
maximally strong, provided cofinite used everywhere

Cofinite Quantification in Practice


```
    | term_abs : forall L t,
    (forall x, x \notin L -> term (t^x)) -> term (abs t)
```

1) state all rules using cofinite quantification \Rightarrow no need to worry about freshness details
2) induction and inversion principles are available \Rightarrow automatically generated
3) to apply: instantiate L so as to avoid name clashes \Rightarrow a generic tactic automates this
4) [if necessary] derive the strong introduction form. \Rightarrow this proof is only two lines

DEMO

DEMO:
Simply typed λ-calculus

Proof of Preservation

Case beta-reduction:

$$
\begin{aligned}
& \text { TYPING-ABS } \frac{(E, x: S) \vdash\left(t^{x}\right): T}{E \vdash(\text { abs } t): S \rightarrow T} \quad E \vdash u: S \\
& \text { TYPING-APP } \frac{E(\operatorname{app}(\text { abs } t) u): T}{} \\
& \quad \text { SUBSTITUTE } \frac{(E, x: S) \vdash\left(t^{x}\right): T \quad E \vdash u: S}{E \vdash[x \rightarrow u]\left(t^{x}\right): T} \\
& \quad \text { REWRITE } \frac{T \vdash\left(t^{u}\right): T}{}
\end{aligned}
$$

Main Developments

System $\mathrm{F}_{<\text {: }}$

- binder-intensive: a good stress test,
- some proofs turn out shorter than on paper!
- others have shown that using specialized tactics, and further automation can shorten scripts a lot.

DEMO:
Calculus of Construction

DEMO:
ML + reference, exceptions, datatypes, patterns

Complexity of Developments

Measured in number of steps: a step is defined as the application of one tactic which is not "intro" or "auto" or a simple variations of these two.

Related to Locally Nameless

- De Bruijn (1972): representation with indices and suggestion of locally nameless.
- Huet (1989): The Constructive Engine. Source of inspiration for the implementations of Coq, LEGO, HOL4, Isabelle, EPIGRAM.
- Gordon (1993): locally nameless as an underlying representation for named terms.
- McKinna and Pollak (1993-1997): distinguish bound and free variables, but with names for both.
- Leroy (2006): POPLMark, locally nameless, in Coq; later variations on his solution by others.

Related to Cofinite Quantification

- Universal quantification appears in McKinna and Pollak (1993-1997) and Leroy (2006).
- Gordon (1993): strengthened induction principle. case-abs: $\exists \mathrm{L}$, finite $\mathrm{L} \wedge \forall \mathrm{x}, \mathrm{x} \notin \mathrm{L} \wedge \mathrm{P}(\mathrm{t}) \Rightarrow \mathrm{P}(\lambda x . \mathrm{t})$
- Krivine (1990), Ford and Mason (2001): cofinite quantification in definitions of alpha-equivalence.
- Gabbay and Pitts' Nominal Logic (1999-2003): idea of reasoning about the freshness of names by considering all but those in some finite set.
- Urban et al (2000-2007): Nominal Package for I sabelle/HOL: quotiented named terms, with a tool that generates induction principles.

Conclusion

Formalize programming language metatheory with:

locally nameless + cofinite quantification

- this leads to a generally applicable method,
- directly usable in general-purpose theorem provers,
- proofs closely follow their informal equivalents,
- the amount of infrastructure required is reasonable,
- and several templates provided as starting points.

Try it yourself!
The full paper and the documented Coq proof scripts are available from "http://arthur.chargueraud.org".

Freshness Side Conditions

Named representation: Locally nameless:

$$
\frac{\left(E, x: T_{1}\right) \vdash t: T_{2}}{E \vdash(\lambda x . t): T_{1} \rightarrow T_{2}} \quad \frac{\left(E, x: T_{1}\right) \vdash\left(t^{x}\right): T_{2}}{E \vdash(\text { abs } t): T_{1} \rightarrow T_{2}}
$$

As an introduction form
premise(x)
\Rightarrow conclusion (x)
premise $(x) \wedge x \notin F V(t)$
\Rightarrow conclusion

As an elimination form
conclusion $(x) \wedge x \notin$ dom E \Rightarrow premise(x)
conclusion $\wedge \mathrm{x} \notin \mathrm{dom} \mathrm{E}$ \Rightarrow premise (x)

