Engineering Formal Metatheory

Arthur Charguéraud

Joint work with Brian Aydemir, Benjamin C. Pierce, Randy Pollack and Stephanie Weirich

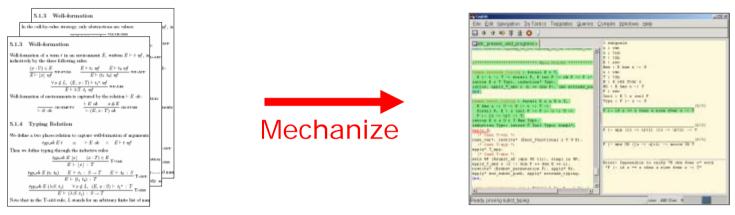
Talk at PPS

Paris, 2007-12-06

Motivation

A metatheory paper proof

A metatheory mechanized proof



- many tedious cases
- never 100% confident
- hard to reuse
- certified type-checkers?

- → use automation
- machine-checked
- → reusable
- → a first step…

The POPLMark Challenge ^[1]

How to formalize metatheory with:

- a generally applicable method,
- faithful to informal practice style,

- reasonable infrastructure overhead,
- and using a technology with low cost of entry ?

Our contribution is the proposal of a novel style for formalizing metatheory that achieve these goals.

[1] Brian Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve Zdancewic; TPHOLs 2005.

Representations of Bindings

– With names: α -equivalence, variable capture

$$(\mathbf{x}_1:\mathbf{T}_1) \dots (\mathbf{x}_2:\mathbf{T}_2) \vdash \dots \lambda \mathbf{x}_3 \dots \lambda \mathbf{x}_4 \dots \mathbf{x}_3 \dots \mathbf{x}_2$$

– With de Bruijn indices: shifting of indices

$$T_1 \ldots T_2 \vdash \ldots \lambda \ldots \lambda \ldots 1 \ldots 2$$

– With distinguished bound and free variables: ok?

$$(\mathbf{x}_1:\mathbf{T}_1)\ldots(\mathbf{x}_2:\mathbf{T}_2) \vdash \ldots \lambda \ldots \lambda \ldots 1 \ldots \mathbf{x}_2$$

t := bvar i | fvar x | app t1 t2 | abs t

Locally Nameless

t := bvar i | fvar x | app t1 t2 | abs t

- Bound variables are represented using indices \Rightarrow no α -equivalence
- Free variables are represented using names
 ⇒ no shifting
- Bound and free variables are distinguished
 ⇒ no capture

Only catch: the syntax allows ill-formed terms. We need all bound variables to resolve to a binder. For instance, **"abs (bvar 2)"** is not a valid term.

Opening Binders

Opening of the body of a term with some term u

$$\lambda^{1}(\ldots\lambda\ldots1\ldots\lambda\ldots0\ldots\mathbf{y}\ldots\mathbf{2}\ldots)$$

gives

$$(\ldots \lambda \ldots u \ldots \lambda \ldots 0 \ldots y \ldots u \ldots)$$

If t is the body of an abstraction, t^u is the result of opening it with u. Notation: we write t^x for $t^{(fvar x)}$.

$$\begin{array}{l} \text{RED-BETA} \\ \hline \\ \text{app (abs t) } u \longmapsto (t^u) \end{array} \begin{array}{c} \text{TYPING-ABS} \\ (E, x:S) \vdash (t^x) : T \\ \hline \\ E \vdash (\text{abs } t) : S \rightarrow T \end{array}$$

Opening Binders – Test!

Reduction rule for reducing below abstractions?

Representation with names:

Locally nameless:

$$\frac{t_1 \longmapsto t_2}{\lambda x. t_1 \longmapsto \lambda x. t_2}$$

$$\frac{?}{\mathsf{abs}\ t_1 \longmapsto \mathsf{abs}\ t_2}$$

$$\frac{t_1^x \longmapsto t_2^x}{\mathsf{abs} \ t_1 \longmapsto \mathsf{abs} \ t_2}$$

Implementation of Opening

Opening t with u: $t^u \equiv \{0 \rightarrow u\} t$ where:

$$\lambda^{1}(\ldots\lambda\ldots1\ldots\lambda\ldots0\ldots y\ldots2\ldots)$$

$$(\ldots \lambda \ldots u \ldots \lambda \ldots 0 \ldots y \ldots u \ldots)$$

$$\{k \rightarrow u\} (\text{bvar } i) = \text{if } i = k \text{ then } u \text{ else bvar } i \\ \{k \rightarrow u\} (\text{fvar } x) = \text{fvar } x \\ \{k \rightarrow u\} (\text{app } t_1 \ t_2) = \text{app} (\{k \rightarrow u\} t_1) (\{k \rightarrow u\} t_2) \\ \{k \rightarrow u\} (\text{abs } t) = \text{abs} (\{(k+1) \rightarrow u\} t)$$

Implementation of subst and FV

Substitution from variable z to term u:

$$\begin{array}{lll} \left[z \rightarrow u\right] (\mathsf{bvar} \ i) &=& \mathsf{bvar} \ i \\ \left[z \rightarrow u\right] (\mathsf{fvar} \ x) &=& \mathrm{if} \ x = z \ \mathrm{then} \ u \ \mathrm{else} \ \mathsf{fvar} \ x \\ \left[z \rightarrow u\right] (\mathsf{app} \ t_1 \ t_2) &=& \mathsf{app} \ \left(\left[z \rightarrow u\right] t_1\right) \ \left(\left[z \rightarrow u\right] t_2\right) \\ \left[z \rightarrow u\right] (\mathsf{abs} \ t) &=& \mathsf{abs} \ \left(\left[z \rightarrow u\right] t\right) \end{array}$$

Set of free variables in a term:

Properties of Operations

Substitution for a fresh name is the identity:

$$x \notin \mathsf{FV}(t) \quad \Rightarrow \quad [x \to u] \, t = t$$

Substitution distributes over open:

$$[x \to u] (t^w) = ([x \to u] t)^{([x \to u] w)}$$

Substitution commutes with open (on \neq names):

$$[x \to u](t^y) = ([x \to u]t)^y \text{ when } x \neq y$$

Substitution is used to decompose opening:

$$[x \to u](t^x) = t^u$$
 when $x \notin \mathsf{FV}(t)$

Proof of Preservation

Case beta-reduction:

$$\begin{array}{l} \text{TYPING-ABS} \\ \text{TYPING-APP} \end{array} \frac{(E, x:S) \vdash (t^x) \, : \, T}{E \vdash (\mathsf{abs} \ t) \, : \, S \to T} \qquad E \vdash u \, : \, S}{E \vdash (\mathsf{app} \ (\mathsf{abs} \ t) \ u) \, : \, T} \end{array}$$

SUBSTITUTE
REWRITE
$$\frac{(E, x:S) \vdash (t^x) : T \qquad E \vdash u : S}{E \vdash [x \to u](t^x) : T}$$
$$E \vdash (t^u) : T$$

Well-formed Terms

Predicate "term t" caracterizes well-formed terms.

TERM-VAR	TERM-APP		TERM-ABS
	term t_1	term t_2	term (t^x)
term (fvar x)	term (ap	$t_1 t_2$	term (abs t)

(This gives us a natural induction principle for terms.)

Relations are restricted to well-formed terms:

$E \vdash t : T$	\Rightarrow	term t		
$t \longmapsto t'$	\Rightarrow	term t	\wedge	term t'

Operations preserve well-formedness:

 $\begin{array}{rcl} \mathsf{term} \ (\mathsf{abs} \ t) & \wedge & \mathsf{term} \ u \ \Rightarrow & \mathsf{term} \ (t^u) \\ \mathsf{term} \ u & \wedge & \mathsf{term} \ t & \Rightarrow & \mathsf{term} \ ([x \to u] \ t) \end{array}$

Restriction to Well-formed Terms

Call-by-value reduction for λ -calculus:

VALUE-ABS	RED-BETA	
term (abs t)	term (abs t)	value u
value (abs t)	app (abs t) u	$t \mapsto t^u$

RED-AF	P-1	
$t_1 \vdash$	$\rightarrow t'_1$	term t_2
app t_1	$t_2 \longmapsto$	$app \ t_1' \ t_2$

 $\begin{array}{ccc} \text{RED-APP-2} \\ \text{value } t_1 & t_2 \longmapsto t'_2 \\ \hline \text{app } t_1 & t_2 \longmapsto \text{app } t_1 & t'_2 \end{array}$

Typing Relation in STLC

An environment **E** has type **list (var** × **type)**, and **ok E** tells that variables are bound at most once.

Results in STLC

Preservation theorem:

$$E \vdash t : T \implies t \longmapsto t' \implies E \vdash t' : T$$

Theorem preservation : forall E t t' T, E |= t ~: T -> t --> t' -> E |= t' ~: T.

Substitution lemma:

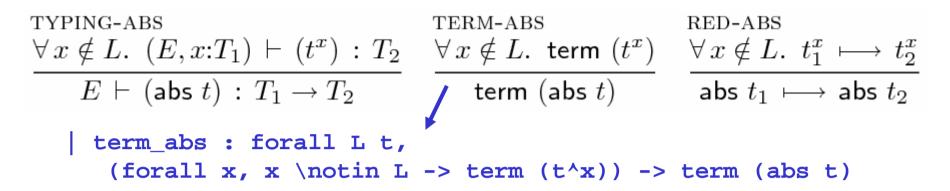
Lemma typing_subst : forall F U E t T z u, (E & z ~ S & F) |= t ~: T -> E |= u ~: S -> (E & F) |= [z ~> u]t ~: T.

Which Quantification?

$$\frac{\text{Quantify}(x) \quad (E, x:T_1) \vdash (t^x) : T_2}{E \vdash (\mathsf{abs} \ t) : T_1 \to T_2}$$

Quantification	Introduction	Elimination
$\begin{array}{c} Existential \\ x \notin FV(t) \end{array}$	maximally strong	very weak
Universal $\forall x \notin dom(E)$	very weak	maximally strong
$\begin{array}{c} \text{Cofinite} \\ \forall x \notin L \end{array}$	nearly always sufficient; easy to strenghten if not	maximally strong, provided cofinite used everywhere

Cofinite Quantification in Practice



- 1) state all rules using cofinite quantification
 ⇒ no need to worry about freshness details
- 2) induction and inversion principles are available
 ⇒ automatically generated
- 3) to apply: instantiate L so as to avoid name clashes \Rightarrow a generic tactic automates this
- 4) [if necessary] derive the strong introduction form. \Rightarrow this proof is only two lines

$\begin{array}{c} \text{DEMO:}\\ \text{Simply typed } \lambda \text{-calculus} \end{array}$

Proof of Preservation

Case beta-reduction:

$$\begin{array}{l} \text{TYPING-ABS} \\ \text{TYPING-APP} \end{array} \frac{(E, x:S) \vdash (t^x) \, : \, T}{E \vdash (\mathsf{abs} \ t) \, : \, S \to T} \qquad E \vdash u \, : \, S}{E \vdash (\mathsf{app} \ (\mathsf{abs} \ t) \ u) \, : \, T} \end{array}$$

SUBSTITUTE
REWRITE
$$\frac{(E, x:S) \vdash (t^x) : T \qquad E \vdash u : S}{E \vdash [x \to u](t^x) : T}$$
$$E \vdash (t^u) : T$$

Main Developments

System F_{<:}

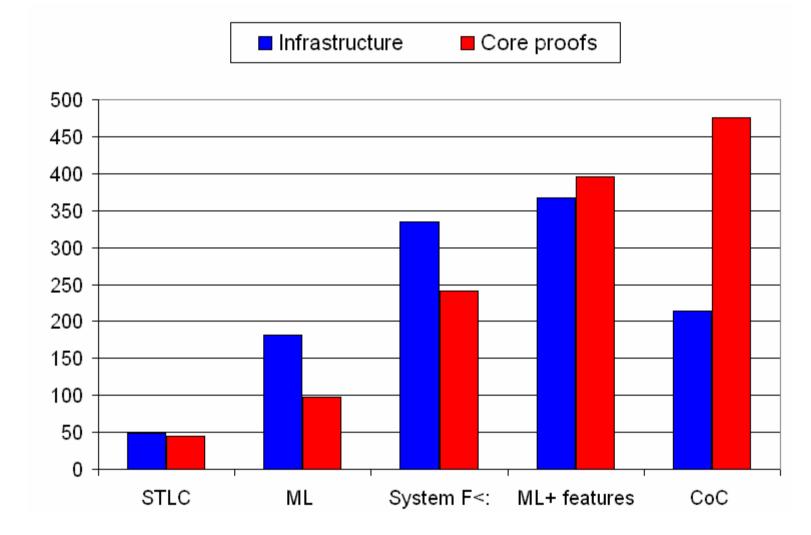
- binder-intensive: a good stress test,
- some proofs turn out shorter than on paper!
- others have shown that using specialized tactics, and further automation can shorten scripts a lot.

DEMO: Calculus of Construction

DEMO:

ML + reference, exceptions, datatypes, patterns

Complexity of Developments



Measured in number of steps: a step is defined as the application of one tactic which is not "intro" or "auto" or a simple variations of these two.

Related to Locally Nameless

– De Bruijn (1972): representation with indices and suggestion of locally nameless.

– Huet (1989): *The Constructive Engine*. Source of inspiration for the implementations of Coq, LEGO, HOL4, Isabelle, EPIGRAM.

– Gordon (1993): locally nameless as an underlying representation for named terms.

– McKinna and Pollak (1993-1997): distinguish bound and free variables, but with names for both.

 Leroy (2006): POPLMark, locally nameless, in Coq; later variations on his solution by others.

Related to Cofinite Quantification

– Universal quantification appears in McKinna and Pollak (1993-1997) and Leroy (2006).

- Gordon (1993): strengthened induction principle. case-abs: $\exists L$, finite $L \land \forall x, x \notin L \land P(t) \Rightarrow P(\lambda x.t)$

– Krivine (1990), Ford and Mason (2001): cofinite quantification in definitions of alpha-equivalence.

– Gabbay and Pitts' Nominal Logic (1999-2003): idea of reasoning about the freshness of names by considering all but those in some finite set.

 Urban et al (2000-2007): Nominal Package for Isabelle/HOL: quotiented named terms, with a tool that generates induction principles.

Conclusion

Formalize programming language metatheory with:

locally nameless + cofinite quantification

- this leads to a generally applicable method,
- directly usable in general-purpose theorem provers,
- proofs closely follow their informal equivalents,
- the amount of infrastructure required is reasonable,
- and several templates provided as starting points.

Try it yourself!

The full paper and the documented Coq proof scripts are available from "http://arthur.chargueraud.org".

Freshness Side Conditions

Named representation:Locally nameless: $(E, x:T_1) \vdash t : T_2$ $(E, x:T_1) \vdash (t^x) : T_2$ $E \vdash (\lambda x.t) : T_1 \rightarrow T_2$ $E \vdash (abs t) : T_1 \rightarrow T_2$

As an introduction form

premise(x) \Rightarrow conclusion(x) premise(x) \land x \notin FV(t) \Rightarrow conclusion

As an elimination form