Engineering Formal Metatheory

Arthur Chargueraud

Joint work with Brian Aydemir, Benjamin C. Pierce,
Randy Pollack and Stephanie Weirich

Talk at PPS Paris, 2007-12-06

Motivation

A metatheory A metatheory
paper proof mechanized proof

‘.".I..x T
‘...; . Eiw E® tiwyme Tu =
He ¥ a0
LA Wl (=T
(- ' pe— g -
eduaively by the ke Blkowing rabe n— — = | g
rols Ertiwd Eriasd s = B 1B B
s e : T " i v
B o= [T wali 1. ¥ b 0 5 -)]
¥ o bttt B0 T Tomd. Lt rn ' Ty RET
- T e e o RS V
Wl boqwpiion of swvironrsist] by sbeprbiion - F ok = ol 5 €10 P
PE e mgE o = il e B AT, WA LT
[. — . B ot B o T [t i Aelactahiss St 51
a4 AT Eorald Fa B0 B LSALE o B i Fio i = v im0 weem pmar 5 o0
e R
- L .
BLd Ty Relstion I B T N S —
SR P — ecnanize e
tpnk £ ' T B - | :
ymgibr apipt Ty
o A - " .
|

— many tedious cases — use automation
— never 100% confident — machine-checked
— hard to reuse —> reusable

— certified type-checkers? — a first step...

The POPLMark Challenge L]

How to formalize metatheory with: POPL

— a generally applicable method,

— faithful to informal practice style,
— reasonable infrastructure overhead,

— and using a technology with low cost of entry ?

Our contribution is the proposal of a novel style for
formalizing metatheory that achieve these goals.

[1] Brian Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan
Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey
Washburn, Stephanie Weirich, and Steve Zdancewic; TPHOLs 2005.

Representations of Bindings

— With names: a-equivalence, variable capture

— . T
XiT) - - (X2:T2) I_ 7“)(3 AXge Xz X

S

-_— I

— With de Bruijn indices: shifting of indices

T, .- T, F - h.... Moo 1....2

— With distinguished bound and free variables: ok?

(Xl 1) (X2 2) I_ ----- Aol dl - X2

t :=bvar 1 | fvar x | app t1 t2 | abs t

Locally Nameless

t :=bvar 1 | fvar x | app t1 t2 | abs t

— Bound variables are represented using indices
= NO a-eguivalence

— Free variables are represented using names
= no shifting

— Bound and free variables are distinguished
= Nno capture

Only catch: the syntax allows ill-formed terms.
We need all bound variables to resolve to a binder.
For instance, ""abs (bvar 2)" is not a valid term.

Opening Binders

Opening of the body of a term with some term u

gives

If t is the body of an abstraction, tVis the result of
opening it with u. Notation: we write t* for t(varx,

RED-BETA TYPING-ABS
(E,z:S) - (%) : T

app (abst) u — (t%) FE F (abst) : S —T

Opening Binders — Test!

Reduction rule for reducing below abstractions?

Representation Locally nameless:
with names:

t1|—>t2 ?

)\ﬁ.tl —)\xtg abs t1 —— abs 1o

t?l—>t§

abs t{ —— abs t9

Implementation of Opening

Opening twithu: t* = {0 — u}t where:

o

\

if 2 = k then u else bvar 2
fvar x

app ({k — u}t1) ({k — uj)
abs ({(k+1) — u}t)

{k — u} (bvar 1)
{k — u} (fvar x)

{k — u} (app t1 t2)
{k — u} (abs t)

Implementation of subst and FV

Substitution from variable z to term u:

z — u| (bvar 7) = bvar:

z — u| (fvar z) = if x = z then u else fvar x
z—u](appt1 t2) = app ([z — u|t1) ([z — u]t2)
z — u| (abs t) = abs (|z — u|?)

Set of free variables In a term:

-V (bvar 1) = O

-V (fvar) = {z}

:V(app tl tQ) = FV(tl) U FV(tQ)
-V (abs t) = FV(?)

Properties of Operations

Substitution for a fresh name is the identity:
r¢FV(i) = |[z—ult=t

Substitution distributes over open:
[z —] (#) = ([— u])7
Substitution commutes with open (on # names):

[z — u] (tY) = ([x — u|t)’ when z #y

Substitution Is used to decompose opening:
z — u] (t*) =t“ when = ¢ FV(t)

Proof of Preservation

Case beta-reduction:

(E,z:S) - (t*) : T
EF (abst) : S =T EFEtu:S
E + (app (abs t) uw) : T

TYPING-ABS

TYPING-APP

(E,z:S) - (t*) : T Eru:S
Etr|lz—ul(t") :T
Er (") : T

SUBSTITUTE

REWRITE

Well-formed Terms

Predicate "term t" caracterizes well-formed terms.

TERM-VAR TERM-APP TERM-ABS
term t; term to term (&%)
term (fvar z) term (app t1 t2) term (abs t)

(This gives us a natural induction principle for terms.)

Relations are restricted to well-formed terms:

ErFt:T = term t
t — ¢t/ = termt A term t’

Operations preserve well-formedness:

term (abs t) A term u = term (t")
term u A term ¢ = term ([z — ult)

Restriction to Well-formed Terms

Call-by-value reduction for A-calculus:

VALUE-ABS RED-BETA
term (abs t) term (abs t) value u
value (abs t) app (abst) u —— t*
RED-APP-1 RED-APP-2
t1 — ti term to value %4 ty — t’Q

app t1 to — app ty ta appti to — app ty)

Typing Relation in STLC

An environment E has type list (var x type), and
ok E tells that variables are bound at most once.

TYPING-VAR TYPING-APP
ok E (z:T) e E Erty:8—-T Erty: S
E - (fvarz) : T EFappty tyg : T

TYPING-ABS
(E,x:S) F (t*) : T

EF (abst) : S —T

(for x fresh)

Results in STLC

Preservation theorem:

E+Ht: T = tr—t = EWRt . .T

Theorem preservation : forall E t t° T,
E|]l=¢t~2 T -> t-->1" -> E |=t° ~- T.

Substitution lemma:

E,zSSFrHt:T = FEFu:S5S =
E,FFlz—ult:T

Lemma typing subst : forall F UE €t T z u,
(E&z~S&F)|=t~-T -> E]J=u~: S ->
(E&F) |J=[z > u]t ~: T.

Which Quantification?

Quantify(x) (E,z17) F (%) : T3
I = (abst) > Tl—}TQ

Quantification Introduction Elimination
Existential maximally very

T % FV(t) strong weak
Universal very maximally

/o % dom(E) weak strong
Cofinite nearly always maximally strong,

Ve & L sufficient; easy to provided cofinite

strenghten if not used everywhere

Cofinite Quantification in Practice

TYPING-ABS TERM-ABS RED-ABS
Veg¢ L. (E,z:Th) F (t%) : 1o VYax ¢ L. term (t*) Va & L. t{ —— t3
E F (abst) : Th — T5 term (abs t) abs t; —— abs 19

| term _abs : forall L t,
(forall x, x \notin L -> term (t”™x)) -> term (abs t)

1) state all rules using cofinite quantification
= No need to worry about freshness details

2) Induction and inversion principles are available
— automatically generated

3) to apply: instantiate L so as to avoid name clashes
— a generic tactic automates this

4) [if necessary] derive the strong introduction form.
= this proof is only two lines

DEMO

DEMO:
Simply typed A-calculus

Proof of Preservation

Case beta-reduction:

(E,z:S) - (t*) : T
EF (abst) : S =T EFEtu:S
E + (app (abs t) uw) : T

TYPING-ABS

TYPING-APP

(E,z:S) - (t*) : T Eru:S
Etr|lz—ul(t") :T
Er (") : T

SUBSTITUTE

REWRITE

Main Developments

System F_.
— binder-intensive: a good stress test,
— some proofs turn out shorter than on paper!
— others have shown that using specialized tactics,
and further automation can shorten scripts a lot.

DEMO:
Calculus of Construction

DEMO:
ML + reference, exceptions, datatypes, patterns

Complexity of Developments

M Infrastructure W Core proofs

500
450
400
350
300
250
200
150
100

50

STLC ML System F<: ML+ features CoC

Measured in number of steps: a step is defined as the application of one
tactic which is not "intro" or "auto" or a simple variations of these two.

Related to Locally Nameless

— De Bruijn (1972): representation with indices and
suggestion of locally nameless.

— Huet (1989): The Constructive Engine. Source of
Inspiration for the implementations of Coq, LEGO,
HOL4, Isabelle, EPIGRAM.

— Gordon (1993): locally nameless as an underlying
representation for named terms.

— McKinna and Pollak (1993-1997): distinguish
bound and free variables, but with names for both.

— Leroy (2006): POPLMark, locally nameless, in CoqQ;
later variations on his solution by others.

Related to Cofinite Quantification

— Universal quantification appears in McKinna and
Pollak (1993-1997) and Leroy (2006).

— Gordon (1993): strengthened induction principle.
case-abs: dL, finiteL A VX, XgL A P(t) = P(AX.1)

— Krivine (1990), Ford and Mason (2001): cofinite
quantification in definitions of alpha-equivalence.

— Gabbay and Pitts’ Nominal Logic (1999-2003): idea
of reasoning about the freshness of names by
considering all but those in some finite set.

— Urban et al (2000-2007): Nominal Package for
Isabelle/HOL: guotiented named terms, with a tool
that generates induction principles.

Conclusion

Formalize programming language metatheory with:
locally nameless + cofinite quantification

— this leads to a generally applicable method,

— directly usable in general-purpose theorem provers,
— proofs closely follow their informal equivalents,

— the amount of infrastructure required iIs reasonable,
— and several templates provided as starting points.

Try it yourself!

The full paper and the documented Coq proof scripts
are available from "http://arthur.chargueraud.org".

Freshness Side Conditions

Named representation: Locally nameless:

(E,z:1y) F t: 15 (E,z:1y) F (t%) : 15

EI—()\xt) 2T1H-T2 E F (abst) :T1—>T2

As an introduction form
premise(Xx) premise(x) A XgFV(1)
= conclusion(x) = conclusion

As an elimination form

conclusion(x) A xgdom E conclusion A xgdom E
= premise(X) = premise(X)

