
MSR-INRIA Orsay, 2006-10-18

Arthur Charguéraud

Formal Proofs with Binders

Work completed at the University of Pennsylvania

with Benjamin Pierce and Stephanie Weirich

Our Goal and Our Approach

Coq
Simple

Intuitive

Transparent

Translate

Arrange

Take paper

Formalize

Formalizations Involving Binders

– Certification of a Theorem Prover

Coq in Coq

Bruno Barras and Benjamin Werner, 1996

– Soundness for a Type System

SML in Twelf

Karl Crary, Daniel Lee et Robert Harper, 2006

– Certification of a Compiler

C-light in Coq

Xavier Leroy, Sandrine Blazy, Zaynah Dargaye, 2006

The POPLMark Challenge

– To formalize results from their POPL papers

– A set of benchmarks: Metatheory of System-F<:

– Basis for comparing technologies and techniques

Mechanized Metatheory for the Masses:

The POPLMark Challenge

By B. Aydemier, A. Bohannon, M. Fairbairn, N. Foster,
B. Pierce, P. Sewell, D. Vytiniotis, G. Washburn, S.
Weirich, S. Zdancewic – March 2005.

Previous Work

First-Order and Higher-Order

term : Set :=

| Var : name -> term

| App : term -> term -> term

| Abs : name -> term -> term

term : type

app : term -> term -> term

abs : (term -> term) -> term

First-Order Abstract Syntax

e.g. representation with names:

Higher-Order Abstract Syntax

e.g. as done in Twelf:

App (Abs x t) u [x->u]t app (abs t) u t uββββ ββββ

We focus on first-order representations.

Previous Work in First-Order

namesIsabelle/HOLChurch-Rosser in λλλλVestergaard, Brotherston 01

namesPVSChurch-Rosser in λλλλJ.Ford, I.Mason01

names

names

de-Bruijn

de-Bruijn

de-Bruijn

de-Bruijn

names

de-Bruijn

de-Bruijn

Encoding

01

97

96

96

95

94

93

93

85

Yr

Boyer-MooreChurch-Rosser in λλλλNatarajan Shankar

LEGOλλλλ-calculus & typesJ.McKinna, R.Pollack

Isabelle/ZFChurch-Rosser in λλλλOle Rasmussen

HOLChurch-Rosser in λλλλPeter Homeier

LEGOSN of System-FThorsten Altenkirch

CoqResidual Theory in λλλλGérard Huet

Isabelle/HOLChurch-Rosser in λλλλTobias Nipkow

CoqKernel of CoqB.Barras, B.Werner

LEGOPure Type SystemsJ.McKinna, R.Pollack

ProverFormalizationAuthor

Submissions to POPLMark

locally namelessCoqYArthur Charguéraud

locally namelessCoqYAdam Chlipala

de-Bruijn indicesIsabelleYYStephan Berghofer

nominalIsabelleYChristian Urban

de-Bruijn indicesCoqYJevgenijs Sallinens

de-Bruijn (nested)CoqYHirschowitz, Maggesi

higher-orderTwelfYYAshley, Crary, Harper

higher-orderATS/LFYHongwei Xi

locally namelessCoqYXavier Leroy

names / levelsCoqYAaron Stump

de-Bruijn indicesCoqYYJérome Vouillon

EncodingProverPart 2Part 1Author

Contribution

The POPLMark Challenge

Properties of subtyping

POPLMark Part 1:

Rest of the formalization

POPLMark Part 2:

Properties of subtyping,
including preservation
by type substitution

Our Challenge B

Preservation and
progress for simply

typed λλλλ-calculus

Our Challenge A

Preservation and Progress for System-F<:

[simplified][extended]

 A) Simply Typed λ-calculus

Preservation:

Progress:

B) Subtyping in System-F<:

Reflexivity:

Transtitivity:

Preservation by
type substitution:

Contribution

We answer the following questions:

– What are the big design issues?

– What are the possible solutions?

– What is the best solution in each case?

Selecting a set of good design choices, we
formalized in Coq the two subchallenges.

The result is short, simple and intuitive.

Plan

1) Represention of Bindings

2) Other Design Choices

3) Formalization in Coq

4) Comments on Using Coq

1) Represention of Bindings

λ-term with names

λλλλa. λλλλb.

[(λλλλc. c c) (a (λλλλd. d a))]

Each abstraction
introduces a name:

@

@

λλλλ c

c c

a

@

λλλλ b

λλλλ a

@

λλλλ d

d a

Pros:

– as on paper

Cons:

– quotient by αααα

– αααα-conversion

Handling αααα-equivalence (1)

– Without the quotient
[Verstergaard & Brotherston,

confluence in 200+ lemmas over
4000 lines of Isabelle/HOL, 2001]

– With quotient by alpha-equivalence
[Homeier, confluence in 359 lemmas, HOL, 2001]

[Ford & Mason, confluence in 236 lemmas, PVS, 2001]

Handling αααα-equivalence (2)

– The nominal approach
[Urban's "nominal package", Isabelle/HOL, still under development,
and also work by Norrish, in HOL, 2004.]

– Without alpha-conversion, nor the quotient
[McKinna & Pollack, lambda-calculus + type theory, LEGO, 1993-97]

λ-term with de-Bruijn indices

λλλλ. λλλλ.[(λλλλ.0 0) (1 (λλλλ.0 2))]

A variable bearing
an index k points
towards the kith

abstraction above
that variable:

@

@

λλλλ

0 0

1

@

λλλλ

λλλλ

@

λλλλ

0 2

Pros:

– α-equivalence
is identity

Cons:

– shifting free
variables in the
argument

– unshifting
free variables in
the body

λ-term with de-Bruijn levels

λλλλ. λλλλ.[(λλλλ.2 2) (0 (λλλλ.2 0))]

A variable bearing
an index k points
towards the kith

abstraction on the
path from the root
to that variable:

@

@

λλλλ

2 2

0

@

λλλλ

λλλλ

@

λλλλ

2 0

Pros:

– α-equivalence
is identity

Cons:

– shifting bound
variables in the
argument

– unshifting
bound variables
in the body

shift and subst

Weakening in System-F<:

Statements are polluted by shifting.

Properties of shifting and substitution.
Not very difficult, but fiddly.

source: Berghofer 2005

Bound and Free Variables

@

@

X

@

X

λλλλ : T1

λ

X@

λλλλ : T3

X X

λλλλ : T4

λλλλ : T2

environment E

term t

E |- t : T

typing judgment

Distinguishing Bound and Free

For example the locally nameless representation, where

– bound variables represented as de-Bruijn indices,

– free variables represented using names.

Substitution a term u for a bound variable k in a term t:

{k –> u}t

Substitution a term u for a free variable z in a term t:

[k –> u]t

Full β-reduction in Locally Nameless

Where: and

Properties of Substitution

– Introduction of a name to decompose a beta-reduction step:

– Propagation of a substitution on name through a reduction:

and its weaker form:

Summary of Representations

ok
requires reasoning
on αααα-equivalence

names

shifting
is necessary

shifting
is necessary

de Bruijn
levels

shifting
is necessary

ok
de Bruijn
indices

free variablesbound variables

Winner is: Locally Nameless

2) Other Design Choices

Environments as Lists or Sets?

Weakening Preserves Typing

Substitution Preserves Typing

Paper:

Formal:

where:

Paper:

Formal:

where:

Names pushed in the Environment

∀∀∀∀ x # E ∀∀∀∀ x ∉∉∉∉ L∃∃∃∃ x # EQuantify(x) =

Weakening

Substitution

Transitivity

ok

swapping
required

ok ok
swapping
requiredWeakening

ok

ok

swapping
required

ok Substitution

Transitivity

Well-formedness of Terms

–With recursive functions
– all the free variables of t belong to the domain D

– indices are smaller than the number of lambda above them

FV(t) ⊂⊂⊂⊂ D ∧∧∧∧ wf_indices(0,t)

– With an inductive relation

t : term ∧∧∧∧ D |- t wf

– With dependent types

t : term D

3) Formalization in Coq

Informal:

Example: Weakening on Subtyping

Lemma sub_extension : forall E S T, E |- S <: T

-> forall F, E inc F -> ok F -> F |- S <: T.

intros E S T H. induction H; intros; auto**.

apply_SA_all X (L ++ dom F). use extends_push.

Proof by induction on the subtyping derivation,

using the reordering lemma for case SA-all.

Formalizable:

Proof by induction on the subtyping derivation, easy

but in case SA-all: pick a variable X outside of dom(F)

and then use lemma "extends_push".

Formal:

αααα-equivalence, Barendregt's convention, well-formedness.

Lemma sub_transitivity :

forall E Q (WQ : E wf Q), sub_trans_prop WQ.

intros. unfold sub_trans_prop. generalize_equality Q Q'.

induction WQ; intros Q' EQ F S T EincF SsubQ QsubT;

induction SsubQ; try discriminate; try injection EQ ; intros;

inversion QsubT; subst; intuition eauto.

(* Case SA-arrow *)

apply SA_arrow. auto. apply* IHWQ1. apply* IHWQ2.

(* Case SA-all *)

apply_SA_all X ((dom E0) ++ L ++ L0 ++ L1). apply* H0.

asserts* WQ1 (E0 wf T1). apply* (sub_narrowing (WQ := WQ1)).

Qed.

Example: Transitivity of Subtyping

Theorem subtyping_transitivity : forall E S Q T,
E |- S <: Q -> E |- Q <: T -> E |- S <: T.

intros. apply* (@sub_transitivity E Q). Qed.

Simply typed Properties
λ-calculus of subtyping

Definitions 8 9

Axioms 0 0

Lemmas 26 34

Theorems 2 5

Lines of proofs 63 104

Number of tactics 202 279

Non-dummy tactics
in the main proofs: 36 67

Statistics on our Coq Scripts

Complexity of Solutions in Coq

Number of tactics invoked, not counting calls to proof-search, on
part 1A of the POPLMark Challenge (properties of subtyping).

Author Tactics Representation

Jérome Vouillon 431 de-Bruijn indices

Aaron Stump 1147 names / levels

Xavier Leroy 630 locally nameless

Hirschowitz, Maggesi 1615 de-Bruijn (nested)

Adam Chlipala 342 locally nameless

Arthur Charguéraud 233 locally nameless

4) Comments on Using Coq

1) Automation really is Cool

Automation...

– shortens proof script,

– saves a lot of time,

– let focus on difficulties,

– makes proofs more
resistant to changes,

– makes people believe
they are talking to
something clever.

deserves...

– a complete tutorial so
that more people can
truely benefit from it,

– further development
so as to make auto solve
more goals,

– to be made intuitive
even to those who don't
know how it works.

Definition extends E F := forall x U,
(E has x ~: U) -> (F has x ~: U).

Notation "E 'inc' F" := (extends E F).

Lemma extends_push : forall E F x T,
E inc F -> (E & x ~: T) inc (F & x ~: T).

unfold extends. intros. inversion* H0. Qed.

Clever Automation

be_clever. Qed.

Lemma extends_push:

Lemma my_lemma := hypB -> hypA -> conclusion.

Theorem my_result : ...

...
eapply my_lemma; eauto.
...
Qed.

Intuitive Automation

Lemma my_lemma := hypA -> hypB -> conclusion.

breaks!

Memory for Automation

Interest of saving extra information:

– save waiting time during development,

– help recovering from broken proofs.

How? After a proof search is called:

– if successful, store the main steps for next time,

– if failed, remember not to try it again each time.

2) Structuring Proofs

Problem:

– Non mathematical proofs need to get updated.

– Current layout of scripts is not suited for that.

Solution?

– Have a tree presentation, relating branches to
constructors and subgoals to hypotheses.

– Give IDs to all variables introduced and relate
them to the hypothesis they come from.

Conclusions

Locally Nameless is not New!

1972: N.G. de-Bruijn

A Lambda Calculus Notation with Nameless Dummies,
a Tool for Automatic Formula Manipulation,
with Application to the Church-Rosser Theorem.

1989: G. Huet

The Constructive Engine

1994: A. Gordon

A Mechanisation of Name-carrying Syntax up to
Alpha-conversion

2005-2006: X. Leroy, A. Chlipala, A. Charguéraud,

Solutions to the POPLMark Challenge

Locally Nameless is Good!

– All the work from McKinna and Pollack could be
rewritten and simplified using locally nameless.

– Locally nameless has been used to implement
type checkers (Coq, LEGO, HOL4, Epigram).

– Locally nameless enables us to make short and
simple proofs, faithful to informal practice.

Future Work

– Complete the solution to POPLMark Challenge.

– Formalize some λ-calculus (e.g. confluence).

– Address more complex type systems (CoC).

– Support more advanced binding constructions.

Thanks !

