Proofs with Binders Working on the POPLMark Challenge

A 5-month internship at the University of Pennsylvania with Benjamin Pierce and Stephanie Weirich

Arthur Charguéraud

INRIA-Rocquencourt

14 Sept. 2006

Certification

Big Formalizations

- Coq in Coq

Bruno Barras and Benjamin Werner, 1996

- SML in Twelf

Karl Crary, Daniel Lee et Robert Harper, 2006

- C-light in Coq Xavier Leroy, 2006

POPLMark: Challenge

Mechanized Metatheory for the Masses: The POPLMark Challenge

By B. Aydemier, A. Bohannon, M. Fairbairn, N. Foster, B. Pierce, P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, S. Zdancewic (Mar.05)

- To formalize results from their POPL papers
- A set of benchmarks: Metatheory of System-F_{<:}
- Basis for comparing technologies and techniques

POPLMark: Rules

The formalization should:

- 1) be clearly adequate,
- 2) look like the paper version,
- 3) use general techniques,
- 4) have a reasonable cost,
- 5) use a transparent and accessible technology.

POPLMark: Contents

A) Simply Typed λ -calculus

$$T := A \mid T_1 \to T_2$$

$$t := x \mid (t_1 \ t_2) \mid \lambda x: T. \ t_1$$

$$\frac{(x:T) \in E}{E \vdash x:T} \text{ T-VAR} \qquad \frac{E \vdash t_1 : S \to T \qquad E \vdash t_2 : S}{E \vdash (t_1 \ t_2) : T} \text{ T-APP}$$
$$\frac{x \# E \qquad E, x:S \vdash t_1 : T}{E \vdash (\lambda x:S. \ t_1) : S \to T} \text{ T-ABS}$$

Preservation:

$$t \mapsto t' \land E \vdash t : T \Rightarrow E \vdash t' : T$$

 Progress:
 $\varnothing \vdash t : T \Rightarrow [t \text{ is a value } \lor \exists t', t \mapsto t']$

B) Subtyping in System-F<:

$$T := \operatorname{Top} | X | T_1 \to T_2 | \forall X \leq :T_1. T_2$$

$$\overline{E \vdash S <: \operatorname{Top}} \xrightarrow{\text{SA-TOP}} \frac{E \vdash T_1 <: S_1 \qquad E \vdash S_2 <: T_2}{E \vdash (S_1 \to S_2) <: (T_1 \to T_2)} \xrightarrow{\text{SA-ARROW}}$$

$$\overline{E \vdash X <: X} \xrightarrow{\text{SA-REFL-TVAR}} \frac{(X <: U) \in E \qquad E \vdash U <: T}{E \vdash X <: T} \xrightarrow{\text{SA-TRANS-TVAR}}$$

$$\frac{E \vdash T_1 <: S_1 \qquad X \# E \qquad (E, X <: T_1) \vdash S_2 <: T_2}{E \vdash (\forall X <: S_1. S_2) <: (\forall X <: T_1. T_2)} \xrightarrow{\text{SA-ALL}}$$

Reflexivity: $E \vdash T <: T$ Transtitivity: $E \vdash S <: Q \quad \land \quad E \vdash Q <: T \quad \Rightarrow \quad E \vdash S <: T$ Preservation by
type substitution: $E, Z <: Q, F \vdash S <: T \quad \land \quad E \vdash P <: Q$
 $\Rightarrow \quad E, [Z \rightarrow P] F \vdash [Z \rightarrow P] S <: [Z \rightarrow P] T$

Concrete versus Higher-Order

Deep embedding is attractive but:

- adequacy is often not so obvious,
- proofs do not follow informal practice,
- logic used have limited expressiveness.

Previous Work

Yr	Author	Formalization	Prover	Encoding
85	Natarajan Shankar	Church-Rosser in λ	Boyer-Moore	de-Bruijn
93	Thorsten Altenkirch	System-F	LEGO	de-Bruijn
93	J.McKinna, R.Pollack	Pure Type Systems	LEGO	de-Bruijn
94	Gérard Huet	Residual Theory in λ	Coq	de-Bruijn
95	Ole Rasmussen	Church-Rosser in λ	Isabelle/ZF	de-Bruijn
96	Tobias Nipkow	Church-Rosser in λ	Isabelle/HOL	de-Bruijn
96	B.Barras, B.Werner	Kernel of Coq	Coq	de-Bruijn
97	J.McKinna, R.Pollack	λ -calculus & types	LEGO	names
01	Vestergaard, Brotherston	Church-Rosser in λ	Isabelle/HOL	names
01	J.Ford, I.Mason	Church-Rosser in λ	PVS	names
01	Peter Homeier	Church-Rosser in λ	HOL	names

POPLMark: Submissions

Author	Part 1	Part 2	Prover	Encoding
Stephan Berghofer	Y	Y	Isabelle	de-Bruijn indices
Ashley, Crary, Harper	Y	Y	Twelf	higher-order
Jérome Vouillon	Y	Y	Соq	de-Bruijn indices
Hongwei Xi		Y	ATS/LF	higher-order
Jevgenijs Sallinens	Y		Соq	de-Bruijn indices
Xavier Leroy	Y		Соq	locally nameless
Aaron Stump	Y		Соq	names / levels
Christian Urban	Y		Isabelle	nominal
Hirschowitz, Maggesi	Y		Соq	de-Bruijn (nested)
Adam Chlipala	Y		Соq	locally nameless
Arthur Charguéraud	Y		Соq	locally nameless

Contribution

– Gather and compare techniques for such formalizations in one paper.

– Provide examples of formalizations in Coq which are rather simple and intuitive.

Techniques

Plan

1) Bindings

- representation of bound and free variables,
- implementation of substitution and β -reduction.

2) Well-formation

- well-formation of terms, induction on terms,
- well-formation in typing/subtyping relations.

3) Environments

- algorithmic and logical views on environments,
- properties of well-formed environments.

4) Quantification of names

how to introduce names for typing abstractions.

1) Bindings

λ -term with names

β-reduction with names

Handling *α*-conversion

With quotient

[Homeier, 2001] [Ford & Mason, 2001]

Corollary 24 (Respectfulness of substitution). $t_1 \equiv_{\alpha} t_2 \land (\forall x. \ x \in \mathsf{FV}_1 \ t_1 \Rightarrow (x \triangleleft_1^v s_1) \equiv_{\alpha} (x \triangleleft_1^v s_2)) \Rightarrow (t_1 \triangleleft_1 s_1) \equiv_{\alpha} (t_2 \triangleleft_1 s_2)$

Without quotient

[Verstergaard & Brotherston, 2001]

Without quotient nor identification [McKinna & Pollack, 1997]

 $A\downarrow M \ \Rightarrow \ (A\downarrow N \ \Leftrightarrow \ M \stackrel{\alpha}{\sim} N).$

λ -term with de-Bruijn indices

λ A variable bearing an index k points λ towards the k^{ith} abstraction above **(a**) that variable: @ λ @ @ λ . λ .[(λ .0 0) (1 (λ .0 2))]

λ -term with de-Bruijn levels

β-reduction with de-Bruijn indices

shift and subst

Properties of shifting and substitution: [Berghofer, 2005]

$$\begin{split} & i \leq j \Longrightarrow j \leq i+m \Longrightarrow \uparrow_{\tau} n \ j \ (\uparrow_{\tau} m \ i \ T) = \uparrow_{\tau} (m+n) \ i \ T \\ & i+m \leq j \Longrightarrow \uparrow_{\tau} n \ j \ (\uparrow_{\tau} m \ i \ T) = \uparrow_{\tau} m \ i \ (\uparrow_{\tau} n \ (j-m) \ T) \\ & k \leq k' \Longrightarrow k' < k+n \Longrightarrow \uparrow_{\tau} n \ k \ T[k' \mapsto_{\tau} U]_{\tau} = \uparrow_{\tau} (n-1) \ k \ T \\ & k \leq k' \Longrightarrow \uparrow_{\tau} n \ k \ (T[k' \mapsto_{\tau} U]_{\tau}) = \uparrow_{\tau} n \ k \ T[k' + n \mapsto_{\tau} U]_{\tau} \\ & k' < k \Longrightarrow \uparrow_{\tau} n \ k \ (T[k' \mapsto_{\tau} U]_{\tau}) = \uparrow_{\tau} n \ (k+1) \ T[k' \mapsto_{\tau} \uparrow_{\tau} n \ (k-k') \ U]_{\tau} \\ & k \leq k' \Longrightarrow \uparrow_{\tau} n \ k' \ (T[k \mapsto_{\tau} Top]_{\tau}) = \uparrow_{\tau} n \ (Suc \ k') \ T[k \mapsto_{\tau} Top]_{\tau} \\ & k \leq k' \Longrightarrow k' \leq k+n \Longrightarrow \uparrow n' \ k' \ (\uparrow n \ k \ t) = \uparrow (n+n') \ k \ t \\ & i \leq j \Longrightarrow T[Suc \ j \mapsto_{\tau} V]_{\tau}[i \mapsto_{\tau} U[j-i \mapsto_{\tau} V]_{\tau}]_{\tau} = T[i \mapsto_{\tau} U]_{\tau}[j \mapsto_{\tau} V]_{\tau} \end{split}$$

Substitution in simply typed lambda-calculus:

$$(E,\,:U)\,\vdash\,t\,:\,T\quad\wedge\quad E\,\vdash\,u\,\,:\,U\quad\Rightarrow\quad E\,\vdash\,\downarrow^0_ut\,:\,T$$

Weakening in System-F_{<:}

$$\Gamma \vdash t : T \Longrightarrow \Delta @ \ \Gamma \vdash_{w\!f} \Longrightarrow \Delta @ \ \Gamma \vdash \uparrow \|\Delta\| \ \theta \ t : \uparrow_{\tau} \|\Delta\| \ \theta \ T$$

Bound and Free Variables

Distinguishing Bound and Free

Example with the locally nameless representation.

Substitution for a bound variable (de-Bruijn index):

Substitution for a free variable (name):

$$\begin{bmatrix} z \to u \end{bmatrix} \begin{bmatrix} i \end{bmatrix} \equiv \begin{bmatrix} i \end{bmatrix} \\ \begin{bmatrix} z \to u \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \equiv & \text{if } x = z \text{ then } u \text{ else } \begin{bmatrix} x \end{bmatrix} \\ \begin{bmatrix} z \to u \end{bmatrix} (t_1 \ t_2) \equiv & (([z \to u] \ t_1) \ ([z \to u] \ t_2)) \\ \begin{bmatrix} z \to u \end{bmatrix} (\lambda : T. \ t_1) \equiv & \lambda : T. \ ([z \to u] \ t_1) \end{bmatrix}$$

β-reduction in Locally Nameless

$$\frac{t_1 \longmapsto t'_1}{(t_1 \ t_2) \longmapsto (t'_1 \ t_2)} \xrightarrow{\text{RED-BETA}} \frac{t_1 \longmapsto t'_1}{(t_1 \ t_2) \longmapsto (t'_1 \ t_2)} \xrightarrow{\text{RED-APP-1}} \frac{t_2 \longmapsto t'_2}{(t_1 \ t_2) \longmapsto (t_1 \ t'_2)} \xrightarrow{\text{RED-APP-2}} \frac{\forall x \# t_1, \ t_1^x \longmapsto t'_1^x}{(\lambda:S. \ t_1) \longmapsto (\lambda:S. \ t'_1)} \xrightarrow{\text{RED-APP-2}}$$

 $t_1^{t_2}$ stands for $\{0 \rightarrow t_2\} t_1$.

Most Used Representations

Representation	Grammar
Mixed names	$x \mid (t_1 \ t_2) \mid \lambda x : S. \ t_1$
Mixed indices	$i \mid (t_1 \ t_2) \mid \lambda:S. \ t_1$
Distinct names	$ \begin{bmatrix} y \end{bmatrix} \mid \lfloor x \rfloor \mid (t_1 \ t_2) \mid \lambda y : S. \ t_1 $
Indices / levels	$\lceil i \rceil \mid \lfloor k \rfloor \mid (t_1 \ t_2) \mid \lambda x:S. \ t_1$
Locally nameless	$\lceil i \rceil \mid \lfloor x \rfloor \mid \mid (t_1 \ t_2) \mid \lambda:S. \ t_1$

Presentations for T-abs

Standard:	$\frac{\mathbf{Q}(x) (E, x:S) \vdash t_1 : T}{E \vdash (\lambda x:S. t_1) : S \to T}$
Mixed names:	$\frac{\mathbf{Q}(x) (E, x:S) \vdash [y \to x] t_1 : T}{E \vdash (\lambda y:S. t_1) : S \to T}$
Distinct names:	$\frac{\mathbf{Q}(x) (E, x:S) \vdash [y \to \lfloor x \rfloor] t_1 \; : \; T}{E \vdash (\lambda y:S. \; t_1) \; : \; S \to T}$
Locally nameless:	$\frac{\mathbf{Q}(x) (E, x:S) \vdash t_1{}^x : T}{E \vdash (\lambda:S.t_1) : S \to T}$
Indices / levels:	$\frac{(E, :S) \vdash t_1^{ E } : T}{E \vdash (\lambda:S. t_1) : S \to T}$
Mixed indices:	$\frac{(E, :S) \vdash t_1 : T}{E \vdash (\lambda:S. t_1) : S \to T}$

where Q(x) to be choosen among: $\exists x \# E$ or $\forall x \# E$ or $\forall x \# E$ or $\forall x \# E$.

Locally Nameless: Bibliography

1972: N.G. de-Bruijn

A Lambda Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem.

- 1989: G. Huet The Constructive Engine
- 1993: A. Gordon A Mechanisation of Name-carrying Syntax up to Alpha-conversion
- 1995: R. Pollack

Closure under Alpha-conversion

2004: C. McBride and J. McKinna, I am not a number: I am a free variable

2005-2006: X. Leroy, A. Chipala, A. Charguéraud, Independent solutions to the POPLMark Challenge.

2) Well-formation

Need for Well-formation

Examples of terms not well-formed:

In the environment z:T, the term $\lambda x.z y$ is ill-formed In the environment [T;U], the term $\lambda.5$ is ill-formed.

Ill-formed terms need to be ruled out:

e.g. reflexitivity of subtyping $\mathbf{E} \mid -\mathbf{T} <: \mathbf{T}$ does not hold if \mathbf{T} is a variable not defined in \mathbf{E} .

Well-formed terms

-With recursive functions:

- for names: all variables in the term belong to a domain
- for indices: all indices in the term are smaller than a natural
- With dependent types

t: term n instead of t: term \land wf n t

- With inductive relation:

$$\begin{array}{ll} \displaystyle \frac{(x:U) \in E}{E \vdash \lfloor x \rfloor \ wf} & \text{WF-FVAR} & \displaystyle \frac{E \vdash t_1 \ wf & E \vdash t_2 \ wf}{E \vdash (t_1 \ t_2) \ wf} & \text{WF-APP} \\ \\ & \displaystyle \frac{\forall x \notin L, \ (E, \ x:T) \vdash t_1^x \ wf}{E \vdash (\lambda:T. \ t_1) \ wf} & \text{WF-ABS} \end{array}$$

Induction on Well-formed Terms

Informal statement:

 $E \vdash T \mathrel{{<}{:}} T$

Informal proof:

Trivial by induction on T.

Formal statement:

$$\vdash E \ ok \quad \land \quad E \vdash T \ wf \quad \Rightarrow \quad E \vdash T <: T$$

Formal proof:

```
Lemma sub_reflexivity : forall E T,
        ok E -> E wf T -> E |- T <: T.
        intros. induction H0; eauto.
        Qed.
```

Well-formation in Relations

Where to store the well-formation of arguments?

- At all nodes
- At all leaves
- At the root

3) Environments

Environments as Sets

Weakening Preserves Typing

From:
$$E \vdash S <: T \implies E, F \vdash S <: T$$
To: $E \vdash S <: T \land E \subset F \implies F \vdash S <: T$ With: $E \subset F \equiv \forall x T, (x:T) \in E \implies (x:T) \in F$

Substitution Preserves Typing

From:
$$E, z: U, F \vdash t : T \land E \vdash u : U \Rightarrow E, F \vdash [z \rightarrow u]t : T$$
To: $E \vdash t : T \land F \vdash u : U \land$
 $(z:U) \in E \land E \smallsetminus z \subset F \Rightarrow F \vdash [z \rightarrow u]t : T$ With: $E \smallsetminus z \subset F \equiv \forall x T, (x:T) \in E \land x \neq z \Rightarrow (x:T) \in F$

Views on Environments

view	structure	lookup	weaken
function	list	lookup x Γ = Some U	Γ,Δ
relation	set	(x:U)∈ E	$(x:U)\in E \Rightarrow (x:U)\in F$

$E \subset F$

view	substitution	type substitution	
function	$\Gamma, z: T, \Delta$ to Γ, Δ	$\Gamma, \mathbf{Z} <: \mathbf{Q}, \Delta$ to $\Gamma, [\mathbf{Z} -> \mathbf{P}] \Delta$	
relation	$(\mathbf{x}:\mathbf{U})\in\mathbf{E} \wedge \mathbf{x}\neq\mathbf{z}$ $\Rightarrow (\mathbf{x}:\mathbf{U})\in\mathbf{F}$	$(X <: U) \in E \land X \neq Z$ $\Rightarrow (X <: [Z->P]U) \in F$	

 $E \setminus z \subset F$

 $[Z - P]E \subset F$
Freshness, Closed Terms

	x # E	x # t	t closed term
function	x∉ dom(E)	x∉ FV(t)	$FV(t) = \emptyset$
inductive relation	not_in_env x E	not_in_term x t	closed t
property	forall U, (x:U) ∉ E	E - t wf ^ x # E	Ø - t wf

4) Quantification

Quantification of names

$$\frac{\mathbf{Q}(x) \quad (E, \, x:S) \,\vdash\, t_1{}^x \,:\, T}{E \,\vdash\, (\lambda:S. \, t_1) \,:\, S \to T}$$

Q(x) =	3 x # E	∀ x # E	∀x∉L
--------	---------	---------	------

Weakening:

$$E \vdash t : T \Rightarrow E, F \vdash t : T$$
from Q(x) (E, x:S) |- t1^x : T
to Q(x) (E, x:S, F) |- t1^x : T
$$\exists x \# (E, x:S) to \exists x \# (E, x:S, F)$$

$$\forall x \# (E, x:S) to \forall x \# (E, x:S, F)$$

$$\forall x \notin L to \forall x \notin L'$$

Comparing Quantification

Weakening	$E \vdash t \; : \; T \Rightarrow E, F \vdash t \; : \; T$
Substitution	$E, z: U, F \vdash t \ : \ T \land E \vdash u \ : \ U \Rightarrow E, F \vdash \ [z \to u] t \ : \ T$
Transitivity	$E \vdash S \mathrel{<:} Q \land E \vdash Q \mathrel{<:} T \Rightarrow E \vdash S \mathrel{<:} T$

Q(x) =	∃ x # E	∀ x # E	∀x∉L
weakening	problem when $x \in \text{dom } F$	ok	take dom F
substitution	take x	problem when x = z	take L \cup {z}
transitivity	problem when x ≠ x′	ok	take L \cup L'

Proofs in Coq

Summary of Our Choices

A locally nameless solution

- bound variables are represented with de-Bruijn indices,
- free variables are represented with names,
- two simple substitutions, one for indices and one for names,
- well-formation defined inductively, gives induction principle.

With environments viewed as sets

- belonging relation (x:U)∈ E
- weakening as set inclusion $\mathbf{E} \subset \mathbf{F}$
- substitution as $\mathbf{E} \setminus \mathbf{z} \subset \mathbf{F}$ or $[\mathbf{Z} \mathbf{P}]\mathbf{E} \subset \mathbf{F}$

And typing/subtyping relations defined

- with well-formation of all arguments at each node,
- quantifying names of free variables over a cofinite set.

Weakening on Subtyping

Informal:

 $E \vdash S \mathrel{<:} T \quad \Rightarrow \quad E, F \vdash S \mathrel{<:} T$

Proof by induction on the subtyping derivation, using the reordering lemma for case SA-all.

Formalizable: $E \vdash S \lt: T \land E \subseteq F \land \vdash F ok \Rightarrow F \vdash S \lt: T$

Proof by induction on the subtyping derivation, using extension of inclusion lemma in case SA-all and quantifying not among $L \cup \text{dom}(F)$.

Formal: Lemma sub_extension : forall E S T, E |- S <: T
 -> forall F, E inc F -> ok F -> F |- S <: T.
 intros E S T H. induction H; intros; auto**.
 apply_SA_all X (L ++ dom F). use extends_push.</pre>

« Formalizable » Presentation

Informal _ Formalizable _ Formal Presentation Presentation Proofs

A better way to present the proofs on paper?

- same structure and key ideas as informally,
- definitions and statement of lemmas change slightly,
- can be written by hand (not too heavy),
- can be translated almost word-to-word into Coq.

Importance of Proof-search

Formal proofs like this contain many arguments.

Proof-search can help when:

- only easy steps of reasoning are involved,
- the statements combine well together,
- even if the chain of reasoning is rather long.

Proof-search will not help for:

- invoking key lemmas,
- performing inductions or case analysis,
- dealing with equalities.

Transitivity of Subtyping

Definition sub_trans_prop E Q (WQ : E wf Q) := forall F S T, E inc F -> F |-S <: Q -> F |-Q <: T -> F |-S <: T.

Lemma sub_transitivity :

forall E Q (WQ : E wf Q), sub_trans_prop WQ.

intros. unfold sub_trans_prop. generalize_equality Q Q'.

induction WQ; intros Q' EQ F S T EincF SsubQ QsubT;

induction SsubQ; try discriminate; try injection EQ; intros; inversion QsubT; subst; intuition eauto.

(* Case SA-arrow *)

apply SA_arrow. auto. apply* IHWQ1. apply* IHWQ2.

(* Case SA-all *)

apply_SA_all X ((dom E0) ++ L ++ L0 ++ L1). apply* H0. asserts* WQ1 (E0 wf T1). apply* (sub_narrowing (WQ := WQ1)). Qed.

Final Theorems for Subtyping

► SUBTYPING-REFLEXIVITY:

$$\vdash E \ ok \quad \land \quad E \vdash T \ wf \quad \Rightarrow \quad E \vdash T <: T$$

▶ SUBTYPING-WEAKENING:

 $E \vdash S \mathrel{<:} T \quad \land \quad E \subset F \quad \land \quad \vdash F \ ok \quad \Rightarrow \quad F \vdash S \mathrel{<:} T$

▶ SUBTYPING-NARROWING:

 $E,\,Z{\boldsymbol{<}}{:}Q\,\vdash\,S\,{\boldsymbol{<}}{:}\,T\quad\wedge\quad E\,\vdash\,P\,{\boldsymbol{<}}{:}\,Q\quad\Rightarrow\quad E,\,Z{\boldsymbol{<}}{:}P\,\vdash\,S\,{\boldsymbol{<}}{:}\,T$

► SUBTYPING-TRANSITIVITY:

$$E \vdash S \triangleleft Q \quad \land \quad E \vdash Q \triangleleft T \quad \Rightarrow \quad E \vdash S \triangleleft T$$

► SUBTYPING-SUBSTITUTION:

 $(E, Z \triangleleft : Q) \vdash S \triangleleft : T \quad \land \quad E \vdash P \triangleleft : Q \quad \Rightarrow \quad E \vdash [Z \rightarrow P] S \triangleleft : [Z \rightarrow P] T$

Statistics on our Coq Scripts

	Simply typed λ-calculus	Properties of subtyping	
Definitions	8	9	
Axioms	0	0	
Lemmas	26 in c	18 - 34 ommon	
Theorems	2	5	
Lines of proofs	63	104	
Number of tactics	202	279	
in main proofs	44	80	
Non-empty lines	289	397	

Complexity of solutions in Coq

Number of tactics invoked (not counting *trivial*, *assumption*, and *auto*) in solutions in Coq to part 1A of the POPLMark Challenge (formalization of the basic properties of subtyping), in chronological order. Column *Hints* gives the number of lemmas placed in the proof-search database.

Author	Steps	Hints	Representation
Jérome Vouillon	431	0	de-Bruijn indices
Aaron Stump	1147	0	names / levels
Xavier Leroy	630	3	locally nameless
Hirschowitz, Maggesi	1615	5	de-Bruijn (nested)
Adam Chlipala	342	70	locally nameless
Arthur Charguéraud	233	12	locally nameless

Conclusions

A Very Positive Experience

- A project with a clear and precise goal.
- Motivating to see progress.
- 5 months gives time for in-depth search.
- A very good environment of work.
- I learned a lot about many things.

– It is already an impressive tool, and we never felt limited by Coq.

- The structure of the proofs should be stored in a better way, so as to make proofs more robust.

– Proof-search, once successful, should store the main steps followed, to improve efficiency.

 Complete the solution to cover the rest of the POPLMark Challenge.

– Extend the results to more evolved languages, with support for many constructions.

Extend the results to more complex typing systems (e.g. Calculus of Constructions).

Thanks !