Proofs with Binders
 Working on the POPLMark Challenge

A 5-month internship at the University of Pennsylvania with Benjamin Pierce and Stephanie Weirich

Arthur Charguéraud

Certification

Big Formalizations

- Coq in Coq

Bruno Barras and Benjamin Werner, 1996

- SML in Twelf

Karl Crary, Daniel Lee et Robert Harper, 2006

- C-light in Coq

Xavier Leroy, 2006

POPLMark: Challenge

Mechanized Metatheory for the Masses: The POPLMark Challenge

By B. Aydemier, A. Bohannon, M. Fairbairn, N. Foster, B. Pierce, P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, S. Zdancewic (Mar.05)

- To formalize results from their POPL papers
- A set of benchmarks: Metatheory of System-F
- Basis for comparing technologies and techniques

POPLMark: Rules

The formalization should:

1) be clearly adequate,
2) look like the paper version,
3) use general techniques,
4) have a reasonable cost,
5) use a transparent and accessible technology.

POPLMark: Contents

Preservation and Progress for System-F<:

POPLMark Part 1:
Properties of subtyping

Our Challenge B
Properties of subtyping, including preservation by type substitution

POPLMark Part 2:
Rest of the formalization
[simplified]

Our Challenge A
Preservation and progress for simply typed λ-calculus

A) Simply Typed λ-calculus

$$
\begin{aligned}
T & :=A \quad \left\lvert\, \begin{array}{l}
\\
T
\end{array} \rightarrow T_{2}\right. \\
t & :=x \left\lvert\, \begin{array}{ll}
& \left(t_{1} t_{2}\right)
\end{array} \quad \lambda x\right.: T \cdot t_{1}
\end{aligned}
$$

$$
\begin{gathered}
\frac{(x: T) \in E}{E \vdash x: T} \text { T-vaR } \quad \frac{E \vdash t_{1}: S \rightarrow T \quad E \vdash t_{2}: S}{E \vdash\left(t_{1} t_{2}\right): T} \text { T-APP } \\
\frac{x \# E \quad E, x: S \vdash t_{1}: T}{E \vdash\left(\lambda x: S . t_{1}\right): S \rightarrow T} \text { T-ABS }
\end{gathered}
$$

Preservation: $\quad t \longmapsto t^{\prime} \wedge E \vdash t: T \Rightarrow E \vdash t^{\prime}: T$
Progress: $\varnothing \vdash t: T \Rightarrow\left[t\right.$ is a value $\left.\vee \quad \exists t^{\prime}, t \longmapsto t^{\prime}\right]$

B) Subtyping in System- $\mathrm{F}_{<\text {: }}$

$$
\begin{aligned}
& T:=\operatorname{Top}|X| T_{1} \rightarrow T_{2} \mid \forall X<: T_{1} \cdot T_{2} \\
& \begin{array}{cc}
\overline{E \vdash S<: \text { Top }} \text { SA-TOP } & \frac{E \vdash T_{1}<: S_{1} \quad E \vdash S_{2}<: T_{2}}{E \vdash\left(S_{1} \rightarrow S_{2}\right)<:\left(T_{1} \rightarrow T_{2}\right)} \text { SA-ARROW } \\
\frac{E \vdash X<: X}{} \text { SA-REFL-TVAR } & \frac{(X<: U) \in E \quad E \vdash U<: T}{E \vdash X<: T} \text { SA-TRANS-TVAR }
\end{array} \\
& \frac{E \vdash T_{1}<: S_{1} \quad X \# E \quad\left(E, X<: T_{1}\right) \vdash S_{2}<: T_{2}}{E \vdash\left(\forall X<: S_{1} \cdot S_{2}\right)<:\left(\forall X<: T_{1} \cdot T_{2}\right)} \text { SA-ALL } \\
& \text { Reflexivity: } \quad E \vdash T<: T \\
& \text { Transtitivity: } \\
& E \vdash S<: Q \wedge E \vdash Q<: T \quad \Rightarrow \quad E \vdash S<: T \\
& \text { Preservation by } \\
& E, Z<: Q, F \vdash S<: T \wedge E \vdash P<: Q \\
& \Rightarrow \quad E,[Z \rightarrow P] F \vdash[Z \rightarrow P] S<:[Z \rightarrow P] T
\end{aligned}
$$

Concrete versus Higher-Order

Deep embedding is attractive but:

- adequacy is often not so obvious,
- proofs do not follow informal practice,
- logic used have limited expressiveness.

Previous Work

Yr	Author	Formalization	Prover	Encoding
85	Natarajan Shankar	Church-Rosser in λ	Boyer-Moore	de-Bruijn
93	Thorsten Altenkirch	System-F	LEGO	de-Bruijn
93	J.McKinna, R.Pollack	Pure Type Systems	LEGO	de-Bruijn
94	Gérard Huet	Residual Theory in λ	Coq	de-Bruijn
95	Ole Rasmussen	Church-Rosser in λ	Isabelle/ZF	de-Bruijn
96	Tobias Nipkow	Church-Rosser in λ	Isabelle/HOL	de-Bruijn
96	B.Barras, B.Werner	Kernel of Coq	Coq	de-Bruijn
97	J.McKinna, R.Pollack	λ-calculus \& types	LEGO	names
01	Vestergaard, Brotherston	Church-Rosser in λ	Isabelle/HOL	names
01	J.Ford, I.Mason	Church-Rosser in λ	PVS	names
01	Peter Homeier	Church-Rosser in λ	HOL	names

POPLMark: Submissions

Author	Part 1	Part 2	Prover	Encoding
Stephan Berghofer	Y	Y	Isabelle	de-Bruijn indices
Ashley, Crary, Harper	Y	Y	Twelf	higher-order
Jérome Vouillon	Y	Y	Coq	de-Bruijn indices
Hongwei Xi		Y	ATS/LF	higher-order
Jevgenijs Sallinens	Y		Coq	de-Bruijn indices
Xavier Leroy	Y		Coq	locally nameless
Aaron Stump	Y		Coq	names / levels
Christian Urban	Y		Isabelle	nominal
Hirschowitz, Maggesi	Y		Coq	de-Bruijn (nested)
Adam Chlipala	Y		Coq	locally nameless
Arthur Charguéraud	Y		Coq	locally nameless

Contribution

- Gather and compare techniques for such formalizations in one paper.
- Provide examples of formalizations in Coq which are rather simple and intuitive.

Techniques

Plan

1) Bindings

- representation of bound and free variables,
- implementation of substitution and β-reduction.

2) Well-formation

- well-formation of terms, induction on terms,
- well-formation in typing/subtyping relations.

3) Environments

- algorithmic and logical views on environments,
- properties of well-formed environments.

4) Quantification of names

- how to introduce names for typing abstractions.

1) Bindings

λ-term with names

β-reduction with names

Handling α-conversion

With quotient

[Homeier, 2001] [Ford \& Mason, 2001]
Corollary 24 (Respectfulness of substitution).

$$
\begin{aligned}
& t_{1} \equiv_{\alpha} t_{2} \wedge\left(\forall x . x \in \mathrm{FV}_{1} t_{1} \Rightarrow\left(x \triangleleft_{1}^{v} s_{1}\right) \equiv_{\alpha}\left(x \triangleleft_{1}^{v} s_{2}\right)\right) \Rightarrow \\
& \left(t_{1} \triangleleft_{1} s_{1}\right) \equiv_{\alpha}\left(t_{2} \triangleleft_{1} s_{2}\right)
\end{aligned}
$$

Without quotient

[Verstergaard \& Brotherston, 2001]

Without quotient nor identification
[McKinna \& Pollack, 1997]

$$
A \downarrow M \Rightarrow(A \downarrow N \Leftrightarrow M \stackrel{\alpha}{\sim} N) .
$$

λ-term with de-Bruijn indices

A variable bearing an index k points towards the $k^{\text {ith }}$ abstraction above that variable:
$\left.\lambda . \lambda .\left[\begin{array}{lll}(\lambda .0 & 0) & (1 \quad(\lambda .02)\end{array}\right)\right]$

λ-term with de-Bruijn levels

A variable bearing an index k points towards the kith abstraction on the path from the root to that variable:

β-reduction with de-Bruijn indices

shift and subst

Properties of shifting and substitution: [Berghofer, 2005]

```
\(i \leq j \Longrightarrow j \leq i+m \Longrightarrow \uparrow_{\tau} n j\left(\uparrow_{\tau} m i T\right)=\uparrow_{\tau}(m+n) i T\)
\(i+m \leq j \Longrightarrow \uparrow_{\tau} n j\left(\uparrow_{\tau} m i T\right)=\uparrow_{\tau} m i\left(\uparrow_{\tau} n(j-m) T\right)\)
\(k \leq k^{\prime} \Longrightarrow k^{\prime}<k+n \Longrightarrow \uparrow_{\tau} n k T\left[k^{\prime} \mapsto_{\tau} U\right]_{\tau}=\uparrow_{\tau}(n-1) k T\)
\(k \leq k^{\prime} \Longrightarrow \uparrow_{\tau} n k\left(T\left[k^{\prime} \mapsto_{\tau} U\right]_{\tau}\right)=\uparrow_{\tau} n k T\left[k^{\prime}+n \mapsto_{\tau} U\right]_{\tau}\)
\(k^{\prime}<k \Longrightarrow \uparrow_{\tau} n k\left(T\left[k^{\prime} \mapsto_{\tau} U\right]_{\tau}\right)=\uparrow_{\tau} n(k+1) T\left[k^{\prime} \mapsto_{\tau} \uparrow_{\tau} n\left(k-k^{\prime}\right) U\right]_{\tau}\)
\(k \leq k^{\prime} \Longrightarrow \uparrow_{\tau} n k^{\prime}\left(T\left[k \mapsto_{\tau} \text { Top }\right]_{\tau}\right)=\uparrow_{\tau} n\left(\right.\) Suc \(\left.k^{\prime}\right) T\left[k \mapsto_{\tau} \text { Top }\right]_{\tau}\)
\(k \leq k^{\prime} \Longrightarrow k^{\prime} \leq k+n \Longrightarrow \uparrow n^{\prime} k^{\prime}(\uparrow n k t)=\uparrow\left(n+n^{\prime}\right) k t\)
\(i \leq j \Longrightarrow T\left[\begin{array}{ll}\left.\text { Suc } j \mapsto_{\tau} V\right]_{\tau}\left[i \mapsto_{\tau} U\left[\begin{array}{ll}j-i \mapsto_{\tau} & V]_{\tau}\end{array}\right]_{\tau}=T\left[i \mapsto_{\tau} U\right]_{\tau}\left[j \mapsto_{\tau} V\right]_{\tau}\right.\end{array}\right.\)
```

Substitution in simply typed lambda-calculus:

$$
(E,: U) \vdash t: T \wedge E \vdash u: U \quad \Rightarrow \quad E \vdash \downarrow_{u}^{0} t: T
$$

Weakening in System- $\mathrm{F}_{<\text {: }}$

$$
\Gamma \vdash t: T \Longrightarrow \Delta @ \Gamma \vdash_{w f} \Longrightarrow \Delta @ \Gamma \vdash \uparrow\|\Delta\| 0 t: \uparrow_{\tau}\|\Delta\| 0 T
$$

Bound and Free Variables

typing judgment

$$
E \mid-t: T
$$

Distinguishing Bound and Free

Example with the locally nameless representation.

Substitution for a bound variable (de-Bruijn index):

$$
\begin{array}{ll}
\{k \rightarrow u\}\lceil i\rceil & \equiv \text { if } i=k \text { then } u \text { else 「iๆ } \\
\{k \rightarrow u\}\lfloor x\rfloor & \equiv\lfloor x\rfloor \\
\{k \rightarrow u\}\left(t_{1} t_{2}\right) & \equiv\left(\left(\{k \rightarrow u\} t_{1}\right)\left(\{k \rightarrow u\} t_{2}\right)\right) \\
\{k \rightarrow u\}\left(\lambda: T . t_{1}\right) & \equiv \lambda: T \cdot\left(\{(k+1) \rightarrow u\} t_{1}\right) \\
\hline
\end{array}
$$

Substitution for a free variable (name):

$$
\begin{array}{|ll}
\hline[z \rightarrow u]\lceil i\rceil & \equiv\lceil i\rceil \\
{[z \rightarrow u]\lfloor x\rfloor} & \equiv \text { if } x=z \text { then } u \text { else }\lfloor x\rfloor \\
{[z \rightarrow u]\left(t_{1} t_{2}\right)} & \equiv\left(\left([z \rightarrow u] t_{1}\right)\left([z \rightarrow u] t_{2}\right)\right) \\
{[z \rightarrow u]\left(\lambda: T . t_{1}\right)} & \equiv \lambda: T .\left([z \rightarrow u] t_{1}\right) \\
\hline
\end{array}
$$

β-reduction in Locally Nameless

$$
\begin{gathered}
\overline{\left(\left(\lambda: S . t_{1}\right) t_{2}\right) \longmapsto t_{1}^{t_{2}}} \text { RED-BETA } \\
\frac{t_{1} \longmapsto t_{1}^{\prime}}{\left(t_{1} t_{2}\right) \longmapsto\left(t_{1}^{\prime} t_{2}\right)} \text { RED-APP-1 } \frac{t_{2} \longmapsto t_{2}^{\prime}}{\left(t_{1} t_{2}\right) \longmapsto\left(t_{1} t_{2}^{\prime}\right)} \text { RED-APP-2 } \\
\frac{\forall x \# t_{1}, t_{1}^{x} \longmapsto t_{1}^{\prime x}}{\left(\lambda: S . t_{1}\right) \longmapsto\left(\lambda: S . t_{1}^{\prime}\right)} \text { RED-ABS }
\end{gathered}
$$

$$
t_{1}^{t_{2}} \text { stands for }\left\{0 \rightarrow t_{2}\right\} t_{1}
$$

Most Used Representations

Representation	Grammar
Mixed names	$x\left\|\left(t_{1} t_{2}\right)\right\| \lambda x: S . t_{1}$
Mixed indices	$i\left\|\left(t_{1} t_{2}\right)\right\| \lambda: S . t_{1}$
Distinct names	$\lceil y\rceil\|\lfloor x\rfloor\|\left(t_{1} t_{2}\right) \mid \lambda y: S . t_{1}$
Indices / levels	$\lceil i\rceil\|\lfloor k\rfloor\|\left(t_{1} t_{2}\right) \mid \lambda x: S . t_{1}$
Locally nameless	$\lceil i\rceil\|\lfloor x\rfloor\|\left\|\left(t_{1} t_{2}\right)\right\| \lambda: S . t_{1}$

Presentations for T-abs

Standard:

$$
\frac{\mathrm{Q}(x)(E, x: S) \vdash t_{1}: T}{E \vdash\left(\lambda x: S \cdot t_{1}\right): S \rightarrow T}
$$

Mixed names:

$$
\frac{\mathrm{Q}(x)(E, x: S) \vdash[y \rightarrow x] t_{1}: T}{E \vdash\left(\lambda y: S \cdot t_{1}\right): S \rightarrow T}
$$

Distinct names:

$$
\frac{\mathrm{Q}(x) \quad(E, x: S) \vdash[y \rightarrow\lfloor x\rfloor] t_{1}: T}{E \vdash\left(\lambda y: S \cdot t_{1}\right): S \rightarrow T}
$$

Locally nameless:

$$
\frac{\mathrm{Q}(x)(E, x: S) \vdash t_{1}{ }^{x}: T}{E \vdash\left(\lambda: S . t_{1}\right): S \rightarrow T}
$$

Indices / levels:

$$
\frac{(E,: S) \vdash t_{1}{ }^{|E|}: T}{E \vdash\left(\lambda: S . t_{1}\right): S \rightarrow T}
$$

Mixed indices:

$$
\frac{(E,: S) \vdash t_{1}: T}{E \vdash\left(\lambda: S . t_{1}\right): S \rightarrow T}
$$

where $\mathrm{Q}(\mathrm{x})$ to be choosen among: $\exists x \# \mathrm{E}$ or $\forall \mathrm{x} \# \mathrm{E}$ or $\forall \mathrm{x} \not \mathrm{L}$.

Locally Nameless: Bibliography

1972: N.G. de-Bruijn
A Lambda Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem.
1989: G. Huet
The Constructive Engine
1993: A. Gordon
A Mechanisation of Name-carrying Syntax up to
Alpha-conversion
1995: R. Pollack
Closure under Alpha-conversion
2004: C. McBride and J. McKinna,
I am not a number: I am a free variable
2005-2006: X. Leroy, A. Chipala, A. Charguéraud,
Independent solutions to the POPLMark Challenge.

2) Well-formation

Need for Well-formation

Examples of terms not well-formed:

In the environment $\mathrm{z}: \mathrm{T}$, the term $\lambda_{\mathrm{x} . \mathrm{z}} \mathrm{y}$ is ill-formed In the environment [$\mathrm{T} ; \mathrm{U}$], the term $\lambda .5$ is ill-formed.

Ill-formed terms need to be ruled out:
e.g. reflexitivity of subtyping $\mathrm{E} \mid-\mathrm{T}<$: T does not hold if T is a variable not defined in E.

Well-formed terms

-With recursive functions:

- for names: all variables in the term belong to a domain
- for indices: all indices in the term are smaller than a natural
- With dependent types
t : term n instead of t : term \wedge wf $n t$
- With inductive relation:

$$
\begin{gathered}
\frac{(x: U) \in E}{E \vdash\lfloor x\rfloor w f} \text { WF-FVAR } \quad \frac{E \vdash t_{1} w f}{E \vdash\left(t_{1} t_{2}\right) w f} \text { WF-APP } \\
\frac{\forall x \notin L,(E, x: T) \vdash t_{1}{ }^{x} w f}{E \vdash\left(\lambda: T \cdot t_{1}\right) w f} \text { wF-ABS }
\end{gathered}
$$

Induction on Well-formed Terms

Informal statement: $\quad E \vdash T<: T$
Informal proof:

Trivial by induction on T.

Formal statement: $\vdash E$ ok $\wedge E \vdash T w f \Rightarrow E \vdash T<: T$
Formal proof:

```
Lemma sub_reflexivity : forall E T,
    ok E -> E wf T -> E |- T <: T.
intros. induction HO; eauto.
Qed.
```


Well-formation in Relations

$$
\begin{aligned}
& E \vdash S k: T o p \\
& \text { SA-TOP } \frac{E \vdash T_{1}<: S_{1} \quad E \vdash S_{2}<: T_{2}}{E \vdash\left(S_{1} \rightarrow S_{2}\right)<:\left(T_{1} \rightarrow T_{2}\right)} \text { SA-ARROW } \\
& E|\vdash|<: X X \\
& \frac{E \vdash T_{1}<: S_{1} \quad X \# E \quad\left(E, X<: T_{1}\right) \vdash S_{2}<: T_{2}}{E \vdash\left(\forall X<: S_{1} \cdot S_{2}\right)<:\left(\forall X<: T_{1} \cdot T_{2}\right)} \text { SA-ALL }
\end{aligned}
$$

Where to store the well-formation of arguments?

- At all nodes
- At all leaves
- At the root

3) Environments

Environments as Sets

Weakening Preserves Typing
From:

$$
E \vdash S<: T \quad \Rightarrow \quad E, F \vdash S<: T
$$

To:

$$
E \vdash S<: T \quad A \quad E \subset F \quad \Rightarrow \quad F \vdash S<: T
$$

With: $E \subset F \quad \equiv \quad \forall x T, \quad(x: T) \in E \quad \Rightarrow \quad(x: T) \in F$

Substitution Preserves Typing

From:

$$
E, z: U, F \vdash t: T \quad \wedge \quad E \vdash u: U \quad \Rightarrow \quad E, F \vdash[z \rightarrow u] t: T
$$

To:

$$
\begin{aligned}
E \vdash t: T & \wedge \\
E \vdash u: U & \wedge \\
(z: U) \in E & \wedge E \backslash z \subset F \Rightarrow F \vdash[z \rightarrow u] t: T
\end{aligned}
$$

With:

$$
E \backslash z \subset F \quad \equiv \quad \forall x T, \quad(x: T) \in E \quad \wedge \quad x \neq z \quad \Rightarrow \quad(x: T) \in F
$$

Views on Environments

view	structure	lookup	weaken
function	list	lookup \mathbf{x} $=$ Some	Γ, Δ
relation	set	$\mathbf{(x : U)} \in \mathbf{E}$	$\mathbf{(x : U) \in E \Rightarrow (\mathbf { x } : U) \in \mathbf { F }}$

$$
\mathbf{E} \subset \mathbf{F}
$$

view	substitution	type substitution
function	$\Gamma, z: T, \Delta$ to Γ, Δ	$\Gamma, \mathrm{Z}<: Q, \Delta \quad$ to $\quad \Gamma,[\mathrm{Z}->\mathrm{P}] \Delta$
relation	$\begin{gathered} (x: U) \in E \quad \wedge \quad x \neq z \\ \Rightarrow(x: U) \in F \end{gathered}$	$\begin{aligned} & (X<: U) \in E \quad \text { E } \quad X \neq \mathbf{Z} \\ & \Rightarrow(X<:[Z->P] U) \in F \end{aligned}$

$$
\mathrm{E} \backslash \mathbf{z} \subset \mathbf{F} \quad[\mathrm{Z}->\mathrm{P}] \mathrm{E} \subset \mathrm{~F}
$$

Freshness, Closed Terms

	x \# E	x \# t	t closed term
function	$\mathbf{x} \notin \operatorname{dom}(\mathrm{E})$	$\mathbf{x} \notin \mathrm{FV}(\mathrm{t})$	$F V(t)=\varnothing$
inductive relation	not_in_env \times E	not_in_term x t	closed t
property	$\begin{aligned} & \text { forall } U, \\ & (x: U) \notin E \end{aligned}$	$\begin{aligned} & \quad \mathrm{E} \mid-\mathrm{t} \mathbf{w f} \\ & \wedge \mathrm{x} \# \mathrm{E} \end{aligned}$	\varnothing \|-t wf

4) Quantification

Quantification of names

$$
\frac{\mathrm{Q}(x)(E, x: S) \vdash t_{1}^{x}: T}{E \vdash\left(\lambda: S . t_{1}\right): S \rightarrow T}
$$

$Q(x)=$	$\exists x \# E$	$\forall x \# E$	$\forall x \notin \mathrm{~L}$

$$
\begin{aligned}
& \text { Weakening: } E \vdash t: T \Rightarrow E, F \vdash t: T \\
& \begin{array}{lll}
\text { from } & Q(x) & (E, x: S) \mid-t 1^{\wedge} \mathbf{x}: T \\
\text { to } & Q(x) & (E, x: S, F) \mid-t 1^{\wedge} \mathbf{x}: T
\end{array}
\end{aligned}
$$

Comparing Quantification

Weakening $E \vdash t: T \quad \Rightarrow \quad E, F \vdash t: T$
Substitution $E, z: U, F \vdash t: T \wedge E \vdash u: U \Rightarrow E, F \vdash[z \rightarrow u] t: T$
Transitivity $E \vdash S<: Q \wedge E \vdash Q<: T \Rightarrow E \vdash S<: T$

$\mathrm{Q}(\mathrm{x})=$	$\exists \mathbf{x} \# \mathrm{E}$	$\forall \mathbf{x} \# \mathrm{E}$	$\forall \mathbf{x} \notin \mathrm{L}$
weakening	problem when $\mathbf{x} \in \operatorname{dom} \mathrm{F}$	$\mathbf{o k}$	take dom \mathbf{F}
substitution	take \mathbf{x}	problem when $\mathbf{x}=\mathbf{z}$	take $\mathbf{L} \cup\{\mathbf{z \}}$
transitivity	problem when $\mathbf{x} \neq \mathbf{x}^{\prime}$	ok	take L $\cup \mathbf{L}^{\prime}$

Proofs in Coq

Summary of Our Choices

A locally nameless solution

- bound variables are represented with de-Bruijn indices,
- free variables are represented with names,
- two simple substitutions, one for indices and one for names,
- well-formation defined inductively, gives induction principle.

With environments viewed as sets

- belonging relation $(x: U) \in E$
- weakening as set inclusion $\mathrm{E} \subset \mathrm{F}$
- substitution as $\mathrm{E} \backslash \mathrm{z} \subset \mathrm{F}$ or $[\mathrm{Z}->\mathrm{P}] \mathrm{E} \subset \mathrm{F}$

And typing/subtyping relations defined

- with well-formation of all arguments at each node,
- quantifying names of free variables over a cofinite set.

Weakening on Subtyping

Informal:

$$
E \vdash S<: T \quad \Rightarrow \quad E, F \vdash S<: T
$$

Proof by induction on the subtyping derivation, using the reordering lemma for case SA-all.

Formalizable:

$$
E \vdash S<: T \wedge E \subset F \wedge \vdash F o k \quad \Rightarrow \quad F \vdash S<: T
$$

Proof by induction on the subtyping derivation, using extension of inclusion lemma in case SA-all and quantifying not among $L \cup \operatorname{dom}(F)$.

Formal:

```
Lemma sub_extension : forall E S T, E |- S <: T
    -> forall F, E inc F m ok F m F |- S <: T.
intros E S T H. induction H; intros; auto**.
apply_SA_all X (L ++ dom F). use extends_push.
```


< Formalizable » Presentation

Informal \rightarrow Formalizable \rightarrow Formal Presentation Presentation Proofs

A better way to present the proofs on paper?

- same structure and key ideas as informally,
- definitions and statement of lemmas change slightly,
- can be written by hand (not too heavy),
- can be translated almost word-to-word into Coq.

Importance of Proof-search

Formal proofs like this contain many arguments.
Proof-search can help when:

- only easy steps of reasoning are involved,
- the statements combine well together,
- even if the chain of reasoning is rather long.

Proof-search will not help for:

- invoking key lemmas,
- performing inductions or case analysis,
- dealing with equalities.

Transitivity of Subtyping

```
Definition sub_trans_prop E Q (WQ : E wf Q) := forall F S T,
```


Lemma sub_transitivity :
forall E Q (WQ : E wf Q), sub_trans_prop WQ.
intros. unfold sub_trans_prop. generalize_equality $Q Q^{\prime}$.
induction WQ; intros Q^{\prime} EQ F S T EincF SsubQ QsubT;
induction SsubQ; try discriminate; try injection EQ; intros;
inversion QsubT; subst; intuition eauto.
(* Case SA-arrow *)
apply SA_arrow. auto. apply* IHWQ1. apply* IHWQ2.
(* Case SA-all *)
apply_SA_all $X((\operatorname{dom} E 0)++L++L O++L 1) . a p p l y * H 0$.
asserts* WQ1 (E0 wf T1) . apply* (sub_narrowing (WQ := WQ1)).
Qed.

Final Theorems for Subtyping

- SUBTYPING-REFLEXIVITY:

$$
\vdash E \text { ok } \wedge E \vdash T w f \quad \Rightarrow \quad E \vdash T<: T
$$

- SUBTYPING-WEAKENING:

$$
E \vdash S<: T \wedge E \subset F \wedge \vdash F o k \Rightarrow F \vdash S<: T
$$

- SUBTYPING-NARROWING:

$$
E, Z<: Q \vdash S<: T \wedge E \vdash P<: Q \quad \Rightarrow \quad E, Z<: P \vdash S<: T
$$

- SUBTYPING-TRANSITIVITY:

$$
E \vdash S<: Q \quad \wedge \quad E \vdash Q<: T \quad \Rightarrow \quad E \vdash S<: T
$$

- SUBTYPING-SUBSTITUTION:

$$
(E, Z<: Q) \vdash S<: T \quad \wedge \quad E \vdash P<: Q \quad \Rightarrow \quad E \vdash[Z \rightarrow P] S<:[Z \rightarrow P] T
$$

Statistics on our Coq Scripts

Simply typed
Properties λ-calculus
of subtyping

Definitions
Axioms
Lemmas
Theorems
Lines of proofs
Number of tactics
...in main proofs
Non-empty lines

8
0

2
63
202
44
289

9
0

5

279
80
397

Complexity of solutions in Coq

Number of tactics invoked (not counting trivial, assumption, and auto) in solutions in Coq to part 1A of the POPLMark Challenge (formalization of the basic properties of subtyping), in chronological order. Column Hints gives the number of lemmas placed in the proof-search database.

Author

Jérome Vouillon
Aaron Stump
Xavier Leroy
Hirschowitz, Maggesi
Adam Chlipala
Arthur Charguéraud

Steps Hints Representation

4310 de-Bruijn indices
1147 0 names / levels
6303 locally nameless
16155 de-Bruijn (nested)
34270 locally nameless
23312 locally nameless

Conclusions

A Very Positive Experience

- A project with a clear and precise goal.
- Motivating to see progress.
- 5 months gives time for in-depth search.
- A very good environment of work.
- I learned a lot about many things.

Improvements for Coq

- It is already an impressive tool, and we never felt limited by Coq.
- The structure of the proofs should be stored in a better way, so as to make proofs more robust.
- Proof-search, once successful, should store the main steps followed, to improve efficiency.

Future Work

- Complete the solution to cover the rest of the POPLMark Challenge.
- Extend the results to more evolved languages, with support for many constructions.
- Extend the results to more complex typing
systems (e.g. Calculus of Constructions).

Thanks !

