
INRIA-Rocquencourt 14 Sept. 2006

Arthur Charguéraud

Proofs with Binders

Working on the POPLMark Challenge

A 5-month internship at the University of Pennsylvania

with Benjamin Pierce and Stephanie Weirich

Certification

Software Compiler Hardware

soon alreadysome day...

+ Prover

Big Formalizations

– Coq in Coq

Bruno Barras and Benjamin Werner, 1996

– SML in Twelf

Karl Crary, Daniel Lee et Robert Harper, 2006

– C-light in Coq

Xavier Leroy, 2006

POPLMark: Challenge

Mechanized Metatheory for the Masses:

The POPLMark Challenge

By B. Aydemier, A. Bohannon, M. Fairbairn, N. Foster, B. Pierce, P.
Sewell, D. Vytiniotis, G. Washburn, S. Weirich, S. Zdancewic (Mar.05)

- To formalize results from their POPL papers

- A set of benchmarks: Metatheory of System-F<:

- Basis for comparing technologies and techniques

POPLMark: Rules

The formalization should:

1) be clearly adequate,

2) look like the paper version,

3) use general techniques,

4) have a reasonable cost,

5) use a transparent and
accessible technology.

POPLMark: Contents

Properties of subtyping

POPLMark Part 1:

Rest of the formalization

POPLMark Part 2:

Properties of subtyping,
including preservation
by type substitution

Our Challenge B

Preservation and
progress for simply
typed λλλλ-calculus

Our Challenge A

Preservation and Progress for System-F<:

[simplified]

 A) Simply Typed λ-calculus

Preservation:

Progress:

B) Subtyping in System-F<:

Reflexivity:

Transtitivity:

Preservation by
type substitution:

Concrete versus Higher-Order

Deep embedding is attractive but:

– adequacy is often not so obvious,

– proofs do not follow informal practice,

– logic used have limited expressiveness.

Previous Work

namesIsabelle/HOLChurch-Rosser in λλλλVestergaard, Brotherston 01

namesPVSChurch-Rosser in λλλλJ.Ford, I.Mason01

names

names

de-Bruijn

de-Bruijn

de-Bruijn

de-Bruijn

de-Bruijn

de-Bruijn

de-Bruijn

Encoding

01

97

96

96

95

94

93

93

85

Yr

Boyer-MooreChurch-Rosser in λλλλNatarajan Shankar

LEGOλλλλ-calculus & typesJ.McKinna, R.Pollack

Isabelle/ZFChurch-Rosser in λλλλOle Rasmussen

HOLChurch-Rosser in λλλλPeter Homeier

LEGOSystem-FThorsten Altenkirch

CoqResidual Theory in λλλλGérard Huet

Isabelle/HOLChurch-Rosser in λλλλTobias Nipkow

CoqKernel of CoqB.Barras, B.Werner

LEGOPure Type SystemsJ.McKinna, R.Pollack

ProverFormalizationAuthor

POPLMark: Submissions

locally namelessCoqYArthur Charguéraud

locally namelessCoqYAdam Chlipala

de-Bruijn indicesIsabelleYYStephan Berghofer

nominalIsabelleYChristian Urban

de-Bruijn indicesCoqYJevgenijs Sallinens

de-Bruijn (nested)CoqYHirschowitz, Maggesi

higher-orderTwelfYYAshley, Crary, Harper

higher-orderATS/LFYHongwei Xi

locally namelessCoqYXavier Leroy

names / levelsCoqYAaron Stump

de-Bruijn indicesCoqYYJérome Vouillon

EncodingProverPart 2Part 1Author

Contribution

– Gather and compare techniques for such
formalizations in one paper.

– Provide examples of formalizations in Coq
which are rather simple and intuitive.

Techniques

Plan

1) Bindings
– representation of bound and free variables,

– implementation of substitution and β-reduction.

2) Well-formation
– well-formation of terms, induction on terms,

– well-formation in typing/subtyping relations.

3) Environments
– algorithmic and logical views on environments,

– properties of well-formed environments.

4) Quantification of names
– how to introduce names for typing abstractions.

1) Bindings

λ-term with names

λλλλa. λλλλb.

[(λλλλc. c c) (a (λλλλd. d a))]

Each abstraction
introduces a name:

@

@

λλλλ c

c c

a

@

λλλλ b

λλλλ a

@

λλλλ d

d a

Then α-equivalent
terms are identified.

ββββ-reduction with names

(λλλλz. z z) (λλλλy. λλλλx. y x)

-> (λλλλy. λλλλx. y x) (λλλλy. λλλλx. y x)

-> λλλλx. [(λλλλy. λλλλx. y x) x]

 α α α α-conversion required
before substituting

@

xλλλλ y

λλλλ x

@

y

λλλλ x

x

-> λλλλx. [(λλλλy. λλλλz. y z) x]

-> λλλλx. [λλλλz. x z]

Handling αααα-conversion

Without quotient
[Verstergaard & Brotherston, 2001]

With quotient
[Homeier, 2001] [Ford & Mason, 2001]

Without quotient
nor identification
[McKinna & Pollack, 1997]

λ-term with de-Bruijn indices

λλλλ. λλλλ.[(λλλλ.0 0) (1 (λλλλ.0 2))]

A variable bearing
an index k points
towards the kith

abstraction above
that variable:

@

@

λλλλ

0 0

1

@

λλλλ

λλλλ

@

λλλλ

0 2

λ-term with de-Bruijn levels

λλλλ. λλλλ.[(λλλλ.2 2) (0 (λλλλ.2 0))]

A variable bearing
an index k points
towards the kith

abstraction on the
path from the root
to that variable:

@

@

λλλλ

2 2

0

@

λλλλ

λλλλ

@

λλλλ

2 0

ββββ-reduction with de-Bruijn indices

@

@

λλλλ

1

@

0

λλλλ

ββββ

@

0

λλλλ

@

λλλλ

0@

λλλλ

0

@

λλλλ

0

λλλλ

0

λλλλ

1

λλλλ

1

-1

=

=

+1

shift and subst

Substitution in simply typed lambda-calculus:

Weakening in System-F
<:

Properties of shifting and substitution: [Berghofer, 2005]

Bound and Free Variables

@

@

X

@

X

λλλλ : T1

λ

X@

λλλλ : T3

X X

λλλλ : T4

λλλλ : T2

environment E

term t

E |- t : T

typing judgment

Distinguishing Bound and Free

Example with the locally nameless representation.

Substitution for a bound variable (de-Bruijn index):

Substitution for a free variable (name):

β-reduction in Locally Nameless

Most Used Representations

Presentations for T-abs

Standard:

Mixed names:

Distinct names:

Locally nameless:

Indices / levels:

Mixed indices:

where Q(x) to be choosen among: ∃x#E or ∀x#E or ∀x∉L.

Locally Nameless: Bibliography

1972: N.G. de-Bruijn
A Lambda Calculus Notation with Nameless Dummies,
a Tool for Automatic Formula Manipulation,
with Application to the Church-Rosser Theorem.

1989: G. Huet
The Constructive Engine

1993: A. Gordon
A Mechanisation of Name-carrying Syntax up to
Alpha-conversion

1995: R. Pollack
Closure under Alpha-conversion

2004: C. McBride and J. McKinna,
I am not a number: I am a free variable

2005-2006: X. Leroy, A. Chipala, A. Charguéraud,
Independent solutions to the POPLMark Challenge.

2) Well-formation

Need for Well-formation

Examples of terms not well-formed:

In the environment z:T , the term λλλλx.z y is ill-formed

In the environment [T;U] , the term λλλλ.5 is ill-formed.

Ill-formed terms need to be ruled out:

e.g. reflexitivity of subtyping E |- T <: T

does not hold if T is a variable not defined in E.

Well-formed terms

–With recursive functions:
- for names: all variables in the term belong to a domain

- for indices: all indices in the term are smaller than a natural

– With dependent types

t : term n instead of t : term ∧∧∧∧ wf n t

– With inductive relation:

Induction on Well-formed Terms

Informal statement:

Informal proof:

Trivial by induction on T.

Formal statement:

Formal proof:

Lemma sub_reflexivity : forall E T,
ok E -> E wf T -> E |- T <: T.

intros. induction H0; eauto.
Qed.

Well-formation in Relations

Where to store the well-formation of arguments?

– At all nodes

– At all leaves

– At the root

3) Environments

Environments as Sets

Weakening Preserves Typing

Substitution Preserves Typing

From:

To:

With:

From:

To:

With:

Views on Environments

set

list

structure

(x:U) ∈∈∈∈ E ⇒⇒⇒⇒ (x:U) ∈∈∈∈ F

ΓΓΓΓ, ∆∆∆∆

weaken

lookup x ΓΓΓΓ
= Some U

function

(x:U) ∈ ∈ ∈ ∈ Erelation

lookupview

(X <: U) ∈∈∈∈ E ∧ ∧ ∧ ∧ X ≠≠≠≠ Z
⇒⇒⇒⇒ (X <:[Z->P]U) ∈∈∈∈ F

ΓΓΓΓ,Z <:Q, ∆∆∆∆ to ΓΓΓΓ,[Z->P] ∆∆∆∆

type substitution

(x:U) ∈∈∈∈ E ∧ ∧ ∧ ∧ x ≠≠≠≠ z
⇒⇒⇒⇒ (x:U) ∈∈∈∈ F

ΓΓΓΓ,z:T, ∆∆∆∆ to ΓΓΓΓ, ∆∆∆∆

substitution

function

relation

view

E ⊂⊂⊂⊂ F

E\z ⊂⊂⊂⊂ F [Z->P]E ⊂⊂⊂⊂ F

Freshness, Closed Terms

E |- t wf
∧∧∧∧ x # E

not_in_term x t

x ∉∉∉∉ FV(t)

x # t

FV(t) = ∅∅∅∅x ∉∉∉∉ dom(E)function

 ∅ ∅ ∅ ∅ |- t wf

closed t

t closed term

forall U,
(x:U) ∉∉∉∉ E

not_in_env x E

x # E

inductive
relation

property

4) Quantification

Quantification of names

∀∀∀∀ x # E ∀∀∀∀ x ∉∉∉∉ L∃∃∃∃ x # EQ(x) =

Weakening:

from Q(x) (E, x:S) |- t1^x : T
to Q(x) (E, x:S, F) |- t1^x : T

∃∃∃∃ x # (E, x:S) to ∃∃∃∃ x # (E, x:S, F)
∀∀∀∀ x # (E, x:S) to ∀∀∀∀ x # (E, x:S, F)
∀∀∀∀ x ∉∉∉∉ L to ∀∀∀∀ x ∉∉∉∉ L’

Comparing Quantification

ok

problem when
x = z

ok

∀∀∀∀ x # E

take dom F
problem when

x ∈∈∈∈ dom F
weakening

take L ∪∪∪∪ L’

take L ∪ ∪ ∪ ∪ {z}

∀∀∀∀ x ∉∉∉∉ L

problem when
x ≠ ≠ ≠ ≠ x’

take x

∃∃∃∃ x # E

substitution

transitivity

Q(x) =

Weakening

Substitution

Transitivity

Proofs in Coq

A locally nameless solution
– bound variables are represented with de-Bruijn indices,

– free variables are represented with names,

– two simple substitutions, one for indices and one for names,

– well-formation defined inductively, gives induction principle.

With environments viewed as sets
– belonging relation (x:U) ∈∈∈∈ E

– weakening as set inclusion E ⊂⊂⊂⊂ F

– substitution as E\z ⊂⊂⊂⊂ F or [Z->P]E ⊂⊂⊂⊂ F

And typing/subtyping relations defined
– with well-formation of all arguments at each node,

– quantifying names of free variables over a cofinite set.

Summary of Our Choices

Informal:

Weakening on Subtyping

Lemma sub_extension : forall E S T, E |- S <: T

-> forall F, E inc F -> ok F -> F |- S <: T.

intros E S T H. induction H; intros; auto**.

apply_SA_all X (L ++ dom F). use extends_push.

Proof by induction on the subtyping derivation,

using the reordering lemma for case SA-all.

Formalizable:

Proof by induction on the subtyping derivation,

using extension of inclusion lemma in case SA-all

and quantifying not among L ∪∪∪∪ dom(F).

Formal:

« Formalizable » Presentation

Informal
Presentation

Formalizable
Presentation

Formal
Proofs

A better way to present the proofs on paper?

– same structure and key ideas as informally,

– definitions and statement of lemmas change slightly,

– can be written by hand (not too heavy),

– can be translated almost word-to-word into Coq.

Importance of Proof-search

Formal proofs like this contain many arguments.

Proof-search can help when:
– only easy steps of reasoning are involved,

– the statements combine well together,

– even if the chain of reasoning is rather long.

Proof-search will not help for:
– invoking key lemmas,

– performing inductions or case analysis,

– dealing with equalities.

Definition sub_trans_prop E Q (WQ : E wf Q) := forall F S T,
E inc F -> F |- S <: Q -> F |- Q <: T -> F |- S <: T.

Lemma sub_transitivity :

forall E Q (WQ : E wf Q), sub_trans_prop WQ.

intros. unfold sub_trans_prop. generalize_equality Q Q'.

induction WQ; intros Q' EQ F S T EincF SsubQ QsubT;

induction SsubQ; try discriminate; try injection EQ ; intros;

inversion QsubT; subst; intuition eauto.

(* Case SA-arrow *)

apply SA_arrow. auto. apply* IHWQ1. apply* IHWQ2.

(* Case SA-all *)

apply_SA_all X ((dom E0) ++ L ++ L0 ++ L1). apply* H0.

asserts* WQ1 (E0 wf T1). apply* (sub_narrowing (WQ := WQ1)).

Qed.

Transitivity of Subtyping

Final Theorems for Subtyping

Simply typed Properties
λ-calculus of subtyping

Definitions 8 9

Axioms 0 0

Lemmas 26 34

Theorems 2 5

Lines of proofs 63 104

Number of tactics 202 279

...in main proofs 44 80

Non-empty lines 289 397

Statistics on our Coq Scripts

18
in common

Complexity of solutions in Coq

Number of tactics invoked (not counting trivial, assumption, and auto) in
solutions in Coq to part 1A of the POPLMark Challenge (formalization of
the basic properties of subtyping), in chronological order. Column Hints
gives the number of lemmas placed in the proof-search database.

Author Steps Hints Representation

Jérome Vouillon 431 0 de-Bruijn indices

Aaron Stump 1147 0 names / levels

Xavier Leroy 630 3 locally nameless

Hirschowitz, Maggesi 1615 5 de-Bruijn (nested)

Adam Chlipala 342 70 locally nameless

Arthur Charguéraud 233 12 locally nameless

Conclusions

A Very Positive Experience

– A project with a clear and precise goal.

– Motivating to see progress.

– 5 months gives time for in-depth search.

– A very good environment of work.

– I learned a lot about many things.

Improvements for Coq

– It is already an impressive tool, and we never
felt limited by Coq.

– The structure of the proofs should be stored in
a better way, so as to make proofs more robust.

– Proof-search, once successful, should store the
main steps followed, to improve efficiency.

Future Work

– Complete the solution to cover the rest of the
POPLMark Challenge.

– Extend the results to more evolved languages,
with support for many constructions.

– Extend the results to more complex typing
systems (e.g. Calculus of Constructions).

Thanks !

