@@ -184,20 +184,238 @@ void generate_prompt_proc(int vocabulary_len, int context_len, int layer_count,
|
|
184 |
int q_head_per_kv_head_count, int embedding_dim,
|
185 |
int head_dim, int q_dim, int kv_dim, int hidden_dim,
|
186 |
float epsilon, float* embedding_weight,
|
187 |
float* mha_norm_weight, float* mha_q_weight,
|
188 |
float* mha_k_weight, float* mha_v_weight,
|
189 |
float* mha_out_weight, float* ffn_norm_weight,
|
190 |
float* ffn_fc_weight, float* ffn_up_weight,
|
191 |
float* ffn_out_weight, float* out_norm_weight,
|
192 |
float* out_weight, float* k_cache, float* v_cache,
|
193 |
float* logits, int* sequence, int sequence_len) {
|
194 |
-
for (int
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
}
|
203 |
}
|
184 |
int q_head_per_kv_head_count, int embedding_dim,
|
185 |
int head_dim, int q_dim, int kv_dim, int hidden_dim,
|
186 |
float epsilon, float* embedding_weight,
|
187 |
float* mha_norm_weight, float* mha_q_weight,
|
188 |
float* mha_k_weight, float* mha_v_weight,
|
189 |
float* mha_out_weight, float* ffn_norm_weight,
|
190 |
float* ffn_fc_weight, float* ffn_up_weight,
|
191 |
float* ffn_out_weight, float* out_norm_weight,
|
192 |
float* out_weight, float* k_cache, float* v_cache,
|
193 |
float* logits, int* sequence, int sequence_len) {
|
194 |
+
for (int bi = 0; bi < sequence_len; bi += 512) {
|
195 |
+
float* const embedding =
|
196 |
+
(float*)malloc(MSIZE2(min(sequence_len, bi + 512) - bi, embedding_dim) *
|
197 |
+
sizeof(float));
|
198 |
+
float* const mha_norm =
|
199 |
+
(float*)malloc(MSIZE2(min(sequence_len, bi + 512) - bi, embedding_dim) *
|
200 |
+
sizeof(float));
|
201 |
+
float* const mha_q =
|
202 |
+
(float*)malloc(MSIZE4(kv_head_count, q_head_per_kv_head_count,
|
203 |
+
min(sequence_len, bi + 512) - bi, head_dim) *
|
204 |
+
sizeof(float));
|
205 |
+
__ghost([&]() {
|
206 |
+
__consumes(
|
207 |
+
"for i1 in 0..q_head_count -> for i2 in 0..(min(sequence_len, bi + "
|
208 |
+
"512) - bi) -> for i3 in 0..head_dim -> &mha_q[i1 / "
|
209 |
+
"q_head_per_kv_head_count][i1 % q_head_per_kv_head_count][i2][i3] ~> "
|
210 |
+
"UninitCell");
|
211 |
+
__produces(
|
212 |
+
"for i1 in 0..(min(sequence_len, bi + 512) - bi) -> for i2 in "
|
213 |
+
"0..q_head_count -> for i3 in 0..head_dim -> &mha_q[i1 / "
|
214 |
+
"q_head_per_kv_head_count][i1 % q_head_per_kv_head_count][i2][i3] ~> "
|
215 |
+
"UninitCell");
|
216 |
+
__admitted();
|
217 |
+
__with("justif := reorder_groups");
|
218 |
+
});
|
219 |
+
float* const mha_score =
|
220 |
+
(float*)malloc(MSIZE4(kv_head_count, q_head_per_kv_head_count,
|
221 |
+
min(sequence_len, bi + 512) - bi, context_len) *
|
222 |
+
sizeof(float));
|
223 |
+
__ghost([&]() {
|
224 |
+
__consumes(
|
225 |
+
"for i1 in 0..q_head_count -> for i2 in 0..(min(sequence_len, bi + "
|
226 |
+
"512) - bi) -> for i3 in 0..context_len -> &mha_score[i1 / "
|
227 |
+
"q_head_per_kv_head_count][i1 % q_head_per_kv_head_count][i2][i3] ~> "
|
228 |
+
"UninitCell");
|
229 |
+
__produces(
|
230 |
+
"for i1 in 0..(min(sequence_len, bi + 512) - bi) -> for i2 in "
|
231 |
+
"0..q_head_count -> for i3 in 0..context_len -> &mha_score[i1 / "
|
232 |
+
"q_head_per_kv_head_count][i1 % q_head_per_kv_head_count][i2][i3] ~> "
|
233 |
+
"UninitCell");
|
234 |
+
__admitted();
|
235 |
+
__with("justif := reorder_groups");
|
236 |
+
});
|
237 |
+
float* const mha_blend =
|
238 |
+
(float*)malloc(MSIZE4(kv_head_count, q_head_per_kv_head_count,
|
239 |
+
min(sequence_len, bi + 512) - bi, head_dim) *
|
240 |
+
sizeof(float));
|
241 |
+
__ghost([&]() {
|
242 |
+
__consumes(
|
243 |
+
"for i1 in 0..q_head_count -> for i2 in 0..(min(sequence_len, bi + "
|
244 |
+
"512) - bi) -> for i3 in 0..head_dim -> &mha_blend[i1 / "
|
245 |
+
"q_head_per_kv_head_count][i1 % q_head_per_kv_head_count][i2][i3] ~> "
|
246 |
+
"UninitCell");
|
247 |
+
__produces(
|
248 |
+
"for i1 in 0..(min(sequence_len, bi + 512) - bi) -> for i2 in "
|
249 |
+
"0..q_head_count -> for i3 in 0..head_dim -> &mha_blend[i1 / "
|
250 |
+
"q_head_per_kv_head_count][i1 % q_head_per_kv_head_count][i2][i3] ~> "
|
251 |
+
"UninitCell");
|
252 |
+
__admitted();
|
253 |
+
__with("justif := reorder_groups");
|
254 |
+
});
|
255 |
+
float* const mha_att =
|
256 |
+
(float*)malloc(MSIZE2(min(sequence_len, bi + 512) - bi, embedding_dim) *
|
257 |
+
sizeof(float));
|
258 |
+
float* const mha_out =
|
259 |
+
(float*)malloc(MSIZE2(min(sequence_len, bi + 512) - bi, embedding_dim) *
|
260 |
+
sizeof(float));
|
261 |
+
float* const ffn_norm =
|
262 |
+
(float*)malloc(MSIZE2(min(sequence_len, bi + 512) - bi, embedding_dim) *
|
263 |
+
sizeof(float));
|
264 |
+
float* const ffn_fc = (float*)malloc(
|
265 |
+
MSIZE2(min(sequence_len, bi + 512) - bi, hidden_dim) * sizeof(float));
|
266 |
+
float* const ffn_up = (float*)malloc(
|
267 |
+
MSIZE2(min(sequence_len, bi + 512) - bi, hidden_dim) * sizeof(float));
|
268 |
+
float* const ffn_out =
|
269 |
+
(float*)malloc(MSIZE2(min(sequence_len, bi + 512) - bi, embedding_dim) *
|
270 |
+
sizeof(float));
|
271 |
+
for (int i = 0; i < min(sequence_len, bi + 512) - bi; i++) {
|
272 |
+
__ghost(assume, "P := in_range(i + bi, bi..min(sequence_len, bi + 512))");
|
273 |
+
}
|
274 |
+
for (int i = 0; i < min(sequence_len, bi + 512) - bi; i++) {
|
275 |
+
for (int e = 0; e < embedding_dim; e++) {
|
276 |
+
embedding[i][e] = embedding_weight[sequence[i + bi]][e];
|
277 |
+
}
|
278 |
+
}
|
279 |
+
for (int l = 0; l < layer_count; l++) {
|
280 |
+
for (int i = 0; i < min(sequence_len, bi + 512) - bi; i++) {
|
281 |
+
rmsnorm(embedding_dim, &mha_norm[i][0], &embedding[i][0],
|
282 |
+
&mha_norm_weight[l][0], epsilon);
|
283 |
+
}
|
284 |
+
for (int h2 = 0; h2 < kv_head_count; h2++) {
|
285 |
+
for (int q2 = 0; q2 < q_head_per_kv_head_count; q2++) {
|
286 |
+
matmul(min(sequence_len, bi + 512) - bi, head_dim, embedding_dim,
|
287 |
+
&mha_q[h2][q2][0][0], mha_norm,
|
288 |
+
&mha_q_weight[l][h2 * q_head_per_kv_head_count + q2][0][0]);
|
289 |
+
}
|
290 |
+
}
|
291 |
+
for (int h = 0; h < kv_head_count; h++) {
|
292 |
+
for (int i = 0; i < min(sequence_len, bi + 512) - bi; i++) {
|
293 |
+
for (int j = 0; j < head_dim; j++) {
|
294 |
+
k_cache[l][h][i + bi][j] = 0.f;
|
295 |
+
for (int k = 0; k < embedding_dim; k++) {
|
296 |
+
k_cache[l][h][i + bi][j] +=
|
297 |
+
mha_norm[i][k] * mha_k_weight[l][h][j][k];
|
298 |
+
}
|
299 |
+
}
|
300 |
+
}
|
301 |
+
}
|
302 |
+
for (int h = 0; h < kv_head_count; h++) {
|
303 |
+
for (int i = 0; i < min(sequence_len, bi + 512) - bi; i++) {
|
304 |
+
for (int j = 0; j < head_dim; j++) {
|
305 |
+
v_cache[l][h][i + bi][j] = 0.f;
|
306 |
+
for (int k = 0; k < embedding_dim; k++) {
|
307 |
+
v_cache[l][h][i + bi][j] +=
|
308 |
+
mha_norm[i][k] * mha_v_weight[l][h][j][k];
|
309 |
+
}
|
310 |
+
}
|
311 |
+
}
|
312 |
+
}
|
313 |
+
for (int h2 = 0; h2 < kv_head_count; h2++) {
|
314 |
+
for (int q2 = 0; q2 < q_head_per_kv_head_count; q2++) {
|
315 |
+
for (int i = 0; i < min(sequence_len, bi + 512) - bi; i++) {
|
316 |
+
rope(head_dim, &mha_q[h2][q2][i][0], i + bi);
|
317 |
+
}
|
318 |
+
}
|
319 |
+
}
|
320 |
+
for (int h = 0; h < kv_head_count; h++) {
|
321 |
+
for (int i = 0; i < min(sequence_len, bi + 512) - bi; i++) {
|
322 |
+
rope(head_dim, &k_cache[l][h][i + bi][0], i + bi);
|
323 |
+
}
|
324 |
+
}
|
325 |
+
for (int h2 = 0; h2 < kv_head_count; h2++) {
|
326 |
+
for (int q2 = 0; q2 < q_head_per_kv_head_count; q2++) {
|
327 |
+
for (int i = 0; i < min(sequence_len, bi + 512) - bi; i++) {
|
328 |
+
int h = h2;
|
329 |
+
for (int p = 0; p <= i + bi; p++) {
|
330 |
+
mha_score[h2][q2][i][p] = 0.f;
|
331 |
+
for (int e = 0; e < head_dim; e++) {
|
332 |
+
mha_score[h2][q2][i][p] +=
|
333 |
+
mha_q[h2][q2][i][e] * k_cache[l][h][p][e];
|
334 |
+
}
|
335 |
+
mha_score[h2][q2][i][p] /= sqrtf(head_dim);
|
336 |
+
}
|
337 |
+
softmax(i + bi + 1, context_len, &mha_score[h2][q2][i][0]);
|
338 |
+
for (int e = 0; e < head_dim; e++) {
|
339 |
+
mha_blend[h2][q2][i][e] = 0.f;
|
340 |
+
}
|
341 |
+
for (int p = 0; p <= i + bi; p++) {
|
342 |
+
for (int e = 0; e < head_dim; e++) {
|
343 |
+
mha_blend[h2][q2][i][e] +=
|
344 |
+
mha_score[h2][q2][i][p] * v_cache[l][h][p][e];
|
345 |
+
}
|
346 |
+
}
|
347 |
+
}
|
348 |
+
}
|
349 |
+
}
|
350 |
+
for (int h2 = 0; h2 < kv_head_count; h2++) {
|
351 |
+
for (int q2 = 0; q2 < q_head_per_kv_head_count; q2++) {
|
352 |
+
for (int i = 0; i < min(sequence_len, bi + 512) - bi; i++) {
|
353 |
+
for (int e = 0; e < head_dim; e++) {
|
354 |
+
mha_att[i][(h2 * q_head_per_kv_head_count + q2) * head_dim + e] =
|
355 |
+
mha_blend[h2][q2][i][e];
|
356 |
+
}
|
357 |
+
}
|
358 |
+
}
|
359 |
+
}
|
360 |
+
matmul(min(sequence_len, bi + 512) - bi, embedding_dim, embedding_dim,
|
361 |
+
mha_out, mha_att, &mha_out_weight[l][0][0]);
|
362 |
+
for (int i = 0; i < min(sequence_len, bi + 512) - bi; i++) {
|
363 |
+
for (int e = 0; e < embedding_dim; e++) {
|
364 |
+
embedding[i][e] += mha_out[i][e];
|
365 |
+
}
|
366 |
+
}
|
367 |
+
for (int i = 0; i < min(sequence_len, bi + 512) - bi; i++) {
|
368 |
+
rmsnorm(embedding_dim, &ffn_norm[i][0], &embedding[i][0],
|
369 |
+
&ffn_norm_weight[l][0], epsilon);
|
370 |
+
}
|
371 |
+
matmul(min(sequence_len, bi + 512) - bi, hidden_dim, embedding_dim,
|
372 |
+
ffn_fc, ffn_norm, &ffn_fc_weight[l][0][0]);
|
373 |
+
matmul(min(sequence_len, bi + 512) - bi, hidden_dim, embedding_dim,
|
374 |
+
ffn_up, ffn_norm, &ffn_up_weight[l][0][0]);
|
375 |
+
for (int i = 0; i < min(sequence_len, bi + 512) - bi; i++) {
|
376 |
+
for (int e = 0; e < hidden_dim; e++) {
|
377 |
+
ffn_fc[i][e] *= 1.f / (1.f + expf(-ffn_fc[i][e]));
|
378 |
+
ffn_fc[i][e] *= ffn_up[i][e];
|
379 |
+
}
|
380 |
+
}
|
381 |
+
for (int i = 0; i < min(sequence_len, bi + 512) - bi; i++) {
|
382 |
+
for (int j = 0; j < embedding_dim; j++) {
|
383 |
+
ffn_out[i][j] = 0.f;
|
384 |
+
for (int k = 0; k < hidden_dim; k++) {
|
385 |
+
ffn_out[i][j] += ffn_fc[i][k] * ffn_out_weight[l][j][k];
|
386 |
+
}
|
387 |
+
}
|
388 |
+
}
|
389 |
+
for (int i = 0; i < min(sequence_len, bi + 512) - bi; i++) {
|
390 |
+
for (int e = 0; e < embedding_dim; e++) {
|
391 |
+
embedding[i][e] += ffn_out[i][e];
|
392 |
+
}
|
393 |
+
}
|
394 |
+
}
|
395 |
+
for (int i = 0; i < min(sequence_len, bi + 512) - bi; i++) {
|
396 |
+
rmsnorm(embedding_dim, &embedding[i][0], &embedding[i][0],
|
397 |
+
out_norm_weight, epsilon);
|
398 |
+
}
|
399 |
+
for (int i = 0; i < min(sequence_len, bi + 512) - bi; i++) {
|
400 |
+
if (i + bi == sequence_len - 1 ? 1 : 0) {
|
401 |
+
for (int j = 0; j < vocabulary_len; j++) {
|
402 |
+
logits[j] = 0.f;
|
403 |
+
for (int k = 0; k < embedding_dim; k++) {
|
404 |
+
logits[j] += embedding[i][k] * out_weight[j][k];
|
405 |
+
}
|
406 |
+
}
|
407 |
+
}
|
408 |
+
}
|
409 |
+
free(ffn_out);
|
410 |
+
free(ffn_up);
|
411 |
+
free(ffn_fc);
|
412 |
+
free(ffn_norm);
|
413 |
+
free(mha_out);
|
414 |
+
free(mha_att);
|
415 |
+
free(mha_blend);
|
416 |
+
free(mha_score);
|
417 |
+
free(mha_q);
|
418 |
+
free(mha_norm);
|
419 |
+
free(embedding);
|
420 |
}
|
421 |
}
|