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Overloading consists of using a same symbol (or name) to refer to several
functions (or constants). Overloading is ubiquitous in mathematics. It also
appears in numerous programming languages that resolve overloading statically,
as opposed to languages that rely on dynamic dispatch during program execution.
Thus, a key question is how to determine, for every occurrence of an overloaded
symbol, which function it refers to. Static resolution of overloading is intrinsically
intertwined with typechecking. Indeed, overloading resolution depends on types,
but the types of the overloaded symbols depend on how they are resolved.
This work presents the first typechecking algorithm for static resolution of
overloading that: (1) guides resolution not only by function arguments but
also by expected result type, and (2) supports polymorphic types. Moreover,
our algorithm supports type inference like traditional ML typecheckers—we
only exclude inference of polymorphism. We illustrate the practicality of our
algorithm for typechecking conventional mathematical formulae, as well as for
typechecking ML code with overloading of literals, functions, constructors, and
record field names.

1 Introduction

1.1 Overloading in Programming Languages

In programming languages, overloading enables a programmer to reuse, at different types, the
same mathematical operators, function names, method fields, and data constructor names.
Arguably, the use of overloading can obfuscate the code slightly, because the programmer
needs to resolve the symbols to know what they actually stand for. However, overloading
greatly improves the conciseness and the readability of the code. For these reasons, many
programming languages exploit overloading.
There are two main approaches to resolving overloading: dynamic resolution and static

resolution. Consider an addition of two expressions, for example. With the dynamic
approach, the runtime system first evaluates the two expressions to values, then, depending
on the shape of these values, decide which addition operator is applicable. In contrast,
this paper focuses on static resolution of overloading: the aim is to be able to tell, before
the execution, just by inspecting the types, to which function every overloaded symbol
corresponds to.
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Several languages support static resolution of overloading. For example, C++ features
function overloading [Str84, DRS85]. PVS [Sha96] and ADA [WWF87] support overloading
not only of functions but also constants. OCaml does not support overloading for functions
or constructors; it partially supports overloading of record and constructor names, yet their
resolution is very fragile. Haskell provides a form of overloading via typeclasses, however
typeclasses induce runtime overheads—one motivation for static resolution is precisely to
avoid overheads and to enable further optimizations. The benefits of overloading in terms of
conciseness can be visualized via the example shown below.

(* Without overloading *)

(float_of_int (n + 1)) *. (3.0 *. pi / 4.0)

(* With overloading *)

(float_of_int (n + 1)) * (3 * pi / 4)

(* Without overloading *)

Array.iteri f (Array.map succ (Array.concat t (Array.of_list [2;3])))

(* With overloading *)

iteri f (map succ (concat t (to_array [2;3])))

Further in the paper, we also show examples highlighting the benefits of overloading data
constructors and record field names.

1.2 Overloading in Mathematics

The practice of overloading has not been invented for programming languages. Indeed,
mathematicians have exploited overloading essentially forever. For example, mathematicians
use the symbol + to denote the addition operation regardless of the type of the addition.
Only in case of high ambiguity is a type annotation used, e.g., 𝑥 +Z 𝑦. The resolution of the
type of a mathematical operator can be guided, in most cases, by the type of the arguments
that the operator is applied to. For example, if 𝑥 and 𝑦 denote variables in Z, then 𝑥+ 𝑦
resolves to the addition operator from the mathematical structure Z. Yet, in more complex
examples, symbol resolution can be slightly less obvious.

For example, consider the following formula, assuming 𝑀 and 𝑁 to be two matrices over
complex numbers ∑︁

𝑑∈{𝑖,2𝑖}

∑︁
𝑘∈[−6;7]

3 · 𝑒 𝑑·𝜋
8 ·𝑀2·𝑘2

·𝑁

Can you deduce the type of every operator and constant involved in the following formula?
Can you present your reasoning steps in the form of an algorithm? Can you describe an
efficient algorithm for resolving all the symbols in the formula?
It appears that every mathematician and, more generally, every user of mathematics

implicitly have some form of algorithm for being able to resolve overloaded symbols. However,
as surprizing as this might be given the importance of mathematics, the algorithm at play
does not appear to have ever been made explicit! Proposing an algorithm able to resolve
mathematical formulae as mathematicians conventionally write them is crucial for at least
two applications.

The first application is mechanized mathematics, typically carried out in a proof assistant.
There, overloading resolution would enable users to write formulae that follow standard
mathematical practice. There have been attempts at supporting overloading by means of
typeclasses or canonical structures. However, such encodings introduce a logical indirection
that complicates proofs and gets in the way of rewriting operations.1

The second application—or rather, an important particular case of the first application—
-is for writing program specifications, in the context of formal verification. Program
specifications typically involve a fair number of mathematical facts. Such facts need

1Technically, an instance add (inst:=Z_add) x y is convertible in Coq to Z.add x y but these terms are
not syntactically equal, causing difficulties for matching and printing formulae.
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to be parsed and processed in a way that leaves no ambiguity whatsoever. At the same time,
specifications are meant to be readable by people who are not expert in formal methods.
Hence, in the context of verifying a program in a particular domain of application, it is
crucial for statements to be as close as possible to standard mathematics and to the standard
notations used in that application domain.

1.3 Related Work and Contribution

The overloading resolution algorithm of C++ is probably the most well-known, and the most
widely used. One fundamental limitation of this algorithm, though, is that functions are
resolved based solely on the type of arguments. Resolution never depends on the expected
result type. As a result, C++ does not support overloading resolution for constants. Yet,
overloading constants is very useful: for example ∅ denotes the empty set, but also the
empty multiset, the empty map, etc. Likewise, with overloading of constants, a literal such
as 3 could be interpreted either as an integer or as a floating-point value depending on the
context.
The programming language ADA and the prover PVS have both addressed the issue

of resolving overloaded constants. They do so by means of a bidirectional typechecking
algorithm. A bidirectional algorithm propagates type information both downwards—from
the context to the subterms—and upwards—in the opposite direction. Concretely, an
overloaded constant is resolved by the type expected by the context; and a function can be
resolved based on both the type of its arguments and its expected return type.
The algorithms from ADA and PVS have two important limitations. First, they do not

support polymorphism—they only support a form of functor construction. Second, they do
not support local inference—all variables must be explicitly typed. Our work removes these
two limitations.

Concretely, this paper presents the first typechecking algorithm that resolves overloaded
symbols in the presence of polymorphism and local type inference. We have implemented
our algorithm in an ML-style programming language, simply ruling out partial applications,
which generally introduces too many ambiguities. We also leave aside the inference of
polymorphism for the moment—maybe this feature can be added in the future, yet one
might argue that explicit type quantifiers (like in Coq) make the code easier to read. Beyond
programming languages, our algorithm can be applied to resolve overloaded symbols in
formulae appearing in the context of mechanized mathematics or formal specifications.
Our prototype typechecker is implemented in OCaml.2 The language it processes uses

a syntax that closely resembles that of OCaml. Our typechecker can produce as output a
program decorated with types, with every overloaded symbol decorated with the definition
it refers to. Moreover, our prototype can produce as output an OCaml source file, obtained
by replacing all overloaded symbols by the definitions they resolve to. This output file can
be compiled and executed using the OCaml standard toolchain.

One feature that we do not yet support is the treatment of implicit coercions, which are
supported for builtin types in C++, and supported for user-defined types in Coq. We leave
their treatment to future work.
The paper starts by presenting the key ideas, then explain the typing rules for the core

𝜆-calculus with overloaded symbols, and finally presents extensions to records, to data
constructors and pattern matching, and to derived instances. A derived instance can be
used to assert, e.g., that a sum operation is available for any data structure that features a
fold operation and whose elements have a type that supports a zero and a plus operation.

2Our prototype can be tested online: https://chargueraud.org/research/2025/overloading/proto.php.
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2 Overview

2.1 Need for a Bidirectional Typechecker

Throughout the paper, we assume a context where two addition functions are available, one
of type int -> int -> int and another of type float -> float -> float. Let us assume
the underlying functions are built-in.

external int_add : int -> int -> int = "%addint"

external float_add : float -> float -> float = "%addfloat"

In our prototype, we can register these two functions as instances of the plus symbol, via
the following syntax.

let (+) = __instance int_add

let (+) = __instance float_add

We show below two occurrences of the addition operator that are resolved based on the
type of the arguments.

let ex1 (x:int) (y:int) = x + y (* [+] resolves to [int_add] *)

let ex2 (x:float) (y:float) = x + y (* [+] resolves to [float_add] *)

Likewise, we would like to overload constants. We wish be able to write a constant, say 1,
in the same way regardless of whether it is the unit value in N, Z, Q, R or C. Unlike the
resolution of an operator, whose resolution may be guided by the type of its arguments, the
resolution of a constant must be guided by the type expected by its context.

let ex3 : int = 1 (* resolves [1:int] *)

let ex4 (x:int) = x + 1 (* resolves [1:int] *)

let ex5 (x:float) = 1 + x (* resolves [1:float] *)

When combining the use of overloaded operators and overloaded constants, one encounters
situation where resolution requires propagation of type information in depth. The following
example shows how an expected return type needs to be propagated downwards through
operations until reaching the constants at the leaves.

let ex5 : float = (3 + 4) + (1 + (0 + 2)) (* resolves [1:float] *)

In general, propagation of type information actually needs to be bidirectional. In the
example shown below, to realize that the operations at hand concern integer values, one
needs to first investigate the subexpression x + (0 + 2), exploit the fact that its left-hand
side involves a value of type int, then needs to propagate this type information in depth in
the subexpression 3 + 4.

let ex6 (x:int) = (3 + 4) + (x + (0 + 2)) (* resolves [4:int] *)

Another example illustrating the need for bidirectional propagation appears next. In this
example, the resolution of the constant 0 that appears in the then-branch exploits the type
information inferred from deep in the else-branch.

let ex7 (x:float) =

if x < 0 then 0 + 1 else 2 * x (* resolves [0:float] *)

2.2 A Bidirectional Typechecking Algorithm

The bidirectional algorithm that we propose makes two passes over the AST. The first
pass consists of a recursive function that propagates the expected type, if it is available,
downwards into the subterms. Moreover, via the result of the recursive calls, type information
from the subterms is propagated upwards.3 The second pass propagates expected type

3Technically, the expected type provided as arguments is unified with the type of the term at hand, hence
there is no need for the recursive function to return a type as result.
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downwards into the subterms, a second time. However, this time the expected type could be
more refined than in the first pass, thanks to information synthesized from other subterms
during the first pass.

The types manipulated by the algorithm consist either of a conventional ML type, possibly
a partially resolved type such as list ?A, or of a special type, written Unresolved. For
example, if x has type int, then the expression x and the expression x + 2 resolve to type
int. On the contrary, the expression 0 and the expression 0 + 2, when their expected return
type is unspecified, are associated with the type Unresolved.
The type information acquired during the first pass may be exploited, during a second

pass, to infer the type of subterms that were Unresolved after the first pass. For example,
assume x has type int, and consider the typing of the expression (0 + 2)+ x. On the one
hand, the subterm 0 + 2 has type Unresolved. On the other hand, x has type int. Thus,
the addition at hand must be the one of type int -> int -> int. We deduce that 0 + 2

should be of type int. In the second pass, we propagate this information downwards into
the subterms of 0 + 2. We conclude that the constants 0 and 2 have type int.
After the 2 passes, we expect every subterm to be labelled with a type. In particular,

we expect all overloaded functions (including constants) to be resolved. If an overloaded
function remains unresolved, we reject the program.

The reader may ask why 2 passes and not 3 or more. Our rational is as follows. First, the
practical code patterns that we have considered appear to all successfully typecheck using 2
passes. Second, as we illustrate in this paper, example programs that require more than
2 passes to typecheck appear to have an intristic complexity that makes them challenging
for a programmer to mentally typecheck. Third, a smaller number of passes is beneficial
for the efficiency of typechecking. That said, one possibility that we would like to explore
is to execute, in case of remaining unresolved symbols after the second pass, additional
passes. This way, in case of the typechecking ends up succeeding, we could report to the
user a message indicating that the program provided is not ill-typed yet is missing a few
type annotations to allow for faster typechecking.

We next focus in more details on two critical aspects of the algorithms. First, we explain
which constructs make this expected return type available, and which constructs introduce
subterms with an unknown expected return type. Second, we explain how to retain the
ability to perform a significant amount of local type inference for local variables in the
presence of overloaded functions.

2.3 Availability of the Expected Return Type

The first pass propagates downward the type expected for the term. There are essentially
three ways by which the expected type can be determined.

• First, it may come from an explicit type annotation.

• Second, it may come from the control structure. For example, in a conditional of the
form if t0 then t1 else t2, the term t0 must have type bool.

• Third, the type of function arguments may be deduced from the type of the function
being applied, when this function is resolved. For example, if there is a unique instance
of f of type int -> int, then when typing the application f 0, the subterm 0 is known
to be of type int. Similarly, the addition ((0 + 2): int) can be resolved from the
expected type int, thus the subterms 0 and 2 are resolved to be of type int during
the first pass of the algorithm.

In contrast, there are several constructs for which the type of the subterms cannot be
guessed immediately.

• First, consider a let-binding of the form let x = t1 in t2. No expected type is
available for the first-pass typing of t1. As we shall see, the type of x may be inferred
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from the typing of t1. Alternatively, it may be inferred from the occurrences of x
inside t2, in which case the type inferred for x is propagated into t1 during the second
pass. More generally, the type of t1 may also be inferred as a combination of the type
of t1 and of the types imposed by the contexts associated with the occurrences of x.

• Second, consider a function call of the form f t1, and assume that the expected return
type is not known. The resolution of the argument t1 must proceed in the first pass
without an expected return type. The type inferred for t1 might help resolve f. If it
does not suffice to resolve f in the call f t1, then the type returned for that call is
Unresolved. In that case, an expected return type propagated during the second pass
may help resolve the call.

• Third, consider a function call of the form f t1, and assume that the expected return
type is known, but that there are several instances of f that are compatible with that
return type. In this case again, t1 is typed without an expected return type. The
type inferred for t1 should suffice to resolve f, otherwise f cannot be resolved and our
algorithm rejects the program.

2.4 Local Type Inference in the Presence of Overloading

ML type inference offers a strong form of local type inference that, in particular, can infer the
type of a local variable either based on its definition or based on its occurrences. Inferring the
type of a variable from its occurrences is exploited in ML for example in a term of the form
fun x -> t1, or in a term of the form let x = ref [] in t1. One strong benefit of local
type inference is that it saves the need for most, if not all, type annotations. Yet, preserving
a strong form of local inference in the presence of overloading can involve nontrivial flow of
type propagation.
Consider the following example.

let ex8 =

let x = 0 in

let y = 1 in

let z = x + y in

(2 + x) + (3:int)

At first, the type of the variables x, y and z is Unresolved. On the last line, one can deduce
via bidirectional typing that x admits type int. It follows the definition of x, i.e., the
occurrence of 0, has type int. Moreover, it follows that the addition x + y has type int,
because the first argument of this addition has type int. Hence, its second argument, namely
the variable y, also admits type int. Finally, we deduce that the definition of y, i.e., the
occurrence of 1, has type int.
Another interesting example involves a local function definition. Consider the definition

exlet1 shown below, followed with exlet2 where the “plus 42” operator has been named as
a local function.

let exlet1 (f:int->int) (g:int->int) (x:int) : int =

f (x + 42) + g (2*x + 42)

let exlet2 (f:int->int) (g:int->int) (x:int) : int =

let op = (fun n -> n + 42) in

f (op x) + g (op (2*x))

Our algorithm is able to deduce, based on the calls to op that the + operation in the definition
of op is an integer operation. More generally, our typing algorithm features the ability
to type a local variable using information coming either from its definition or from its
occurrences.

In summary, the interplay between overloading resolution and local type inference requires
particular care with respect to the treatment of bound variables. Our bidirectional algorithm
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propagates type information in a specific manner during the two-pass process. Indirectly,
via the type unifications performed, our algorithm gathers type constraints associated with
the occurrences of variables. Thereby, our typing algorithm is able to handle idiomatic ML
programming patterns without the need for type annotations on variables. Such a mixture
of local inference and overloading resolution is not achieved by the existing algorithms
implemented in PVS, ADA, and C++.

3 Typechecking the Core 𝜆-calculus

3.1 Unification on Types

As usual in traditional ML typecheckers, types may be refined by side-effects during the
traversals of the AST. A type could be a fresh unification variable (written ?A in Coq syntax),
or a partially known type (e.g. list ?A), or a fully resolved type (e.g. list int). Types
may be unified, in which case they share the same representation. A Union-Find style data
structure is used to keep track of such sharing.

In addition to ML types, we introduce a special type of the form Unresolved(ty,candidates).
This type is used during typechecking only, to represent the type associated with a term
for which more than one candidate instance could match. The type ty is a type variable
that represents the type of the term at hand, as viewed from the context. The candidates
consist of a list of pairs (𝑣𝑖,𝑆𝑖), where each value 𝑣𝑖 represents an instance whose (possibly
polymorphic) type is 𝑆𝑖.

During the first typechecking pass on the AST, the type ty could be refined by unification,
until it only unifies with one of the type scheme 𝑆𝑖. At this point, the unification of ty with
𝑆𝑖 is effectively performed, and the type of the term becomes simply ty.

3.2 Typechecking of Constants

We next explain how to typecheck an overloaded constant 𝑐 with expected type 𝑇 . During
the first pass, the result type 𝑇 may remain Unresolved. At the end of the second pass,
however, typechecking would fail if the type 𝑇 remains Unresolved. For both passes, the
key steps are as follows.

1. Consider the set of instances associated with 𝑐. Each instance is a value 𝑣𝑖 of type 𝑆𝑖.

2. For each 𝑆𝑖, test whether 𝑇 could unify with 𝑆𝑖. Keep the boolean result of the test,
but undo side-effects that might have been performed during the unification process.

3. Count how many unifications have succeeded.

• If none of the instance unify, raise a typechecking error.

• If exactly one instance 𝑆𝑖 can unify with 𝑇 , then the constant 𝑐 is resolved to be
the value 𝑣𝑖. Unify 𝑆𝑖 and 𝑇 , and assign this type to be the type of 𝑐.

• If several instances could unify, unify 𝑇 with the type Unresolved, and assign this
type to be the type of 𝑐.

Optimization: during the first pass, we can attach to the type Unresolved the list of the
instances that could unify, saving work for the second pass. During the second pass, we can
do the same, but this time for the purpose of reporting the list of candidates in a potential
error message associated with unresolved instances.

3.3 Typechecking of Function Calls

In what follows, we explain how to typecheck a term of the form 𝑡0(𝑡1, .., 𝑡𝑛). As explained
earlier, the typechecking process consists of two recursive traversals of the AST. Each of the
two passes takes as argument a term and an expected type.
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First pass. Assume the term 𝑡0(𝑡1, .., 𝑡𝑛) is typechecked with expected type 𝑇𝑟.

1. Introduce fresh type variables named 𝑇1, ... 𝑇𝑛 and 𝑇𝑟.

2. Recursively process the term 𝑡0 with expected type 𝑇1 → .. → 𝑇𝑛 → 𝑇𝑟. (If 𝑇𝑟 is
known, this might suffice to resolve the function—this is typically the case when 𝑡0 is
a data constructor.)

3. Recursively process the terms 𝑡𝑖 with expected type 𝑇𝑖.

4. If 𝑡0 has a Unresolved type, try to resolve it by typechecking this constant again with
expected type 𝑇1 → .. → 𝑇𝑛 → 𝑇𝑟. (This type may be partially known.)

5. Save the type 𝑇𝑟 to be the current type of the term 𝑡0(𝑡1, .., 𝑡𝑛).
(This step is common to every language construct during the second pass.)

Second pass on an application. Assume the term 𝑡0(𝑡1, .., 𝑡𝑛) is typechecked with
expected type 𝑇𝑟. Let 𝑇 be the type saved for this term at the end of the first pass. The
second pass proceeds as follows.

1. Unify the type 𝑇 with the type 𝑇𝑟.
(This step is common to every language construct during the second pass.)

2. Retrieve the types 𝑇𝑖 stored for each of the arguments 𝑡𝑖 during the first pass.

3. Recursively process the function 𝑡0 with expected type 𝑇1 → .. → 𝑇𝑛 → 𝑇𝑟.

4. If 𝑡0 is still not resolved, report failure to disambiguate 𝑡0.

5. Recursively process each of the arguments with expected type 𝑇𝑖.

Note that the typechecking at step (3) may result in the types 𝑇𝑖 being refined. Hence,
step (5) may propagate downward additional type information obtained during the resolution
of 𝑡0.

3.4 Typechecking of Let-Bindings

Consider the typechecking of a term of the form let𝑥 = 𝑡1 in 𝑡2 against an expected type 𝑇 .
For simplicity, we describe here the case of monomorphic bindings, and ignore the details
associated with ML-style generalization to polymorphism.

First pass.

1. Let 𝑇1 be a fresh type variable.

2. Recursively typecheck 𝑡1 with expected type 𝑇1.

3. In an environment extended with a binding from 𝑥 to 𝑇1, recursively typecheck 𝑡2
with expected type 𝑇 . This means that, when traversing 𝑡2, if we reach an occurrence
of 𝑥 with expected type 𝑇 ′, then we unify this type 𝑇 ′ with 𝑇1.
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Second pass. When executing the second pass of our typing algorithm on let𝑥 = 𝑡1 in 𝑡2,
we process 𝑡2 before 𝑡1. The reason is that the second pass over 𝑡2 may provide further type
information about occurrences of 𝑥, and we wish to gather as much information as possible
before propagating it into 𝑡1.

1. In an environment extended with a binding from 𝑥 to 𝑇1, recursively typecheck 𝑡2
with expected type 𝑇 .

2. Recursively typecheck 𝑡1 with expected type 𝑇1.

At the end of this second pass, any instance that remains unresolved triggers a typechecking
error.

4 Overloaded Record Fields

From the perspective of typechecking, we view all record operations as function calls—like it
is done in Coq for example. Overloaded record fields thus give rise to overloaded functions.
In what follows, we present our encodings, first at a high level, then in more details.

Summary of our encodings. Consider the following type definition. We assume that
fields are sorted alphabetically before typechecking begins.

type t = { mutable f : int; mutable g : int }

Our encodings can be summarized as follows.

r.f __get_f r

r.f <- 3 __set_f r 3

{ f = 3; g = 4 } __make_f_g 3 4

{ r with f = 3 } __with_f r 3

{ r with f = 3; g = 4 } __with_g (__with_f r 3) 4

These encodings are exploited for the purpose of the typechecking only. After resolution
of overloaded fields, our prototype output an OCaml source code where record fields are
renamed in an unambiguous manner. For example, the field f of the type t is renamed into
t_f, and an access of the form r.f with an expression r of type t becomes r.t_f.
In what follows, we explain the details of the encodings.

Encoding of get operations. For each field, we introduce an overloaded getter function.
Consider for example the field f of type int in the type t. We introduce a special function
__get_f and provide an instance of __get_f of type t -> int. We then encode the expression
r.f as the function call __get_f r.

Encoding of set operations. Similarly, we introduce a special function __set_f, and
introduce an instance of __set_f of type t -> int -> unit. We then encode the expression
r.f <- v as the function call __set_f r v.

Encoding of record construction. For a record type featuring two fields named f and g,
we introduce an overloaded function named __make_f_g. Recall that we assume field names
to be sorted alphabetically. The expression {f = 3; g = 4} is interpreted as __make_f_g 3 4.
In practice, an instance of __make_f_g can be resolved in different ways: the type expected
by the context might disambiguate; else there might be only one record definition featuring
exactly the two fields f and g; else, there might be only one matches the types of the
arguments provided; else, the user would need to add a type annotation to force an expected
result type.
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Typing of Overloading Arthur Charguéraud, Martin Bodin, and Louis Riboulet

Encoding of record update. The with-construct with multiple updated fields is treated
by the typechecker as nested unary with-constructs. For example:

{ r with f = 3; g = 4 } (* is encoded as *) { { r with f = 3 } with g = 4 }.

There remains to explain the encoding for updating one field. Consider the field f of the
type t. We introduce a function named __with_f of type t -> int -> t. Then, we encode
r with f = 3 as the function call __with_f r 3.

Encoding for polymorphic record types. For a polymorphic record type definition,
the instances introduced simply consist of polymorphic functions. For example, consider the
definition.

type ’a cell = { hd : ’a; tl : ’a list }

The instance of __get_hd provided for reading the first field has type ’a cell -> ’a .

Advanced examples. Consider the following examples.

type t = { f : int; mutable g : int }

type u = { f : int; mutable g : float }

type v = { f : int; mutable g : float; h : bool }

The code snippets shown below illustrate the resolution at play on several examples
exploiting the types t, u and v defined above.

let r1 (r:t) = r.f (* resolves [f] to be a field of [t] *)

let r2 : t = { f = 3; g = 2 } (* [2] resolves as [int] *)

let r3 = { f = 3; g = (2:float) } (* resolves [r3] to [u] *)

let r4 = { f = 3; g = 2; h = true } (* resolves [r4] to [v] *)

let r5 = r2.g <- 2 (* [r2] has type [t], thus [2] resolves to [int] *)

let r6 = { r2 with g = 2 } (* [r2] has type [t], thus [2] resolves to [int] *)

let r7 = { f = 2; g = 3 } (* rejected: ambiguous *)

5 Overloaded Data Constructors

Motivating example. To illustrate the interest of overloaded constructors, consider the
following definitions describing the grammar of two toy programming languages.

type t = Var of var | Let of var * t * t | Load of t

type u = Var of var | Let of var * u * u | Load of var

The function shown below takes a program from the grammar t into one from the grammar
u, by assigning a name via a let-binding to sub-expressions that appear in load instructions.
Observe how the same constructor names can be used in both embedded languages.

let rec norm (e:t) : u =

match e with

| Var x -> Var x

| Let (x, t1, t2) -> Let (x, norm t1, norm t2)

| Load t1 ->

match t1 with

| Var x -> Load x

| _ -> let x = generate_var_fresh_from t1 in

Let (x, norm t1, Load x)

The point of this example is to illustrate how constructors are resolved. The pattern
matching construct filters an argument e of type t, thus the constructors are resolved at
type t. In the branches, whose expected return type is annotated to be u, the constructors
are resolved at type u.
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Typechecking of pattern matching. Here again, we view constructors are functions,
and resolve overloading of constructor applications using the standard mechanism for
functions—like Coq does. Moreover, we perform disambiguation of constructors inside
patterns.
Among other properties, we wish the following simple pattern matching expression:

match t0 with x -> t1

to be typechecked in a totally equivalent manner as the corresponding let-binding (as it is
the case in OCaml):

let x = t0 in t1

To achieve this equivalence, we need to typecheck first t0 then t1 in the first pass, then
typecheck t1 then t0 in the second pass. (Recall Section 2.2.) The above observation gives
the skeleton of the typechecking process in case there is a single branch with a trivial pattern.
We handle the general case as described next.

To help the description, consider a representative example.

match t0 with

| p1 -> t1

| p2 -> t2

To typecheck such an expression with an expected result type T, we proceed as follows.

1. Typecheck the scrutiny t0, obtain a type T_0.

2. Typecheck the patterns p1 and p2, with expected type T_0.

3. Typecheck the continuations t1 and t2, with expected type T.

4. Typecheck again the continuations t1 and t2, with expected type T.

5. Typecheck again the patterns p1 and p2, with expected type T_0.

6. Typecheck again the scrutiny t0.

There is an interesting bidirectional flow of type information. The scrutiny may prop-
agate information, through the patterns, to the variables that are bound in the branches.
Reciprocally, the branches may refine the types of the variables, which may help resolve
the pattern constructors, and ultimately refine the type of the scrutiny. Besides, type
information may flow across the various branches, both for the type T_0 and for the type
T. For T_0, the resolution of any of the patterns during the first pass generally suffices to
resolve the constructors in all the other patterns. For T, the resolution of the type of any of
the branches during the first pass suffices to provide information for typechecking all the
other branches with an expected return type.

Advanced examples. To illustrate complex flows of type information, consider the
following examples.

type t = A of t | B of int | C of int

type u = A of u | B of float

let f v =

match v with

| A _ -> ()

| B _ -> ()

| C _ -> () (* the 1st traversal of this pattern forces [v:t] *)

let g v =

match v with
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| A (B x) -> ()

| A (B x) -> ignore (x:int) (* the 2nd traversal of this pattern gives [v:t] *)

| _ -> ()

Examples requiring more than 2 passes. Here again, there exists pattern matching
that resolve to exactly one type, yet for which more than two passes would be necessary to
propagate sufficient information. We make a deliberate choice of limiting the number of
phases, both to ensure efficiency and to allow predictability by the programmer.
The following counter-example reuses the above type definitions of t and u. It does not

typecheck in our system. Indeed, 3 passes would be needed to resolve the type of the
constructor A: a first pass to propagate the type of 𝑥 from the branch into the pattern, a
second pass to propagate the type of 𝑥 from the pattern variable to the type of P, and a
third pass to propagate the type of P down onto the constructor A.

type ’a p = P of ’a * ’a

let h v =

match v with

| P (A y, B x) -> (x:int)

Arguably, in the example above, the mental work involved for resolving the type of the
constructor A is nontrivial. In practice, it is generally not hard for the programmer to add
just one type annotation is the right place to ease resolution significantly. For example,
if we remove the type annotation (x : int) that appears in the continuation, and if we
add a type annotation (v : int p) on the argument v of the function h, we would allow all
constructors to be trivially resolved on the first pass.

6 Treatment of Polymorphic Higher-Order Iterators

Consider the mathematical expression
∑︀

𝑥∈𝐸 (𝑥+ 1). If the variable 𝐸 denotes a set of real
numbers, then the variable 𝑥 obviously stands for a real number, hence the 𝑥+ 1 operation
is on real numbers. More generally, when we have a container data structure at hand (e.g.,
a list, a set, a map, etc.), we expect to know the type of its elements. If we iterate over that
container, the iteration operation over this container should be resolved guided by the type
of the container, and the type of the variable that denotes an element should be deduced
from the type of the elements of that container. Our aim is to translate this intuitive recipe
into our typing algorithm.
Assume two instances of the map function, one for lists and one for arrays.

val List.map : ’a list -> (’a -> ’b) -> ’b list

val Array.map : ’a array -> (’a -> ’b) -> ’b array

In our prototype implementation, the syntax for registering instances is as follows.

let map = __instance Array.map

let map = __instance List.map

Consider a container d defined as a list of floating-point values, and an operation that
invokes map over d to add one unit to every value in the list.

let d : float list = [3.2; 4.5]

let ex12 = map (fun x -> 2 * x + 1) d

Intuitively, a programmer typechecks this code as follows. Firstly, because map is applied
to d of type list float, it must be the instance of map that operates over lists. Secondly,
because the list contains elements of type float, the variable x should be of type float. It
should follow that 2 * x + 1 is typechecked as involving operations over float values.
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Yet, our algorithm, without additional feature, would fail to typecheck the above ex-
ample. The function map is initially unresolved. The first pass of typing on the function
(fun x -> 2 * x + 1), performed without knowledge of x, provides no information whatso-
ever. Then, the function map is resolved based on its argument d. During the second pass
of typing, we propagate the information that (fun x -> 2 * x + 1) has a type of the form
float -> ?t. Thus, we learn that x is of type float through the resolution of the call to
map. This second pass propagates downward, without any information at hand about the
expected return type ?t for the body x + 1. Thus, the second pass of the resolution is unable
to resolve the type of the addition operator. One could handle this example with more than
two passes, but we would like to avoid more than two passes to keep the time complexity low
and the predictability high. In conclusion, the example ex12, without additional annotation,
cannot be typed by the two-pass algorithm presented so far.

A simple yet unsatisfying work-around would consist in requiring a type annotation of the
argument of the local function, that is, to write (fun (x:float)-> 2 * x + 1). Yet, doing
so would be frustrating because d is a float list, hence its elements are obviously of type
float.

To capture this intuition, we introduce a general mechanism for overloaded functions, to
distinguish arguments treated as input for typing from those treated as output for typing.
Arguments in input-mode guide the resolution. Arguments in output-mode are not processed
by the algorithm until the function call is resolved; at this point, the type expected for every
argument is available.
Coming back to our motivating example, the first argument of map should be treated as

an output, whereas the second one should be treated as an input by the typing algorithm.
In our prototype implementation, the syntax for registering the input-ouput modes is by
providing a list, as illustrated below.

let map = __overload [Out; In] (* input-output modes for arguments *)

Unless specified otherwise, all arguments are in input mode. A command such as the above
is only required for overloaded functions that need arguments in output-mode. Typically,
all higher-order iterators over containers would benefit from it. Note that the modes must
be the same for all instances of a same symbol.
When the typing algorithm resolves a function call, it performs the first pass on the

input-mode arguments only, and totally ignores the output-mode arguments. Then, it
attempts to resolve the symbol based on the arguments. If the resolution succeeds, then the
first-pass is performed on the output-mode arguments, and the result type of the function
is returned. Else, if there are several matching instances, the output-mode arguments are
ignored, and the type Unresolved is returned. During the second pass, the context may bring
additional information by means of an expected return type. If the function was previously
unresolved, the expected type must suffice to discriminate between the instances—that is, if
the function is not resolved at this stage, the program is rejected. Otherwise, if the function
is resolved with help of the return type, the first pass is performed on the output-mode
arguments.4 At that point, regardless of whether the function resolution took place in the
first or the second pass, there remains to execute the second pass on the arguments, to
complete the typing process.
The input-output mode mechanism may seem a little technical at first, but it appears

necessary to mimic the intuitive process involved when typing mathematical expressions,
without the need for additional type annotations, and without imposing a specific order to
the arguments of a function. This mechanism brings minor complications to the algorithm,
yet provides a general solution to the case of higher-order iterators on containers.

4It is important not to skip the first-pass of the typing algorithm, even if the expected type is available,
because there may be subterms that do not have an expected return type available, for which the
first-pass is essential in order to infer all the types associated with these subterms.

JFLA 2024 – 35es Journées Francophones des Langages Applicatifs 13
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7 Derived Instances

The notion of derived instances can be used, for example, to express that as soon as an
addition operator is associated with a type 𝐴, then an addition operator is available on
matrices of elements of type 𝐴. Another example is that of reductions: for any container data
structure equipped with a fold operator, and for any type equipped with a zero constant
and an addition operator, one can derive a sum operator for instances of the container storing
values of that type.

In what follows, we present our syntax for derived instances. We also describe the
possibility for packing several instances. For example, for defining the sum operation, we
can use a monoid structure to pack a zero constant and an addition operator into a single
addmonoid instance. Then, we explain how we resolve instances: unlike for traditional
typeclasses, our algorithm does not backtrack during resolution.

A simple derived instance. As first example, assume a type of matrices ’a matrix ,
and assume an operation matrix_add that takes as argument an addition operator and two
matrices. We can register an instance for matrix addition as follows.

val matrix_add : (’a -> ’a -> ’a) -> ’a matrix -> ’a matrix -> ’a matrix

(* Register an instance for [+] on the type [’a matrix], for every type

[’a] for which there exists an instance of [+] on the type [’a]. *)

let (+) (type a) ((+) : a -> a -> a) : a matrix -> a matrix -> a matrix =

__instance (fun m1 m2 -> matrix_add (+) m1 m2)

Instances with two arguments. As second example, let us show how to define a sum

operator on arrays whose elements have a type that supports a zero constant and an addition
operation.

(* Register an instance of [sum] for arrays with [+] and [zero]. *)

let sum (type a) ((+) : a -> a -> a) (zero : a) : a array -> a =

__instance (fun s -> Array.fold (fun acc v -> acc + v) zero s)

Instances with packaged arguments. Let us next revisit the above example by intro-
ducing an additive monoid structure that carries both zero and + . First, we define a record
to represent monoids.

(* Structure to respresent monoids *)

type ’a monoid = { op : ’a -> ’a -> ’a ; neutral : ’a }

Then we introduce an instance for the additive monoid on int. In the definition shown
below, note that the symbols (+) and 0 are resolved, thanks to the type annotation int monoid,
to be of type int->int->int and int, respectively.

(* Register an instance of the additive monoid on [int] *)

let addmonoid : int monoid = __instance { op = (+); neutral = 0 }

We can then revisit our definition on sum to depend on an additive monoid.

(* Register an instance of [sum] for arrays whose elements are equipped

with the additive monoid. *)

let sum (type a) (m : a monoid) : a array -> a =

__instance (fun s -> Array.fold (fun acc v -> m.op acc v) m.neutral s)

(* Example usage *)

let result1 = sum ([| 4; 5; 6 |] : int array)
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Derived instances for monoids. In fact, we can state that for every type equipped with
a zero and a sum operator, an additive monoid can be derived.

(* Register an instance of [addmonoid] for types with a [(+)] and [zero]. *)

let addmonoid (type a) ((+) : a -> a -> a) (zero : a) : a monoid =

__instance ({ op = (+); neutral = zero })

With such an instance, we can remove our previous instance specific to [int monoid] and the
example of result1 would still successfully typecheck: the resolution sum on an int array

triggers the resolution of int monoid, which in terms triggers the resolution of (+) and zero

for the type int.

A more advanced example: fold and map-reduce. Let us generalize the definition
of the sum function to all structures that exhibit a fold operator. The construction goes
through the intermediate definition of a mapreduce operator.

(* Example instances of fold operators *)

let fold : (’a -> ’x -> ’a) -> ’a -> ’x array -> ’a = Array.fold_left

let fold : (’a -> ’x -> ’a) -> ’a -> ’x list -> ’a = List.fold_left

(** Register an instance of [mapreduce] derived from [fold] *)

let mapreduce (type t) (type a) (type x)

(fold : (a -> x -> a) -> a -> t -> a)

: (x -> a) -> a monoid -> t -> a =

__instance (fun f m s -> fold (fun acc x -> m.op acc (f x)) m.neutral s)

(* Register an instance of [sum] derived from [fold] and [addmonoid] *)

let sum (type t) (type a)

(addmonoid : a monoid)

(mapreduce : (a -> a) -> a monoid -> t -> a)

: t -> a =

__instance (fun s -> mapreduce (fun x -> x) addmonoid s)

(* Example usage *)

let result2 = sum ([| 4; 5; 6 |] : int array)

An example mathematical formula. Recall our motivating example.∑︁
𝑑∈{𝑖,2𝑖}

∑︁
𝑘∈[−6,7]

3 · 𝑒 𝑑·𝜋
8 ·𝑀2·𝑘2

·𝑁

Assuming instances of additions, products and exponent operators on integers, complex
numbers and matrices, as well as instance for the integer range constructor, we can typecheck
the formula, without the need for any type annotation inside the formula.

let demo (m:complex matrix) (n:complex matrix) =

bigsum [i; 2*i] (fun d ->

bigsum (range (-6) 7) (fun k ->

3 * (e ^ (d * pi / 8)) * (m ^ (2*k^2)) * n))

Resolution policy for derived instance. In general, a derived instance takes the form:
∀𝐴1..𝐴𝑘. 𝐷1 =⇒ .. =⇒ 𝐷𝑛 =⇒ 𝑇 , where 𝐴𝑖 are type variables, where 𝐷𝑗 represent the
premises—that is, the instances to be resolved for the conclusion to hold—and where 𝑇
denote the type of the instance that can be constructed.
Consider a type Unresolved(ty,candidates), where the candidates are derived instances

with conclusions 𝑇1, .. 𝑇𝑛, and where ty is the type 𝑇𝑟 that guides the resolution. The
resolution process, which may be triggered during both passes of our typechecking algorithm,
is as follows.
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• If more than one type 𝑇𝑖 unifies with 𝑇𝑟, no resolution takes place.
(In particular, no backtracking is involved.)

• If exactly one type 𝑇𝑖 unifies with 𝑇𝑟, resolution continues as follows.

1. The types 𝐴𝑖 are instantiated during the unification of 𝑇𝑖 with 𝑇𝑟.

2. Let 𝐷𝑗 be the premises associated with 𝑇𝑖.

3. The typechecker attempts to resolve the premises 𝐷𝑖, for these types 𝐴𝑖.

– If all premises 𝐷𝑖 can be resolved, the resolution is complete.

– Else, the type remains Unresolved(ty,candidates).

As an optimization, we can trim the list of instances to Unresolved(ty,[candidate]), where
candidate was the unique remaining candidate. Furthermore, we can specialize the type
of this single candidate to: 𝐷1 =⇒ .. =⇒ 𝐷𝑛′ =⇒ 𝑇𝑟, where the 𝐷𝑗 are instantiated with
the aforementioned types 𝐴𝑖, and where only the 𝐷𝑗 that were unresolved are kept. During
the second typechecking pass, the types 𝐴𝑖 may be further refined, allowing the remaining
instances 𝐷𝑗 to be resolved.

8 Non-Treatment of Partial Applications

In this section, we explain what problems would arise if we wanted to support overloading
and partial applications at the same time. In the languages C++, ADA, and PVS, which
support static overloading resolution, the syntax of function calls takes the form f(x,y),
hence does not allow for partial applications. In contrast, in a traditional ML-style syntax,
the syntax for a function call takes the form f x y, and the expression f x refers to the
partial application of f to a first argument x. Now, what happens if we overload the name f?
For example, assume sum x1 x2 and sum x1 x2 x3 to be two overloaded functions—both

functions are named sum, the first one expects 2 arguments, whereas the second one expects
3 arguments. If the programmer writes let y = sum 3 4, there are good chances that the
intent is not a partial application. Yet, without further annotation, there is no way for the
typechecker to know the programmer’s intention and to rule out the possibility that y could
be a partial application of the sum function that expects 3 arguments.

More generally, the experience from other languages, in particular C++, is that program-
mers routinely rely on the number of arguments to distinguish between several functions.
Hence, if we were to allow for partial applications, we would significantly decrease the benefits
of overloading, because we would impose on the programmer the writing of additional type
annotations for disambiguation.
For this reason, we decided to not support the traditional ML-syntax for partial appli-

cations. Manual 𝜂-expansions, for example fun z -> sum 3 4 z, always remains possible,
albeit syntactically heavy. To mitigate the syntactic overhead, we suggest introducing a
new syntactic construct, with placeholders in the place of non-provided arguments. For
example, #(sum 3 4 _) would be syntax for fun z -> sum 3 4 z. Likewise, #(sum _ 4 5)

would be syntax for fun x -> sum x 4 5 and #(sum _ 4 _) syntax for fun x z -> sum x 4 z.
Note that in other scenarios, type annotations might be required to disambiguate between
several overloaded functions, e.g., #(f 2 (_:int)).

In summary, our proposal is to make partial applications explicit. This way, let y = sum 3 4

resolves to an application of the 2-argument sum function, without need for any annotation;
and let g = #(sum 3 4 _) resolves to the partial application of the 3-argument sum function,
at the cost of a very lightweight syntactic overhead—lighter than a type annotation.
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9 Opaque vs Transparent Types in Resolution

When a type t is defined as an alias for another type u, it is not obvious whether the
overloading resolution process should treat t and u as identical types, or as distinct types.
This issue is well-known in the context of typeclasses, e.g., Coq provides Typeclasses
Transparent and Typeclasses Opaque commands to control whether a given definition should
be transparent or not with respect to typeclass resolution.
To handle the matter, we choose to follow ML-style practice. If t is defined as u, then

t and u are unifiable and hence interchangeable throughout the scope of t. For example,
two instances of respective type u -> int and t -> int will always overlap, hence the
programmer should introduce only one of the two instances.
If, however, a type t is introduced as an abstract type, that is, as a type whose imple-

mentation is not revealed (e.g., hidden behind a module type), then t is not unifiable with
any other type. In particular, overloading resolution may discriminate between instances
by exploiting the fact that t and u are different types—even though the type t might have
been once realized as u.

10 Future Work and Conclusion

In future work, we plan to present formal rules for describing our algorithms, and to
formalize the properties of our algorithm. These including several properties that are
generally desirable for bidirectional typechecking algorithms [DK21]. Besides, we would like
to polish the error messages, following the ideas from previous work [Cha15]. Last but not
least, we would like to try using overloading at scale, in the context of ML programming as
well as in the context of typechecking common mathematical formulae parsed using Coq’s
support for custom syntax.
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