UNIVERSITE DE STRASBOURG

Ecole Doctorale:
Mathématiques, sciences de 'information et de 'ingénieur (ED 269)

Habilitation Manuscript

A Modern Eye on Separation Logic
for Sequential Programs

Arthur Charguéraud

Febuary 27th, 2023

Jury
SANDRINE Birazy Examiner Professeur des universités Université Rennes 1
DoMINIQUE DEVRIESE Reviewer Professor KU Leuven
DEREK DREYER Examiner Professor Max Planck Institute (MPI-SWS)
ROBERT HarrErR Reviewer Professor Carnegie Mellon University
PHILIPPE HEeLLuy Examiner Professeur des universités Université de Strasbourg
Nicoras Magaup Examiner Maitre de conférences HDR Université de Strasbourg

XAVIER Rivar Reviewer Directeur de recherche Inria

Abstract

Separation Logic brought a major breakthrough in the area of program verification. Since its in-
troduction, Separation Logic has made its way into a number of practical tools that are used on
a daily basis for verifying programs, ranging from operating systems kernels and file systems to
data structures and graph algorithms. These programs are written in a wide variety of program-
ming languages at different abstraction levels, ranging from machine code and assembly, to C,
Java, OCaml, and Rust, just to name a few. Numerous extensions to Separation Logic have been
proposed over the past two decades. In this habilitation manuscript, I present an overview of my
own contributions—and that of my co-authors—over the period from 2009 to 2022.

The manuscript is organized in three main parts. The first part describes a foundational set up
of Separation Logic, with the logic being proved sound with respect to a semantics mechanized in
an interactive proof assistant. The presentation targets an imperative A-calculus, sufficiently min-
imalistic to allow for an easy-to-teach presentation of the theory, yet sufficiently rich to support
the verification of realistic programs. The second part presents the technique of characteristic for-
mulae, which enables smooth proofs of practical programs in a proof assistant. Compared with the
characteristic formulae introduced in my PhD thesis, I here give a simplified presentation based
on weakest preconditions and, most importantly, I show how to justify characteristic formulae in
a foundational manner. The third part of this manuscript describes extensions to Separation Logic
for resource analysis: time credits for establishing amortized execution bounds, big-O notation
to support asymptotic reasoning, and space credits to establish space bounds in the presence of a
garbage collector.

The manuscript ends with two closing chapters. One provides a survey of publications on
Separation Logic for sequential programs. The other covers research perspectives.

Table of Contents

Introduction

1.1 Context e e e
1.2 Separation Logic
1.3 Contents e

Foundations of Separation Logic

2.1 Overview of the Features of SeparationLogic
2.2 Heap Predicates and Entailment L.
2.3 Language Syntax and Semantics
2.4 Triples and Reasoning Rules
2.5 The Magic Wand Operator
2.6 Weakest-Precondition Style Lo

Language Extensions

3.1 Partially-Affine Separation Logic L .
3.2 Beyond A-normal Form: The BindRule
3.3 Treatment of Functions of Several Arguments
3.4 Treatment of Dynamic Checks
3.5 Inductive Reasoning for Loops L
3.6 Arraysin an ML-like Language
3.7 Arraysina C-like Language
3.8 Records

Omni-Big-Step Semantics

4.1 Definition of the Omni-Big-Step Judgment
4.2 History of the Omni-Big-Step Judgment
43 Properties of the Omni-Big-Step Judgment
4.4 Frame Property for the Omni-Big-Step Judgment
4.5 Definition of the Weakest-Precondition Predicate
4.6 Definition of Triples w.r.t. Omni-Big-Step Semantics
4.7 Other Applications of Omnisemantics

Characteristic Formulae

5.1 Principle of Characteristic Formulae
5.2 Building a Characteristic Formulae Generator, Stepby Step
5.3 Properties and Definition of the “framed” Predicate
5.4 Soundness of Characteristic Formulae
5.5 Interactive Proofs using Characteristic Formulae

N oo G

10
10
17
20
23
26
29

32
32
36
37
37
38
39
41
41

44
45
47
47
49
50
51
52

TABLE OF CONTENTS

5.6

Implementation of CFML-Style Tactics

6 Lifting: from Program Values to Logical Values

6.1
6.2

Motivation for Lifting . .

A Typeclass for Encodable Coq Types

6.3 Definition of Lifted Triples
6.4 Lifted Representation Predicates
6.5 Attempt at a Lifted Characteristic Formulae Generator

6.6 An External Characteristic Formulae Generator .
6.7 Specifications for Operations on Lifted Records .
6.8 Validation of Lifted Characteristic Formulae . . .

Resource Analysis

7.1 Motivation and Related Work on Resource Analysis

7.2 Principle of Time Credits
7.3 Realizing Time Credits as Ghost State

7.4 Soundness of Time Credits with respect to the Semantics

7.5 Possibly Negative Time Credits
7.6 Formal Analysis of the Union-Find Data Structure

Big-O Notation for Time Bounds

8.1 Motivation for the Asymptotic Notation.
8.2 Challenges withBig-O
8.3 Prior Work on Formal Definitions for Big-O . . .
8.4 Formalization of Big-O
8.5 Using Big-O Notation in Specifications
8.6 Small CaseStudies.
8.7 Formal Analysis of Incremental Cycle Detection .

Space Bounds for Garbage-Collected Heap Space

9.1 Reachability, Roots, and The Free Variable Rule .
9.2 Visible and Invisible Roots
9.3 Logical Deallocation and its Requirements
9.4 Reasoning about Invisible Roots
9.5 Semantics Aware of Garbage Collection
9.6 Soundness Theorem with Space Bounds
9.7 Case Study: Stacks of Stacks

10.1 Original Presentation of Separation Logic
10.2 Additional Features of Separation Logic
10.3 Mechanized Presentations of Separation Logic . .
10.4 Course Notes on Separation Logic
10.5 Partial Correctness and Termination

11 Perspectives

10 A Survey of Separation Logic for Sequential Programs

64

66
67
69
70
71
72
73
79
81

84
85
87
88
90
92
94

98
98
99
101
102
104
106
108

112
112
113
115
116
117
118
118

122
122
123
125
127
128

131

Chapter 1

Introduction

1.1 Context

In the 90’s, the use of formal methods was mainly motivated by safety-critical applications, where
a bug in the code could mean that people get hurt. Of course, such applications remain relevant.
Yet, two game-changing evolutions related to software have significantly broadened the scope of
application of formal methods: massive-scale deployment, and digital security concerns.

Regarding deployment, consider that a given piece of code may be executed by a couple billion
users. The cost of one bug, multiplied by the number of users, adds up to such a large amount that it
motivates corporations to invest considerable efforts in eliminating bugs. The Big Tech companies,
which do provide software to billions of users, are among those that go beyond traditional testing,
and leverage formal methods for critical products. Let me cite just a few examples. AWS (Amazon’s
cloud) exploits TLA+ [Yu et al., 1999] to apply model checking to detect flaws in the design of their
fault-tolerant, distributed systems [Newcombe et al., 2015]. Meta exploits the Infer tool [Calcagno
and Distefano, 2011] for static analysis of its Android and iOS apps, in particular. The Infer tool
is now also being used by Spotify, Uber, Mozilla, Microsoft, AWS, and many others. Besides,
Meta has invested efforts in verifying parts of a microkernel for embedded devices [Carbonneaux
et al,, 2022]. Likewise, Google recently announced KataOS, an operating system for embedded
devices that run machine-learning applications [Google, 2022], implemented on top of the seL4
mechanically-verified microkernel [Klein et al., 2010]. We can reasonably expect the deployment
of software at a very large scale, and thus the interest in bug-free programs, to keep growing.

The second critical aspect is security. Software is widespread in every aspect of society, from
corporations and factories to daily consumer products such as phones, TVs, cars, etc. A software
bug may induce a source of vulnerability, that an attacker may exploit to crash a system, or (usually
worse) to steal data, or (much worse) to take remote control of a physical system, such as a car, a
factory, or a city-management system. Attackers may also exploit a flaw to set up a backdoor for a
future attack. Attackers may be motivated by extorting ransoms, by stealing valuable information
or technology, or by taking an advantage in the cyberwarfare. Attacks are carried out not only by
individuals and small teams of hackers, but also by official and undercover government agencies.
The cumulative cost of cyberattacks is very hard to evaluate, with estimates ranging from hun-
dreds to thousands of billion US dollars per year. Because cyberattacks can be performed remotely
from anywhere on earth, possibly by leaving very few tracks behind, with limited investment and
possibly huge returns, we can expect such attacks to continue at a sustained rate. The use of for-
mal methods alone certainly does not make software systems invulnerable, but it can help reduce
the attack surface.

The large number of users concerned, combined with the desperate need for increased soft-

CHAPTER 1. INTRODUCTION 6

ware security, will, I speculate, motivate unprecedented growth in the use of formal methods.
One key question is whether existing verification tools can be improved to decrease the cost of
verifying large and complex systems. Another question is how many years it will take to train
the workforce necessary for specifying and verifying a significant fraction of the highly sensitive
software components in use.

The term formal methods covers a broad range of tools, with different purposes, e.g., to check
functional properties, to check convergence properties, to verify cryptographic protocols, to ver-
ify hardware circuits, to analyse resource consumption, to verify time-channel attacks, etc. My
research is concerned with deductive program verification, which aims at formally verifying that
all possible behaviors of a given program satisfy formally defined properties. These properties
constitute the specification of the program.

The verification process is said to be machine-checked if a program called a theorem prover
is used to validate every step of the reasoning involved in the process. A theorem prover may
consist either of an automated theorem prover, or of an interactive proof assistant (e.g., Coq). The
verification process is said to be foundational if the reasoning on the program of the behavior
is established, via machine-checked proofs, with respect to a formalization of the operational se-
mantics of the source programming language. Foundational verification, when combined with
the use of a machine-checked compiler, yields very high confidence on the fact that the machine
code produced does indeed satisfy the desired formal specification. My work has focused on pro-
viding interactive proofs for establishing, in a foundational manner, functional correctness and
termination, as well as bounds on the asymptotic execution time and on the space usage.

1.2 Separation Logic

Separation Logic brought a major breakthrough in the area of program verification [O’Hearn,
2019]. Since its introduction, it has made its way into a number of practical tools that are used on
a daily basis for verifying programs ranging from pieces of operating systems kernels [Xu et al.,
2016; Carbonneaux et al., 2022] and file systems [Chen et al., 2015] to data structures [Pottier,
2017] and state-of-the-art algorithms [Guéneau et al., 2019a; Haslbeck and Lammich, 2021]. These
programs are written in various programming languages, including machine code [Myreen and
Gordon, 2007], assembly [Ni and Shao, 2006; Chlipala, 2013], C-language [Appel and Blazy, 2007],
OCaml [Charguéraud, 2011], SML [Kumar et al., 2014], and Rust [Jung et al., 2017].

The key ideas of Separation Logic were devised by John Reynolds, inspired in part by older
work by Burstall [1972]. Reynolds presented his ideas in lectures given in the fall of 1999. The
proposed rules turned out to be unsound, but O’Hearn and Ishtiaq [2001] noticed a strong rela-
tionship with the logic of bunched implications [O’Hearn and Pym, 1999], leading to ideas on how
to set up a sound program logic. Soon afterwards, the seminal publications on Separation Logic
appeared at the CSL workshop [O’Hearn et al., 2001] and at the LICS conference [Reynolds, 2002].

The first paragraph from Reynold’s paper [2002] summarizes the situation prior to Separation
Logic in the following words.

Approaches to reasoning about [the use of shared mutable data structures] have been
studied for three decades, but the result has been methods that suffer from either limited
applicability or extreme complexity, and scale poorly to programs of even moderate size.

Today, the core definitions of Separation Logic may appear as the obvious thing to write, or even as
the only thing that would make sense to write. Perhaps the best way to truly value the contribution
of Separation Logic is to realize that, following the introduction of the first program logics in

CHAPTER 1. INTRODUCTION 7

the late sixties [Floyd, 1967; Hoare, 1969; Dijkstra, 1975], people have tried for 30 years to verify
programs without Separation Logic.

I started working on Separation Logic during my PhD, in 2009. Since then, my work has
focused on the development of practical techniques for reasoning about sequential programs, with

applications in particular to data structures and algorithms. My contributions to Separation Logic
is 3-fold.

1. T'have contributed to extensions of Separation Logic, and to simplifications of its formaliza-
tion. The major contributions are the following. I have developed characteristic formulae
as a way to smoothly integrate Separation Logic in interactive proof assistants. By being
grounded on a non-deterministic big-step-style semantics, this approach inherently sup-
ports reasoning about termination. I have introduced a feature for accommodating both
linear and affine predicates in a lightweight manner. I have proposed higher-order repre-
sentation predicates for specifying polymorphic containers that may store other mutable
objects, including other containers. Besides, together with Francois Pottier and our stu-
dents Armaél Guéneau and Alexandre Moine, we have developed extensions of Separation
Logic for reasoning about resource consumption, establishing asymptotic time bounds, with
support for the big-O notation, and establishing bounds on the space usage in the presence
of a garbage collector.

2. T am the lead developer of an interactive program verification tool, called CFML. This tool
has been used to implement and validate the aforementioned contributions, with the ex-
ception of space bounds for which the Iris framework [Jung et al., 2018b] has been used.
This tool consists, on the one hand, of a characteristic formulae generator, which parses
OCaml syntax and produces logical formulae; and, on the other hand, of a Coq library that
provides definitions, lemmas, and tactics for carrying out interactive program verification
proofs. CFML has been used to verify several thousand lines of OCaml in total.

3. T have written an all-in-Coq course, entitled Foundations of Separation Logic, and released
as Volume 6 of the Software Foundation series, edited by Benjamin Pierce. This course only
assumes as prerequisite the contents of Volume 1 (Logical Foundations) and Volume 2 (Pro-
gramming Language Foundations). The current version contains 13 chapters, 140 exercises,
and covers most of the material from Chapters 2, 3, 4 and 5 of the present manuscript, as well
as one chapter covering the basics of representation predicates. I have recently started the
writing of a second book, focused on the practice of specifying and verifying data structures
and algorithms.

In summary, my work on Separation Logic consists of (1) extending or simplifying the the-
ory of Separation Logic, and developing new specification patterns, (2) putting all the new ideas
to practice for verifying actual implementations, and (3) writing pedagogical material to share
knowledge on Separation Logic.

1.3 Contents

Foundations. Chapter 2 gives a streamlined presentation of the core ideas of Separation Logic.
The presentation is carried out using a sequential, deterministic, imperative A-calculus. The ab-
sence of mutable variables considerably simplifies the formalization of the reasoning rule of the
logic. Starting from a big-step operational semantics, I derive reasoning rules in the form of lem-
mas, expressed either in the forms of triples, or in weakest-precondition style. This chapter does
not contain novel ideas, but gathers in one place a state-of-the-art presentation of Separation Logic

CHAPTER 1. INTRODUCTION 8

that, I believe, will prove useful for teaching purpose. This Chapter also serves as a basis for the
rest of the manuscript.

Language extensions. Chapter 3 presents techniques involved for reasoning in Separation
Logic about a richer programming language, in which realistic programs can be written. It cov-
ers a number of extensions, such as n-ary functions, loops, arrays, records, dynamic checks, and
handling of programs that are not in A-normal form. Besides, I explain how to treat programming
languages equipped with a garbage collector. To that end, I present a partially-affine program
logic, which allows to freely discard certain classes—and only certain classes—of heap predicates.

Omnisemantics. The foundational definition of Separation Logic triples presented in Chapter 2
applies only to deterministic semantics or, technically, to semantics that are deterministic up to
the choice of fresh memory locations. In Chapter 4, I explain how to define foundational triples for
the more general case of nondeterministic semantics. The construction is based on the inductively
defined omni-big-step judgment, written ¢/s | (). This judgment asserts that every possible
evaluation starting from the configuration /s reaches a final configuration that belongs to the
set (. This set () is isomorphic to a postcondition. As I show, the omni-big-step judgment directly
yields a definition of a weakest-precondition operator that inherently satisfies the frame rule.

Characteristic formulae. Chapter 5 describes the technique of characteristic formulae, whose
purpose is to smoothly integrate Separation Logic in an interactive proof assistant. A characteris-
tic formulae generator is a function that, given a program without any specification or invariant,
computes its weakest precondition by recursion over its syntax. One may view the computation
of a characteristic formula as a most-general weakest-precondition calculus. Compared with char-
acteristic formulae introduced in my PhD thesis, there are two major novelties. First, I generate
characteristic formulae using a function that computes inside Coq, as opposed to using an external
tool. This function is proved correct once and for all, thus every formula produced is inherently
sound with respect to the term it describes. Second, I switched from characteristic formulae that
operate on triples, with a precondition and a postcondition, to formulae that operate only on
postconditions, in weakest-precondition style. This technical change significantly simplifies the
presentation.

The lifting technique. Chapter 6 presents a technique, called lifting, for specifying program
values using logical values, i.e. Coq values. With this technique, the user never sees deeply em-
bedded syntax for terms and values. The user can work with typed Coq values, and with repre-
sentation predicates over such values. Moreover, numerous proof steps can be eliminated when
working with lifted characteristic formulae. Like in my PhD work, to exploit the lifting technique,
Irely on an external characteristic formulae generator. In that prior work, characteristic formulae
were generated as axioms. The key challenge that I have solved in the recent years is to find a
way to justify the correctness of lifted characteristic formulae in a foundational way with respect
to the operational semantics of the programming language.

Resource analysis. The most common aim of program verification is to establish the safety and
functional correctness of a program, that is, to prove that this program does not crash and computes
a correct result. Beyond safety and functional correctness, it may be desirable to establish bounds
on resource consumption, that is, to prove that the resource requirements of a program do not
exceed a certain predictable bound. Indeed, a program that requires an unexpectedly large amount
of time may be unresponsive. A program that requires an unexpectedly large amount of stack space

CHAPTER 1. INTRODUCTION 9

may crash with a stack overflow. A program that requires an unexpectedly large amount of heap
space may exhaust the available memory and make the system unstable. Chapter 7 is concerned
with extensions of Separation Logic for establishing bounds on resource consumption.

Asymptotic notation. Chapter 8 presents the challenges and key ideas associated with formal-
ization of the asymptotic big-O notation, pervasively used in algorithms textbooks. Reasoning
and working with asymptotic complexity bounds is not as simple as one might hope, especially
when several variables are involved in the bounds—i.e., in the multivariate case. As I illustrate
through several examples, typical paper proofs using the big-O notation rely on informal reason-
ing principles, which can easily be abused to prove a contradiction. I explain how to formally state
specifications featuring asymptotic bounds, and how to establish such bounds in practice.

Garbage-collected space. The approach for resource analysis presented in Chapter 7 applies
to different kinds of resources. The requirement is that it must be evident at which program points
these resources are introduced and consumed. This requirement is not met by heap space in the
presence of garbage collection. Indeed, when using a garbage collector, the programmer does not
include explicit deallocation instructions in the code. Thus, reasoning about garbage-collected
heap space poses unique challenges. Chapter 9 presents the key ideas associated with the set-
up of a Separation Logic with space credits that allows establishing space bounds for programs
equipped with a garbage collector. Doing so involves, in particular, reasoning about roots and
about unreachability.

Conclusion. This manuscript ends with two closing chapters. Chapter 10 gives an historical
account of the contributions to Separation Logic for sequential programs. Chapter 11 discusses
the research perspectives that I am particularly interested in investigating in the next decade.

Chapter 2

Foundations of Separation Logic

Ibegin with an overview of the key features of Separation Logic (Section 2.1). I then present
the operators of the logic (Section 2.2), the syntax and semantics of the language used for
the formal presentation (Section 2.3), and the statement of the reasoning rules (Section 2.4).
I complete this chapter with the description of two key Separation Logic ingredients: the
magic wand operator (Section 2.5), and the formulation of reasoning rules in weakest-
precondition style (Section 2.6).

The contents of this chapter is an excerpt from my ICFP’20 paper [Charguéraud, 2020]. In
this chapter and the next one, unless stated otherwise, all the material presented is standard
knowledge of the Separation Logic literature. I discuss the origins of every ingredient
in Chapter 10. My contribution here has been to assemble a streamlined presentation of
Separation Logic.

2.1 Overview of the Features of Separation Logic

This first section gives an overview of the features that are specific to Separation Logic: (1) the
separating conjunction and the frame rule, which enable local reasoning and small-footprint specifi-
cations; (2) the treatment of aliasing; (3) the specification of recursive pointer-based data structures
such as mutable linked lists; and (4) the ability to ensure complete deallocation of all allocated data.

2.1.1 The Frame Rule

In Hoare logic, the behavior of a command ¢ is specified through a triple, written {H} ¢t {Q},
where the precondition H describes the input state, and the postcondition () describes the output
state. Whereas in Hoare Logic H and () describe the whole memory state, in Separation Logic
they describe only a fragment of the memory state. This fragment must include all the resources
involved in the execution of the command ¢.

The frame rule asserts that if a command ¢ safely executes in a given piece of state, then it
also executes safely in a larger piece of state. More precisely, if ¢ executes in a state described
by H and produces a final state described by (), then this program can also be executed in a state
that extends H with a disjoint piece of state described by H'. The corresponding final state then
consists of () extended with H’', capturing the fact that the additional piece of state is unmodified

10

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 11

by the execution of ¢. The frame rule enables local reasoning, defined as follows [O’Hearn et al.,
2001].

To understand how a program works, it should be possible for reasoning and specification
to be confined to the cells that the program actually accesses. The value of any other cell
will automatically remain unchanged.

The frame rule is stated using the separating conjunction, written %, which is a binary oper-
ator over heap predicates. In Separation Logic, pieces of states are traditionally called heaps, and
predicates over heaps are called heap predicates. Given two heap predicates H and H’, the heap
predicate H x H' describes a heap made of two disjoint parts, one that satisfies H and one that
satisfies H'. The statement of the frame rule, shown below, asserts that any triple remains valid
when extending both its precondition and its postcondition with an arbitrary predicate H'.

{1} t{Q}
- — FRAME-FOR-COMMANDS .
{HxH'}t{Q*H'} where ¢ is a command.

In this manuscript, we do not consider a language of commands, but a language based on the
A-calculus, with programs described as terms that evaluate to values. (The language is formalized
in Section 2.3.1.) In that setting, a specification triple takes the form {H} ¢ {\z. H'}, where H
describes the input state, = denotes the value produced by the term ¢, and H’ describes the output
state, with z bound in H’. For such triples, the frame rule may be stated in the form shown below:

{H} t {da. H"} FRAME where ¢ is a term producing a value,
{H~H'}t{\z. H « H'} and = ¢ fv(H')
or, more concisely, as:
wtiey o
{H«H'}t{Q+H"} where Q@ H = M. (Qu* H).

2.1.2 Separation Logic Specifications

What makes Separation Logic work smoothly in practice is that specifications are expressed us-
ing a small number of operators for defining heap predicates, such that these operators interact
well with the separating conjunction. The most important operators are summarized below—they
appear in examples throughout the rest of this section, and are formally defined further on (Sec-
tion 2.2.2).

« p < v, to be read “p points to v”, describes a single memory cell, allocated at address p,
with contents v.

« [] describes an empty state.

« [P] also describes an empty state, and moreover asserts that the proposition P is true.

« H; » Hy describes a heap made of two disjoint parts, one described by H; and another
described by Hs.

o dz. H and Vx. H are used to quantify variables in Separation Logic assertions.

We call these operators the core heap predicate operators, because all the other Separation Logic
operators that we will consider can be defined in terms of these core operators.

The heap predicate operators appear in the statement of preconditions and postconditions.
For example, consider the specification of the function incr, which increments the contents of a
reference cell. It is specified using a triple of the form { H} (incr p) {Q}, as shown below.

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 12

Example 2.1.1 (Specification of the increment function)
Vpn. {p — n} (incrp) {_.p— (n+1)}

The precondition describes the existence of a memory cell that stores an integer value, through the
predicate p — n. The postcondition describes the final heap in the form p < (n + 1), reflecting the
increment of the contents. The “_. ” symbol at the head of the postcondition indicates that the value
returned by incrp, namely the unit value, needs not be assigned a name.

Throughout the rest of the manuscript, the outermost universal quantifications (e.g., “V pn.”) are
left implicit, following standard practice.

2.1.3 Implications of the Frame Rule

The precondition in the specification of incr p describes only the reference cell involved in the
function call, and nothing else. Consider now the execution of incr p in a heap that consists of
two distinct memory cells, the first one being described as p < n, and the other being described
as ¢ — m. In Separation Logic, the conjunction of these two heap predicates are described by the
heap predicate (p < n) x (¢ < m). There, the separating conjunction (a.k.a. the star) captures
the property that the two cells are distinct. The corresponding postcondition of incr p describes
the updated cell p < (n + 1) as well as the other cell ¢ < m, whose contents is not affected by
the call to the increment function. The corresponding Separation Logic triple is therefore stated
as follows.

Example 2.1.2 (Applying the frame rule to the specification of the increment function)

{(p = n)x (g = m)} (incrp) A (p—n+1)*(q—m)}

The above triple is derivable from the one stated in Example 2.1.1 by applying the frame rule to
add the heap predicate ¢ < m both to the precondition and to the postcondition. More generally,
any heap predicate H can be added to the original, minimalist specification of incr p. Thus:

{(p>n)xH} (incrp){_. (p—>n+1)~H}.

2.1.4 Treatment of Potentially-Aliased Arguments

We next discuss the case of potentially-aliased reference cells. In the previous example, we have
considered two reference cells p and ¢ assumed to be distinct from each other. Consider now
a function incr_two that expects as arguments two reference cells, at addresses p and ¢, and
increments both. Potentially, the two arguments might correspond to the same reference cell. The
function thus admits two specifications. The first one describes the case of two distinct arguments,
using separating conjunction to assert the difference. The second one describes the case of two
aliased arguments, that is, the case p = ¢, for which the precondition describes only one reference
cell.

Example 2.1.3 (Potentially aliased arguments) The function:
let incr_two p q = (incr p; incr q)
admits the following two specifications.

1. {(p—>n) » (—>m)} (incr_two p q) {_.. (p—>n+1) x (g—>m+1)}
2. {p > n} (incr_two p p) {A_. (p—>n+2)}

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 13

2.1.5 Small-Footprint Specifications

A Separation Logic triple captures all the interactions that a term may have with the memory state.
Any piece of state that is not described explicitly in the precondition is guaranteed to remain un-
touched. Separation Logic therefore encourages small footprint specifications, i.e., specifications
that mention nothing but what is strictly needed. The small-footprint specifications for the prim-
itive operations ref, get and set are stated and explained next.

Example 2.1.4 (Specification of primitive operations on references)

{{1} (refv) {xr. 3p. [r=p] x (p —v)}
{p— v} (getp) {Ar. [r=0] * (p—v)}
{p = v} (setpv) {A_. (p— ')}

The operation ref v can execute in the empty state, described by []. It returns a value,
named r, that corresponds to a pointer p, such that the final heap is described by p — v. In
the postcondition, the variable p is quantified existentially, and the pure predicate [r = p] denotes
an equality between the value r and the address p, viewed as an element from the grammar of
values (formalized in Section 2.3.1). The operation get p requires in its precondition the existence
of a cell described by p < v. Its postcondition asserts that the result value, named r, is equal to
the value v, and that the final heap remains described by p < v. The operation set p v’ also
requires a heap described by p < wv. Its postcondition asserts that the updated heap is described
by p < v'. The result value, namely unit, is ignored.

The possibility to state a small-footprint specification for the allocation operation captures an
essential property: the reference cell allocated by ref is implicitly asserted to be distinct from
any pre-existing reference cell. This property can be formally derived by applying the frame
rule to the specification triple for ref. For example, the triple stated below asserts that if a cell
described by ¢ — v’ exists before the allocation operation ref v, then the new cell described by
p — v is distinct from that pre-existing cell. This freshness property is captured by the separating
conjunction (p < v) * (¢ — v') that appears below.

Example 2.1.5 (Application of the frame rule to the specification of allocation)
{qg — UI} (refv) {\r. Ap. [r =p]* (p — v) *x (¢ — 1/)}

The strength of the separating conjunction is even more impressive when involved in the
description of recursive data structures such as mutable lists, which we present next.

2.1.6 Representation of Mutable Lists

A mutable linked list consists of a chain of cells. Each cell contains two fields: the head field stores
a value, which corresponds to an item from the list; the tail field stores either a pointer onto the
next cell in the list, or the null pointer to indicate the end of the list.

Definition 2.1.1 (Representation of a list cell) A list cell allocated at address p, storing the valuev
and the pointer q, is represented by two singleton heap predicates, in the form:

(p.head — x) * (p.tail — q)

where “p.k” is a notation for the address p + k, and “head = 0” and “tail = 1” denote the offsets.

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 14

A mutable linked list is described by a heap predicate of the form Mlist L p, where p denotes
the address of the head cell and L denotes the logical list of the elements stored in the mutable
list. The predicate Mlist is called a representation predicate because it relates the pair made of a
pointer p and of the heap-allocated data structure that originates at p together with the logical
representation of this data structure, namely the list L.

The predicate Mlist is defined recursively on the structure of the list L. If L is the empty list,
then p must be null. Otherwise, L is of the form x :: L’. In this case, the head field of p stores the
item x, and the tail field of p stores a pointer ¢ such that Mlist L’ ¢ describes the tail of the list.
The case disjunction is expressed using Coq’s pattern-matching construct.

Definition 2.1.2 (Representation of a mutable list)

Mlist Lp = match L with
| nil = [p = null]
|z :: L' = 3q. (p-head — x) * (p.tail — q) = (Mlist L' q)

Example 2.1.6 (Application of the predicate Mlist to a list of length 3) To see how Mlist un-
folds on a concrete example, consider the example of a mutable list storing the values 8, 5, and 6.

Mlist(8 ::5:: 6z nil)pg = Ap1. (po.head — 8) * (po.tail — p)
* dpa. (p1.head — 5) * (p1.tail — p2)
* dps. (pa2.head < 6) * (pa.tail — p3)
* [p3 = null]

Observe how the definition of Mlist, by iterating the separating conjunction operator, ensures that
all the list cells are distinct from each other. In particular, Mlist precludes the possibility of cycles
in the linked list, and precludes inadvertent sharing of list cells with other mutable lists.

Definition 2.1.2 characterizes Mlist by case analysis on whether the list L is empty. Another,
equivalent definition instead characterizes Mlist by case analysis on whether the pointer p is null.
This alternative definition is very useful because most list-manipulating programs involve code
that tests whether the list pointer at hand is null.

Definition 2.1.3 (Alternative definition for Mlist)

MlistLp = If (p = null)
then [L = nil]
else 3xL'q. [L = x :: L] » (p.head — x) * (p.tail — q) * (MlistL’ q)

Note that this alternative definition is not recognized as structurally-recursive by Coq. Its state-
ment may be formulated as an equality, and proved correct with respect to Definition 2.1.2.

2.1.7 Operations on Mutable Lists

Consider a function that concatenates two mutable lists in-place. This function expects two point-
ers p1 and po that denote the addresses of two mutable lists described by the logical lists L1 and Lo,
respectively. The first list is assumed to be nonempty. The concatenation operation updates the
last cell of the first list so that it points to ps, the head cell of the second list. After this operation,
the mutable list at address p; is described by the concatenation L1 + Lo.

Example 2.1.7 (Specification of in-place append for mutable lists)

p1 # null = {(Mlist Ly p1) » (Mlist L p2)} (mappendp; p2) {_. Mlist(Ly + Lo) p1}

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 15

Observe how the specification above reflects the fact that the cells of the second list are absorbed
by the first list during the operation. These cells are no longer independently available, hence the
absence of the representation predicate Mlist Ly ps from the postcondition.

Remark (Alternative placement of pure preconditions) The hypothesis p1 # null from the
specification of the append function may be equivalently placed inside the precondition:

{[p1 # null] » (MlistLy py) (MlistLs po)} (mappendpy ps) {_. Mlist(Ly + Ls) p1}.

We follow the convention of placing pure hypotheses as premises outside of triples, as in general it
tends to improve readability.

As second example, consider a function that takes as argument a pointer p to a mutable list, and
allocates an entirely independent copy of that list, made of fresh cells. This function is specified
as shown below. The precondition describes the input list as Mlist L p, and the postcondition
describes the output heap as Mlist Lp » Mlist L p’, where p’ denotes the address of the new list.

Example 2.1.8 (Specification of a copy function for mutable lists)
{Mlist L p} (mcopyp) {Ar. Ip'. [r =p'] » (Mlist L p) » (MlistLp')}

The separating conjunction from the postcondition asserts that the original list and its copy do not
share any cell: they are entirely disjoint from each other. An implementation may be found in Sec-
tion 5.5. The key steps of that proof are summarized next. Details may be found in [Charguéraud,
2020, Appendix E].

Proof The specification of mcopy is proved by induction on the length of the list L. If the list L
is empty, the result p' is the null pointer, and Mlist nilp’ is equivalent to the empty heap predicate.
When the list is nonempty, Mlist L p unfolds as (p.head — x) x (p.tail — q) x (MlistL’ q). The
induction hypothesis allows to assume the specification to hold for the recursive call of mcopy on the
tail of the list, with the precondition Mlist L’ q. Over the scope of that call, the frame rule is used to
put aside the head cell, described by (p.head — x) * (p.tail — q). Let ¢’ denote the result of the
recursive call, and let p’ denote the address of a freshly-allocated list cell storing the value x and the
tail pointer ¢'. The final heap is described by:

(p.head — x) * (p.tail — q) » (MlistL' q) * (p'.head — x) * (p'.tail — ¢') » (MlistL' q')
which may be folded to (Mlist L p) » (Mlist L p"), matching the claimed postcondition.

In the above proof, the frame rule enables reasoning about a recursive call independently of
all the cells that have already been traversed by the outer recursive calls to mcopy. Without the
frame rule, one would have to describe the full list at an arbitrary point during the recursion.
Doing so requires describing the list segment made of cells ranging from the head of the initial
list up to the pointer on which the current recursive call is made. Stating an invariant involving
list segments is doable, yet involves more complex definitions and assertions. More generally, for
a program manipulating tree-shaped data structures, the frame rule saves the need to describe a
tree with a subtree carved out of it, thereby saving a significant amount of proof effort.

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 16

Verification of termination via proofs by induction. The previous example shows the proof
of a recursive function. A key aspect of this proof is that the specification is proved by induction,
using Coq’s support for well-founded induction. More precisely, we aim to establish a specification
for a mutable linked list whose logical model is the Coq list L. By induction principle, we may
assume this specification to hold for any mutable linked list whose logical model is a sublist of
L.! More generally, the CFML framework manipulates total-correctness triples. Hence, when one
establishes a triple for a term, one establishes in particular a proof of termination for that term.

One may wonder what happens if trying to establish a triple for a term that diverges. Consider
for example the definition let rec f x = £ x. The term £ 0 diverges. To establish a triple for the
term f 0, one would need to establish a triple for its body, which is also f 0. Such a hypothesis
may only come from an induction principle, yet there exist no measure or well-founded relation
for which the argument 0 could be viewed as smaller than itself. Thus, a user would get stuck
trying to establish a triple for £ 0. More generally, by virtue of the soundness of the framework,
no total-correctness triple can be established for a term that diverges.

2.1.8 Reasoning about Deallocation

Consider a programming language with explicit deallocation. For such a language, proofs in Sep-
aration Logic guarantee two essential properties: (1) a piece of data is never accessed after its
deallocation, and (2) every allocated piece of data is eventually deallocated.

The operation free p deallocates the reference cell at address p. This deallocation operation
is specified through the following triple, whose precondition describes the cell to be freed by the
predicate p — v, and whose postcondition is empty, reflecting the loss of that cell.

Definition 2.1.4 (Specification of the free operation)

{p = v} (freep) {_. []}

There is no way to get back the predicate p < v once it is given away. Because p < v is required
in the precondition of all operations involving the reference p, Separation Logic ensures that no
operations on p can be performed after its deallocation.

The next examples show how to specify the deallocation of a list cell and of a full list.

Example 2.1.9 (Deallocation of a list cell) The function mfree_cell deallocates a list cell.
{(p.head — x) » (p.tail — q)} (mfree_cellp) {_. []}.

Example 2.1.10 (Deallocation of a mutable list) The function mfree_1list deallocates a list
by recursively deallocating each of its cells. Its implementation is shown below (using ML syntax,
even though the language considered features null pointers and explicit deallocation).

let rec mfree_list p =
if p != null then begin
let g = p.tail in
mfree_cell p;
mfree_list q
end

The specification of mfree_1ist admits the precondition Mlist L p, describing the mutable list to
be freed, and admits an empty postcondition, reflecting the loss of that list.
{Mlist Lp} (mfree_1listp) {_. []}

!Details of the proof of the list copy function may be found in Appendix E of my ICFP’20 paper. The Coq formal-
ization appears in lemma triple_mcopy from: https://softwarefoundations.cis.upenn.edu/slf-current/Repr.html

https://softwarefoundations.cis.upenn.edu/slf-current/Repr.html

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 17

Remark (Languages with implicit garbage collection) Forlanguages equipped with a garbage-
collector, Separation Logic can be adapted to allow freely discarding heap predicates (see Section 3.1).

2.2 Heap Predicates and Entailment

2.2.1 Representation of Heaps

Let loc denote the type of locations, i.e., of memory addresses. This type may be realized using,
e.g., natural numbers. Let val denote the type of values. The grammar of values depends on the
programming language. Its formalization is postponed to Section 2.3.

A heap (i.e., a piece of memory state) may be represented as a finite map from locations to
values. The finiteness property is required to ensure that fresh locations always exist. Let fmap o 8
denote the type of finite maps from a type « to an (inhabited) type .

Definition 2.2.1 (Representation of heaps) The type state is defined as “fmap loc val”.

Thereafter, let h denote a heap, that is, a piece of state. Let hy L hy assert that two heaps
have disjoint domains, i.e., that no location belongs both to the domain of h; and to that of hs.
Let h; w hy denote the union of two disjoint heaps. The union operation is unspecified when
applied to non-disjoint arguments; in other words, it may return arbitrary results for arguments
with overlapping domains.

2.2.2 Heap Predicates

A heap predicate, written H, is a predicate that asserts properties of a heap.

Definition 2.2.2 (Heap predicates) A heap predicate is a predicate of type: state — Prop.

The core heap predicate operators, informally introduced in Section 2.1.2, are realized as pred-
icates over heaps, as shown below and explained next.

Definition 2.2.3 (Core heap predicates)

Operator Notation | Definition

empty predicate [] Ah. h =@

pure fact [P] M. h=@ A P

singleton P v Ah. h=(p—v) A p#null

separating conjunction | Hy x Hy | Ah. 3hpho. hy L ho A h=hywhy A Hihy A Hyho
existential quantifier dx. H Ah. dxz. Hh
universal quantifier V. H Ah. Vx. Hh

The definitions for the core heap predicates all take the form Ah. P, where P denotes a propo-
sition. The empty predicate, written [], characterizes a heap equal to the empty heap, written .
The pure predicate, written [P], also characterizes an empty heap, and moreover asserts that
the proposition P is true. The singleton heap predicate, written p — wv, characterizes a heap
described by a singleton map, written p — v, which binds p to v. This predicate embeds the
property p # null, capturing the invariant that no data may be allocated at the null location. The
separating conjunction, written H; * Hy, characterizes a heap h that decomposes as the disjoint
union of two heaps hy and ho, with h; satisfying H; and hs satisfying Hs. The existential and
universal quantifiers of Separation Logic allow quantifying entities at the level of heap predicates

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 18

(state — Prop), in contrast to the standard Coq quantifiers that operate at the level of proposi-
tions (Prop). Note that the quantifiers 3z. H and ¥x. H may quantify values of any type, without
restriction. In particular, they allow quantifying over heap predicates or proof terms.

Remark (Encodings between the empty and the pure heap predicate) In Cog, the pure heap
predicate [P] can be encoded as “A(p : P).[], that is, by quantifying over the existence of a proof
term p for the proposition P. Note that the empty heap predicate [| is equivalent to | True].

Remark (Other heap predicate operators) Traditional presentations of Separation Logic include
four additional operators, L, T, w, and m. These four operators may be encoded in terms of the ones
from Definition 2.2.3, with the help of Coq’s conditional construct. The table below presents the rele-
vant encodings, in addition to providing direct definitions of these operators as predicates over heaps.

Operator Notation | Definition Encoding

bottom 1 Ah. False [False]

top T Ah. True 3(H : state — Prop). H
disjunction Hy w Hy | Ah. (Hih v Hah) | 3(b: bool). If b then H; else Ho
non-separating conjunction | H; n Hy | Ah. (H1h A Hah) | ¥(b: bool). If b then Hy else Ho

Definition 2.2.4 (Representation predicate for lists defined with disjunction) The represen-
tation predicate for lists introduced in Definition 2.1.6 can be reformulated using the disjunction op-
erator instead of relying on pattern-matching. The corresponding definition, which may be useful if
the host logic does not feature a pattern-matching construct, is as follows.

MiistLp= ([p = null] » [L = nil])

v ([p # null] « 3zL'q. [L =z :: L'] * (p.head —) (p.tail — q) » (MlistL’ q))
2.2.3 Entailment
The entailment relation, written Hy - Ha, asserts that any heap satisfying H; also satisfies Ho.
Definition 2.2.5 (Entailment relation)

Hi+Hy, = VYh.Hih= Hyh

Entailment is used to state reasoning rules and to state properties of the heap predicates operators.
The entailment relation defines an order relation on the set of heap predicates.

Lemma 2.2.1 (Entailment defines an order on the set of heap predicates)

HIMPL-REFL HIMPL-TRANS HIMPL-ANTISYM
H, + H, Hy +— Hj H, + H, Hy — Hy
H+H H, +— Hj Hy = Hy

The antisymmetry property concludes on an equality between two heap predicates. To es-
tablish such an equality, it is necessary to exploit the principle of predicate extensionality. This
principle asserts that if two predicates P and P’, when applied to any argument z, yield logically
equivalent propositions, then these two predicates can be considered equal in the logic.? The anti-
symmetry property plays a critical role for stating the key properties of Separation Logic operators
in the form of equalities, as detailed next.

% In proof assistants such as HOL or Isabelle/HOL, extensionality is built-in. In Cog, it needs to be either axiom-
atized, or derived from two more fundamental extensionality axioms: extensionality for functions and extensionality

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 19

There are 6 fundamental properties of the separating conjunction operator. The first three
capture the fact that (x,[]) forms a commutative monoid: the star is associative, commutative,
and admits the empty heap predicate as neutral element. The next two describe how quantifiers
may be extruded from arguments of the star operator. The extraction rule STAR-EXISTS is stated
using an equality because the entailment relation holds in both directions. On the contrary, the
extraction rule STAR-FORALL is stated using a simple entailment relation because the reciprocal
entailment does not hold—for a counterexample, consider the case where the type of x is inhabited.
The last rule, STAR-MONOTONE-R, describes a monotonicity property; it is explained afterwards.

Lemma 2.2.2 (Fundamental properties of the star)

STAR-ASSOC: (Hy > Hy) x Hy = Hy * (Hg * H3)

STAR-COMM: Hy~Hy = Hox Hy

STAR-NEUTRAL-R: Hx[] = H

STAR-EXISTS: (Jz. Hy) » Hy = Jx.(H; * H?) (ifz ¢ Hy)

STAR-FORALL: (VI‘ Hl) * Hy + V. (Hl * H2) (lfIE ¢ Hg)
Hy - Hy

STAR-MONOTONE-R: n
Hy ~ Hy Hl * Hy

The monotonicity rule STAR-MONOTONE-R can be read from bottom to top: when facing a proof
obligation of the form H; x Hy - H{ » Hs, one may cancel out Hy on both sides, leaving the proof
obligation H; + Hj.

Remark (Symmetric version of the monotonicity rule) The monotonicity rule may be equiv-
alently presented in its symmetric form, stated below.
Hi+H i Hy Hé
Hi~Hy,+— H i * H. é

STAR-MONOTONE

The useful properties of entailment involving pure facts and quantifiers appear in Figure 2.1.
The application of a number of reasoning rules for entailment can be automated by means of a tac-
tic. One such tactic, called xsimpl, is illustrated in Section 5.5, and is specified in [Charguéraud,
2020, Appendix G]. Other properties may also be derived, such as ([P]| * [P2]) = [P1 A P»]. Yet,
when a simplification tactic is available, one does not need to state such properties explicitly.

The entailment relation may be employed to express how a specific piece of information can be
extracted from a given heap predicate. For example, from p < v, one can extract the information
p # null. Likewise, from a heap predicate of the form p < v xp < vy, where the same location p
is described twice, one can derive a contradiction, because the separating conjunction asserts
disjointness. These two results are formalized as follows.

Lemma 2.2.3 (Properties of the singleton heap predicate)

SINGLE-NOT-NULL: (p — v) F (p < v) * [p # null]
SINGLE-CONFLICT: (p <> v1) * (p <> v2) F [False]

for propositions. These standard axioms are formally stated as follows.

PREDICATE-EXTENSIONALITY: VA. V(PP :A—Prop). (Pze Pz) = (P=P)
FUNCTIONAL-EXTENSIONALITY: VAB. VY(ff':A— B). (fz=fz) = (f=f)
PROPOSITIONAL-EXTENSIONALITY: V(P P’ : Prop). (PesP) = (P=P)

In practice, we take FUNCTIONAL-EXTENSIONALITY and PROPOSITIONAL-EXTENSIONALITY as axioms in Coq, then derive
PREDICATE-EXTENSIONALITY from these two.

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 20

PURE-L EXISTS-L FORALL-L EXISTS-MONOTONE
P = (H+ H) Vz. (H+ H') ([a/x] H) +— H' Vr. (H +— H')
([P]* H) + H' (3. H) + H’ (Vz.H) — H’ (3z. H) + (Fz. H')
PURE-R EXISTS-R FORALL-R FORALL-MONOTONE
(H-H') P H+ ([a/z] H') Va. (H +— H') Vz. (H + H')
H+ (H'*[P]) H+ (Jz. H') Ht+ (Vz.H') (Va.H) + (Vz. H')

Figure 2.1: Useful properties for pure facts and quantifiers, with respect to entailment.

2.2.4 Generalization to Postconditions

In the imperative A-calculus considered in this manuscript and formalized further on (Section 2.3),
a term evaluates to a value. A postcondition thus describes both an output value and an output
state.

Definition 2.2.6 (Type of postconditions) A postcondition has type: val — state — Prop.

Thereafter, we let () range over postconditions. To obtain concise statements of the reasoning
rules, it is convenient to extend separating conjunction and entailment to operate on postcondi-
tions. To that end, we generalize H x H and H H' by introducing the predicate) * H" and
the judgment @ - @', written with a dot to suggest pointwise extension. These two predicates are
formalized next.

Definition 2.2.7 (Separating conjunction between a postcondition and a heap predicate)
Q+H = M. (QuxH)

This operator appears for example in the statement of the frame rule (recall Section 2.1.1).
The entailment relation for postconditions is a pointwise extension of the entailment relation
for heap predicates: @) entails Q' if and only if, for any value v, the heap predicate Q v entails

Q' v.

Definition 2.2.8 (Entailment between postconditions)
QL Q = Y. (Qui Q)

This entailment defines an order on postconditions. It appears for example in the statement of the
consequence rule, which allows strengthening the precondition and weakening the postcondition.

HeH {H}t{Q} Q'kQ
{H} t{Q}

CONSEQUENCE

2.3 Language Syntax and Semantics

The definition of triples depends on the details of the programming language. Thus, let us first
describe the syntax and the semantics of terms.

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 21

2.3.1 Syntax

We consider an imperative call-by-value A-calculus. The syntactic categories are primitive func-
tions m, values v, and terms ¢. The grammar of values is intended to denote closed values, that is,
values without occurrences of free variables. This design choice leads to a simple term-substitution
function, which may be defined as the identity over all values.

The primitive operations fall in two categories. First, they include the state-manipulating op-
erations for allocating, reading, writing, and deallocating references. Second, they include Boolean
and arithmetic operations. For brevity, we include only the addition and division operations.

The values include the unit value #, boolean literals b, integer literals n, memory locations p,
primitive operations 7, and recursive functions /i f.Ax.t. The latter construct is written with a hat
symbol to denote the fact this value is closed.

The terms include variables, values, function invocation, sequence, let-bindings, conditionals,
and function definitions. The latter construct is written p f.Ax.¢, this time without a hat symbol.

Definition 2.3.1 (Syntax of the language)

ref | get | set | free | (+) | (=)
v o= #|b|n|p| x| ipfiet
t = wl|ax| (tt) | letx =tint | ift thentelset | uf.\x.t

A non-recursive function Ax.t may be viewed as a recursive function pf.Ax.t with a dummy
name f. Likewise, a sequence (¢; ; t2) may be viewed as a let-binding of the form let x = ¢ into
for a dummy name x. Our Coq formalization actually includes these two constructs explicitly
in the grammar to avoid unnecessary complications associated with the elimination of dummy
variables.

Restriction to A-normal form. Although our syntax technically allows for arbitrary terms,
for simplicity we assume in this chapter terms to be written in “administrative normal form” (A-
normal form). In A-normal form, “let z = 1 int2” is the sole sequencing construct: no sequencing
is implicit in any other construct. For instance, the conditional construct “if ¢y then ¢ else t2”,
where % is not a value, must be encoded as “let x = ¢ inif = then ¢; else ¢t3”. This presentation
is intended to simplify the statement of the evaluation rules and reasoning rules. Note that many
practical program verification tools perform code A-normalization as a preliminary step. Never-
theless, in Section 3.2, we present the bind rule, which allows to reason about a subterm in an
evaluation context, and thereby handle programs that are not in A-normal form.

Details on the syntax of function definitions. In the grammar of terms, pf.Az.t denotes
a function definition, where the body ¢ may refer to free variables. In the grammar of values,
ff.Ax.t denotes a closure, that is, a closed recursive function, without any free variable. The
distinction between functions and closed functions usually does not appear in research papers.
It appears, however, naturally in mechanized formalization. We define the type val for closed
values in mutual recursion with the type trm for terms.

Inductive val:Type :=
|[val_int:int —»val
|val_fix:var - var - trm—val

with trm: Type :=
|trm_val:val —»trm
| trm_var:var —trm

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 22

|trm_fix:var -»var - trm—trm

The fundamental benefit of considering a grammar for closed values is that the substitution

operation needs not traverse values.
Fixpoint subst (y:var) (w:val) (t:trm): trm:=

match t with

|trm_val v=trm_valv (* no traversal of v *)

|trm_varx=1if var_eqxy thentrm_valwelset

|[trm_fixfxtl=trm_fixfx(if var_eqyf|var_eqyx

thentl elsesubstywt1l)

If values were allowed to contain free variables, we would indeed save the need to distinguish
between pf.Ax.t and o f Ax.t (a.k.a. trm_fix and val_fix). However, we would need to carry
around invariants of the form “the function f is closed”. To see why, assume that f is a function
defined as p f.Az.t and for which a specification triple has already been established, and consider
the example program leta = 3in f a. To reason about this program, one needs to reason about
the term ([3/a] f) ([3/a] a). One naturally expects this term to simplify to f 3. Yet, the equality
[3/a] f = f only holds under the knowledge that f is a closed value.

Checking that f is closed may be easily verified by a syntactic operation, but only if the def-
inition of f is available—this is not the case in the presence of abstraction barriers. For example,
if f is a function coming from a module taken as argument of a functor, then the definition of
f is not available. In such case, the interface that provides f must be accompanied by a lemma
asserting that f is a closed value. Stating and exploiting such lemmas would induce a significant
overhead in practice. We avoid the issue altogether by considering a grammar for closed values,
associating to the type val the property that its inhabitants are closed values.

A second motivation for closed values is performance of proof-checking. If we do not dis-
tinguish between pf.Ax.t and ff.Ax.t, then the syntactic check performed to establish that a
function definition is a closed value would need to traversing not only the body of that function,
but also the body of all the functions that it refers to. Likewise, the substitution function would
need to traverse in depth through all values, and would need to recurse through functions that
appear inside those values, and through values and functions that appear inside those functions.

2.3.2 Semantics

Thereafter, we use the meta-variable s to denote a variable of type state that corresponds to a full
memory state at a given point in the execution, in contrast to the meta-variable h, which denotes
a heap that may correspond to only a piece of the memory state.

The semantics of the language is described by the big-step judgment ¢/s || v/s’, which asserts
that the term ¢, starting from the state s, evaluates to the value v and the final state s’.

Definition 2.3.2 (Semantics of the language) The evaluation rules appear in Figure 2.2.

The rules are standard. A value evaluates to itself. Likewise, a function evaluates to itself. The
evaluation rules for function calls and let-bindings involve the standard (capture-avoiding) substi-
tution operation: [v/z]t denotes the substitution of by v throughout the term ¢. The evaluation
rule for conditionals is stated concisely using Coq’s conditional construct. The primitive opera-
tions on reference cells are described using operations on finite maps: dom s denotes the domain
of the state s, the operation s[p] returns the value associated with p, the operation s \ p removes
the binding on p, and the operation s[p := v] sets or updates a binding from p to v.

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 23

BIG-APP
BIG-VAL BIG-FIX vy = /lf)\xt (['UQ/I'] [vl/f] t)/S U 'U//S/
v/s | v/s (ufAxt)/s | (fAx.t)/s (viv2)/s || v'/s
BIG-LET BIG-IF
t1/s | v1/s ([v1/z]t2)/s" | v/s" If bthen (t1/s || v'/s') else (ta/s | v'/s)
(letx = tiints)/s | v/s" (if b then ty else t2)/s | v'/s
BIG-REF BIG-FREE BIG-GET
p ¢ doms p € dom s p € dom s
(refv)/s § p/(s[p :=v]) (freep)/s I /(s ~ p) (getp)/s I (s[p])/s
BIG-SET BIG-DIV
p € doms BIG-ADD ne # 0

(setpuv)/s I tt/(slp:=0]) ((+)nina)/s§ (m+n2)/s ((+)ninz)/s | (n1+ng)/s

Figure 2.2: Evaluation rules, in big-step style

Observe that the rules of Figure 2.2 define a semantics that is deterministic up to the choice of
memory locations. In Chapter 4, we extend the semantics with a nondeterministic construct.

2.4 Triples and Reasoning Rules

2.4.1 Separation Logic Triples

Separation Logic is a refinement of Hoare logic. Interestingly, Separation Logic triples can be
defined in terms of Hoare triples. A Hoare triple, written HFOARE{ [T} ¢ { ()}, asserts that in any state
s satisfying the precondition H, the evaluation of the term ¢ terminates and produces output value
v and output state s, as described by the evaluation judgment ¢/s | v/s’. Moreover, the output
value and output state satisfy the postcondition @, in the sense that Q v s’ holds. This definition
captures termination: it defines a total correctness triple.

Definition 2.4.1 (Total correctness Hoare triple)
HOAREA IV t{Q} = Vs.Hs = Jv.35. (t/s | v/s') A (Qus')

Such Hoare triples do not yet give Separation Logic reasoning, because they lack support for
the frame rule (presented in Section 2.1.1). Let us see why.

Counterexample (The Hoare triples defined above do not satisfy the frame rule)

The BIG-REF evaluation rule associated with the definition of the big-step judgment asserts that a term
of the form “refv” may evaluate to any fresh memory location. Thus, we can prove that, starting from
an empty heap, the program refb returns a specific memory location, say the address number 2. We
are therefore able to establish the triple: @ {[]} (ref5) {\p. [p = 2] * (2 < 5)}, where p denotes
the address of the fresh location, specified to be equal to 2.

To see why the judgment does not satisfy the frame rule, let us attempt to extend the pre- and the
postcondition of this triple with the heap predicate 2 — 6, which denotes a reference at location 2
storing the value 6. If the frame rule were to hold on Hoare triples, we would be able to derive:
Hoare {9« 6} (ref5) {M\p. [p = 2] * (2 — 5) * (2 — 6)}. This triple does not hold because,

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 24

even though the precondition is satisfiable, and even though the program ref5 evaluates safely, the
separating conjunction (2 < 5) x (2 < 6) that appears in the postcondition is equivalent to | False]
by the rule SINGLE-CONFLICT (Section 2.2.3). Hence, we derive a contradiction. []

Whereas a Hoare triple describes the evaluation of a term with respect to the whole memory
state, a Separation Logic triple describes the evaluation of a term with respect to only a fragment
of the memory state. To relate the two concepts, it suffices to quantify over “the rest of the state”,
that is, the part of the state that the evaluation of the term is not concerned with.

A Separation Logic triple, written { H} ¢ {Q}, asserts that, for any heap predicate H' describ-
ing the “rest of the state”, the Hoare triple "OARE{ [T « H'} ¢ {Q) + H'} holds. This formulation
effectively bakes in the frame rule, by asserting from the very beginning that specifications are
intended to preserve any resource that is not mentioned in the precondition.

Definition 2.4.2 (Total correctness Separation Logic triple)
{H}t{Q} = VH . TOH«H}+{Q+H'}

To fully grasp the meaning of a Separation Logic triple, it helps to consider an alternative
definition expressed directly with respect to the evaluation judgment. This alternative, provably-
equivalent definition is shown below. It reads as follows: if the input state decomposes as a part i
that satisfies the precondition H and a disjoint part hg that describes the rest of the state, then the
term ¢ terminates on a value v, producing a heap made of a part k] and, disjointly, the part ho which
was unmodified; moreover, the value v and the heap h/ together satisfy the postcondition Q.

Definition 2.4.3 (Alternative definition of total correctness Separation Logic triples)

o hh L hy
{H}t{Q} = VYhi.Vhs. { hljhz = Ju.3K). { t/(h1 why) | v/(K) @ hy)
Quhi

The two definitions of triples shown above are appropriate for semantics that are deterministic,
or deterministic up to the choice of memory locations. In Chapter 4, we present an alternative
definition well-suited for the more general case of nondeterministic semantics.

The reasoning rules of Separation Logic fall in three categories. First, the structural rules:
they do not depend on the details of the language. Second, the reasoning rules for terms: there
is one such rule for each term construct of the language. Third, the specification of the primitive
operations: there is one such rule for each primitive operation. All these rules are presented next.

2.4.2 Structural Rules

The structural rules of Separation Logic include the consequence rule and the frame rule, which
were already discussed, and two rules for extracting pure facts and existential quantifiers out of
preconditions. (The role of these extraction rules is illustrated in the example proof presented
[Charguéraud, 2020, Appendix D].)

Lemma 2.4.1 (Structural rules of Separation Logic) The following reasoning rules can be stated
as lemmas and proved correct with respect to the interpretation of triples given by Definition 2.4.2.

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 25

CONSEQUENCE FRAME
Hi-H {H}t{Q} QrQ {H} t{Q}
{H} t{Q} {HxH'}t{Q+H'}
PROP EXISTS
P = {H}t{Q} Va. {H} t {Q}
{[P]* H} t{Q} {3z. H} £ {Q}

The frame rule may be exploited in practice as a forward reasoning rule: given a triple { H} ¢ {Q},
one may derive another triple by extending both the precondition and the postcondition with a
heap predicate H'. This rule is, however, almost unusable as a backward reasoning rule: indeed, it
is extremely rare for a proof obligation to be exactly of the form {H « H'} ¢ {Q H'}. In order to
exploit the frame rule in backward reasoning, one usually needs to first invoke the consequence
rule. The effect of a combined application of the consequence rule followed with the frame rule is
captured by the combined consequence-frame rule, stated below.

Lemma 2.4.2 (Combined consequence-frame rule)

H+ H, ~ Hy {H1} t {Q1} Qi *Hay=Q
{H}t{Q}

This combined rule applies to a proof obligation of the form { H} ¢ {Q}, with no constraints on
the precondition nor the postcondition. To prove this triple from an existing triple {H1} t {Q1},
it suffices to show that the precondition H decomposes as H; * Ho, and to show that the post-
condition () can be recovered from QQ; * Ho. The “framed” heap predicate Hy can be computed
as the difference between H and H;. In practice, though, rather than trying to instantiate Hy in
the consequence-frame rule, it may be more effective to exploit the ramified frame rule presented
further on (Section 2.5.3).

CONSEQUENCE-FRAME

2.4.3 Rules for Terms

The program logic includes one rule for each term construct. The corresponding rules are stated
below and explained next.

Lemma 2.4.3 (Reasoning rules for terms in Separation Logic) The following rules can be stated
as lemmas and proved correct with respect to the interpretation of triples given in Definition 2.4.2.

He@Qv) - He@QGfAed) v=jfet {H) (vo/a) [o/f10) {Q}

(Hyo{Q} " {HY (nfret) {Q) {H} (v1v2) {Q} ”’
U Dot} (Y 61Q) - {H) Q) Yo (Q) (/e (@)
(H} (t1; 12) {Q) {H} (letz — t1 int>) {Q}
b=true = {H} t; {Q} b= false = {H} t3 {Q} -

{H} (if b then t; else t2) {Q}

The rules vaL and Fix apply to terms that correspond to closed values. A value evaluates to
itself, without modifying the state. If the heap at hand is described in the precondition by the
heap predicate H, then this heap, together with the value v, should satisfy the postcondition. This
implication is captured by the premise H () v. Note that the rules vaL and Fix can also be
formulated using triples featuring an empty precondition.

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 26

Lemma 2.4.4 (Small-footprint reasoning rules for values)

>

VAL FIx’

{[1} o {Ar.[r =]} {1} (ufAzt) {Ar.[r = (af Az-t)]}

The app rule merely reformulates the -reduction rule. It asserts that reasoning about the
application of a function to a particular argument amounts to reasoning about the body of this
function in which the name of the argument gets substituted with the value of the argument
involved in the application. This rule is typically exploited to begin the proof of the specification
triple for a function. Once established, such a specification triple may be invoked for reasoning
about calls to that function.

The sEQ rule asserts that a sequence “¢; ; t2” admits precondition H and postcondition ()
provided that ¢; admits the precondition H and a postcondition describing a heap satisfying H’,
and that 5 admits the precondition H' and the postcondition Q. The result value v produced by 1
is ignored.

The LET rule enables reasoning about a let-binding of the form “letx = t;inty”. It reads
as follows. Assume that, in the current heap described by H, the evaluation of ¢; produces a
postcondition ’. Assume also that, for any value v that the evaluation of ¢; might produce, the
evaluation of [v/x] t2 in a heap described by @’ v produces the postcondition Q). Then, under the
precondition H, the term “let x = ¢ inty” produces the postcondition Q).

The 1F rule enables reasoning about a conditional. Its statement features two premises: one
for the case where the condition is the value true, and one for the case where it is the value false.

2.4.4 Specification of Primitive Operations

The third and last category of reasoning rules corresponds to the specification of the primitive op-
erations of the language. The operations on references have already been discussed (Section 2.1.5
and Section 2.1.8). The arithmetic operations admit specifications that involve only empty heaps.

Lemma 2.4.5 (Specification for primitive operations)

([} (refv) (A 3p. [r=p] (p—0))
GET: {p—v} (getp) {M. [r=v]*(p—v)}
SET: {p—v} (setpv) {I_. (p—=1)}

FREE: {p—v} (freep) {I_. []}

ADD: {[1} (+)n1na) {Mr. [r=mn1+ na]}

DIV: no #0 = {[]|} ((+)n1n2) {Ar. [r=n1+n2]}

This completes the presentation of the reasoning rules of Separation Logic. Technically, these
18 reasoning rules suffice to verify imperative programs, although additional infrastructure helps
obtain more concise proof scripts. The Coq formalization of the material from Section 2.2, Sec-
tion 2.3, and Section 2.4 amount to 564 non-blank lines of Coq script. It includes 23 definitions,
59 lemmas, 24 lines of tactic definitions, and 117 lines of proofs. The corresponding formalization
may be found in the file called LibSepMinimal.v distributed with the Separation Logic Foundation
course [Charguéraud, 2021].

2.5 The Magic Wand Operator

2.5.1 Definition and Properties of the Magic Wand

The magic wand, also known as separating implication, is an additional heap predicate operator,
written H; —Ho, and read “H; wand Hy”. Although it is technically possible to carry out all

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 27

Separation Logic proofs without the magic wand, this operator helps to state several reasoning
rules and specifications more concisely.

Intuitively, H; —xH> defines a heap predicate such that, if starred with Hj, it produces Ho.
In other words, the magic wand satisfies the cancellation rule Hy x (H; —«Hs3) - Hs. The magic
wand operator can be formally defined in at least four different ways.

Definition 2.5.1 (Magic wand) The magic wand operator is equivalently characterized by:
1. Hy—+Hy = M. (YW.h LW A HN = Hy(hwh'))
2. Hy—=H; = 3Hy. Ho*[(H,* Hy) + Ha]
3. Hyr (Hy —+H2) < (Hy*»Hy)+ Ho
4

H, —«H, satisfies the following introduction and elimination rules.

(Hl * H()) — Ho
WAND-INTRO WAND-CANCEL
Hy + (Hy —+H>) Hy » (Hy —+«H>) + H>

The first characterization asserts that H; -« H» holds of a heap h if and only if, for any disjoint
heap I’ satisfying H7, the union of the two heaps h w b’ satisfies H».

The second characterization describes a heap satisfying a predicate Hy that, when starred with
H; entails H5. This characterization shows that the magic wand can be encoded using previously-
introduced concepts from higher-order Separation Logic.

The third characterization consists of an equivalence that provides both an introduction rule
and an elimination rule. The left-to-right direction is equivalent to the cancellation rule waND-
CANCEL stated in definition (4). The right-to-left direction corresponds exactly to the introduction
rule from definition (4), namely wAND-INTRO, which reads as follows: to show that a heap de-
scribed by Hj satisfies the magic wand H; » Hy, it suffices to prove that H; starred with H
entails Ho.

Each of these four characterizations of the magic wand operator have appeared in various
papers on Separation Logic, yet Charguéraud [2020] appears to provide the first mechanized proof
of their equivalence.

In practice, the properties stated below are useful for working with the magic wand and for im-
plementing a tactic that simplifies the proof obligations that arise from the ramified frame rule (Sec-
tion 2.5.3).

Lemma 2.5.1 (Useful properties of the magic wand)

WAND-MONOTONE WAND-SELF WAND-PURE-L

H — H Hy + H) P

(Hy —Hj) +~ (Hj —~Hy) [] ~ (H—=H) ([Pl =H) = H
WAND-CURRY WAND-STAR
((Hy* Hy) =«H3) = (Hy —(Hz —~H3)) ((Hy —«Ha3) » H3) = (Hy —(Hz * H3))

Lemma 2.5.2 (Partial concellation of a magic wand) If the left-hand side of a magic wand in-
volves the separating conjunction of several heap predicates, it is possible to cancel out just one of
them with an occurrence of the same heap predicate occurring outside the magic wand. For example,
the entailment Hy x ((H1 * Hy » H3) —*H4) [((H1 * H3) —*H4) is obtained by cancelling Ho.

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 28

2.5.2 Magic Wand for Postconditions

Just as useful as the magic wand is its generalization to postconditions, which is involved for
example in the statement of the ramified frame rule (Section 2.5.3). This operator, written Q)1+ Q2,
takes as argument two postconditions ()1 and ()2 and produces a heap predicate.

Definition 2.5.2 (Magic wand for postconditions) The operator (-) is equivalently defined by:

Q1 Q2 = Yu. ((Q1v) *(Q2v))

Qi Qy = M. (Yol h LK A Qroll = Qouv(hwh))
Q1 Q2 = 3Hy. Ho~*[(Q1+* Ho) = Q2]

Ho = (Q1~ Q2) < (Qu+xHo)k Q2

Q1 ~ Q2 satisfies the following introduction and elimination rules.

(Q1* Hp) = Q2
Hoy = (Q1~ Q)

A R

QWAND-INTRO QWAND-CANCEL

Q1% (Q1~ Q2) = Q2

Lemma 2.5.3 (Useful properties of the magic wand for postconditions)

QWAND-MONOTONE QWAND-SELF
Qi+ Q1 Qb Q
(Q1~ Q2) F (Q) ~ Q3) [] - (@~ Q)
QWAND-STAR QWAND-SPECIALIZE
(Q1~ Q2)* H) - (Q1~ (Q2x H)) (Q~ Q2) F ((Q1v) = (Q2v))

2.5.3 Ramified Frame Rule

One key practical application of the magic wand operator appears in the statement of the ramified
frame rule. This rule reformulates the consequence-frame rule in a manner that is both more
concise and better-suited for automated processing. Recall the rule CONSEQUENCE-FRAME, which
is reproduced below. To exploit it, one must provide a predicate Hy describing the “framed” part.
Providing the heap predicate H2 by hand in proofs involves a prohibitive amount of work; it is
strongly desirable that H may be inferred automatically.

The predicate Hy can be computed as the difference between H and H;. Automatically com-
puting this difference is relatively straightforward in simple cases, however this task becomes quite
challenging when H and H; involve numerous quantifiers. Indeed, it is not obvious to determine
which quantifiers from H should be cancelled against those from H, and which quantifiers should
be carried over to Ho.

The benefit of the ramified frame rule is that it eliminates the problem altogether. The key
idea is to observe that the premise Q)1 * Hy = () from the CONSEQUENCE-FRAME rule is equivalent
to Hy = (Q1 = @), by the 4th characterization of Definition 2.5.2. Thus, in the other premise
H + H; x H», the heap predicate H may be replaced with)1 — (). The RAMIFIED-FRAME rule
appears below.

Lemma 2.5.4 (Ramified frame rule) RAMIFIED-FRAME reformulates CONSEQUENCE-FRAME.

CONSEQUENCE-FRAME RAMIFIED-FRAME
H+ Hy~ Hy {Hi}t{Q1} Q1+ Ho = Q {H1} t {Q1} HEF-H »(Q1~ Q)

{H} t{Q} {H} t{Q}

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 29

2.6 Weakest-Precondition Style

2.6.1 Semantic Weakest Precondition

The notion of weakest precondition has been used pervasively in the development of automated
tools based on Hoare logic. Work on the Iris framework [Jung et al., 2015] has shown that this
notion also helps to streamline the set up of interactive tools based on Separation Logic.

The semantic weakest precondition of a term ¢ with respect to a postcondition () denotes a heap
predicate, written wp t (), which corresponds to the weakest precondition H satisfying the triple
{H} t {Q}. The notion of “weakest” is to be understood with respect to the entailment relation,
which induces an order relation on the set of heap predicates (recall Lemma 2.2.1). The definition
of the predicate wp can be formalized in at least five different ways. The corresponding definitions
are shown below and commented next.

Definition 2.6.1 (Semantic weakest precondition) The predicate wp is equivalently character-
ized by:

wptQ = ming) { H | {H}t{Q}}

({wptQ}t{Q}) ~ (VH. {H}t{Q} = H I+ wptQ)
wpt@ = Mh. ({AR.B =h}t{Q})

wptQ = IH. H = [{H} t {Q}]

Hi-wptQ < {H}t{Q}

A

The first characterization asserts that wp ¢t () is the weakest precondition: it is a valid precondi-
tion for a triple for the term ¢ with the postcondition (). Moreover, any other valid precondition H
for a triple involving ¢ and @) entails wp t Q.

The second characterization consists of a reformulation of the first characterization in terms
of basic logic operators.

The third characterization defines wp ¢t () as a predicate over a heap h, asserting that wpt Q)
holds of the heap & if and only if the evaluation of the term starting from a heap equal to h produces
the postcondition Q).

The fourth characterization asserts that wp ¢ () is entailed by any heap predicate H satisfying
the triple { H} t {Q}. This characterization shows that the notion of weakest precondition can be
expressed as a derived notion in terms of the core heap predicate operators.

The fifth characterization asserts that any triple of the form {H} ¢ {Q}} may be equivalently
reformulated by replacing this triple with H - wpt Q).

Here again, Charguéraud [2020] appears to provide the first mechanized proof of equivalence
relating all these well-known characterizations of the weakest-precondition operator. Yet another
possible definition of wp will be presented in Chapter 4, with a judgment defined as a generalized
form of inductive big-step semantics.

The developer of a practical tool based on Separation Logic may choose to take either triples
or weakest-preconditions as a primitive notion; the other notion may then be derived in terms of
that primitive notion. Concretely, the notion of triple may be defined in terms of wp using char-
acterization (5), in the right-to-left direction. Reciprocally, the definition of wp may be defined
in terms of triples, with a choice for the encoding that depends on the strength of the host logic
with respect to existential quantification: Definition (3) makes weaker assumptions, whereas Def-
inition (4) leverages the ability to existentially quantify over heap predicates. We have found that
using Definition (4), which is expressed at the level of heap predicates, helps to simplify and to
automate proofs.

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 30

2.6.2 WP-Style Structural Rules

The structural reasoning rule can be reformulated in weakest-precondition style, as follows.

Lemma 2.6.1 (Structural rules in weakest-precondition style)

- /
QFQ - WP-CONSEQUENCE WP-FRAME
wptQ = wpt@ (wpt Q)+ H = wpt(Q* H)

The rule wP-CONSEQUENCE captures a monotonicity property. The rule wp-FRAME reads as
follows: if I own a heap in which the execution of t produces the postcondition (), and, separately, I
own a heap satisfying H, then, altogether, I own a heap in which the execution of t produces both Q)
and H. These two structural rules may be combined into a single rule, called WP-RAMIFIED-FRAME.
This rule alone suffices to capture all the structural properties of Separation Logic.

Lemma 2.6.2 (Ramified frame rule in weakest-precondition style)

WP-RAMIFIED-FRAME

(wpt Q) * (Q ~ Q') - (wpt Q')

2.6.3 WP-Style Rules For Terms

The weakest-precondition style reformulation of the reasoning rules for terms yields rules that are
similar to the corresponding Hoare logic rules. For example, the rule for sequence is as follows.

WP-SEQ
wpti (Av. wpta Q) = wp (t1; t2) Q
This rule can be read as follows: if I own a heap in which the execution of t| produces a heap in

which the execution of to produces the postcondition (), then I own a heap in which the execution of
the sequence ‘ty ; ta” produces (. The other reasoning rules for terms appear below.

Lemma 2.6.3 (Reasoning rules for terms in weakest-precondition style)

WP-VAL WP-FIX We-APP
v1 = pf.Ax.t

Qv+ wpv@ Q(af x.t) = wp(ufAx.t)Q wp ([va/x] [v1/f]t) Q + wp(v1v2) @

wpty (Av. wp ([v/x]t2) Q) + wp(letx =ty ints) Q WP-LET

Ifb then (wpty Q) else (wpta Q) + wp (if b then ty else t2) Q W

2.6.4 WP-Style Function Specifications

Function specifications were so far expressed using triples of the form {H} (fv) {Q}. These
specifications may be equivalently expressed using assertions of the form H wp (f v) Q.

The primitive operations are specified using wp as shown below. For example, the allocation
operation ref v produces a postcondition (), provided that the result of extending the current pre-
condition with p < v yields @ p. In the formal statement of the specification Wp-REF, observe
how the fresh address p is quantified universally in the left-hand side of the entailment.

CHAPTER 2. FOUNDATIONS OF SEPARATION LOGIC 31

Lemma 2.6.4 (Specification of primitive operations in weakest-precondition style)

wersr: YQu. (V. (p— v) +(@P)) - wp (ref) Q
wrceT: VQp. (0 —) % ((p = v) =(Q)) I wp (getp) Q
WP-SET : VQpuv'. (p—wv)* (¥r. (p—v)=(Qr)) - wp(setpv') Q
WP-FREE : VQpo. (p — v) * (¥r. (Qr)) - wp(freep) Q

Remark: wp-seT and wp-FREE can also be stated by specializing the variable r to the unit value tt.

There exists a general pattern for translating from conventional triples to weakest-precondition
style specifications. The following lemma covers the case of a specification involving a single aux-
iliary variable named z. It may easily be generalized to a larger number of auxiliary variables.

Lemma 2.6.5 (Specifications in weakest-precondition style) Let v denote a value that may
depend on a variable x, and let H' denote a heap predicate that may depend on the variables x andr.

({H}t {3 Fz. [r=v]*H'}) = (VQ.H* (Vz. H +(Qv)) - wptQ)

Stating specifications in weakest-precondition style is not at all mandatory for working with
reasoning rules in weakest-precondition style. Indeed, as we do in CFML, it is possible to continue
stating specifications using conventional triples, which are more intuitive to read. In that setting
(presented in Section 5.6), we exploit the following rule for reasoning about every function call.

Lemma 2.6.6 (Variant of the ramified frame rule for proof obligations in wp style)

{H1} t {Q1} H = Hy*(Q1~ Q)
H — wptQ

RAMIFIED-FRAME-FOR-WP

This concludes the first chapter of our presentation of a foundational Separation Logic. The
next two chapters are concerned with language extensions, and with the generalization to non-
deterministic languages.

Chapter 3

Language Extensions

This chapter presents techniques involved for reasoning in Separation Logic about a richer
programming language, in which realistic programs can be written. I cover several exten-
sions of the source programming language. First, I discuss the treatment of programming
languages equipped with a garbage collector (Section 3.1). Such languages require an affine
program logic, that is, a logic featuring the ability to freely discard certain classes of heap
predicates. Second, I explain how to reason about programs that are not in A-normal form
using the bind rule (Section 3.2). Third, I present reasoning rules for n-ary functions (Sec-
tion 3.3), dynamic checks (Section 3.4), and loops (Section 3.5). Last, I specify operations on
arrays (Section 3.6 and Section 3.7) and records (Section 3.8). Data constructors and pattern
matching are postponed to Chapter 6.

The contents of this chapter contains excerpts from my ICFP’20 paper and its ap-
pendix [Charguéraud, 2020]. I have revised and augmented the sections on arrays and
records to match the semantics of an ML-style language. I have also added a section ex-
plaining the bind rule, popularized by Iris [Jung et al., 2018b] for reasoning about terms
that are not in A-normal form. Reasoning about floating-point programs by leveraging the
Gappa tool [Boldo et al., 2009; Boldo and Melquiond, 2017] is left to future work.

3.1 Partially-Affine Separation Logic

3.1.1 Linear and Affine Heap Predicates

The Separation Logic presented in the previous chapter is well-suited for a language with explicit
deallocation. It is, however, impractical for a language equipped with a garbage collector. Indeed,
it does not provide any rule for discarding the description of pieces of state that are ready for the
garbage collector to dispose of.

Early presentations of Separation Logic focused on C-style language, and did not discuss
garbage collection. My PhD work on CFML provides an affine program logic, in which any heap
predicate may be discarded at any time [Charguéraud, 2010; Charguéraud, 2011]. When Armaél
Guéneau proposed possibly negative time credits [Guéneau et al., 2019a; Guéneau, 2019], CFML’s
original approach revealed too restrictive. Indeed, it would be unsound to allow discarding neg-
ative amounts of time credits. Guéneau adapted CFML to hardwire the fact that heap predicates
may only be discarded if they account for a nonnegative amount of time credits.

32

CHAPTER 3. LANGUAGE EXTENSIONS 33

Subsequently, I generalized CFML to allow distinguishing between affine heap predicates, which
may be freely discarded, and linear heap predicates, which must remain accounted for. Besides time
credits, linearity is useful to ensure, e.g., that in a terminating program every file handle opened
eventually gets closed, or to ensure that every lock acquired eventually gets released. To that end,
the reasoning rules should not allow discarding the heap predicates that represent linear resources.

Technically, a Separation Logic is said to be linear if only pure heap predicates, of the form
[P], can be discarded. The seminal papers on Separation Logic describe linear logics [O’Hearn
et al., 2001; Reynolds, 2002]. On the contrary, a Separation Logic is said to be affine if any heap
predicates may be freely discarded at any time. The purpose of this section is to set up a partially-
affine Separation Logic, in which both linear and affine heap predicates may coexist. Its contents
was published in [Charguéraud, 2020, §8].

The formalization of a Separation Logic with support for both linear and affine predicates has
been previously investigated in the context of Iris [Jung et al., 2015, 2018b]. On the one hand,
Iris supports invariants and modalities that make the logic richer and more complex than the one
we considered. On the other hand, Iris only supports affine predicates. Let me first explain why,
before discussing extensions of Iris. All the heap predicates defined and used in Iris are upwards-
closed. A predicate H is upwards-closed if, when it holds for one heap, it also holds for any larger
heap: Hh A h L B/ = H(h w h'). In particular, the empty heap predicate is defined in Iris
in such a way that it holds of any heap. As a result, the entailment H [] holds for any heap
predicate H. By exploiting this entailment in the rule of consequence, one may discard any heap
predicate.

Tassarotti et al. [2017a] present an extension of Iris that supports both affine and linear as-
sertions. Their model imposes a strong separation between affine resources and linear resources,
visible at the level of the heaps that appear in the model. This separation might be too constraining
for resources that could be both affine or linear, such as the time credits that we discuss in Sec-
tion 7.3. In contrast, rather than imposing a physical separation between linear and affine heaps,
our presentation relies on the use of a customizable predicate for characterizing the heaps that
should be treated as affine.

Another approach to handling linear predicates in Iris is proposed by Bizjak et al. [2019]. The
authors first describe Iron, in which linear resources (a.k.a. trackable resources) are encoded in
the affine logic of Iris using fractional permissions to enforce that no linear heap predicate can be
discarded. They then present Iron++, which is a layer of abstraction on top of Iron that hides away
the use of fractions. In short, all heap predicates become implicitly parameterized by a fraction.
It is not at all clear that time credits could be defined in Iron++ in a way that validates all the
desired reasoning rules. Indeed, the fact that certain time credits may be discarded means that
some fractions of “credits ownership” may be definitely lost.

In the rest of this section, I present my construction for a partially-affine Separation Logic. I
leave to future work the investigation of whether this approach could be adapted to Iris, that is,
to understand how it could combine with invariants and modalities.

3.1.2 Customizable Characterization of Affine Heap Predicates

The discard rules of our program logic are expressed using a predicate written affine H, to assert
that the heap predicate H may be freely discarded. This predicate is defined in terms of a lower-
level predicate, written haffine h, that characterizes which pieces of heap may be discarded. The
predicate haffine h is a parameter of the program logic: by suitably instantiating this predicate,
the user can choose which predicates should be treated as affine, as opposed to linear.

When defining the predicate haffine h, the user only has to satisfy two basic well-formedness

CHAPTER 3. LANGUAGE EXTENSIONS 34

constraints, expressed below.

Definition 3.1.1 (Axiomatization of affine heaps) The predicate haffine h must satisfy two rules:

haffine hy haffine ho hi L ho
———— STAFFINE-EMPTY _ STAFFINE-UNION
haffine & haffine (h1 w hg)

The predicate affine H captures the idea that a heap predicate H can be discarded. By defini-
tion, affine H holds if the heap predicate H is restricted to affine heaps.

Definition 3.1.2 (Definition of affine heap predicates)
affineH = Yh. Hh = haffineh

The rules presented next establish that the composition of affine heap predicates yield affine
heap predicates. In other words, the predicate affine is stable by composition. For example, a
heap predicate H; x H> is affine provided that H; and Hs are both affine. A heap predicate 3x. H
is affine provided that H is affine for any variable z. Likewise, a heap predicate Yx. H is affine
provided that H is affine for any variable x, with a technical restriction asserting that the type of
2 must be inhabited (because, otherwise, the hypothesis would be vacuous). The last rule, AFFINE-
STAR-PURE, asserts that to prove [P] « H affine, it suffices to prove H affine under the hypothesis
that the proposition P holds.

Lemma 3.1.1 (Sufficient conditions for affinity of a heap predicate)

AFFINE-STAR

AFFINE-EMPTY AFFINE-PURE affine H, affine Hy
affine]| | affine [P] affine (Hy = H)
AFFINE-EXISTS AFFINE-FORALL AFFINE-STAR-PURE
Vz. affine H Vx. affine H the type of x is inhabited P = affineH
affine (3z. H) affine (V. H) affine ([P] » H)

In practice, the application of these rules is automated using a tactic. The process of justifying
that a heap predicate is affine is in most cases totally transparent for the user.

To state the reasoning rules that enable discarding affine heap predicates, it is helpful to intro-
duce the affine top heap predicate, which is written T. Whereas the top heap predicate (written
T and defined as “A\h. True”) holds of any heap, the affine top predicate holds only of any affine
heap.

Definition 3.1.3 (Affine top) The predicate T can be equivalently defined in two ways.

(1) T = Ah. haffineh (2) T = 3H. [affineH]|x H

There are three important properties of the affine top predicate. The first one asserts that any
affine heap predicate H entails T. The second one asserts that the predicate T is itself affine. The
third one asserts that several copies of T are equivalent to a single T.

Lemma 3.1.2 (Properties of affine top)

affine H
————— ATOP-R - AFFINE-ATOP ——————— STAR-ATOP-ATOP
HrT affine T (T»T) =T

CHAPTER 3. LANGUAGE EXTENSIONS 35

All the aforementioned definitions and lemmas hold for any predicate haffine satistying the
axiomatization from Definition 3.1.1.

Two extreme instantiations of haffine are particularly interesting. The first instantiation treats
all heaps as discardable, leading to a fully-affine logic. The second instantiation treats none heaps
as discardable, leading to a fully-linear logic, equivalent to the logic from the previous chapter.

Example 3.1.1 (Fully-affine Separation Logic) The definition “haffineh = True” satisfies the

requirements of Definition 3.1.1, and leads to a Separation Logic where all heap predicates may be
freely discarded. In that setting, (affine H) < True,and T = T = (\h. True) = (3H. H).

Example 3.1.2 (Fully-linear Separation Logic) The definition “haffineh = (h = @)” satisfies
the requirements of Definition 3.1.1, and leads to a Separation Logic where only pure heap predicates

may be freely discarded. In that setting, (affineH) < (H - []),and T =[] = (Ah.h = 2).

3.1.3 Triples for a Partially-Affine Separation Logic

To accommodate reasoning rules that enable freely discarding affine heap predicates, it suffices
to refine the definition of a Separation Logic triple (Definition 2.4.2) by integrating the affine top
predicate T into the postcondition of the underlying Hoare triple, as formalized next.

Definition 3.1.4 (Refined definition of triples for Separation Logic)
(H}t{Q} = VH HORD«mt{Q«H +T}

Note that, with the fully-linear instantiation described in Example 3.1.2, the predicate T is equiv-
alent to the empty heap predicate, therefore Definition 3.1.4 is strictly more general than Defini-
tion 2.4.2.

Lemma 3.1.3 (Reasoning rules for refined Separation Logic triples) All the previously men-
tioned reasoning rules, in particular the structural rules (Lemma 2.4.1) and the reasoning rules for
terms (Lemma 2.4.3), remain correct with respect to the refined definition of triples (Definition 3.1.4).

The discard rules, which enable discarding affine heap predicates, may be stated in a number
of ways. The three variants that are most useful in practice are shown below. These three variants
have equivalent expressive power with respect to discarding heap predicates.

The rule piscArD-PRE allows discarding a user-specified predicate H' from the precondition,
provided that H’ is affine. Without this rule, the user would have to carry this heap predicate H’
through the proof until it appears in a postcondition.

The rule aTor-rosT allows extending the postcondition with T, allowing a subsequent proof
step to yield an entailment relation of the form Q; = (Q * T), allowing to discard unwanted pieces
from @;. This rule is useful in “manual” proofs, i.e., proofs carried out with limited tactic support.

The rule RAMIFIED-FRAME-ATOP extends the ramified frame rule so that its entailment inte-
grates the predicate T, allowing to discard unwanted pieces from either H or ();. This rule is a
key building block for a practical tool that implements a partially-affine Separation Logic.

Lemma 3.1.4 (Discard rules for triples)

DISCARD-PRE ATOP-POST RAMIFIED-FRAME-ATOP
{H}t{Q} affineH’ {H}t{QxT} {Hi}t{Q} HEH*(@Qi~ (Qx*T))
{H*H'} t{Q} {H}t{Q} {H} t {Q}

CHAPTER 3. LANGUAGE EXTENSIONS 36

These three rules can be equivalently formulated in weakest-precondition style, shown below.
Let us point out the strength of the third rule, namely wp-RAMIFIED-FRAME-ATOP. This rule sub-
sumes all the other structural rules of our Separation Logic: CONSEQUENCE, FRAME, PROP, EXISTS,
DISCARD-PRE, and ATOP-POST (stated in Lemma 2.4.1 and Lemma 3.1.4).

Lemma 3.1.5 (Discard rules in weakest-precondition style)

affine H
WP-DISCARD-PRE WP-ATOP-POST
(wpt Q) » H = (wpt Q) wpt (Q+T) = wpt@Q

WP-RAMIFIED-FRAME-ATOP

(wpt Q) * (Q = (Q'+T)) - (wptQ')

3.2 Beyond A-normal Form: The Bind Rule

In this section, we explain how to reason about programs that are not in A-normal form. We follow
the approach of the bind rule, popularized by Iris [Jung et al., 2018b] in the context of program
logics. The bind rule follows the pattern of the let-binding rule but allows for evaluation of a
subterm ¢ that appears in an evaluation context E.

For the syntax introduced in Section 4.1 and used so far, we can define evaluation contexts by
the following grammar, where o denotes the hole, i.e., the empty context. We fix here a left-to-right
evaluation order; other orders could be considered.

E = o | letz=FEint | (Et) | (vE) | if Ethentelset

We write E[t] for the context E whose hole is filled with the term t. We write value ¢ for the
predicate that asserts that ¢ is a value. The bind rule describes how to evaluate or reason about
subterms that appear in evaluation contexts and that are not already values. The big-step bind
rule takes the following form.

— valuet t/s | v/s Elv]/s | v'/s"
E[t]/s | v'/s"

BIG-BIND

Note that the premise — value ¢ is technically optional. Indeed, if ¢ is a value, then the last premise
is simply equivalent to the conclusion of the rule. (Nevertheless, we like to include this premise
because it is necessary when considering a coinductive interpretation of the evaluation rules, see
[Charguéraud et al., 2022, §3.4].)

The corresponding reasoning rules, expressed using either triples or weakest preconditions,
appear next. Observe that these two rules need not include a premise of the form — valuet.
Indeed, the rules remain valid even in the case where ¢ is already a value. (Here, including the
premise would add a serious burden onto the end user, who will have to perform additional case
analyses.)

Lemma 3.2.1 (Bind rules)

BIND WP-BIND

(H} @) (Yo {Qiv} B[] {Q))
(H} E[1] {Q) wpt (. wp (E[v]) Q) wp (E[1]) Q

CHAPTER 3. LANGUAGE EXTENSIONS 37

3.3 Treatment of Functions of Several Arguments

Functions of several arguments may be represented as curried functions, as tupled functions, or
as native n-ary functions (like, e.g., in the C language). In the Coq course [Charguéraud, 2021],
I employ curried functions to minimize the boilerplate associated with manipulating list of argu-
ments. In the original version of CFML, I was using curried functions, however the possibility for
partial applications and over-applications, which are not tagged as such in the syntax, introduced
significant overheads in the formalization of the reasoning rules. In CFML2, I switched to using
native n-ary functions, whose syntax can be processed in a simpler and more efficient manner
than curried functions.

Regardless of the representation of functions, the rules for reasoning about a proper function
call—i.e., with the expected number of arguments—are stated essentially in the same way. For
example, one may state the following rule for reasoning about the call to a function of two argu-
ments. The predicate noduplicates involved here captures the fact that the name of the function
and of its arguments do not clash.

Lemma 3.3.1 (Reasoning rule for functions of arity 2)

APP2
vo = fif Ax1x9.t {H} ([ve/x2] [v1/z1] [vo/f]t) {Q} noduplicates (f :: x1 :: 9 :: nil)

{H} (vov1v2) {@}

More interestingly, we can state an arity-generic version of the rule, that works for any arity.
It applies to a function f expecting a list T of arguments of the form “x; :: ... :: x,, :: nil”. The term
v U denotes the application of a value vy to a list of arguments T of the form “vy :: ... iz v, =2 nil”.
The corresponding rule, which is used in the current version of CFML, is stated as follows.

Lemma 3.3.2 (Reasoning rule for n-ary functions)
APPS
vo = f. ATt {H} [(vo ::0)/(f = T)]t {Q} o] =|z| >0 noduplicates (f :: T)
{H} (vov) {Q}

Remark: in CFML, we set up a Coq coercion such that an application written in curried style
“vov1 ...vy,” is elaborated to the n-ary application “vg (v :: ...t vy, 2 nil)”,

To reason about n-ary applications that are not in A-normal forms, the bind rule can be used,
with a suitably adapted grammar of contexts.

3.4 Treatment of Dynamic Checks

The language construct “assert t” expresses a Boolean assertion. If the term ¢ evaluates to the
value true, the assertion produces unit. Otherwise, the term “assert t” gets stuck—the program
halts on an error. The verification of a program should statically ensure that: (1) the body of every
assertion evaluates to true, and (2) the program remains correct when assertions are disabled
either via a compiler option such as -noassert in OCaml, or via the programming pattern
“if debug then assert ¢”, where debug denotes a compilation flag. The AssERT rule, shown below,
satisfies these two properties.

Lemma 3.4.1 (Evaluation rules and reasoning rule for assertions)

BIG-ASSERT-ENABLED BIG-ASSERT-DISABLED ASSERT
t/s | true/s’ {H} t {\r. [r = true] x H}

(assertt)/s || /s (assertt)/s | tt/s {H} (assertt) {_. H}

CHAPTER 3. LANGUAGE EXTENSIONS 38

The term “assert false” denotes inaccessible branches of the code. A valid triple for this term
can only be derived from a false precondition: {[False]} (assert false) {Q}.

Interestingly, the reasoning rule ASSERT is not limited to read-only terms. For example, con-
sider the Union-Find data structure, which involves the operation find that performs path com-
pression. The evaluation of an assertion of the form assert (find x = find y) may
involve write operations. It nevertheless preserves all the invariants of the data structure. These
invariants would be captured by the heap predicate H in the rule ASSERT.

The above reasoning rules for assertions were introduced in CFML at the time of my PhD
thesis [Charguéraud, 2010].

3.5 Inductive Reasoning for Loops

Pointer-manipulating programs are typically written using loops. Although loops can be simu-
lated using recursive functions, proofs are simpler in the presence of a while-loop construct. We
write it “while t; doty”.

A loop “whilet; doty” is equivalent to its one-step unfolding: if ¢; evaluates to true, then to
is executed and the loop proceeds; otherwise the loop terminates on the unit value. The rules
BIG-WHILE and WHILE shown below capture this one-step unfolding principle.

Lemma 3.5.1 (Evaluation rule and reasoning rules for while loops)

BIG-WHILE
(ift1 then (t2; whilet| doty) else tt)/s || v/s’

(whilety dots)/s || v/s'

WHILE
{H} (if t1 then (to; whilety dots) else tt) {Q}

{H} (whilet1 dOtQ) {Q}

One may establish a triple about the behavior of a while loop by conducting a proof by in-
duction over a decreasing measure or well-founded relation, exploiting the induction hypothesis
to reason about the “remaining iterations”. Note that this approach is essentially equivalent to
encoding the loop as a tail-recursive function, yet without the boilerplate associated with an en-
coding.

Example 3.5.1 (Length of a list using a while loop) Consider the following code fragment, which
sets the contents of s to the length of the mutable list at location p.

let r = ref p and s = ref 0 in
while !r != null do (incr s; r := !r.tail) done

The loop is specified by the triple:
{MlistLp x 7 < p * s — 0}

(while ... done)
{A_.MlistLp x r — null x s — |L|}

and its proof is conducted by induction on the following statement.

VLnp. {MlistLp x r — p * s <— n}
(while ... done)
{A_.MlistLp x 7 — null x s — n + |L|}

CHAPTER 3. LANGUAGE EXTENSIONS 39

Applying the WHILE rule reveals the conditional on whether ! r is null. In the case where it is not
null, s is incremented, r is set to the tail of the current list, and the loop starts over. To reason about
this “recursive invocation” of the while-loop, it suffices to apply the frame rule to put aside the head
cell described by a predicate of the form (p.head — x) x (p.tail — q), and to apply the induction
hypothesis to the tail of the list described by Mlist L' q, where L = = :: L'.

The above example shows that, by carrying a proof by induction, it is possible to apply the
frame rule over the remaining iterations of a loop. Doing so would not be possible with a reasoning
rule that imposes a loop invariant to be valid both at the entry point and exit point of the loop
body. Indeed, such a loop invariant would necessarily involve the description of a list segment.

The statement of a reasoning rule for loops that allows to frame over the remaining iterations
had been devised independently by Tuerk [2010] and Charguéraud [2010].

3.6 Arrays in an ML-like Language

In this section, we present specifications for operations on ML-style arrays. We introduce the
representation predicate Array p L to assert that at location p is allocated an array whose elements
are described by the list L. In particular, the length of the array is equal to the length of the list L,
written |L|.

Let us start by explaining how the predicate Array p L may be defined in a foundational manner
with respect to the memory model. An array consists of a header block, followed with a sequence
of cells. The header block is described by a heap predicate written ArrayHeader pn, where p
denotes the address of the array and n its length. An individual array cell is described by a heap
predicate written Cell p¢ v where p denotes the base of the address, ¢ an index in the array, and v
the value stored in the cell at that index. The heap predicate ArraySegp j L describes an array
segment from the array p, starting at index j, and covering a range of cells whose elements are
described by the list L. The high-level heap predicate Array p L describes both the array header
and the full segment, which covers elements from index 0 to index |L| — 1, inclusive. In the formal
definitions below, we write L[] for “List.nthi L” and L[i := v] for “List.updateiv L”.

Definition 3.6.1 (Definitions of representation predicates for arrays)
The first two definitions are implementation-dependent and should not be revealed to the end user.

ArrayHeaderpn = p<—n (not revealed)
Cellpiv = (p+1+i)—>v (not revealed)
ArraySegpj L = @epo, 1)) Cellp (7 +14) (L[i])

Arrayp L = ArrayHeaderp|L| = ArraySegp0 L

We can assign two sets of specifications to array operations: large-footprint specifications ex-
pressed in terms of the high-level predicate Array p L, or small-footprint specifications expressed
in terms of the finer-grained predicates Cell p ¢ v and ArrayHeader p n. Let us first show the large-
footprint specifications, which are generally more convenient to work with.

Lemma 3.6.1 (Large-footprint specifications for array operations)

n=0 = {[1} (Array.makenv) {\p. Arrayp (List. makenv)}
{Arrayp L} (Array.lengthp) {A\r. [r =|L|] » Arrayp L}

0<i<|Ll = {ArraypL} (Arraygetpi) {Ar. [r = L[i]] x Arrayp L}

0<i<|Ll = {ArraypL} (Arraysetpiv) {_. Arrayp (L[i :=v])}

CHAPTER 3. LANGUAGE EXTENSIONS 40

Small-footprint specifications reveal useful for reasoning about algorithms that operate on a
clearly delimited subset of the array cells. For example, a recursive call to quicksort operates on
a specific array segment. By using smaller-footprint specifications, one benefits from the frame
rule, which inherently captures the fact that all the array cells that are not mentioned in the
precondition remain unmodified. The small-footprint specifications may be expressed either at
the level of individual cells or at the level of array segments. We first show the specifications at
the level of cells.

Lemma 3.6.2 (Small-footprint specifications for array operations, for individual cells)

{Cellpiv} (Array.getpi) {Ar. [r =wv] % Cellpiv}
{Cellpiv'} (Arraysetpiv) {_. Cellpiv}
{ArrayHeaderpn} (Array.lengthp) {\r. [r = n]}

In the last specification stated above, observe that reading the length of the array requires
only access to the header, described by ArrayHeader pn. Remark: in Cosmo [Mével et al., 2020],
a concurrent Separation Logic for multicore OCaml, ArrayHeader pn appears to the user as a
duplicatable heap predicate, more convenient to manipulate.

The borrowing lemma presented next may reveal useful for exploiting small-footprint specifi-
cations without revealing the iterated star that enumerates all the array cell. This lemma allows
isolating the i-th cell out of an array, so as to perform read and write operations on that cell in
isolation from the rest of the array. Subsequently, the cell with its updated contents, named v be-
low, may be merged back into the array representation. This logical operation involves cancelling
a magic wand.

Lemma 3.6.3 (Borrowing of a cell) Assume(0 < i < |L|.
(ArraypL) + (Cellpi(L[i])) * (Vv. Cellpiv — Arrayp (List.updateiv L))

We next present specifications based on array segments. There, ¢ denotes the absolute index,
j denotes the start of the segment, and d denotes the index of the targeted cell relative to the start
of the segment—thus ¢ = j + d.

Lemma 3.6.4 (Small-footprint specifications for array operations, for segments)

d=i—7 A 0<d<|L| = {ArraySegpj L} (Arraygetpi) {A\r. [r = L[d]] * ArraySegpj L}
<

d=1i—j A 0<d<|L| = {ArraySegp j L} (Array.setpiv) {_. ArraySegpj L|d := v]}

For functions that process an array by making recursive calls to increasingly-smaller segments
of the array, the following range splitting lemma allows splitting the segment at hand. Typically,
one would provide one of the two segments to a recursive call (e.g., in quicksort), while the other
fragment may be framed over the scope of that call.

Lemma 3.6.5 (Splitting of array segments)
ArraySegp j (L1 + Lo) = ArraySegpj Ly * ArraySegp (j + |L1]|) Lo

The view of arrays and array segments as iterated separating conjunctions of cells comes from
the original papers on Separation Logic [O’Hearn et al., 2001; Reynolds, 2002]. A foundational
formalization of small-footprint specifications for ML arrays is implemented in CFML since 2021,
and is described in my course [Charguéraud, 2021].

CHAPTER 3. LANGUAGE EXTENSIONS 41

3.7 Arrays in a C-like Language

We complete the discussion of arrays with a specification of arrays in a C-like language featuring
pointer arithmetic. In C, there are no header blocks stored at the front of every array. However,
there is a notion of malloc-ed block that needs to be tracked by the program logic. Indeed, the
deallocation operation (free) may only be called on pointers obtained as a result of an allocation
operation (malloc). In the formal definitions shown below, the predicate MallocBlock p n captures
the fact that a memory block of size n was allocated at location p.

Definition 3.7.1 (Alternative definitions for arrays in a C-like language)

MallocBlockpn = ... (depends on the memory allocator)
Cellpiv = (p+i)—wv (transparently)
Arrayp L = ArraySegp0 L » MallocBlockp |L|
ArraySegpj L = B,y Cellp (j + 1) (L[i])

The segment representation predicate in a C-like language features additional equalities thanks
to the exposure of pointer arithmetic by the language.

Lemma 3.7.1 (Properties of the array representation predicate in a C-like language)

ArraySegpj (L1 + La) = ArraySegpj L1 * ArraySegp (j + |L1]|) L2
ArraySegpj L = ArraySeg(p+j)0L
ArraySegp0 (L1 + L2) = ArraySegp0Ly » ArraySeg(p + |L1|)0 Lo

The alloc operation allocates an array of a given size. Its cells are initialized with a special
value called uninit. This value cannot be read by the get operation. The specification of get is
thus updated with an additional precondition of the form v # uninit. The free operation, when
applied to the address of a block, requires as precondition all the cells that were allocated as part

of that block.

Lemma 3.7.2 (Specification of operations on arrays in a C-like language)

Specification of alloc: ~ n >0 = {[]} (allocn) {\p. Arrayp (List.maken uninit)}
Specification of get: v # uninit = {p — v} (getp) {\zr. [z = v] x p — v}
Specification of set: {p — v} (setpv) {A_. (p—)} (where v could be uninit)
Specification of free: {Arrayp L} (freep) {_. []}

3.8 Records

In this section, I present specifications for operations on ML-style records. Compared the treat-
ment of arrays, there are two important differences. The first difference is that the cells are indexed
by fields names, instead of being indexed by an integer value. As a result, the model of a record is
not a list of values, but a list or set of pairs each made of a field identifier and a value. It is usually
desirable for representation predicates to be insensitive to the order of fields, following common
practice in ML languages. The second difference is that, because ML does not expose a function
to read the number of fields of a record, there is no need to keep track in the program logic of

CHAPTER 3. LANGUAGE EXTENSIONS 42

representation predicates for the record headers. For the remaining aspects, our formalization of
records shares a lot of similarities with that of arrays.

We introduce the representation predicate Record p K to assert that at location p is allocated
a record whose fields are described by the list K, which consists of a list of pairs each made of
a field identifier and a value. An individual record field is described by a heap predicate written
Field p k v where p denotes the base of the address, k denotes a field identifier, and v the value
stored in the cell at that index.

To realize record predicates in a foundational manner, we have to consider a particular memory
layout for records. To that end, field identifiers are viewed as natural numbers representing the
offset of the corresponding field. However, in the high-level presentation exposed to the user, fields
are referred to by name—the offset need not be exposed. Thereafter, we use the term field name
to refer to field identifiers, reflecting the choice of presenting reasoning rules using the concepts
of that appear in source code.

The foundational definitions appear next. The predicate Field p kv is meant to be presented
as an abstract predicate to the end user. The predicate Record p K is defined by iterating over the
fields. The definition inherently ensures that Record p K is equal to Record p K’ for any K’ being
a permutation of the list K. We deliberately choose to represent K as a Coq list rather than a set to
ensure that fields remain ordered in the same way as the user writes them in formal specifications.

Definition 3.8.1 (Definitions of representation predicates for records)

Fieldpkv = (p+1+k)—w (not revealed)
Recordp K = @(k’v)eK Fieldp kv

Observe that the definition of Record p K allows one to convert between the record view, which
describes multiple fields at once, and the field view, which enables manipulating individual fields.
There is also the possibility to consider a subset view of a record, by means of the following split
rule, which allows isolating any subset of the record fields. Considering a subset may be helpful
to reason about a program component that only interacts with a subset of the fields associated
with a record data type.

Lemma 3.8.1 (Decomposition rules for the record representation predicate)

Recordp (K1 + K3) = Recordp Ky * Recordp K,
Recordp ((k,v) :: nil) = Fieldpkwv
Recordp nil = []

The specification of operations on records share a lot of similarities with the operations on
arrays. We next present small-footprint and large-footprint specifications.

Lemma 3.8.2 (Small-footprint specifications for record operations, for individual fields)
{Fieldpkv} (p.k) {\r. [r =v] % Fieldpkv}
{Fieldpkv'} (p.k <- v){_. Fieldpkuv}

Lemma 3.8.3 (Large-footprint specifications for record operations)

{[1} ({k1:=v1;k2:=v2}) {A\p. Recordp ((k1,v1) :: (k2,v2) :: nil)}
ke domK = {Recordp K} (p-k) {Ar. [r = K[k]] * Recordp K}
ke domK = {Recordp K} (p-k <- v) {A_. Recordp (K[k :=v])}

CHAPTER 3. LANGUAGE EXTENSIONS 43

OCaml!’s record-with operation applies to an existing record and creates a fresh copy of that
record, with a subset of the fields being updated. Consider the specification shown below.

k1,k2 € domK = {Recordp K}
({p with k1l:=v1;k2:=v2})
{\p'. Recordp’ (K[k1 := vl][k2 := v2])}

This specification captures the semantics of the record-with operation, but only under the assump-
tion that the program logic at hand is affine. Indeed, the predicate Record p K might cover only a
subset of the fields. For every field that is not described by K, the corresponding field in the fresh
record is implicitly discarded when exploiting the above specification. It is thus the responsibility
of the user to gather the heap predicates associated with all the fields before reasoning about a
record-with operation. (In a linear program logic, one would need to involve the record header
predicate to constrain the length of the list K, and thereby enforce that K covers all the fields of
the input record.)

CFML features a mechanism to smoothen the reasoning about read and write operations on
record fields. Given an operation on a field k of a record at address p, this mechanism searches
the precondition at hand for a predicate of the form Field p k v, or of the form Record p K with
k € K. It then exploits the appropriate specification. In the case of a large-footprint specifica-
tion, the record update of the form K[k := v] is computed. In terms of syntax, CFML provides
the syntax p~>‘ {k1:=v1;k2:=v2} for Record p ((k1,v1) :: (k2,v2) :: nil). Overall, from the
perspective of the end user, a heap predicate for a record closely resembles the source code for
the corresponding record definition, and operations on records are processed automatically by the
framework.

Chapter 4

Omni-Big-Step Semantics

This chapter explains how to define foundational triples for the more general case of nonde-
terministic semantics. I present the definition of the omni-big-step judgment (Section 4.1),
and detail its origins (Section 4.2). I next state the key properties of this judgment (Sec-
tion 4.3), and prove in particular that it satisfies the frame property (Section 4.4). I then
explain how to exploit this judgment to define the weakest-precondition predicate (Sec-
tion 4.5) and Separation Logic triples (Section 4.6). Finally, I give an overview of other
applications of omni-semantics (Section 4.7).

Soon after the publication of my ICFP’20 paper [Charguéraud, 2020], Ralf Jung asked me
how I could extend my big-step-based definition of total correctness Separation Logic
triples to handle the case of a nondeterministic semantics. I realized that, to generalize
the standard big-step judgment for handling more than one execution path, one needs to
relate an input configuration not to a single output configuration but to a set of output con-
figurations, isomorphic to a postcondition. This observation had in fact already been made
in prior work by Schéfer, Schneider and Smolka [2016], and in parallel work by Chlipala,
Gruetter, and Erbsen [2021].

Interestingly, Schéfer et al. write: The way we connect operational and axiomatic semantics
bears a close resemblance to Charguéraud’s work [2010] on characteristic formulas for program
verification. This sentence underlies how the judgment relating an input configuration to
a postcondition stands half-way between a standard operational semantics and a set of
axiomatic rules for reasoning about programs.

Schéfer et al’s work [2016] targets a Hoare Logic, and does not discuss the frame rule. Erb-
sen et al’s work [2021] exploits Separation Logic, but does so by including explicit frames
in specifications. A key contribution I made was to show that the omni-big-step judgment
inherently satisfies the frame rule. During the year 2021, I also formalized, numerous other
properties of this judgment, and investigated the coinductive variant of the judgment and
its applications to type soundness proofs.

44

CHAPTER 4. OMNI-BIG-STEP SEMANTICS 45

OMNI-BIG-VAL OMNI-BIG-LET

(v,8) €@ ti/s | @ (Y, &) eQi ([v'/z]ta)/s" || Q)
v/s | Q (letx =tyinta)/s | Q
OMNI-BIG-APP
v = pf Azt OMNI-BIG-IF OMNI-BIG-ADD
([v1/f]ve/x]t1)/s | Q If bthen (t1/s | Q) else (t2/s | Q) (n1 +na, s)€Q
(viv2)/s | Q (if b then t; else t2)/s | @Q (+)nin2)/s | Q
OMNI-BIG-DIV OMNI-BIG-RAND
ng # 0 (n1 +ng, s)€Q n>0 (Vm.0<m<n:> (m,s)eQ)
((+)ning)/s | Q (randn)/s | Q
OMNI-BIG-REF OMNI-BIG-FREE
Vp ¢ doms. (p, s[p:=v])e@ p € doms (tt, s~ p)e@Q
(refv)/s | Q (freep)/s | Q
OMNI-BIG-GET OMNI-BIG-SET
p € doms (s[p], s)e@ pedoms (tt, s[p:=v])e@
(getp)/s | Q (setpv)/s | Q

OMNI-BIG-BIND

— valuet t/s | Q1 (VUS/- Qivs = E[v]/s | Q)
Elt]/s | Q

Figure 4.1: Omni-big-step semantics (for terms in A-normal form)

In 2022, I joined Adam Chlipala, Samuel Gruetter, and Andres Erbsen on the writing of
a journal paper investigating in depth the metatheory and the numerous applications of
both small-step-style and big-step-style omnisemantics [Charguéraud et al., 2022]. This pa-
per has been accepted for publication in the TOPLAS journal. The contents of the present
chapter is an excerpt from that paper, focusing specifically on how to use the big-step judg-
ment to define total correctness Separation Logic triples for nondeterministic semantics.

4.1 Definition of the Omni-Big-Step Judgment

The standard big-step judgment, written t/s | v/s’, was defined in Figure 2.2. To introduce an
interesting source of nondeterminism, we extend the language with a random number generator:
rand n, where n is a positive integer, evaluates to any integer in the range [0,n). The big-step
evaluation rule for this nondeterministic construct appears below.

0<m<n

(randn)/s || m/s BIGRAND

The corresponding omni-big-step semantics appears in Figure 4.1. Its evaluation judgment,
written ¢/s | @, asserts that all possible evaluations starting from the configuration t/s reach
final configurations that belong to the set (). Observe how the standard big-step judgment ¢/s |

CHAPTER 4. OMNI-BIG-STEP SEMANTICS 46

v/s’ describes the behavior of one possible execution of ¢/s, whereas the omni-big-step judgment
describes the behavior of all possible executions of ¢/s. The set () that appears int/s | @ corre-
sponds to an overapproximation of the set of final configurations: it may contain configurations
that are not actually reachable by executing t/s. (A discussion of why to consider an overapprox-
imation of the set of results as opposed to an exact set of results may be found in [Charguéraud
et al,, 2022, §2.3].)

The set () contains pairs made of values and states. Such a set can be described equivalently by
a predicate of type “val — state — Prop” or by a predicate of type “(val x state) — Prop”. In the
beginning of this chapter, to present definitions in the most idiomatic style, we use set-theoretic
notation such as (v, s) € @ for stating semantics and typing rules. We then use the logic-oriented
notation) v s for discussing applications of this judgment to program logics.

We next describe the key evaluation rules of Figure 4.1.

The rule for values, OMNI-BIG-VAL, asserts that a final configuration v/s satisfies the postcon-
dition @ if this configuration belongs to the set Q).

The let-binding rule, oMNI-BIG-LET, ensures that all possible evaluations of an expression
letz = t1inty in state s terminate and satisfy the postcondition @). First of all, we need all
possible evaluations of ¢ to terminate. Let (); denote (an overapproximation of) the set of results
that ¢ may reach, as captured by the first premise ¢1/s || (1. One can think of ()7 as the type
of t1, in a very precise type system where any set of values can be treated as a type. The second
premise asserts that, for any configuration v'/s’ in that set 1, we need all possible evaluations of
the term [v'/x] t9 in state s’ to satisfy the postcondition (). The rule OMNI-BIG-BIND generalizes
the let-rule to arbitrary evaluation contexts.

The evaluation rule oMNI-BIG-APP explains how to evaluate a beta-redex by evaluating the
result of the relevant substitution. Omnisemantics can be understood as an inductively defined
weakest-precondition semantics (or more generally, predicate-transformer semantics) that does
not involve invariants for recursion (or loops), but instead uses unrolling rules like in traditional
small-step and big-step semantics.

The rule for conditional, oMNI-BIG-IF, is stated using a Coq if-statement, written using a cap-
italized “If” keyword. Alternatively, it could be stated using the rule oMNI-BIG-IF* shown below,
or using the pair of rules OMNI-BIG-IF-TRUE and OMNI-BIG-IF-FALSE.

OMNI-BIG-IF’ OMNI-BIG-IF-TRUE OMNI-BIG-IF-FALSE
(If b then ty else t2)/s | @ ti/s | @ to/s | Q
(if bthen ty else t2)/s | @ (if true then ¢y else ta)/s || @ (if false then ¢ else t2)/s | @

The evaluation rule oMNI-BIG-ADD for an addition operation is almost like that of a value: it
asserts that the evaluation of (4) n; ng in state s satisfies the postcondition () if the pair ((n; +
n2), s) belongs to the set (). The rule oMNI-BIG-DIV is similar, only with an additional premise to
disallow division by zero.

The nondeterministic rule OMNI-BIG-RAND is more interesting. The term rand n evaluates
safely only if n > 0. Under this assumption, its result, named m in the rule, may be any integer in
the range [0, n). Thus, to guarantee that every possible evaluation of rand n in a state s produces
a result satisfying the postcondition @), it must be the case that every pair of the form (m, s) with
m € [0,n) belongs to the set Q.

The evaluation rule oMNI-BIG-REF, which describes allocation at a nondeterministically cho-
sen, fresh memory address, follows a similar pattern. For every possible new address p, the pair
made of p and the extended state s[p := v] needs to belong to the set Q.

The remaining rules, OMNI-BIG-FREE, OMNI-BIG-GET and OMNI-BIG-SET, are deterministic and
follow the same pattern as OMNI-BIG-ADD, only with a side condition p € dom s to ensure that the

CHAPTER 4. OMNI-BIG-STEP SEMANTICS 47

address being manipulated does belong to the domain of the current state.

On the one hand, omni-big-step semantics can be viewed as operational semantics, because
they are not far from traditional operational semantics or executable interpreters. On the other
hand, omni-big-step can be viewed as axiomatic semantics, because they are not far form reasoning
rules. In particular, they directly give a practical, usable definition of a weakest-precondition
judgment, which can be used for verifying concrete programs. The fact that they are both closely
related to operational semantics and to axiomatic semantics is precisely the strength of omni-big-
step semantics.

4.2 History of the Omni-Big-Step Judgment

Omni-big-step semantics appear to have first been presented by Schéfer et al. [2016]. These au-
thors present the notion on a nondeterministic source language of guarded commands, as well as
a deterministic target language with named continuations. They also present characterizations
of program equivalence and present a proof of equivalence with traditional small-step semantics,
though only in the case of a deterministic semantics. Their work does not discuss Separation
Logic, in particular the aspects related to the frame rule.

Omni-big-step semantics were later exploited by Erbsen et al. [2021] in the LightBulb project.
(They call this style of semantics CPS semantics.) These authors consider an omni-big-step seman-
tics for a high-level, core imperative language with external calls; and consider an omni-small-step
semantics, applied to a low-level, RISC-V machine language. Omni-small-step semantics are out of
the scope of the present manuscript, but are covered in depth in the omni-semantics paper [Char-
guéraud et al.,, 2022]. The LightBulb project provides end-to-end compiler-correctness results
for terminating programs. This work employs Separation Logic reasoning rules (in weakest-
precondition style), yet does not feature a generic frame rule. Instead, frames appear as explicit
heap predicates in specifications.

In my Coq course, I introduced omni-big-step semantics in 2021-2022 for the purpose of de-
riving Separation Logic triples for a nondeterministic imperative A-calculus. I proved that this
semantics inherently satisfies the frame rule, avoiding the need to resort to the technique of the
baked-in frame rule. Besides, I formalized in Coq the metatheory associated with the judgment,
including equivalence with other operational semantics, both for terminating and for possibly-
diverging programs—partial correctness is out of the scope of the current chapter.

Those results appear in the omnisemantics paper [Charguéraud et al., 2022], written jointly
with the authors of the LightBulb project. The rest of this chapter contains an excerpt of that

paper.

4.3 Properties of the Omni-Big-Step Judgment

In this section, we discuss some key properties of the omni-big-step judgment ¢/s || Q. Recall
that the metavariable () denotes an of the set of possible final configurations.

Total correctness. The predicate ¢/s | (@ captures total correctness in the sense that it cap-
tures the conjunction of termination (all executions terminate) and partial correctness (if an ex-
ecution terminates, then its final state satisfies the postcondition Q). Let terminates(t,s) be a
judgment capturing the fact that all executions of ¢/s terminate. This judgment can be defined

CHAPTER 4. OMNI-BIG-STEP SEMANTICS 48

with respect to a small-step semantics, by the following two inductive rules.

TERMINATES-STEP

TERMINATES-HERE (3t's'. t/s —t')s)
(Vt's’. (t/s —t'/s') = terminates(t',s'))
terminates(v,) terminates(t, s)

Recall that t/s || v/s’ denotes the standard big-step evaluation judgment. We prove:

OMNI-BIG-STEP-IFF-TERMINATES-AND-CORRECT :
t/s | @ <= terminates(t,s) A (Yuvs' (t/s | v/s') = (v,5)€Q).

In particular, if we instantiate the postcondition) with the always-true predicate, we obtain the
predicate t/s || {(v,s’)| True}, which captures only the termination property.

Remark: whereas the inductive interpretation of the evaluation rules definining the omni-big-
step judgment yields a characterization of total correctness, the coinductive interpretation of the
exact same set of rules yields a characterization of partial correctness. This aspect is discussed in
[Charguéraud et al., 2022, §3.4].

Consequence rule. The judgment ¢t/s || @ still holds when the postcondition @ is replaced
with a larger set. In other words, the postcondition can always be weakened, like in Hoare logic.

OMNI-BIG-CONSEQUENCE : tlsl Q A Q<@ = t/s|
Strongest postcondition. If the omni-big-step judgment t/s || Q' holds for at least one set

@', then there exists a smallest possible set @ for which t/s || @ holds. This set corresponds to
the strongest-possible postcondition (), in the terminology of Hoare logic.

strongest-postts = ﬂ Q = {(sd)|VvQ, (t/s | Q) = (v,s)eQ}
QI /siQ)

We prove that if t/s | @ holds for some @, then ¢/s | (strongest-postt s) holds.
No derivations for terms that may get stuck. The fact that rand 0 is a stuck term is cap-

tured by the fact that (rand0)/s | @ does not hold for any). More generally, if one or more
nondeterministic executions of ¢ may get stuck, then we have: VQ. — (t/s | Q).

Relationship to standard big-step semantics. The following two results formalize the rela-
tionship between the omni-big-step judgment and the standard big-step judgment.

First,if t/s | @ holds, then any final configuration for which the standard big-step judgment
holds necessarily belongs to the set Q).

OMNI-BIG-AND-BIG-INV: t/ls | Q A~ t/slv/s = (v,s)eq

Second, if t/s || @ holds, then there exists at least one evaluation according to the standard
big-step judgment whose final configuration belongs to the set Q).

OMNI-BIG-TO-ONE-BIG: t/s || Q = Jvs’. t/s|v/s’' rn (v,8)eqQ

A corollary asserts that if t/s | @ holds with @ being a singleton set made of a unique final
configuration v/s’, then the standard big-step judgment holds for that configuration.

OMNI-BIG-SINGLETON: t/s | {(v,s)} = t/s| v/s

CHAPTER 4. OMNI-BIG-STEP SEMANTICS 49

Particular case of deterministic languages. In a deterministic language, an input configura-
tion t/s may evaluate to at most one configuration v/s’. In such a case, the strongest postcondition
is either empty or reduced to the singleton set {(v, s')}.

Nonempty outcome sets. Observe that the judgment t/s || @, as defined in Figure 4.1, can
only hold for a nonempty set (). When designing omni-big-step rules for a new language, one
has to be careful not to accidentally include rules that allow derivations of empty outcome sets
for some programs. To illustrate the matter, consider the term “rand 0. According to the standard
big-step semantics, this term is stuck because the rule BIG-RAND requires a positive argument to
rand. In the omni-big-step semantics, if we were to omit the premise n > 0 in the rule omNI-
BIG-RAND, we would be able to derive (rand0)/s || @ for any s and (. Indeed, the premise
Vm. 0 <m <n= (m,s) € Q) becomes vacuously true when n is nonpositive.

A similar subtlety appears in the rule oMNI-BIG-REF, where the fresh location p must be picked
fresh from the domain of s. This quantification could become vacuously true if the semantics al-
lowed for infinite states or if the set of memory locations were finite. (We discuss in [Charguéraud
et al., 2022, §6.5] the treatment of a language whose semantics account for a finite memory.)

The likelihood of inadequate formalization due to missing premises might be viewed as a po-
tential weakness of omnisemantics. Yet, if needed, additional confidence can easily be restored at
the cost of minor additional work: one may consider a standard small-step semantics as reference
(i-e., as part of the trusted code base), then relate it to the corresponding omni-big-step semantics
and use the latter to carry out big-step style, inductive proofs on nondeterministic executions.

4.4 Frame Property for the Omni-Big-Step Judgment

I next show that the omni-big-step judgment inherently satisfies the frame property. The corre-
sponding lemma captures the preservation of the omni-big-step judgment ¢/s; | @ when the
input state s; is extended with a disjoint piece of state so.

Lemma 4.4.1 (Frame property for big-step omnisemantics)

t/s1 | Q s1L so
t/(s1ws2) | (Q*(\s. s =s9))

OMNI-BIG-FRAME

Proof The proof'is carried out by induction on the omnisemantics judgment. We next show the two
most interesting cases of the proof: the treatment of an allocation (4 lines of Coq script) and that of a
let-binding (3 lines of Coq script). In each case, we assume s1 L ss.

CASE 1: t is refv. The assumption is (refv)/s1 | Q. It is derived by the rule OMNI-BIG-
REF, whose premise is Vp ¢ domsi. Qp(si[p := v]). We need to prove (refv)/(s1 w s2) |
(Q * (\s'. s’ = s2)). By OMNI-BIG-REF, we need to justify: Vp ¢ dom(s1 w s2). (Q * (\s'. s’ =
s2))p ((s1 w s2)[p := wv]). Consider a location p not in domsy nor in domsy. The predicate
(Q x (A\s'. 8" = s2)) p is equivalent to (Q p) x (As'. s’ = s2). The state update (s1 w $2)[p := v] is
equivalent to (s1[p := v]) w sa. Thus, there remains to prove: ((Qp) * (As’. &' = s2)) ((s1][p :=
v]) w $2). By definition of separating conjunction and exploiting (s1[p := v]) L so, it suffices to
show Q p (s1[p := v]). This fact follows from Vp ¢ domsy. Q p (s1[p := v]).

CASE 2: t is “letx = ty inty”. The assumption ist/sy | Q. It is derived by the rule OMNI-BIG-
LET, whose premises are t1/s1 || Q1 andVv's’. Q1v' s’ = ([V//x]t2)/s’ | Q. We need to prove
(letxz =ty int2)/(s1 ws2) | (Q* (As'. s’ = s2)). To that end, we invoke OMNI-BIG-LET. For its
first premise, we prove t1/(s1 w s2) || (Q1 * (A\s'. 8 = s2)) by exploiting the induction hypothesis

CHAPTER 4. OMNI-BIG-STEP SEMANTICS 50

appliedtot1/s1 || Q1. Forthe second premise, we have to prove Vv's”. (Q1x(\s'. s’ = s9))v' s" =

([v'/x]t2)/s" | (Q* (\s'. 8" = s32)). Consider a particular v and s”. The assumption (Q1 *
(As'. 8" = s9))v'$" is equivalent to ((Q1 V') * (\s'. s’ = s2))s”. By definition of separating
conjunction, we deduce that s" decomposes as s w sa, with s} L sy and Q1 v’ s}, for some s. There
remains to prove ([v'/x]t2)/(s] wsa) | (Q* (As'. ' = s2)). We first exploit Vv's'. Q10" s' =
([v'/x]t2)/s" | Q, on Q10" s} to obtain ([v'/x]ts)/s) | Q. We then conclude by applying the
induction hypothesis to the latter judgment. []

4.5 Definition of the Weakest-Precondition Predicate

Recall from Section 2.6.3 that the weakest-precondition operator, written wp ¢ (, computes the
weakest predicate H for which the triple { H} ¢ {Q)} holds. The interpretation of the inductively
defined omni-big-step judgment (¢/s ||) matches, up to the order of arguments, the interpre-
tation of the weakest-precondition operator. Formally:

wptQs < t/s] Q.
Thus, in a foundational approach, we can formally define wp as follows.

Definition 4.5.1 (Separation Logic WP in terms of the omni-big-step judgment)
wptQ = s (t/s 1 Q)

There remains to describe how the weakest-precondition-style reasoning rules can be derived
from the omni-big-step evaluation rules. Recall that, in a foundational program logic, reasoning
rules take the form of lemmas proved correct with respect to the definition of triples and with
respect to the semantics of the language. Throughout this section and the next, we formulate
rules by viewing postconditions as predicates of type val — state — Prop, as this presentation
style is more idiomatic in program logics. We present reasoning rules using the horizontal bar;
keep in mind that the statements are not inductive definitions but lemmas.

First of all, we establish structural rules, whose statement in weakest-precondition style is
reproduced below.

Qr Q
wptQ — wptQ'

WP-CONSEQUENCE WP-FRAME
(wptQ) > H = wpt(Q+ H)

The rule WpP-CONSEQUENCE is an immediate consequence of OMNI-BIG-CONSEQUENCE (Section 4.3).
The rule wp-FRAME is derived from OMNI-BIG-FRAME (Section 4.4) by the following reasoning.
Consider a state s satisfying (wp¢ @) » H. The goal is to prove wp ¢ (Q * H) s. By definition of
separating conjunction, the state s decomposes as s1 w s9, with s1 | s, and wpt @ s1 and H ss.
By definition, wp ¢ @ s is equivalent to t/s; | Q. Applying the lemma OMNI-BIG-FRAME gives:
t/(s1ws2) | (Q*(As'. 8 = s2)). To conclude, we need to prove: t/(s; w s2) | (Q* H). To
that end, it suffices to verify that (\s’. s’ = s3) entails H. This entailment holds because so
satisfies H.

We then establish reasoning rules for term constructs. Consider for example a let-binding.
Compare its weakest-precondition style reasoning rule, expressed in the form of an entailment,
with the omni-big-step rule for let-bindings.

WP-LET

wpty (A wp ([v'/z]t2) Q) + wp (leta = t1inty) Q

CHAPTER 4. OMNI-BIG-STEP SEMANTICS 51

ti/s | Q1 (VW's’. Q1v's" = ([V'/z]t2)/s" | Q)
(letz =t1int2)/s | @

It may not be obvious at first sight how to relate the two. The Coq proof is actually a one-liner:
unfold wp; intros; intros hK; eapply omnibig_let; eauto. Let us explain. To prove
the rule wp-LET, let us consider a state s. We have to prove that wpt; (M. wp ([v//z]t2) Q) s
implies wp (letz = t1inty) @ s. By definition of wp, this is equivalent to proving that ¢;/s |
(WS ([v'/z]t2)/s" || Q) implies (letz =t1inty)/s | Q. To establish this implication, we
apply the rule oMNI-BIG-LET with the variable @ instantiated as \v's’. (([v/z] t2)/s" || Q). With
this instantiation, the second premise of OMNI-BIG-LET becomes a tautology. The first premise of
that rule becomes: t1/s | (Avi. ([v//z]t2)/s' | Q), which matches the assumption at hand.

For most other term constructs, the wp rule is essentially a copy of the omni-big-step rule
with arguments reordered. One interesting exception is that of loops. While-loops have not been
discussed so far, but they appear in the language used our in case studies [Charguéraud et al.,
2022, §6]. Typically, standard weakest-precondition rules for while loops are stated using loop
invariants. In contrast, an omni-big-step rule essentially unfolds the first iteration of the loop, just
like in a standard big-step semantics. From that unfolding rule, one can derive the loop-invariant-
based rule by induction, in just a few lines of proof.

In summary, by considering a semantics expressed in omni-big-step style, one can derive prac-
tical reasoning rules, in most cases via one-line proofs. The construction of a program logic on
top of an omni-big-step semantics is thus a major generalization over the use of a standard big-

OMNI-BIG-LET

step semantics, which fall short in the presence of nondeterminism. It is also an improvement
over the use of a small-step semantics, which require more work for deriving the reasoning rules,
especially when trying to capture termination.

4.6 Definition of Triples w.r.t. Omni-Big-Step Semantics

Consider a possibly nondeterministic semantics. A total-correctness Hoare triple {H} t {Q}
asserts that, for any input state s satisfying the precondition H, every possible execution of ¢/s
terminates and satisfies the postcondition (). This property can be captured using the inductive
omni-big-step judgment as follows.

Definition 4.6.1 (Separation Logic triples in terms of the omni-big-step judgment)
{H}t{Q} = Vs. Hs = (t/s | Q)

Note that, reciprocally, an omni-big-step judgment may be interpreted as a particular Hoare
triple, featuring a singleton precondition to constrain the input state:

(t/s 1 Q) <= {(A\s. & =19)}t{Q}.

Like in the case of weakest-preconditions, the rule of consequence and frame rule for triples
follow directly from the properties OMNI-BIG-CONSEQUENCE and OMNI-BIG-FRAME of the omni-big-
step judgment. Reasoning rules for term constructs are straightforward to derive. Consider, e.g.,
a let-binding. Compare the oMNI-BIG-LET rule with the corresponding Separation Logic rule.

OMNI-BIG-LET LET
t1/s || Q1 {H} t1 {Q1}
(Vv’s’. Q1 v's = ([v/z]ta)/s" |l Q) (Vv'. {Q1 '} ([v//x] t2) {Q})
(letz =tyinta)/s | Q {H} (letx =t1int2) {Q}

CHAPTER 4. OMNI-BIG-STEP SEMANTICS 52

The only difference between the two rules is that the first one considers one specific state s,
whereas the second rule considers a set of possible states satisfying the precondition H. To prove
the LET rule, we first unfold the definition of {H} t {Q} asVs. Hs = (t/s | Q). We then
consider a particular state s, and apply the rule oMNI-BIG-LET for that state. The two premises of
OMNI-BIG-LET are justified by applying each of the two premises of the LET rule. The corresponding
Coq proof script witnesses the simplicity of this proof: “intros. eapply mbig_let; eauto.”

In summary, omni-big-step semantics allow for a direct definition of triples that inherently
satisfy the frame rule. There is no need to apply the baked-in frame rule construction (Defini-
tion 2.4.2), and reasoning rules are derived by simpler and shorter proofs.

4.7 Other Applications of Omnisemantics

The omnisemantics paper [Charguéraud et al., 2022] covers numerous aspects beyond the set-up
of total correctness triples on top of a big-step semantics.

« We explain how to capture partial correctness using coinductive interpretation. Partial cor-
rectness, in particular, can be used to define and reason about type safety of a program.

« We describe the omni-small-step judgment, written ¢/s — P, where P denotes a set of
pairs each made of a term and a state. This judgment captures the set of configurations that
are reachable in a single evaluation step from ¢/s. We then present the eventually judgment,
written t/s —¢ P, which may be exploited in inductive proofs.

« We present two novel proof techniques for establishing type safety for a type system with
respect to a non-deterministic semantics. One is based on the omni-small-step semantics,
the other on the omni-big-step semantics. We explain the benefits compared with standard
proof techniques, in particular the fact that they avoid a quadratic case inspection.

« We discuss applications of the omni-semantics judgment for proving the correctness of com-
piler transformations via forward simulations. Prior work either had to face the complica-
tions of using backward simulations, or to work hard around the problem by artificially
making semantics deterministic (as done, e.g., in the CompCert verified compiler [Leroy,
2009]). The proof techniques presented apply to both omni-big-step and omni-small-step
semantics. Moreover, they have been shown useful to establish the correctness of a compi-
lation pass from a high-level language whose semantics is specified in omni-big-step style,
down to a lower-level language whose semantics is specified in omni-small-step style.

The aforementioned applications all exploit a key feature of omni-big-step semantics: the fact
that they inherently deliver induction principles for reasoning about program executions.

Chapter 5

Characteristic Formulae

This chapter describes the technique of characteristic formulae for smoothly integrating
Separation Logic in an interactive proof assistant. In Section 5.1, I explain the concept of
characteristic formula, and in particular how it relates to the concept of weakest precon-
dition. In Section 5.2 and Section 5.3, I show how to define the characteristic formulae
generator as a function that effectively computes within Coq. In Section 5.4, I explain how
to establish the soundness of this generator. In Section 5.5 and Section 5.6, I describe the
set-up used for carrying interactive program verification in practice using characteristic
formulae, through the use of tactics that allow for concise proof scripts.

The term characteristic formula was introduced in work by Hennessy and Milner [1985]
on process calculi. The notion of characteristic formula was first applied to a first-order
program logic by Berger et al. [2005]. In my PhD work, I introduced characteristic formulae
for a higher-order Separation Logic Charguéraud [2010]. These characteristic formulae
were generated by an external OCaml program in the form of Coq axioms—thus, they
were not foundational.

Guéneau et al. [2017] ported my characteristic formulae approach to the CakeML verified
compiler [Kumar et al., 2014], implemented in HOL. Armaél Guéneau, whom I had en-
couraged to go for an internship with Magnus Myreen, not only generalized on the way
the characteristic formulae to support catchable exceptions and I/O, but also was able to
establish the soundness of the characteristic formulae generator with respect to CakeML'’s
semantics.

The characteristic formulae developed in my PhD thesis were presented as predicates that
apply to both a precondition and a postcondition. In the years 2018-2019, I realized that
they could be alternatively presented as predicates over postconditions only, that is, in
weakest-precondition style. Moreover, I defined a Coq function that takes as input the deep
embedding of an untyped term and computes, within Coq, its characteristic formula in
weakest-precondition style (see Section 5.2). For establishing the soundness of this function
with respect to the semantics, I developed a proof technique simpler than the one used by
Armaél Guéneau (see Section 5.4).

Most of the contents this chapter corresponds to the chapter WPgen of my all-in-Coq
course [Charguéraud, 2021]. As of 2022, the material has not yet been published.

53

CHAPTER 5. CHARACTERISTIC FORMULAE 54

5.1 Principle of Characteristic Formulae

Recall from Section 2.6 that the predicate wp ¢ () describes the weakest precondition of a term ¢
with respect to a postcondition (). This predicate satisfies the equivalence (H - wth) <
{H} t {Q}. It comes with a number of reasoning rules, such as wp-LET, which is expressed as
the entailment: wp ¢y (Av. wp ([v/z]t2) Q) = wp (letx = t1ints) Q. The predicate wp can be
defined in numerous ways, but ultimately all definitions refer to the inductively defined semantics
of the programming language.

In this chapter, I introduce a function to effectively compute the weakest precondition of a
term. This function, called cf, is defined by recursion over the syntax of the source term. In the
particular case where cf reaches a function application, the formula that it produces simply refers
to the weakest precondition (wp) associated with that application. Compared with a weakest-
precondition calculus, as found typically in Hoare-logic based tools that rely on automated solvers
for discharging proof obligations, the main difference is that cf operates on a raw source term,
without requiring any specification or invariant to accompany the term. One may thus view a
computation of the characteristic formula as a most general weakest-precondition calculus.

The central theorem of this chapter establishes cft) - wpt Q. Exploiting this entailment
allows to establish the specification of a function by following the structure of the logical formula
produced by cf. In particular, to establish that a function satisfies a given specification, one can
apply the rule cr-TRIPLE-FIX shown below. This rule reveals the characteristic formula associated
with the body the function instantiated on the argument provided to the function. This rule is a
corrollary of the reasoning rule aApp and of the entailment cft QQ - wpt Q.

vy = ff Azt f#x H b cf([va/x] [v1/f]t) Q
{H} (v102) {Q}

Compared with carrying out proofs using wp directly, the added value of characteristic for-
mulae is three-fold.

First, the characteristic formula function cf produces a logical formula that no longer refer
to the deeply-embedded syntax of the term ¢. All variables appear as logical variables, that is,
Coq variables. Furthermore, there is no need to simplify substitutions expressed on the deep
embedding, such as [v/x] t2 in the rule wp-LET.

Second, the characteristic formula in some sense pre-applies all the reasoning rules of the pro-
gram logic. For example, when processing a let-binding, there is no need to apply the lemma
WP-LET, because this lemma is somehow already exploited as part of the statement of the charac-
teristic formula. The only bookkeeping work that remains to make progress through a let-binding
is to instantiate an existential quantifier and split a conjunction. These two benefits should appear
more clearly when we present examples further on.

Third, characteristic formulae enable the introduction of the lifting technique described in
the next chapter. This technique allows describing program values directly using Coq values. In

CF-TRIPLE-FIX

particular, constructors of OCaml algebraic data types may be represented using corresponding
Coq inductive constructors. Among other benefits, the lifting techniques leads to considerable
simplifications in the logical formulae produced for reasoning about pattern matching.

5.2 Building a Characteristic Formulae Generator, Step by Step

We next describe a 6-step process that leads to the definition of the function cf. For simplicity, we
assume the term ¢ to be in A-normal form, meaning that arguments of functions and conditionals

CHAPTER 5. CHARACTERISTIC FORMULAE 55

are expected to be either variables or values. The generalization beyond A-normal form makes
the definitions slightly more technical, so we do not present it here. Such a generalization may be
found in the implementation of CFML.

Step 0: Weakest-precondition style reasoning rules. We start from the wp-style reasoning
rules (Section 2.6.3), which we reproduce below for convenience. In the rule wp-LET that handles
a term of the form letx = t; inty, the variable named X has type val and corresponds to the
value produced by ¢;. The substitution [X /z] t5 replaces the program variable x (represented as
a string) with an abstract value represented by the Coq variable X.

WP-VAL: Qv wpv@
WP-FIX: Q(pfAxt) = wp(ufixt)Q

WP-APP: wp ([ve/z] [v1/f]t) Q@ + wp (v1v2) @ where v = if Azt
WP-LET: wpty (AX. wp ([X/z]t2) Q) + wp (letx =tinty) Q
WP-IF: If bthen (wpt; Q) else (wpta Q) wp (if b then t; else t2) Q

WP-FRAME: (wpt Q) » (Q =+ Q') - (wpt Q)

Step 1: Recursion over the syntax. We consider a first version of cft (), defined by recur-
sion over its argument ¢. For all term constructs except applications, we mimic the weakest-
precondition rule. For a function application, we simply refer to the wp judgment for that appli-
cation. Indeed, we do not have at hand the specification of the function being called. In the case of
a conditional, we need to existentially quantify over the boolean value b that corresponds to the
argument of the conditional, because in the original program that argument could be a variable
and not a boolean value. Support for the frame rule will be added later on, at step 5.

cfo@ = Qu
cf (uf.Az.t) Q = Q(afAx.t)
cf (tl tg) Q = Wwp (tl t2) Q

cf (letz =t1int2) Q cfty (AX. of ([X/z]t2) Q)
cf (if to then t; else t2) Q (b : bool). [to = b] = If b then (cft1 Q) else (cfta Q)
cfx@ = 1

On the last line above, cfx () is defined as the always-false assertion. Indeed, variables should
all have been removed via the substitutions performed when traversing let-bindings. If the com-
putation of cf reaches a free variable, it means that this variable was a dangling (unbound) free
variable of the original input program. A dangling free variable is a stuck term in the semantics,
hence its weakest precondition is the false predicate.

Step 2: Refinement for local functions. Let us refine the definition of characteristic formu-
lae for local functions. Consider a local function definition of the form pf.Az.t. The formula
Q (fuf -Az.t) is sound and complete: it enables the user to state and prove property about that
function, by exploiting its syntactic definition. Yet, when working with characteristic formulae,
we would like to never manipulate program syntax. Instead, we would like to obtain a logical
formula that enables the user to reason about the extensional behavior of the function. Such a
behavior can be achieved by leveraging the characteristic formula recursively computed for the
body of that function. The relevant definition is shown below and explained next.

cf (ufdet)Q = V(F:val). [VXQ'. cf([X/x][F/f]lt)Q +—wp(FX)Q'| «QF

CHAPTER 5. CHARACTERISTIC FORMULAE 56

The universally quantified variable F' denotes the value /i f.A\x.t that corresponds to the function
closure. Yet this information is not revealed. What is provided is an assumption that may be
exploited to establish properties about calls of the form F' X. This assumption asserts that, for
any argument X, to establish that the application ' X admits a particular behavior described by
a postcondition ()’ one has to show that the term [X /x| [F'/f] t admits the same behavior.

An equivalent formulation of cf (uf. Ax.t) Q, slightly more convenient when specifying func-
tions using triples, is shown below. It specifies the application F' X using a triple, and involves a
heap predicate H to denote the precondition of that application.

cf (ufret)Q =

We will make use of this alternative formulation later on, in Section 6.6.

Step 3: Obtaining a structural recursion. The recursive function cf defined at steps 1 and 2
is not structurally recursive. Indeed, in the processing of let x = t; in ¢y, the second recursive call
is not performed on t9 but on [X /x| t5. The function cf does terminate on all input, because the
substitution involved replaces variables not with arbitrary terms but with values. These values
are handled at the base case (cfv @) = @Q v), where no recursive call is involved. To simplify the
Coq formalization of the function cf, we are going to recast the function in a way that makes it
structurally recursive.

We introduce an environment, written E, to keep track of the delayed substitutions. This
environment plays the same role as a typing environment in a type-checker, except that it binds
a program variable not to its type but to its corresponding Coq variable. Concretely, we define a
function of the form cfg ¢ (). For simplicity, we represent E' as an association list binding values
to variables. We note, however, that an appropriate tree data structure (e.g., a Patricia tree) could
improve performance.

The definition of the structurally recursive function cf is shown below. The context E gets
extended in the let-binding case. When the function reaches a free variable z, it performs a lookup
for this variable in the environment E, using the operation written E|[z]. Besides, observe that
the definition of cfg v) does not involve any substitution, because values in our language are
always closed value.

cfpz@ = If (x € dom E) then Q (E[x]) else L

cfpv@ = Qu

CfE([Az t) Q = VI [VXQ, Cf(f,F)::(w,X)::E'tQ, = wp (FX) Q/] —+ QF
cfg (t1 tz) = wp (subst FE (tl tQ)) Q

cfpts (AX. f(z x)pt2 Q)
(b : bool). [ty = b] » If b then (cfpt1Q) else (cfgr t2Q)

(
cfg (letm =1{1in tg) Q
cfg (if to then ¢ else t2) Q

To invoke the characteristic formulae generator on a closed program, we let cft () = cfy; t Q.

Step 4: Reformulation as a function that does not depend on the postcondition. For
reasons that will only appear clear in the following steps, we next swap the place where @ is
taken as an argument with the place where the pattern matching on ¢ occurs. In other words, we
define the recursive function cfg ¢, whose output is a function that expects a postcondition () as

CHAPTER 5. CHARACTERISTIC FORMULAE 57

argument. The function cfg ¢, reformulated below, admits the type: (val — Hprop) — Hprop.

cfpx = MQ.If (x € dom E) then Q (E[z]) else L
cfgv = AQ.Qu
cfp (ufAx.t) = ANQ.VIE. [VXQ' cf(s pyu(e,x):ptQ Fwp (FX)Q]=*QF

AQ. wp (subst E (t1 t2)) Q
AQ.cfpti (AX. cfy x).pt2 Q)
AQ.3(b: bool). [to =b] * If bthen (cfpt1Q) else (cfp t2Q)

cfg (tl tg)
cfp (letx =t1in tg)
cfg (if to then t; else t2)

Step 5: Adding support for the frame rule. The framerule (wpt Q) * (Q— Q') + (wpt Q')
is not syntax directed. Thus, we do not know, a priori, where in a proof the user may wish to exploit
this rule. Our approach to handling structural rules is to introduce a predicate transformer, written
framed F, at every node of the characteristic formula. For example:

cfg (letz =t1inty) = framed (AQ.cfgt; ()\X. cf(z,x):E t2 Q))

We will come back to the definition and properties of “framed” in Section 5.3. Suffices to know
at this point that: (1) if needed, this predicate can be exploited to mimic the frame rule; (2) if not
needed, this predicate can be discarded, before pursuing through the remaining of the formula at
hand.

The idea of applying a predicate transformer at every node of the characteristic formula orig-
inates from my PhD work [Charguéraud, 2010]. Yet, the characteristic formulae presented here
operate on weakest-precondition style predicates, thus the predicate framed used here admits a
totally different shape than in my prior work.

Step 6: Introduction of auxiliary definitions. We introduce one auxiliary definitions per
term construct. Their purpose is to improve the readability of the output of calls to cf by means of
a set of custom notation, and to ease the statement of the lemmas that contribute to the soundness
proof. In the definitions shown below, the meta-variable F denotes a formula of type (val —
Hprop) — Hprop, and G denotes a formula that depends on one or several arguments of type val.

Definition 5.2.1 (Auxiliary definitions for the characteristic formulae)

cf fail = framed (\Q. 1)

cf valv = framed (A\Q. Qv)

cf varE x = framed (\Q. If (x € dom E) then c¢f val (E|[x]) else cf fail)

cf appt = framed (\Q. wpt Q)

of _fixG = framed(\Q. YF. [VXQ' . GFXQ +wp(FX)Q'] +QF)
cf let F1Go = framed(\Q. F1 (AX. GavQ))

of iftoFrFe = framed(NQ. 3(b: bool). [tog = b] * Ifb then F1 Q else F2 Q)

For example, we can now define: “cfg (let z = ¢ intg)” as “cf_let (cfg t1) ()\X. cf iz x):E t2) ”,
Furthermore, we introduce the Coq syntax “Let x := F1 in F2” for the predicate “cf_let 1 Go”.
As aresult, the characteristic formula of a term of the form “let z = ¢ in t2” is displayed to the user
in the form “Let X := F1 in F2”. In other words, as we will illustrate further on (Section 5.5), the
display of characteristic formulae gives the user the illusion of reading source code, even though in
fact what is being manipulated is not a piece of program syntax but instead a Coq logical formula.

The definition of the characteristic formulae generator in terms of the auxiliary definitions is
as follows.

CHAPTER 5. CHARACTERISTIC FORMULAE 58

Definition 5.2.2 (Characteristic formulae generator) ¢ft(Q = cf,;tQ with

ofpx = ¢ varEzx
ofg v = ¢f valv
CfE (,sz>\xt) = Cf_ﬁX ()\FX Cf(f,F)::(:E,X)::E t)

ofp (t1 t2) cf app (subst E (t1t2))
ofp (letz =ty intq) of let(cfptr) (AX. Sz, X ta)
ofp (if to then ty else ty) = cf if (subst E'ty) (cfpt1) (cfg ta2)

5.3 Properties and Definition of the “framed” Predicate

As said earlier, the purpose of the predicate framed is to provide the user with the possibility to
access the expressiveness of the frame rule while carrying out proofs via characteristic formulae.
Proof obligations take the form H | framed F (), where F is an application of an auxiliary
definition such as cf_let, or an application of wp. On such proof obligations, we wish to exploit
the following reasoning rules, which mimic the application of consequence and frame on triples,
and to be able to eliminate the transformer “framed” when it is not needed.

CF-FRAMED-CONSEQ CF-FRAMED-FRAME CF-FRAMED-ERASE
H + framed F Q QrQ H + framed F Q H+- FQ
H + framed F Q' H H' + framed F (Q « H') H + framed F Q

There remains to exhibit a definition of “framed” that satisfies the above rules. Recall that
the frame and consequence rules are subsumed by the rule wp-FRAME. This rule asserts that
the assertion wp ¢ () is entailed by the assertion 3Q’. (wpt Q') * (Q" =+ Q). We can mimic this
definition by defining the assertion “framed F Q” as “3Q". (F Q') * (Q’ = Q)”. L am very grateful
to Jacques-Henri Jourdan who, at a time when I was not yet familiar with the magic wand on
postconditions, suggested to me that this definition of the framed predicate would obviously satisfy
the rules cF-FRAMED-CONSEQ and CF-FRAMED-FRAME that I was aiming for.

Furthermore, to account for the fact that we aim for a program logic in which certain heap
predicates can be considered affine as opposed to linear, we include an affine-top predicate in the
definition of “framed”, in a way reminiscent of the rule Wp-RAMIFIED-FRAME-ATOP (Section 3.1.2).

Definition 5.3.1 (Predicate “framed”)
framed F = MQ. 3Q'. (FQ') x (' = (Q+T))

The key properties of this predicate appear below. The three first properties justify the three
reasoning rules stated above. The next two properties are useful in the soundness proof: FRAMED-
MoNoO asserts that framed is covariant in the formula it applies to; FRAMED-wP asserts that framed
does not add to the expressiveness of a weakest-precondition formula wp ¢, because such a for-
mula already supports consequence-frame reasoning. The last property FRAMED-IDEM, is a sanity
check. It shows that two nested applications of the framed predicate are redundant; it is reminis-
cent of the fact that two applications of the frame rule (or of the consequence rule) can always be
merged into a single application of that rule.

CHAPTER 5. CHARACTERISTIC FORMULAE 59

Definition 5.3.2 (Properties of the predicate “framed”)

FRAMED-CONSEQ: Q = Q' = framed F Q \ framed F Q'
FRAMED-FRAME: (framed F Q) x H — framed F(Q x H)
FRAMED-ERASE: F Q + framed F Q)

FrRAMED-MONO: (VQ. FQ + F' Q) = framed F Q + framed F' Q
FRAMED-WP: framed (wpt) = wpt

FRAMED-IDEM: framed (framed F) = framed F

5.4 Soundness of Characteristic Formulae

As announced earlier, our aim is to prove cft Q) — wpt Q. Recall that cft Q) = cfit QQ where
the recursive function has the form cfg ¢, for an environment E. A key insight is that the for-
mula computed by cfg ¢ Q) is equivalent to the one computed by cf (subst E't) (), where subst E't
corresponds to the term ¢ in which all bindings from E have been substituted. We define the it-
erated substitution operation subst as a recursive function over the term ¢, for efficiency reasons.
Alternatively, this operation can be defined by recursion over the environment E' as follows.

subst nil ¢ =t
subst ((z,v) :: E)t subst E ([v/x]t)

In fact, our soundness proof exploits the fact that these two definitions of subst are equivalent.
Our soundness proof establishes the following result:

cfgpt@ wp (subst Et) Q.

The proof is by structural induction on the term ¢. To ease the statement of the lemmas involved
in the soundness proof, we introduce an auxiliary judgment to reformulate the proof obligations.
This judgment, written “sound t F”, asserts that F is a logical formula stronger than the weakest-
precondition of ¢.

Definition 5.4.1 (Auxiliary soundness judgment)

soundt F = VQ. FQ I wptQ
Using this judgment, the proposition cfg ¢ Q) - wp (subst E t) Q) reformulates as shown below.
Lemma 5.4.1 (Statement of the induction principle for the soundness proof) We prove:

VtE. sound (substE't) (cfzt)

CHAPTER 5. CHARACTERISTIC FORMULAE 60

The proof is by induction on t. We next list the key lemmas involved in the proof.

SOUND-WP : soundt (wpt)
SOUND-FRAMED : soundtF = soundt (framed F)

SOUND-FAIL : sound t cf_fail
SOUND-VAL : sound v (cf_valv)
SOUND-APP : soundt (cf_appt)
SOUND-IF : soundty F1 A soundity Fo
= sound (if to then t; else t2) (cf_iftg F1 F2)
SOUND-LET : soundty Fi A (VX. sound ([X/z] t2) (G2 X))
= sound (letz =ty intg) (cf_let 1 Go)
SOUND-FIX : (VFX. sound ([X /2] [F/f]t) (G F X))

= sound (uf.Az.t) (cf_fixG)

Each of these lemmas admits a short proof. The lemma souND-F1x requires 4 lines of Coq
script, the lemmas sOUND-LET and sOUND-IF each require 2 lines of Coq script, and all others
require a single line of proof. For example, the proof of sOoUND-LET is as follows.

Lemma sound_let:VF1G2xt1t2,
sound t1 F1 —
(V v, sound (subst1 x v t2) (G2 v)) —
sound (trm_let x t1 t2)(cf_let F1 G2).
Proof using.
introv S1S2. intros Q.unfolds cf_let. applys himpl_trans wp_let.
applys himpl_trans S1.applys wp_conseq. intros v. applys S2.
Qed.

With these lemmas at hand, the Coq script for the soundness proof is no more than a dozen
lines long.

Lemma sound_cf :VE t,
sound (isubst E t) (cf E t).
Proof using.
intros.genE. induction t; intros; simpl;
applys sound_framed.
{applys sound_val.}
{rename v into x. unfold cf_var. case_eq (lookup x E).
{intros vEQ. applys sound_val.}
{intros N. applys sound_fail.}}
{introv IHt1. applys sound_fix.
intros FX rewrite < isubst_rem_2.applys IHt1.}
{applys wp_sound.}
{applys sound_let.
{applys IHt1.}
{intros X. rewrite <« isubst_rem applys IHt2.}}
{applys sound_if.{applys IHt2.}{applys IHt3.}}
Qed.

The only tedious parts of the proof are the lemmas i subst_remand isubst_rem_2, which
explain how substitutions commute. For example, i subst_rem establishes the equality:

subst ((z,v) :: E)t = [v/z] (subst (E \ {z})t)

CHAPTER 5. CHARACTERISTIC FORMULAE 61

where E \ {z} denotes a copy of F with bindings on x removed.
Equipped with these results, we derive our final theorem justifying the soundness of charac-
teristic formulae by instantiating Lemma 5.4.1 on the empty environment.

Theorem 5.4.1 (Soundness of characteristic formulae)
ftQ = wptQ

In practice, this soundness theorem is exploited by means of the rule cr-TRIPLE-FIX, which allows
establishing a specification triple for a function by processing the characteristic formula of its
body (recall Section 5.1).

5.5 Interactive Proofs using Characteristic Formulae

In this section, we describe the process of reasoning about untyped code by exploiting charac-
teristic formulae that are computed inside Coq. The examples from this section can be played
interactively by opening the first two chapters (files Basic.v and Repr. v) from my all-in-
Coq course [Charguéraud, 2021].

Consider as an example program the function incr, which increments the contents of a mu-
table cell that stores an integer. In OCaml syntax, this function could be defined (in A-normal
form) as shown below.

let incr =
fun p ->
let n = !p in
let m = n + 1 in
p :=m
Thanks to the use of a Coq custom syntax, enclosed in specific delimiters written <{ .. }>, we can
parse source code using a readable syntax, not too far from that of OCaml. The only caveat is that
we need to prefix all variables with a quote symbol, to distinguish between program variables and
Coq constants. The definition shown below defines a Coq constant named incr. This constant
has type val, the type of closed values in our deep embedding.

Definition incr:val :=
<{fun’p=
let’n=!"pin
let’'m="n+11in
pi="m}>.

We next state a specification for that function. This specification takes the form triple t HQ,
where t corresponds to an application of the function incr to an argument, written <{ incr p }»
in our custom syntax. The precondition is p < n, and the postcondition is p < (n + 1). The
“fun _ = ..” that appears at the head of the postcondition denotes the fact that the function re-
turns a unit value that does not need to be named. The argument p and the auxiliary variable n are
quantified outside the triple. The variable n has type int, which is an alias for Z. Our semantics
indeed assumes an arbitrary-precision arithmetic, as implemented, e.g., in the CakeML verified
compiler [Kumar et al., 2014].

Lemma triple_incr:V(p:loc) (n:int),
triple<{incrp}>

(p—n)
(fun _ = (p — (n+1))).

CHAPTER 5. CHARACTERISTIC FORMULAE 62

We next discuss the proof establishing that the code of incr satisfies its specification. First,
we explain how proof obligations are displayed. Second, we show a naive, explicit proof script.
Third, we show how the use of specialized tactics called x-tactics or CFML-style tactics can shorten
proof scripts.

Interactive feedback. After introducing the variables p and n in the context, the proof begins
with an application of the rule cr-TripLE-FIX. Throughout the proof, the proof obligations in-
volving characteristic formulae take the form H - F (), where F is a formula associated with a
subterm of the program. We display such proof obligations in Coq using a custom notation of the
form PRE H CODE F POST Q. In the CODE section, the characteristic formula is displayed using
our custom notation for formulae introduced earlier at step 6. Up to alpha-renaming of bound
variables, the initial proof obligation reads as follows. Observe how one can somewhat recognize
the body of the function incr.
PRE (p — n)
CODE <[Let n:= App val_get p in
Let m:=Appval_addn1in
Appval_setp)]>
POST (fun _ = (p — (n+1))).

Proofs without x-tactics. Carrying a proof from first principles is quite verbose. We show
below a corresponding proof script. The name triple_get refers to the lemma that corre-
sponds to the specification of the “get” operation on references. Likewise, triple_add and
triple_set refer to specification lemmas. The tactic xsimpl simplifies an entailment; it is
detailed further on. The tactic xpull simplifies the left-hand side of an entailment; it is a re-
stricted version of xsimpl. The Coq tactic intros ? — introduces two quantifiers of the form
V(z: A)(H : x = e)...., then immediately substitutes = away, replacing its occurrences with the
expression e.

Proof using.
intros.
applyscf_triple_fix. {reflexivity.}simpl.
applys cf_let.
applys cf_app.{apply triple_get.}{xsimpl.}
xpull; intros ? —.
applyscf_let.
applys cf_app.{apply triple_add.}{xsimpl.}
xpull;intros? —.
applys cf_app.{apply triple_set.}{xsimpl.}
xsimpl.

Qed.

Simplification of entailments. FEach call to the tactics xpull and xsimpl may apply dozens
of lemmas for exploiting the associativity and commutativity of the separating conjunction, as
well as extraction rules (STAR-EX1STS and EXISTS-L and PURE-L, Section 2.2.3). The tactic xsimpl
is a procedure able to simplify and/or prove nontrivial entailments, including ones involving cer-
tain cancellations of magic wand operators. Here are two example entailments that xsimpl can
discharge.

1. v.(g—ov)*[n=4]*(p—>n)xH + Im. (p—>m)*Hx[m>0]xT
2. HlxH2x ((Hl*H3) «(H4—+H5)) « H4 - ((H2 +«H3) —H5)

CHAPTER 5. CHARACTERISTIC FORMULAE 63

The behavior of xsimp1 is described in details in the appendix of my ICFP’20 paper [Charguéraud,
2020, Appendix K]. This tactic is currently implemented using Ltac, the tactic programming lan-
guage of Coq. Yet, due to limitation of Ltac, this implementation is quite slow, and is the major
performance bottleneck. Eventually, I may need to switch to an OCaml-based implementation.

Proofs using x-tactics. Let us revisit the proof of the specification lemma for the increment
function using specialized tactics for manipulating characteristic formulae. The corresponding
script, shown below, consists of a series of x-tactics. Each tactic applies one or several rules
(i-e., lemmas) specifically tailored for processing characteristic formulae—details are given in Sec-
tion 5.6.

Proof.
XWp. Xapp. xapp. xapp. xsimpl.
Qed.

A more complex example. To give an idea of what a typical proof script looks like, let us
consider a more complex example. The example consists of the copy function for C-style, null-
terminated linked list, where mnil and mcons are smart constructors for the empty list and for
a list cell, respectively.

let rec mcopy p =

let b = (p == null) in

if b then
mnil ()

else
let x = p.head in
let q = p.tail in
let g2 = mcopy q in
mcons X q2

The specification of this function has been presented in Section 2.1.8. We reproduce it here using
Coq syntax.

Lemma triple_mcopy:V(p:loc) (L:1ist val),
triple (mcopy p)
(MList L p)
(fun (r:val) =3(p:loc),\[r =p’] *(MList L p) »(MList L p’)).

The proof script is shown below. The first line sets up a well-founded induction on the list. The
remaining lines follow the structure of the program: xwp enters the proof; xapp is used to handle
each function call; xif handles the conditional and leaves one subgoal for each branch. The tactic
xchange exploits the consequence rule to fold or unfold the representation predicate for mutable
lists (Mlist, see Definition 2.1.3). The star symbol that appears after tactic names denotes a call to
Coq’s automation tactic eauto.

Proof using.
intros. genp. induction_wf IH:list_sub L.
xwp. xapp. xchange MList_if.xif;intros C;case_if;xpull.
{intros —.xapp. xsimpl« subst. xchanges «MList_nil.}
{intros x q L’ —.xapp. xapp. xapp. intros q’.
xapp. intros p’. xchange «—MList_cons. xsimpl«.}
Qed.

CHAPTER 5. CHARACTERISTIC FORMULAE 64

Summary. The above script is representative of many CFML-style proofs. It consists of:

1. the set up of a proof by induction, in the case of a recursive function;

2. x-tactics for handling a term construct and thereby make progress through the code;

3. interleaved between the former, x-tactics that apply the structural reasoning rules, which
are not syntax-directed;

4. also interleaved between x-tactics for term constructs, calls to conventional Coq tactics for
performing rewriting operations, or performing case analyses (i.e., inversions);

5. calls of xsimpl and xpull for simplifying entailments;

6. conventional Coq tactics for discharging pure obligations in the leaves of the proof tree.

The use of x-tactics for processing characteristic formulae and for simplifying entailments
allows achieving fairly concise proof scripts. Besides, the x-tactics that follow the term constructs
help organize the proof script in a way that matches the structure of the code. If either the code or
the specification is modified, the user greatly benefits from these structuring tokens for figuring
out where and how to fix the proof script. We next give a brief overview of how x-tactics are

defined.

5.6 Implementation of CFML-Style Tactics

We next describe the construction of a few key CFML tactics. We do not aim here for exhaustive-
ness. Details may be found in chapter WPgen . v from my Coq course.

Processing of specification triples. As mentioned earlier, the user begins a proof with the
tactic xwp. First, the tactic introduces the variables universally quantified in the specification.
Second, it applies the rule cF-TRIPLE-FIX, reproduced below. Third, it launches the evaluation in
Coq of the application of cf to the body of the function.

v =pfet f#Fx H b cf([va/z][v1/f]1) Q
{H} (v1v2) {Q}

CF-TRIPLE-FIX

Application of the frame rule. The tactic xframe enables the user to invoke the frame rule.
This tactic leverages the rule cf-frame shown below. The first premise asserts that the char-
acteristic formula F at hand contains a leading “framed” transformer. This premise is always
verified by construction of characteristic formulae.

F = framed F’ H + Hi~H Hi - F@: Qi+Hy = Q
H+ FQ

CF-FRAMED

In practice, the tactic comes in two flavors: one tactic for specifying which heap predicates that
should be kept (i.e., providing H1), and one for specifying which heap predicates should be ex-
cluded (i.e., providing H3). In both cases, the heap predicate that corresponds to the complement
is computed by invoking xsimp1l on the second premise.

Processing of values. The tactic xval invokes the lemma cf-val, which reformulates the
definition of cf valv.

HE Qu
H + cf valv@

CF-VAL

CHAPTER 5. CHARACTERISTIC FORMULAE 65

Processing of let-bindings. Likewise, the tactic x1et invokes the lemma cr-LET, which refor-
mulates the definition of cf let 7 Go.

H+ F(0AX. G2 XQ)
H cf let 71 G Q

CF-LET

Processing of applications. The tactic xapp is the most interesting. First of all, xapp invokes
xlet if it faces a let-binding. Then, xapp expects to face a proof obligation of the form H
wp t), where t corresponds to a function application. It applies the rule RAMIFIED-FRAME-FOR-WP,
introduced in Section 2.6.4 and reproduced below.

{H1}t{Q1} H = Hix(Q1~ Q)
H - wptQ

RAMIFIED-FRAME-FOR-WP

CFML provides a mechanism for registering a specification lemma for every top-level function. Us-
ing this “database”, we are able to automatically look up and instantiate the relevant lemma. Using
the instantiated specification lemma, we discharge the first premise of the rule RAMIFIED-FRAME-
FOR-WP. We also offer means of providing explicit arguments for instantiating the specification
lemma in nontrivial cases.

The second premise is handled by xsimpl, which, in particular, computes on-the-fly the
frame that applies to the function call. More precisely, by cancelling the current heap predicate H
against the precondition H;, xsimpl simplifies the remaining proof obligation to Q1 x Hy — @,
where Hj denotes the framed predicate.

For function calls inside a let-binding, the postcondition @ is of the form AX. Go X @'. In such
case, the proof obligation simplifies further to: VX. (Q1 X) x Hy + G2 X Q'. Here, X denotes
the value produced by the function call,)1 X characterizes the heap produced by that function
call, H denotes the heap predicate framed during the call, and Go X @’ denotes the characteristic
formula of the continuation, which may refer to the value X.

In many cases, the postcondition ()] includes an equality on X, so the proof obligation takes
the form: VX. [X = V] (Q] X) x Hy - G2 X @Q'. Such proof obligations are further simplified
by xapp into the form: (Q} V) x Ha» + G2V Q. Doing so saves the user the need to perform
the substitution for X by hand. A tactic xapp_nosubst can be used to avoid this automated
simplification, in the rare cases where it is preferable to preserve an explicit equality on X.

Summary. Our methodology in developing CFML-tactics is to capture as much as possible of
the reasoning in the statement of lemmas, so as to limit the required amount of tactic programming
to the minimum. In each tactic, in particular in xapp, we integrate a number of “processing by
default” to obtain the behavior that is best-suited for the majority of the cases encountered in
practice. We provide variants of the tactics to handle the rarer cases appropriately. Overall, we
are able to implement a set of robust, well-specified tactics for processing characteristic formulae
through concise proof scripts. In practice, when verifying the implementation of an algorithm
using CFML, x-tactics account for a tiny fraction of our proof scripts: most of the reasoning is
concerned with explaining why the algorithm at hand is correct, tackling its inherent complexity
rather than its implementation details.

Chapter 6

Lifting: from Program Values to
Logical Values

This chapter presents a technique, called lifting, for specifying program values using logical
values, i.e. Coq values. I start by motivating this technique (Section 6.1). I then describe
how to realize lifting using typeclasses (Section 6.2), how to define lifted triples (Section 6.3)
and lifted representation predicates (Section 6.4). Next, I explain what makes it challenging
to define, inside Coq, such a generator (Section 6.5). I then present an approach that relies
on a characteristic formula generator implemented as an external program (Section 6.6). I
describe the automated handling of record operations with respect to a lifted representation
predicate (Section 6.7). Finally, I explain how to establish the soundness of these formulae
in a foundational way (Section 6.8).

I exploited the lifting technique in the first version of CFML, developed during my PhD
thesis [Charguéraud, 2010]. That work, however, was not foundational: characteristic for-
mulae were generated as axioms, and OCaml values were translated into corresponding
Coq values, without establishing in Coq a relation between those Coq values and the deep
embedding of the source language. The work by Guéneau et al. [2017] on the CakeML com-
piler was the first to provide foundational characteristic formulae, however this work did
not integrate the lifting technique. Instead, in CakeML, binary relations appear explicitly
in every specification for relating program values with corresponding logical values.

In 2020, after developing the unlifted characteristic formula generator presented in the
previous chapter, I investigated how to generalize this approach to take advantage of the
lifting technique. After preliminary investigations, I concluded that it would be extremely
difficult, if not impossible, to develop a Coq function for computing lifted characteristic
formulae, for reasons that I explain in Section 6.5. In any case, the use of an external tool
for generating Coq definitions remains required for translating user-defined algebraic data
types into Coq inductive definitions.

66

CHAPTER 6. LIFTING: FROM PROGRAM VALUES TO LOGICAL VALUES 67

Given a lifted characteristic formula generator implemented as an external tool, the key
challenge was to find a way to justify, in a foundational manner, its soundness. In 2022, I
developed a proof technique based on the validation approach. The insight is, for a given
program, to formally relate the lifted formula generated by the external tool with the un-
lifted formula computed inside Coq. I describe this approach in Section 6.6. This recent
technical contribution is yet to be submitted for publication.

6.1 Motivation for Lifting

Benefit #1: postconditions. Recall the specification of the ref operation for allocating a refer-
ence (Section 2.1.5).

{[1} (refv) {\(r:val). I(p:loc). [r=p] * (p— v)}

There, the result value is described by a variable named r, of type val. Recall that val denotes the
type of closed values in the deep embedding. The variable p, of type loc, describes the memory
location of the freshly allocated cell. The equality [= p] hides a coercion. It actually stands for
[r = val_locp|, where val_loc is the constructor for locations in the grammar of values.

Arguably, this specification is quite heavy-weighted. One would rather like to write the same
specification by directly quantifying over “a result p of type loc”, as shown below.

{[1} (refv) {A(p : loc). (p — v)}

In the Coq course, to improve readability, I introduce a piece of syntactic sugar specifically for
functions that return a location, allowing one to write: triple (ref v)[] (funloc p =p < V).
Yet, this ad-hoc approach based on a notation does not generalize well to other return types.

The aim of this section is to present a general approach to specifying values without having
to go through the indirection of a variable of type val, such as the variable r above. The lifting
technique introduces the notion of lifted triples, written Triple with a leading uppercase. With
a lifted triple, one may write: Triple (ref v)[] (fun p = p — V), directly binding a variable p
of type loc.

Lifted triples can be used to express postconditions that bind variables of any Coq type that
can be mapped to a type of program values. For example, an operation that returns a pair, e.g.
splitting on a list of pairs, can be specified using a function that binds a pair as postcondition. Such
a specification can be written Triple (1ist_split 1)[] (fun’(11,12)=..), where the quote
symbol is standard Coq syntax for binding tuples.

The mechanism of lifting is not restricted to built-in data types. It is extensible, and can be
used for algebraic data types that are defined in a source ML program. Consider for example a
tree data type.

B *

type ’a tree = Leaf | Node of ’a ’a tree * ’a tree

To specify such trees, we introduce a corresponding Coq inductive data type, as shown below.

Inductive tree (A:Type): Type :=
| Leaf :tree A
|[Node: A —>tree A —>tree A —treeA.

Our lifting approach enables one to specify a function that produces a tree by binding in the
postcondition a value of type tree A, for the appropriate type A. The specification then takes the
form: Triple (.)(..)(fun (t:tree A)=..).

CHAPTER 6. LIFTING: FROM PROGRAM VALUES TO LOGICAL VALUES 68

Benefit #2: representation predicates. Lifting is useful not just for stating postconditions,
but also for stating representation predicates. Consider for example the specification of incr.

{p = n} (incrp) {A_. p— (n+ 1)}

There, p < n actually stands for p — (val_int n), where the coercion val_int is the con-
structor for integers in the grammar of values. There are occasions where the need for writing
this coercion (or at least taking its existence into account) shows up in unexpected ways. For
example, the assertion In. p < n [even n] fails to type-check, because Coq infers from p < n
that n is a value of type val. The work-around is either to write 3(n : int). p < n * [even n] with
an explicit type annotation; or to write 3n. [evenn] x p < n with the integer predicate coming
first; or to declare an “implicit type” asserting that every variable starting with the letter n has
type int by default. Each of these three solutions is feasible but harms readability or does not scale
up well. With lifting, on the contrary, we redefine p — n in such a way as to mean “p points to
the program value that corresponds to the logical value n”. With that updated definition, which
exploits typeclasses, the statement dn. p < n * [even n] typechecks as expected, with n inferred
to be of type int.

The benefit of lifting is even clearer when considering representation predicates for polymor-
phic data structures. Consider for example the representation predicate for lists, written Mlist L p,
introduced in Section 2.1.6. With the unlifted representation predicate Mlist, the logical value L
denotes a list of values of type val. To specify that a particular list has contents 1 :: 2 :: 3 :: nil,
one has to specify the list L either as “val_int1 :: val_int2 :: val_int3 :: nil” or as
“List.mapval_int (1 :: 2 :x 3 :z nil)”. In both cases, the coercion val_int gets in the way
even further when trying to specify concrete operations on lists. With lifting, we can define a
representation predicate over lists in such a way that the list L is a list made of the Coq values
that corresponds to the relevant program values. Concretely, using the lifted definition of Mlist,
we can write: Mlist (1 :: 2 :: 3 =2 nil) p.

Benefit #3: pattern matching. A third and major benefit of the lifting technique appears when
reasoning about pattern matching. Consider the following OCaml code snippet.

match v with
| (2,true)::(3,b)::r -> t1
| _ -> t2

Without lifting, the hypothesis capturing the property that the value v matches the first pattern
is expressed as follows.
V(b:val) (r:val),
v=val_constr "cons" [val_constr "pair" [val_int 2;val_bool true];
val_constr "cons" [val_constr "pair" [val_int3;bl;r]] —..

With lifting, the same hypothesis can be expressed using typed Coq values as follows.

VY(b:bool) (r:1ist(int+bool)),
v=(2true):(3b):1r —..

The hypothesis provided when using lifting is thus considerably more concise and easier to work
with. Deriving the lifted hypothesis from the unlifted hypothesis after it has been generated is a
fairly tedious task to perform by hand, and a challenging task to automate when the relevant type
information is not available.

CHAPTER 6. LIFTING: FROM PROGRAM VALUES TO LOGICAL VALUES 69

Summary. The lifting technique brings significant improvement on at least three aspects: (1)
to simplify the writing of postconditions, (2) to simplify the manipulation of representation predi-
cates and especially of polymorphic ones, and (3) to simplify the reasoning about data constructors.
We next present the typeclass used to implement lifting.

6.2 A Typeclass for Encodable Coq Types

From this subsection onwards, we switch to using Coq syntax for stating definitions and lemmas,
because it clarifies the statements in the presence of typeclasses arguments that are sometimes
implicit and sometimes explicit.

The typeclass Enc characterizes the Coq types that correspond to a type from the program-
ming language. A type A satisfying the typeclass “Enc A” comes with an encoder, defined as a
function of type A -> val. It also comes with a proof of injectivity.

Class Enc (A:Type) : Type :=

{enc:A —val;

enc_inj:injective enc}

Injectivity asserts that two distinct Coq values of an encodable type must correspond to two
distinct program values. This requirement is exploited for example when reasoning about com-
parison operations. Injectivity may be exploited using the following lemma.

Lemma Enc_eq: VA (EA:Enc A) (V1 V2:A), (enc V1 = enc V2) « (V1 =V2).

To every primitive type is associated an encoder. Consider for example primitive values of
type int. A Coq integer n of type int (i.e., Z), corresponds to the program value val_intn of
type val. Thus, we define an instance of Enc int, whose encoder is the injective constructor
val_int. Likewise, we introduce encoders for the types unit, bool, and loc.

Global Instance Enc_int :Enc int (* realized as [val_int] *)
Global Instance Enc_unit:Encunit (* realized as [val_unit]
Global Instance Enc_bool :Enc bool (* realized as [val_bool]
Global Instance Enc_loc:Enc loc (* realized as [val_loc] *)

*

)
")

An interesting aspect is the treatment of first-class functions. A program function is not de-
scribed in the logic as a Coq function. It would not be suitable to do so, because program functions
are effectful whereas Coq functions are pure. Instead, program functions are described in the logic
simply as a piece of syntax, that is, by their code. Concretely, a first-class function is specified us-
ing the type val, as it was already the case before the introduction of the lifting technique. For
uniformity, we introduce an encoder for the type val, which consists of the identity function.

Global Instance Enc_val:Encval (* realized as [fun (v:val) =v] *)

The interpretation of program functions as piece of syntax was already exploited to justify the
soundness of CFML in my PhD Thesis [Charguéraud, 2010, Section 6.1]. There, the type Func was
interpreted as the set of closed, syntactic function definitions, and the soundness of characteristic
formulae was not mechanized in Coq. The key contribution of my recent research has been to
show that this idea of interpreting functions as plain syntax (unlike other structured values, which
are interpreted as the corresponding Coq values) can indeed be formalized as part of a foundational
program logic.

Technically, the typeclass instance that serves as an encoder for function values, namely
Enc_val,is defined as the identity operation. That said, from the perspective of the end-user, the
definition of Enc_val needs not be revealed. Indeed, all the reasoning about program functions

CHAPTER 6. LIFTING: FROM PROGRAM VALUES TO LOGICAL VALUES 70

is carried out by means of specification triples (or weakest-preconditions), which are provided via
characteristic formulae, and which may be exploited for reasoning about function calls.

Another interesting aspect is the encoding of polymorphic data types. Let us describe a poly-
morphic encoder for pairs. Given two encodable types A1 and A2, the encoder enc_pair converts
a pair (x1,x2) of type A1*A2 into the representation of a pair made of the encoding of x1 and
of the encoding of x2. In the definition shown below, val_constr is the Coq constructor for
representing ML data constructors in our program syntax; it takes as argument the name of the
data constructor, and a list of values representing the arguments to which the constructor is ap-
plied. The curly braces notation is Coq syntax for “maximally inserted arguments”, meaning that
the typeclass arguments are implicit and automatically inferred.

Definition enc_pair (A1l:Type){EA1l:Enc A1} (A2:Type){EA2:Enc A2} :=
fun (p:Al1+A2):val =
let ’(x1,x2):=p in
val_constr "pair" (enc x1 : enc x2 :nil).
Global Instance Enc_pair (A1:Type) {EA1:Enc A1} (A2:Type) {EA2:Enc A2}
:Enc (prod A1 A2):=.. (* realized as [enc_pair] *)

For recursive data types, definitions of encoders consist of recursive functions. For example,
we show below the encoder for lists. Observe how the elements from the list are encoded with
“enc x”, which implicitly refers to the encoder EA1 associated with the type A1 of the elements.

Definition enc_list (Al:Type){EAl:Enc Al}:=
fix £ (L:l1ist Al):val:=
match 1 with
|Inil =val_constr "nil" nil
| x:1’=val_constr "cons" ((enc x):(f 1’):nil)
end.

Global Instance Enc_list:V(A1l:Type){EA1l:Enc A1}, Enc (1ist A1) :=..
(* realized as [enc_list] *)

CFML features a generator that takes as input an OCaml data type definition and generates
the Coq typeclass definition for the corresponding encoder. Thus, in practice, the end-user never
needs to worry about writing definitions of encoders.

6.3 Definition of Lifted Triples

Alifted triple takes the form Triple t H Q. Asfor unlifted triples, t is a term of type trmand H
is a precondition of type hprop. The postcondition Q, however, no longer has type val->hprop.
It now has type A->hprop, for some encodable type A. The predicate Triple admits two implicit
arguments: a type A, and an encoder for that type, named EA, of type Enc A. Thus, in its explicit
form, the predicate is written @Triple t H A EA Q, where the leading “@” symbol is Coq
syntax for providing all arguments explicitly.

The lifted triple judgment is defined in terms of conventional triples. The definition involves a
postcondition asserting that the output program value, named v (of type val) should correspond
to the encoding of a Coq value, named V (of type A), such that V satisfies the postcondition Q (of
type A->hprop).

DefinitionTriple (t:trm) (A:Type) {EA:Enc A} (H:hprop) (Q:A— hprop): Prop :=
triple t H(fun (v:ival) =3(V:A),[v=enc V] xQV.

In our Coq formalization, we introduce a postcondition transformer, named Post, for inter-
preting a postcondition of type A— hprop as a postcondition of type val— hprop.

CHAPTER 6. LIFTING: FROM PROGRAM VALUES TO LOGICAL VALUES 71

Definition Post (A:Type){EA:Enc A} (Q:A— hprop): val— hprop :=
funv=13V,\[v=encV]+xQV.

Using Post, the definition of lifted triple may be reformulated more concisely.

DefinitionTriple (t:trm)(A:Type){EA:Enc A} (H:hprop) (Q:A— hprop): Prop :=
triple t H(Post Q).

6.4 Lifted Representation Predicates

Representation of lifted singleton heap predicates. The unlifted heap predicate for describ-
ing a singleton heap has the form p < v, where v is a value of type val. In our Coq formalization,
the corresponding predicate is named hsingle v p. The lifted heap predicate for singleton heap
is written Hsingle V p, where V is a logical value of some encodable type A. This lifted predicate
is defined in terms of the unlifted version, simply by asserting that, at location p, the heap contains
the encoding of the logical value V, that is, the program value that corresponds to V.
DefinitionHsingle (A:Type){EA:Enc A} (V:A) (p:1oc): hprop :=
hsingle p (encV)
When we write Hsingle V p, the type argument A and the typeclass argument EA are implicit.
They are automatically inferred from the type of the value V.
Likewise, we lift the representation predicate for record fields, written Field p k£ v in Section 3.8.
DefinitionHfield (A:Type){EA:Enc A} (V:A) (p:1oc) (f:field): hprop :=

hfieldp f (enc V).

We are next seeking to define a lifted version of the representation predicate for record, written
Record in Section 3.8. The challenge is to define it in a generic way, even though the types of the
fields may vary from one record to the next. Our solution is based on the use of dependent pairs,
made of an encodable type and a value of that type. Let us begin with the formalization of such
dependent pairs, which, technically, consist of triples because they additionally carry an encoder.

Representation of heterogeneous lifted values. We let dyn denote a record made of a type,
an encoder for that type, and a value of that type.

Record dyn := dyn_make {

dyn_type : Type;

dyn_enc:Enc dyn_type;

dyn_value:dyn_type}.

A fundamental property is that a logical value of type dyn, which packs a value v of some
encodable type A, can always be converted into a program value of type val, by applying to V the
encoder associated with the type A. This conversion is implemented by the function dyn_to_val
shown below. Recall that“@” is Coq syntax for disabling implicit arguments.

Definitiondyn_to_val (d:dyn):val :=
@enc (dyn_type d) (dyn_enc d) (dyn_value d).

Representation of lifted records. We are now ready to define the lifted representation pred-
icate for records, written Record K p, where K is a list of pairs, each made of a field name (inter-
nally, an offset) and an element of type dyn. Each element of type dyn describes the contents of
a field as an encodable logical value. The predicate Record is defined as the iterated separating
conjunction of the fields, each of them being described using the lifted predicate for record fields,
namely Hf ield.

CHAPTER 6. LIFTING: FROM PROGRAM VALUES TO LOGICAL VALUES 72

Definition Fields:Type:=1list (field«dyn).

Fixpoint Record (K:Fields) (p:loc): hprop :=
matchKwith
|nil = hheader 0p
| (£,dyn_make AEAV):K = HfieldV 1 f) x(p ~»Record K’)
end.

Observe how the expressive power of Coq’s dependent types is at play here: the pattern match-
ing binds a type A, an encoder EA for that type, and a value V of that type. The encoder EA
corresponds to a typeclass that appears as an implicit argument of the predicate Hf ield.

Lifted representation predicate for mutable lists. We end this section with a presentation
of the lifted version of the representation predicate Mlist L p for mutable linked lists. Let us first
recall its definition in the unlifted case, where the list L is described as a list of program values,
of type 1ist val. In the definition shown below, we use the syntax p —{ head :=x; tail := y}
for “Record ((head, x):: (tail, y): nil)p”.
(* Without lifting *)
Fixpoint MList (L:1ist val) (p:loc): hprop :=
match Lwith
|nil =\[p =null]
| x:L’=3q,p —{head:=x; tail:=val_locg}) x(MList L’ q)
end.

In the lifted version of MList, the elements are described by a logical list L of type List A, for
some encodable type A. In the definition shown below, we write p — {head := x; tail := q} for
“Record ((head, dyn_make x):: (tail, dyn_make q): nil)p”. Recall that dyn_make x builds
a value of type dyn; the type and its encoder are automatically inferred from the type of x.

(* with lifting *)
Fixpoint MList (A:Type){EA:Enc A} (L:1ist A) (p:1oc): hprop :=

match Lwith

|nil =\[p =null]

| x:L’=3q,p —{head :=x; tail :=q} *(MList L’ q)

end.

As announced earlier, the benefits of the lifted representation predicate is to ease the reasoning
about the contents of the list. Consider for example a function that increments all the integer
values stored in a list. It is specified as follows, using a list of integers.

Lemmamlist_incr_spec:V(L:1ist int) (p:loc),

Triple <{mlist_incrp}>

(MList L p)
(fun (_:unit) =MList (List.map (fun n = n+1) L) p).

6.5 Attempt at a Lifted Characteristic Formulae Generator

I have explored the possibility of defining, inside Coq, a lifted characteristic formulae generator.
Such a generator applies to a well-typed term ¢. The knowledge of the types of every subterm of ¢
is required for producing the lifted characteristic formula of t. Moreover, the type of the formula
produced as output depends on the type of the term t. Indeed, it has type (T->hprop) ->hprop,
where T denote the Coq type that corresponds to the type of ¢.

Formalizing such a generator involves (at least) three major challenges.

CHAPTER 6. LIFTING: FROM PROGRAM VALUES TO LOGICAL VALUES 73

« First, it would require defining a function that translates ML types into the corresponding
Coq types. It is not clear whether this can be achieved in a modular way, that is, for an
extensible collection of ML types.

« Second, it would require a function that translates well-typed ML values into the corre-
sponding Coq values. Such a dependently-typed function is challenging to define, and even
more so if one wants to handle algebraic values of user-defined types. Polymorphic OCaml
values are also particularly delicate to map to polymorphic Coq values, due to the need to
cope with a variable number of type quantifiers.

« Third, it would require typing environments. The environment F used in the unlifted char-
acteristic formula generator in the previous chapter needs to be refined into an environment
that maps program variables to logical values of the appropriate type. The definition of the
dependently typed generator must thus involve as extra argument a typing environment I,
a proof that the environment E respects is compatible with I', and a proof that the term ¢
provided is well-typed in I'. These invariants need to be maintained throughout the re-
cursive definition of the characteristic formulae generator, extending the environment each
time a binder is traversed. Formalizing the lifted generator as a Coq function thus requires
nontrivial dependently typed programming.

Considering all these highly technical—possibly insurmountable—obstacles, I chose to follow an
alternative approach, based on the use of an external generator. Keep in mind that involving an
external tool is required in any case for generating the inductive definitions that correspond to
the user-defined, algebraic data types. Indeed, inductive definitions are not first class entities in
Coq, so there is no hope whatsoever to have them be generated by a Coq function.

6.6 An External Characteristic Formulae Generator

The external generator consists of an OCaml program that performs the following steps.

1. The generator takes as input the name of an OCaml source file. It invokes the standard
OCaml parser to parse the file and obtain the parse tree—an abstract syntax tree (AST).

2. On that parse tree, it invokes the OCaml typechecker to produce the typed tree. 1 use a
version of the typechecker that I have patched to keep track of where each type variable is
bound. Technically, we obtain an AST with explicit type quantifiers, in System-F style.

3. The generator produces a Coq source file. For each type definition from the OCaml source
code, the Coq file contains a corresponding type definition. For each top-level value def-
inition from the OCaml source, the Coq file contains one definition and one lemma, as
described next.

For a top-level function definition letrec f z = ¢, a Coq constant named f of type val in
introduced. The associated lemma follows the pattern presented in Section 5.2 (step 2). For a
generator that does not exploit the lifting technique, it would take the form:

VXHQ. H 1= (cf 5). 0x0:pt Q) = (H} (£X) {Q).

This statement is adapted to incorporate the lifting technique as described further in this section.
For a value definition other than a function, the OCaml definition takes the form let z = v. A Coq
constant named x is introduced, and the associated lemma asserts that x = V, where V is the Coq
value that corresponds to the OCaml value v. Details on the lifting of values appear further on.

CHAPTER 6. LIFTING: FROM PROGRAM VALUES TO LOGICAL VALUES 74

Until 2021, those produced lemmas were all admitted as axioms. Since 2022, I provide a set of
tactics that can be used to prove such lemmas, by relating the lifted characteristic formula with the
unlifted one computed inside Coq. I am currently working on tooling for automatically generating
the relevant proof scripts. When this tooling is ready, all the lifted characteristic formulae that are
generated will be justified in a foundational manner.

In what follows, I describe the key features of the generator. I try to remain at a sufficient high
level to avoid entering all the technicalities of formalizing the notion of a typed AST, as I did in
my PhD thesis. Thereafter, CF is an abbreviation for characteristic formula.

Lifting of values. The external generator includes a function that, given an OCaml value, com-
putes the corresponding Coq value. For example, the OCaml value (2, true)::(3,b)::ris
described by the Coq value (2, true)::(3,b)::r. This translation is straightforward—and
that is the whole point of lifting, to avoid the encodings associated with the deep embedding. The
only complication is for handling argument-free polymorphic data constructors such as nil or
None. For such constructors, we need to decorate them with a type annotation to avoid situations
where the generated Coq formula fails to typecheck due to missing type information.

A feature of the external CF generator is that it simplifies on-the-fly the treatment of calls to
pure functions, such as total arithmetic operators, boolean operators, or simple list combinators
(rev, append, etc). The use of such pure functions in programs is pervasive. For such function
calls, there is no need to exploit the general CF for a function call. Indeed, it is possible to view the
result of these operations directly as Coq values. For example, the pure OCamlterm 3 + 2 * n,
where n is a program variable that admits the OCaml type int, can be interpreted as the Coq value
3 + 2 n, where n is a Coq variable that admits the Coq type int. Recognizing commonly-used
pure functions is a straightforward addition to the CF generator, yet in practice it dramatically
reduces the number of proof steps involved.

Lifted formulae. An unlifted CF admits the type formula, which describes a function that
expects a postcondition of type val— hprop, and returns a heap predicate of type hprop. A
lifted CF admits the type Formula, which describes a function that expects a type A, an encoder
of type Enc A, a postcondition of type A— hprop, and returns a hprop.

Definition formula:Type :=(val —hprop) — hprop.
Definition Formula:Type := VA (EA:Enc A), (A - hprop) — hprop.

Thereafter, I use the notation "F Q as a shorthand for F _ _ Q, that is, to apply a formula F
to a postcondition Q while leaving the type and its encoder to be inferred by Coq’s typechecker.
Indeed, Coq unfortunately supports implicit arguments only for top-level constants, but not for
local variables. Hence the need for a custom notation.

Lifted “framed” predicate. The construction of lifted formulae involves a lifted version of the
framed predicate. Recall form Section 5.3 that this predicate is inserted at every node of a CF.
The lifted definition of framed is defined on top of a slightly generalized version of framed, which
handles postconditions over values of an arbitrary type B instead of imposing the type val.

Definition framed (A:Type) (F:(A— hprop)— hprop): (A—hprop)— hprop :=
funQ=3Q , FQ x(Q" = (Q « T)).

The lifted predicate Framed may then be defined as follows.

Definition Framed (F:Formula): Formula :=
fun (A:Type) (EA:Enc A) (Q:A— hprop) = framed (@F A EA) Q.

CHAPTER 6. LIFTING: FROM PROGRAM VALUES TO LOGICAL VALUES 75

Lifted CF for let-bindings. Consider a non-polymorphic let-binding of the form let z = ¢; in t5.
(Polymorphic let-bindings are discussed further on.) Let F1 be the CF produced for the subterm ¢;,
and G2 be a Coq function that, given a value X, returns the CF associated with the term [X /z] to.
The CF produced for the let-binding is CF_let F1 G2. This combinator CF_let depends on A1,
the Coq type that corresponds to the OCaml type of ¢;.

DefinitionCF_let (F1:Formula)(Al:Type){EA1:Enc Al} (G2:A1— Formula)
: Formula :=
Framed (fun (A:Type) (EA:Enc A) (Q:A— hprop) =
AF1 (fun (X:A1) = (G2 X) Q)).

An alternative definition of CF_1let quantifies over the postcondition Q1 of #;.

Framed (fun (A:Type) (EA:Enc A) (Q:A— hprop) =
3(Q1:A1— hprop), "F1 Q1 *\[V (X:A1), 01 X - (G2 X) Q]).

The interest of this second definition is that it is closer to the way we want to reason about a
let-reasoning. Such reasoning is captured by the lemma that serves as basis for implementing the
tactic x1et. This lemma, shown below, produces two subgoals: one for reasoning about ¢;, and
one for reasoning about ¢o.

Lemma xlet_lemma:V(Al:Type) (EA1l:Enc Al) (Q1:A1— hprop) (H:hprop),
V(F1:Formula) (G2:A1— Formula) (A:Type) (EA:Enc A) (Q:A— hprop),
H+ "F101 —

(V (X:A1),01 X - "(G2 X) Q) —
H - "(@CF_let F1 A1 EA1 G2)Q.

The intermediate postcondition Q1 may be either supplied explicitly by the user, or in simple cases
it may be inferred from the reasoning about ¢;.

Lifted CF for sequences. Consider a sequence of the form ?; ; t2, where ¢; is a term of type
unit. Let F1 and F2 be the CF produced for the subterms ¢; and t3. The CF produced for the
sequence is CF_seq F1 F2. The definition of the combinator CF_seq is slightly complicated by
the fact that we wish to enforce that F1 applies to a postcondition of type unit— hprop. Below,
tt denotes the unit value in Coq, and Q1 tt is a heap predicate that describes the intermediate
state between the evaluation of t; and ¢s.

Definition CF_seq (F1 F2:Formula): Formula :=
Framed (fun (A:Type) (EA:Enc A) (Q:A— hprop) =
3(Q1:unit— hprop), "F1 Q1 »\[Q1 tt ~ "F2 Q])).

The following lemma shows that the definition of CF_seq enables the tactic xseq to produce
the two expected subgoals.

Lemma xseq_lemma : V(Q1l:unit— hprop) (H:hprop) (A:Type) (EA:Enc A) (Q:A— hprop),
V(F1 F2:Formula),
H - "F1Q1 —
(Q1tt + "F2Q)—
H +— "(CF_seq F1 F2)Q.

Lifted CF for values. Consider a value v. Let V denotes its encoding in Coq, and B denotes the
type of V in Coq. The characteristic formula for this value expects as argument a postcondition Q
of type A— hprop, for some encodable type A. Intuitively, by virtue of typing, there should be no
reason to consider specifications involving a type A that would differ from the type B associated
with the value at hand. Nevertheless, the CF produced must admit the type Formula, and thus

CHAPTER 6. LIFTING: FROM PROGRAM VALUES TO LOGICAL VALUES 76

apply to a postcondition of type A— hprop for an arbitrary encodable type A. We handle the
potential discrepancy by asserting that the postcondition Q should hold of a value V’ of type A
that admits the same encoding in the deep embedding as the value V of type B.
Definition CF_val (B:Type){EB:Enc B} (V:B): Formula :=
Framed (fun (A:Type) (EA:Enc A) (Q:A— hprop) =
A(V:A), \[enc V' =enc V] xQ V).

In practice, we are only interested in proving well-typed specifications, in which the types A and B
are equal. The lemma shown below shows that the expected reasoning rule holds in that case.

Lemma xval_lemma: VY(A:Type){EA:Enc A} (V:A) (H:hprop) (Q:A— hprop),
HFQV—
H + *(CF_val V) Q.

Lifted CF for conditionals. Consider a well-typed conditional if v then ¢; else to, where v
has type bool. The lifting of the value v produces a Coq boolean value, call it b. The CF for ¢; and
to is computed recursively, producing formulae F1 and F2. The CF produced for the conditional
isCF_if b F1 F2, where CF_1if is defined as shown below.

Definition CF_if (b:bool) (F1 F2:Formula): Formula :=
Framed (fun (A:Type) (EA:Enc A) (Q:A— hprop) =
if b then "F1 Q else "F2 Q).

Compared with the unlifted definition (cf_if, introduced at the last step of Section 5.2), there is no
need to existentially quantify over a boolean value b equal to the argument v of the conditional,
because the argument v, which admits type bool, necessarily translates into a boolean value.

Lifted CF for applications. Consider a n-ary application of the form f vy ... v,. It is described
in the deep embedding as trm_apps (trm_val f)(List.map trm_val vs), where trm_apps
is the term constructor for n-ary applications (it has type trm — list trm — trm).

Let VS denotes the list of Coq values that corresponds to the program values vs. This list
admits type 1ist dyn. In other words, each argument is packed with its type. The value f is a
first-class function, so it remains described at type val. The same application f v; ... v, can be
described in the deep embedding as Trm_apps f Vs, where the smart constructor Trm_apps is
defined as shown below. This definition uses the conversion function from dyn_to_val, which
encodes each argument V of type dyn into the corresponding program value.

Definition Trm_apps (f:val) (Vs:1list dyn): trm:=
trm_apps (trm_val f) (List.map (funV=trm_val (dyn_to_val V))Vs).

The CF for an application is expressed in terms of the lifted weakest-precondition predicate,
written Wp t, and defined as follows.

Definition Wp (t:trm): Formula :=
fun (A:Type) (EA:Enc A) (Q:A— hprop) =wp t (Post Q).

For an application Trm_apps f Vs, the generator produces the formula CF_app f VS, de-
fined as shown below, in terms of the lifted Wp predicate.

Definition CF_app (A:Type){EA:Enc A} (f:val) (Vs:1ist dyn): Formula :=
Framed (Wp (Trm_apps f Vs)).

CHAPTER 6. LIFTING: FROM PROGRAM VALUES TO LOGICAL VALUES 77

Lifted CF for function definitions. Recall from Section 5.2 (step 2) that, given a function
definition p f.Ax.t, the lifted CF generator defines cfgp (uf.\x.t) as:

This definition generalizes to n-ary function. To keep the presentation simple, we consider a
function of arity 2, written p f.\x1x2.t. The unlifted CF for cf g (uf.Ax1229.1) is:

framed (A\Q.
VF. [VXlXQHQ/ H Cf(f,F)::(wl,Xl)::(:rg,Xg)::EtQ, = {H} (FXl XQ) {Q/}] —* QF)

What matters here is that the function F' is viewed as an abstract entity by the user, who does
not have access to the code that defines the function. The function is described extensionally, that
is, by means of the behavior of its application to an arbitrary argument X. From this description,
the user can prove a particular specification, in the form of a triple involving ' X. Subsequently,
this triple may be used to reason about particular functions calls of the form ' V. In summary,
when exploiting characteristic formulae with lifting, a function F' is represented in the logic by
the syntax of its definition. Yet, this representation is never revealed to the end-user; it only plays
a role in the soundness proof.

Besides, three changes are involved in the process of lifting the CF of a function definition.
First, the formula involves the construct Trm_apps for describing the application in terms of the
lifted arguments. Second, the postcondition Q’ admits a type of the form A’— hprop, thus we need
to quantify the type A’ and its encoder. Third, the typechecking of the body of the function may
involve type variables, which we need to quantify. Let A1, A2 and A3 represent these variables.
The hypothesis provided about the function in the CF is as shown below, where F1 denotes the
characteristic formula of the body ¢. The types of the arguments X1 and X2 (not shown below)
are computed from the types of the arguments of the OCaml function. Likewise, the type of the
postcondition Q depends on the return type of the OCaml function.

V(A1:Type){EA1:Enc A1} (A2:Type) {EA2:Enc A2} (A3:Type) {EA3:Enc A3} X1 X2 HQ,

(H+ "F1Q)—

Triple (Trm_apps f ((dyn_make X1):(dyn_make X2):nil))HQ

A subtlety is that the set of type variables to quantify (A1, A2, etc.) does not precisely match the
type variables that appear in the polymorphic type of the function. On the one hand, additional
type variables may be needed. For example, let £ x = (let y = ref [] in x) isan
OCaml function of type A — A. The typechecking of the empty list involves a local type B, which
does not appear in the result type of the function. Both the variables A and B need to be quantified
in the CF. On the other hand, there are type variables that appear in the OCaml type of the function
but that need not be quantified in the CF. For example, let £ (g : ’a -> ’a)()= () isa
function of type (a —’a)—>unit — unit. The argument g is a function, described at type val
in the CF. Thus, the variable ’a has no counterpart in the CF. CFML computes the exact set of
variables that need to be quantified.

Our implementation supports functions of arbitrary arity. Moreover, it supports mutually
recursive functions. For those, we need to quantify a name for each of the function, then provide
one hypothesis for describing the CF of each of the function independently.

Lifted CF for let-bindings on polymorphic values. Consider a term letz = vint, where v
corresponds to a polymorphic value. Note that we consider a value rather than a general term for
the body to satisfy the value restriction. (We do not treat the relaxed value restriction implemented
in OCaml.) If v; corresponds to a polymorphic function, then it is described in lifted CF at the

CHAPTER 6. LIFTING: FROM PROGRAM VALUES TO LOGICAL VALUES 78

monomorphic type val, so there is no complication. The interesting case is when v is not a
function, but a polymorphic constant such as the empty list, written [], or None.

We represent such polymorphic OCaml constants using the corresponding Coq constants.
For example, the OCaml constant [], which admits the type ’a 1ist, is represented in Coq as the
value fun (A:Type)=@nil A, of type V(A:Type), List A. As another example, a pair ([],[]) type-
checked at type ’a 1ist«’a 1ist is represented in Coq as fun (A:Type)=(@nil A, @nil A),
which admits the Coq type V(A:Type), List A= list A.

In what follows, we name V the logical value that corresponds to v. We name A1 the poly-
morphic Coq type that corresponds to the OCaml type of V. The CF produced for letx = vint
is of the form CF_letval V G, where G is a Coq function that, given a value X, returns the CF
associated with the term [X /z]t. The definition of CF_letval provides the assumption X =V,
which is an equality between two polymorphic constants of type A1.

Definition CF_letval (A1:Type) (V:A1) (G:A1l— Formula): Formula :=
Framed (fun (A:Type) (EA:Enc A) (Q:A— hprop) =
V(X:A1),\[X = V] *"(G X) Q).

The following lemma shows how this definition is exploited by the tactic x1etval. For exam-
ple, an OCaml binding “let x = None” gives rise in the program logic to the Coq hypothesis
“X = None”, where x has type “VA, opt ion A”—exactly what the user might naturally expect.

Lemma xletval lemma:
V(A:Type) (H:hprop) (G:A— Formula) (V:A) (A1l:Type) {EA1:Enc A1} (Q:A1— hprop),
(VY (X:A1),X=V—->H + "(GX)Q)) —
H + *(CF_letval VG) Q.

Lifted CF for pattern matching. For the purpose of generating CF, we view a pattern-matching
construct with n branches as a cascade of n constructs that each test a single pattern. This cas-
cade is terminated by an “assert false”, which corresponds to the Match_failure exception in
OCaml. With this view, we only have to consider terms of the form “match v with (p = ¢1) | t2”.
This term evaluates to ¢ if the value v matches the pattern p, and to t2 otherwise.

Our CF generator processes such a term as follows. First, if the pattern contains wildcards,
they are replaced with fresh variables. At that point, the pattern p contains a certain number of
variables. For simplicity, assume the pattern binds three variables, named x1, 3 and z3. The
generator then computes the (closed) Coq value V that corresponds to the value v being matched,
and compute the (non-closed) Coq value W that corresponds to the pattern p. Finally, the generator
produces the formula shown below, where F1 and F2 denote the CF associated with ¢; and ¢,
respectively, and where a Coq variable Xi (of the appropriate type) is introduced for each pattern
variable x;.

Framed (fun (A:Type) (EA:Enc A) (Q:A— hprop) =
(¥ X1 X2 X3,\[V=W] «"F1 Q)
AN VX1 X2 X3,V #W] «"F2 Q)).

The first conjunct asserts that, if there is an instantiation of the variables Xi that makes the pat-
tern W match the value V, then the user has to reason about the behavior of ¢;. This behavior is
described by the formula F1, which may refer to the variables Xi. The second conjunct asserts
that, if no possible instantiation of the variables Xi can make the pattern W match the value V,
then the user has to reason about the behavior of ¢9, described by F2.

As mentioned earlier, the key benefits of lifted CF is that the equality V = W and the disequality
V #W are stated directly in terms of Coq values, without any reference to constructors from the

deep embedding.

CHAPTER 6. LIFTING: FROM PROGRAM VALUES TO LOGICAL VALUES 79

Additional features for pattern matching. The “assert false” at the end of the cascade of
patterns gives rise to the formula CF_fail, which requires the user to establish a contradiction.

DefinitionCF_fail:Formula :=
Framed (fun (A:Type) (EA:Enc A) (Q:A— hprop) =
\[False]).

When a pattern matching is recognized as exhaustive by the OCaml typechecker, we can save
the user the burden of proving that the catch-all branch is unreachable. In that catch-all branch,
rather than generating CF_fail, which requires the user to prove False, we generate CF_done,
which instead allows the user to assume False. This assumption makes it trivial to discard the
proof obligation. The definition of CF_done is as follows.

Definition CF_done: Formula :=
Framed (fun (A:Type) (EA:Enc A) (Q:A— hprop) =
\[False] +\[True]).

Our implementation supports alias-patterns, which bind additional names in the continuation
of a branch. It also supports simple forms of when-clauses. We require the body of the when-clause
to consist of an expression that can be directly translated into a Coq value, e.g., a boolean formula
involving variables and pure arithmetic operations.

Treating the general case of when-clauses that perform effectful operations is left for future
work. To appreciate the trickiness of the semantics at play, consider the fact that it took years
for OCaml developers to realize that if a when-clause performs side-effects that modify the data
under scrutiny by the pattern matching, then the resulting program could crash. As of writing,
we are not aware of any proposal for describing an expressive yet safe semantics for effectful
when-clauses.

6.7 Specifications for Operations on Lifted Records

In this section, I explain how to reason about a record read or write operations, with respect to
either the lifted field representation predicate (Hf ield) using small-footprint specifications, or
with respect to the record representation predicate (Record) using large-footprint specifications.
The technical difficulty associated with large-footprint specifications, which are proved correct
with respect to the small-footprint specifications, is that they involve reading and writing Coq
values in heterogeneous lists (of type Fields).

Small-footprint specifications for operations on lifted records. The small footprint spec-
ification for a read operation involves a heap predicate of the form Hfield V p £, describing a
single field whose contents stores a value V of some encodable type A. The specification is ex-
pressed using a lifted triple whose postcondition describes a result of type A, rather than a result
of type val as it was the case with unlifted triples.
Lemma Triple_get_field:V(p:loc)(f:field) (A:Type){EA:Enc A} (V:A),
Triple <{val_get_fieldfp}>
HfieldVp)
(fun (r:A) = \[r=V] xHfield Vp £).

The specification of a write operation involves two values: V1 denotes the value being written,
and V2 denotes the previous contents of the cell. For well-typed ML programs, those two values are
described at a same type A. That said, Separation Logic supports reasoning about strong updates,
i.e., write operations that modifies the type of the contents of a memory cell. The specification

CHAPTER 6. LIFTING: FROM PROGRAM VALUES TO LOGICAL VALUES 80

for a strong update operation is relaxed in that it quantifies separately over the type of the old
contents and that of the new contents.

Lemma Triple_set_field_strong:V(p:loc)(f:field),
V(A1l:Type){EA1:Enc A1} (V1:A1l) (A2:Type) {EA2:Enc A2} (V2:A2),
Triple <{val_set_field fp(encV2)}>

(Hfield V1p f)
(fun (_runit)=Hfield V2 p f).

Large-footprint specifications for operations on lifted records. Asexplained in Section 3.8,
it is very convenient for the user to be able to reason about record operations using directly the
Record predicate, without having to first isolate the relevant field. We next present a Coq func-
tion called record_get_spec that, given a field £ of a record at location p, computes the rele-
vant lifted triple for a read operation on that field.

The auxiliary function record_get_dyn takes as argument f, a field name, and K, a de-
scription of lifted record fields. It returns the element of type dyn associated with field f in the
association list K. It returns None if the field is missing—this case might arise if the record repre-
sentation predicate had been split prior to reasoning on the read operation.

Fixpoint record_get_dyn (f:field) (K:Fields): optiondyn:=

matchKwith

|nil = None

| (£°,d):K =

if field_eq_decf £’
then Some d

elserecord_get_dynfK
end.

The function record_get_spec also takes f and K as argument. It invokes the auxiliary
function record_get_dyn. If it obtains a dyn element of the form dyn_make A EAV, then V
is the logical value that describes the program value being returned by the read operation. In this
case, the function record_get_spec returns the statement of a lifted triple, whose precondition
is Record K p and whose postcondition is fun (R:A)= [R = V] « Record K p. This postcondition
asserts that the result value R, described as a logical value of type A, is equal to the contents of the
fields, described by the logical value V.

Definition record_get_spec (f:field) (K:Fields): option Prop :=

match record_get_dyn f Kwith

| None = None

| Some (dyn_make A EA V) = Some (V (p:1oc),

Triple <{val_get_field f p}> (Record K p) (fun (R:A) = \[R = V] xRecord K p))
end.

We accompany the function record_get_spec with a generic proof establishing that if this
function succeeds in computing a lifted triple, then this lifted triple is correct. In the lemma below,
P denotes the statement of that triple.

Lemma record_get_spec_correct :VY(f:field) (K:Fields) (P:Prop),
(record_get_spec f K= Some P) — P.

The function record_get_spec for computing the relevant lifted triple, as well as its ac-
companying correctness lemma, are automatically exploited by means of a CFML tactic that pro-
cess record operations. The treatment of write operations, not shown, follows a similar pattern.

CHAPTER 6. LIFTING: FROM PROGRAM VALUES TO LOGICAL VALUES 81

6.8 Validation of Lifted Characteristic Formulae

In the last section of this chapter, I explain how to formally justify the correctness of the lemmas
generated by the external characteristic formula generated for each top-level definition.

Treatment of values other than functions. Consider a value definition other than a function.
The OCaml definition is of the form let # = v. The Coq definitionisDefinition x := V, where v
is the Coq value that corresponds to the OCaml value v. The generated Coq lemma, which asserts
that x =V, trivially holds by definition of x. Yet, it does not connect V with v. To that end, we
generate an additional lemma, stating the equality enc V = v, where v denotes the deep embed-
ding of the value v. This equality is proved by the reflexivity tactic of Coq, which triggers
the evaluation of the encoder function. This additional lemma would presumably be exploited by
a framework that would connect CFML with a verified compiler.

Treatment of functions Consider now a top-level function definition letrec f x = t. As ex-
plained earlier, a Coq constant named f of type val is introduced. The associated lemma takes
the form shown below, where F1 denotes the lifted CF of the body t, where the types T1 and T
depend on the type of the function, and where A1 is a type variable involved in the typechecking
of t.
V(A1l:Type){EA1l:Enc A1} (X:T1) (H:hprop) (Q:T— hprop),

H+F"F10Q)—

Triple (Trm_apps f ((dyn_make X):nil))HQ
Our approach is to prove this statement by exploiting the formally verified unlifted CF that com-
putes inside Coq. This formula takes the form shown below, where £1 denotes the unlifted CF
of the body t. (Thereafter, variables denoting unlifted formulae are written in lowercase: £1, g2,
etc.)

V(x:val) (H:hprop) (Q:val— hprop),

(H - £1Q) —

triple (trm_apps f (x:nil))HQ
To relate the two statements, we need to establish that a proof carried out by the user of the
entailment H - "F1 Q implies the validity of the entailment H - £1 (Post Q). Recall that Post Q
denotes the unlifted counterpart of Q. Thus, it suffices to establish: "F1 Q + £1 (Post Q). The
rest of this section explains how to establish an entailment of this form for relating a lifted CF
with its corresponding unlifted CF, by following the structure of the code in a systematic manner.

The “Lifted” judgment. Let us first introduce the key judgment on which our proofs of cor-
rectness of lifted CF are based. The predicate Lifted F1 £1 asserts that the lifted formula F1 is
justified by the unlifted formula £1.

DefinitionLifted (F1:Formula)(f1:formula): Prop :=
V(A:Type) (EA:Enc A) (Q:A— hprop), "F1 Q — £1 (Post Q).

Key lemmas. We next present the key lemmas that enable relating a lifted CF with its corre-
sponding unlifted CF. Currently, I apply these lemmas by hand, but I am working on automating
the process. In a few lemmas, a side-condition of the form isframed f appear. This judgment
asserts that f is a formula that is of the form framed £’. Whenever we apply these lemmas, the
side-condition holds by construction of the CF generator, which applies the framed predicate at
every node in the CF.

CHAPTER 6. LIFTING: FROM PROGRAM VALUES TO LOGICAL VALUES 82

A first, auxiliary lemma, is involved in the proof of the remaining lemmas. Intuitively, it
explains that the lifted Framed predicate matches the unlifted framed predicate.

Lemma Lifted_framed:V(F1:Formula) (f1:formula),
LiftedF1 f1 —
Lifted (Framed F1) (framed f1).

A second, auxiliary lemma is involved for handling applications. It relates the lifted Wp pred-
icate with the unlifted wp predicate.

Lemma Lifted_wp: V(t:trm),
Lifted (Wp t) (wp t).

Then, we have one lemma to handle each kind of term construct.

Lemma Lifted_val :V(A:Type) (EA:Enc A) (V:A) (vival),
v=encV—
Lifted (CF_valV)(cf_valvwv).

Lemma Lifted_let :V(F1:Formula)(f1l:formula)(A1:Type){EA1l:Enc Al}
V(G2:A1— Formula) (g2:val— formula),
LiftedF1 f1 —
(V(X:A1),Lifted (G2 X) (g2 (enc X))) —
isframed f1 —
Lifted (CF_let_trmF1G2)(cf_let £1 g2).

Lemma Lifted_app:V(A:Type){EA:Enc A} (f:val) (Vs:dyns) (vs:vals),
Listmap (funV=trm_val (dyn_to_valV))Vs=trms_valsvs —
Lifted (eCF_app AEA f Vs)(cf_app f vs).

Lemma Lifted_if :V(F1 F2:Formula) (f1 f2:formula) (b:bool) (v:val),
v=encb —
LiftedF1 f1 —
LiftedF2 f2 —
Lifted (CF_if bF1 F2)(cf_if v f1l £2).

Lemma for top-level functions. The most technical lemma is the one handling a top-level
function definition. Let us first present a simplified version for the case of unary functions.

Lemma Triple_of_ CF_and_Lifted_fix:
V(H:hprop) (A:Type) (EA:Enc A) (Q:A— hprop) (F1:Formula),
V(F:val) (f x:var) (v:val) (t:trm),
F=val fixfxt—
f #x —
HF"F1Q—
dyn_to_valv=v—
Lifted F1 (cf ((£,F)=(x,v):nil) t) —
Triple (Trm_app FV)HOQ.

The generalization to n-ary functions is more technical—reading it is optional.

Lemma Triple_of_CF_and_Lifted_fixs:
V(H:hprop) (A:Type) (EA:Enc A) (Q:A— hprop) (F1:Formula),
V(F:val) (f:var) (xs:1ist var) (Vs:1ist dyn) (vs:1ist val) (t:trm),
F=val_fixsfxst—
HF "F1Q—
trms_to_vals (List.map (fun (V:dyn) = trm_val (dyn_to_val V))Vs)

CHAPTER 6. LIFTING: FROM PROGRAM VALUES TO LOGICAL VALUES 83

=Some vs —
disjoint_vars(bind_var f)xs (List.length vs) —
Lifted F1 (cf (List.combine (f:xs) (F:vs)) t) —
Triple (Trm_apps FVs)HQ.

Pure functions. One complication is related to the feature of our external CF generator of
recognizing the application of basic pure functions. In the lifted CF generator, such an application
is mapped directly to a value. In the unlifted CF generator, however, such an application is treated
just like any other function call. To handle the places where such divergence appears between a
lifted and an unlifted CF, we exploit the following lemma.

Lemma Lifted_inlined_fun:V(F1l:Formula)(f:val)(vs:list val) (r:val),
(triple (trm_apps f vs)\[] (funx =\[x=1])) —
Lifted F1(cf_valr)—
Lifted F1 (cf_app f vs).

The first premise of that lemma needs to be justified by exploiting the specification lemma for the
pure OCaml operation named f.

Pattern matching. Regarding pattern matching, it is harder to capture the relationship between
lifted and unlifted formulae in a systematic manner. This difficulty is due to at least two factors.
First, patterns are associated with a variable number of independently quantified variables, each
with its own type. Second, the justification that the equalities expressed at the level of Coq values
matches the equalities expressed at the level of the deep embedding involves reasoning by case
analysis (inversion). Furthermore, in the case of nested patterns, the case analysis steps need to be
nested. I have developed a set of tactics to partially automate this process; the next step is to fully
automate it.

Summary. The lifting technique enables the user to carry out proofs that manipulate Coq val-
ues. With this technique, the user never sees deeply embedded syntax. The user can work with
typed values, and with representation predicates over typed values. Moreover, numerous proof
steps involving pure functions can be eliminated by describing the results of pure operations using
the corresponding Coq operations.

The translation of OCaml to Coq types, of OCaml to Coq values, and the production of lifted
characteristic formulae is implemented by an external tool. The correctness of these lifted formu-
lae can be justified by showing that they are formally related to the unlifted formulae computed
inside Coq by a formally verified function. Put together, the generic proof and the per-program
proofs justify the soundness of our lifted characteristic formulae in a foundational manner.

Chapter 7

Resource Analysis

In Section 7.1, I start by motivating formal analysis on program resource usage, and review
prior work on resource analysis. I explain, in particular, that a uniform approach can be
used to handle various kinds of resources. In Section 7.2, I present the time credits heap
predicate and its properties. In Section 7.3, I explain how to realize time credits as an
extension of Separation Logic with ghost state. In Section 7.4, I describe the statement
of the soundness theorem, which asserts that time credits indeed capture amortized time
bounds. In Section 7.5, I describe the—somewhat unexpected—interest of negative time
credits. Finally, in Section 7.6, I present the case study that consists of the formalization
of the amortized analysis of the classic Union-Find data structure, involving the inverse
Ackermann function.

I started working on time credits with Francois Pottier in 2013, just after returning to Inria
after my postdoc. We developed the metatheory and applied our approach to mechanize the
amortized analysis of the Union-Find data structure. This work appeared at ITP’15 [Char-
guéraud and Pottier, 2015]. In 2017, we slightly simplified the proof [Charguéraud and
Pottier, 2019] by following the proof technique by Alstrup et al.’s [2014] instead of the
older proof technique presented in the Introduction to Algorithms textbook [Tarjan, 1999;
Cormen et al., 2009]. We published that work in the Journal of Automated Reasoning (JAR).

Subsequently, together with Francois, we advised the PhD of Armaél Guéneau who, while
working on the asymptotic notation, introduced possibly negative time credits. This key
technical ingredient appears as a side contribution in our I'TP’19 publication on the incre-
mental cycle detection algorithm [Guéneau et al., 2019b], which is discussed in the next
chapter. In 2021, I simplified the formalization of Separation Logic with possibly negative
time credits. In this chapter, I present this simplified formalization, which is implemented
in CFML.

The contents of the Section 7.1 is based on text that appears both in our ITP’15 paper on
time credits [Charguéraud and Pottier, 2015] and in our POPL’23 paper [Moine et al., 2023]
on space credits. The contents of Section 7.5 is adapted from the ITP’19 paper. The contents
of Section 7.6 is a simplified excerpt from the JAR’19 paper.

84

CHAPTER 7. RESOURCE ANALYSIS 85

7.1 Motivation and Related Work on Resource Analysis

A program whose functional correctness has been verified might nevertheless still contain com-
plexity bugs: that is, its performance, in some scenarios, could be much poorer than expected. To
illustrate the issue, consider the binary search implementation in Figure 7.1. A number of modern
software verification tools could be used to prove that such a program satisfies the specification of
a binary search, and that it terminates on any valid input. This code might even pass a lightweight
testing process, as many queries will be answered very quickly, even if the array is very large. Yet,
a more thorough testing process would reveal a serious issue: a search for a value that is stored
near the end of the array takes not logarithmic time, but linear time!

The flaw in the implementation is that the occurrence of the variable i on the last line of
Figure 7.1 should have been an occurrence of the variable k. It would be embarrassing if such
faulty code was deployed, as it would aggravate benevolent users and possibly allow malicious
users to mount denial-of-service attacks. Formal asymptotic complexity analysis could ensure the
absence of such complexity bugs.

As illustrated by the flawed binary search example, complexity bugs can affect execution time.
They could also concern space, including heap space, stack space, and disk space; or other re-
sources, such as the network, energy, and so on. As we argue next, much of the work on formal
resource analysis is independent of which resource is considered. In particular, we expect that
the techniques presented in this chapter for establishing time bounds could be adapted to verify
asymptotic bounds on the use of many other kinds of resources.

Reasoning about the use of a resource requires a “model” that tells when this resource is con-
sumed or produced, and how much of it is consumed or produced. Such a model is usually an
abstraction of some physical reality. For example, to obtain an asymptotic time bound, one can
posit that every elementary instruction consumes one unit of time.! To obtain an asymptotic
bound on stack space, one can posit that every (non-tail) function call consumes one unit of stack
space, which is recovered when the function returns.? To derive a bound on heap space, when
the language has an explicit deallocation instruction, one can posit that an allocation instruction
consumes the requested amount of space and that a deallocation instruction recovers the space
occupied by the heap block that is about to be deallocated. In all three cases, it is evident in the
program where the resource of interest is consumed or produced.

In such settings, reasoning about resource consumption can be reduced to reasoning about
safety. Indeed, one can construct a variant of the program that is instrumented with a resource
meter, that is, a global variable whose value indicates what amount of the resource of interest
remains available. In this instrumented program, one places assertions that cause a runtime failure
if the value of the meter becomes negative. If one can verify that the instrumented program is safe,
then one has effectively established a bound on the resource consumption of the original program.

The principle of a resource meter has been exploited in many papers, using various frame-
works for establishing safety. For instance, Crary and Weirich [2000] exploit a dependent type
system; Aspinall et al. [2007] exploit a VDM-style (Vienna Development Method) program logic;
Carbonneaux et al. [2015] exploit a Hoare logic; He et al. [2009] exploit Separation Logic. The
manner in which one reasons about the value of the meter depends on the chosen framework. In
the most straightforward approach, the value of the meter is explicitly described in the pre- and
postcondition of every function. This is the case, for instance, in He et al.’s work [2009], where

'Predicting physical execution time requires access to a compiled version of the program and an accurate model of
the processor: see, e.g., Amadio et al. [2014].

Computing a concrete bound, expressed in memory words, requires knowing the size of each stack frame [Amadio
et al., 2014; Carbonneaux et al., 2014; Gémez-Londorio et al., 2020].

CHAPTER 7. RESOURCE ANALYSIS 86

(* Requires t to be a sorted array of integers.
Returns k such that i <= k < j and t.(k) = v
or -1 if there is no such k. *)

let rec bsearch t v 1 j =
if j <= 1 then -1 else
let k =1+ (j - 1) / 2 in
if v = t. (k) then k
else if v < t.(k) then bsearch t v i k
else bsearch t v (i+1) j

Figure 7.1: A flawed binary search. This code is provably correct and terminating, yet exhibits
linear (instead of logarithmic) time complexity for some input parameters.

two distinct meters are used to measure stack space and heap space.

In a more elaborate approach, which is made possible by Separation Logic, the meter is not
regarded as an integer value, but as a bag of credits that can be individually owned. This removes
the need to refer to the absolute value of the meter: instead, the specification of a function may
indicate that this function requires a certain number of credits and produces a certain number of
credits. Furthermore, because credits can be set aside for later use, this allows amortized analysis.
Time credits, under various forms, have been used in several type systems [Danielsson, 2008;
Hofmann and Jost, 2006; Hoffmann and Hofmann, 2010; Pilkiewicz and Pottier, 2011; McCarthy
et al.,, 2016]. Atkey [2010; 2011] has argued in favor of viewing credits as predicates in Separation
Logic. However, Atkey’s work did not go as far as using time credits in an expressive framework.

The first practical, general-purpose program verification framework based on time credits in
Separation Logic is the one that Frangois Pottier and I developed in the years 2013-2014, as an
extension of CFML. We illustrated the interest of such a framework by presenting the first mecha-
nized proof of the amortized analysis for the Union-Find data structure [Charguéraud and Pottier,
2015; Charguéraud and Pottier, 2019]. This case study is presented in Section 7.6. Separation
Logic with time credits has been subsequently exploited in other lines of work, including work
in Iris on time receipts for establishing lower bounds on execution time [Mével et al., 2019], work
in Iris on transfinite time credits for proving the termination of programs whose execution time
cannot be bound upfront [Spies et al., 2021], and mechanized verification of data structures in
Isabelle/HOL [Haslbeck and Nipkow, 2018; Haslbeck and Lammich, 2021].

Reasoning about heap space in the presence of explicit allocation and deallocation instructions
can be achieved by extending traditional Separation Logic with space credits. To the best of our
knowledge, such a variant of Separation Logic does not exist in the literature. However, Hofmann’s
work on the typed programming language LFPL [2000] can be viewed as a precursor of this idea:
LFPL has explicit allocation and deallocation, which consume and produce values of a linear type,
written ¢, whose inhabitants behave very much like space credits.

Reasoning about heap space in the presence of a garbage collector is much more involved.
In such a setting, there is no explicit deallocation instruction. Thus, it is not evident at which
program points space can be reclaimed. Additional ingredients are needed for establishing space
bounds for garbage-collected ML programs. We describe them in Chapter 9.

CHAPTER 7. RESOURCE ANALYSIS 87

7.2 Principle of Time Credits

Time credits are described by a heap predicate written $n. Intuitively, this predicate describes the
right to performn steps of computation, for a certain notion of step to be defined. To obtain asymp-
totic bounds, it is sufficent to count one step for each function call and for each loop iteration.
Be aware that we do not aim for a worst-case execution time (WCET) analysis: we do not aim to
provide bounds on actual physical execution time, but only asymptotic bounds.

To track in the program logic the number of computation steps, it suffices to instrument the
source code by inserting, in a systematic manner, a call to a function called pay at the head of
every function body and of every loop. (This is analogous to Danielsson’s “tick” [2008].) The spec-
ification of the function pay requires in its precondition one time credit. Apart from that, a call to
the function pay behaves like a no-op. Technically, pay satisfies the triple: {$1} pay () {_. []}.

When reasoning about a call to pay, the user has no choice but to (directly or indirectly)
exploit the specification of pay and give away one time credit. Thus, because each call to pay
consumes one time credit, the number of time credits available at the start of the program bounds
the maximal number of steps that can be performed. In other words, the number of time credits
mentioned in the precondition of the whole program gives an asymptotic upper bound on the
execution time.

In practice, instead of exploiting directly the specification of pay, proofs can be streamlined
using one the following reasoning rules, which apply to a call to pay that precedes a term ¢, which
corresponds to a function or loop body.

SEQ-PAY SEQ-PAY-TRANS WP-SEQ-PAY
{H} t{Q} H+-$1xH {H'} t {Q}
{H « $1} (pay(); t) {Q} {H} (pay(); t) {Q} $1% (wptQ) + wp (pay(); t) Q

When using characteristic formulae as defined in Section 5.2 and Section 5.6, the relevant defini-
tions to handle the pay function are as follows.

cfg (pay(); t) = cf_pay(cfgt) H - $1~H' H + FQ
cf_pay F = framed (\Q. $1 x F Q) H + cf_pay FQ

CF-PAY

Time credits are provided as part of the precondition of a term. These credits may be used
to justify computation steps performed by that term and, in particular, by the functions that this
term calls. A function might consume fewer time credits than it receives in its precondition. Time
credits may indeed be saved for future use, by being stored as part of the representation predicate
of a data structure. Such a representation predicate, storing saved credits, typically appears in the
postcondition of the function. Credits saved in a representation predicate may be extracted when
reasoning about another function call whose precondition includes this representation predicate.
This pattern of saving credits in heap predicates, to accumulate them on certain operations and
spend them subsequent operations, allows for amortized analysis.

In the original presentations of time credits [Charguéraud and Pottier, 2015; Charguéraud and
Pottier, 2019], a number n that appears in the time credits predicate $n was restricted to be a
natural number: n € N. Subsequent work [Guéneau et al., 2019b; Guéneau, 2019] argues for the
benefits of allowing possibly negative time credits: n € Z. We will come back to these benefits
in Section 7.5. More recently, I encountered a tree based data structure whose analysis, based
on geometric series, requires the introduction of rational numbers: n € Q. It is not clear to me
whether any data structure could require the manipulation of non-rational pieces of time credits,
i.e., require n € R. Thus, for now, I will stick to using rational numbers in the formalization.

CHAPTER 7. RESOURCE ANALYSIS 88

The formalization of time credits consists of three components. First, credits are defined as
heap predicate over a piece of ghost state (Section 7.3). Second, lemmas for rearranging time credits
are established (see below). Third, the specification of the pay function is stated. This function
may be related to a cost-instrumented semantics of the programming language (Section 7.4). We
begin with the properties of possibly negative time credits. They are stated below and explained
next.

Lemma 7.2.1 (Properties of time credits) The properties below hold for any n,m € Q. They
may be proved correct with respect to the realization of time credits described further on.

1. $0 =[] zero credit is equivalent to nothing at all
2. $(m+n) = $m*$n credits are additive
3. n =0 = affine($n) only nonnegative credits can be discarded

The first property asserts that zero credits are equivalent to the empty assertion. The second
property explains how time credits may be split and joined. The equality may be equivalently
reformulated as follows.

$n =3m x $(n—m)

This equality is typically exploited when one has n credits at hand, and need to justify a call to a
function that consumes m credits. The equality introduces the n — m credits that remains.

In most cases, when exploiting the above equality, n is no less than m, meaning that one
has more credits at hand enough credits to cover the coming expense. Yet, this inequality does
not have to hold. If it does not, exploiting the equality introduces a debt that corresponds to the
negative amount n — m. In particular, the split rule can be instantiated to create time credits out
of thin air. The statement below allows to forge n credits, by producing at the same time a debt
expressed as —n credits.

[] = nxS(-n)

Negative credits do not compromise soundness, assuming that they cannot be discarded. As put
by Tarjan [1985], “we can allow borrowing of credits, as long as any debt incurred is eventually paid
off”.

The third property above captures the fact that a nonnegative number of time credits may be
freely discarded—it corresponds to an affine predicate in the sense of Section 3.1. On the contrary,
anegative number of time credits cannot be discarded—such an assertion must be treated linearly.
Use cases for negative time credits are discussed further on (Section 7.5).

7.3 Realizing Time Credits as Ghost State

We now explain how time credits can be realized as heap predicates using ghost state. The Iris
framework [Jung et al., 2018b] provides generic tooling for constructing pieces of ghost state in
a modular way, and for integrating that ghost state into a Separation Logic. Yet, Iris provides an
affine logic, which would be unsound in the presence of negative time credits. As explained earlier
in Section 3.1.1, the extensions of Iris that have been proposed for handling linearity [Tassarotti
et al,, 2017a; Bizjak et al., 2019] do not provide any obvious means of representing time credits,
which are either linear or affine depending on whether they are negative or not.

In this section, we give a two-layer presentation of ghost state, somewhat in the fashion of Iris
yet without the modularity aspects to keep things simple. On the one hand, we give an axiomatiza-
tion of the properties that a piece of ghost state must satisfy, accompanied by generic definitions

CHAPTER 7. RESOURCE ANALYSIS 89

for Separation Logic heap predicates that must hold for any piece of ghost state. On the other
hand, we give a realization of that axiomatization for the specific case of time credits. Time cred-
its provide a minimalistic yet interesting example of ghost state, thus our construction may also
be useful for pedagogical purpose. To enforce that only nonnegative credits can be discarded, we
exploit our generic treatment of affine predicates introduced in Section 3.1.

The following table axiomatizes the concepts involved for representing heaps that might in-
clude a piece of ghost state. For example, we will later interpret heaps, which were originally
defined as predicate over states (Section 2.2.2), as predicates over pairs made of a state and of
a rational number. The type heap should be accompanied by several operators. The constant
hempty denotes the empty heap. The compatibility operator, written hcompat h; ho, generalizes
the disjointness relation. Two heaps are compatible if one can build a non-conflicting union of
their contents. The notion of compatibility is standard in Separation Logic: it appears in partial
commutative monoids (PCMs) and is used, e.g., in the traditional models of fractional permissions.
The union operator, written hunion hy ho, applies to any two compatible heaps. The heap-affine
predicate, written haffine h, characterizes affine predicate as in Section 3.1.2.

Definition 7.3.1 (Axiomatization of heaps that possibly include ghost state)

heap . Type type of heaps

hempty : heap empty heap

hcompat : heap — heap — Prop | compatibility relation

hunion : heap — heap — heap | union for compatible heaps
haffine : heap — Prop characterization of affine heaps

The above entities must satisfy the properties that appear in the next table. The first part
of the table asserts that compatibility is symmetric and that it is well-behaved with respect to
empty heaps and unions of heaps. The second part of the table asserts that the union operator (on
its domain, i.e., on compatible heaps) and the empty heap together form a commutative monoid.
The third part of the table corresponds to the requirements for the heap-affine predicate (Defini-
tion 3.1.1).

Definition 7.3.2 (Axiomatization of operations on heaps featuring ghost state)

hcompat h hempty compatibility with empty

hcompat hy hy < hcompat hs hq symmetry of compatibility

hcompathy hy =
hcompat (hunion hy hg) hs < (hcompat hy hs A hcompathsy hs) | distrib. compatibility/union

hunionh hempty = h union with empty heaps
hunionhy ho = hunionhy hq commutativity of union
hunion hy (hunionhg hs) = hunion (hunionhy hg) hs associativity of union
haffine hempty affinity of the empty heap
hcompathy hy =

haffinehy A haffinehs = haffine (hunionhy ha) distrib. affinity/union

Given a definition of heaps satisfying the above axiomatization, one can define the core Sep-
aration Logic operators in a systematic way. In CFML, this construction takes the form of a Coq
functor. The corresponding definitions, shown below, refine Definition 2.2.3.

CHAPTER 7. RESOURCE ANALYSIS 920

Definition 7.3.3 (Core heap predicates, revisited for abstract heap data type)

[] Ah. h = hempty

[P] Ah. h = hempty A P

Hl * H2 Ah. thhg. hcompath1 hg A h= hunionh1 h2 N Hl hl AN H2 hQ
dz. H Ah. dx. Hh

V. H Ah. Vx. Hh

We are now ready to instantiate our functor to derive a Separation Logic with time credits. To
that end, we instantiate the type heap to be predicates over pairs made of a state and of a rational
number of credits. The empty heap is made of an empty state and zero credits. Compatibility
simply asserts that the two underlying states have disjoint domains. The union operator constructs
the (disjoint) union of the two underlying states, and sums up the two amounts of credits at hand.
The heap-affine predicate asserts that affine heaps are exactly those that carry a nonnegative
number of credits—other heaps must be treated linearly.

Definition 7.3.4 (Realization of heaps for time credits)

heap = state x QQ type of heaps

hempty = (2,0) empty heap

hcompat (s1,n1) (s2,n2) = s1 L s compatibility relation

hunion (s1,n1) (s2,m2) = (s1 w S2,n1 + n2) | union for compatible heaps
haffine (s,n) = n=0 affinity for nonnegative credits

With respect to our model of heaps as pairs of a state and a number of credits, we can define
the heap predicates for representing time credits. The predicate $ m characterizes a pair made of
an empty state and of exactly m credits. We also need to update the definition of the singleton
heap predicate, which characterizes a singleton state, to assert that it carries zero credits. The
corresponding definitions appear next.

Definition 7.3.5 (Definition of time credits and singleton heap predicates)

$m = As,n).n=mAs=0 time credits
p—v = As,n).n=0As=(p—v) A p# null| singleton heap predicate

We have found that using instead the definitions shown below lead to proofs that can be carried
out at a slightly higher abstraction level. Those alternative definitions are used in CFML, yet are
not essential for the rest of the discussion.

Definition 7.3.6 (Alternative definition of time credits and singleton heap predicates)

hcreditsn = (@,n) : heap empty state with credits

$n = Ah. h = hcreditsn time credits

hstatepred K = A(s,n). n=0 A Ks heap predicate from state pred.
P = hstatepred (\s.s = (p — v) A p # null) | singleton heap predicate

7.4 Soundness of Time Credits with respect to the Semantics

So far, we have viewed the function pay as an abstract function satisfying {$1} pay () {_. []}.
This function can be viewed as an external system call. The fact that the input program is correctly
instrumented with the appropriate calls to pay is either part of the trusted code base, or should be

CHAPTER 7. RESOURCE ANALYSIS 91

carried out by a separate, formally verified tool. In the journal paper on time credits [Charguéraud
and Pottier, 2019], we aimed for a more foundational approach. To that end, we established a
formal link between the spending of time credits and the execution of steps in the semantics.
In what follows, we present a cost-instrumented semantics, cost-aware reasoning rules, and a
definition of triples that relates the two.

The cost-instrumented semantics judgment is written ¢/s || v/s’, where n denotes the num-
ber of computation steps involved in the evaluation. Note that this judgment corresponds to a
simplified form of trace semantics: the only events that we care about are function calls, and the
only trace property that we care about is the number of such events. We next show two key eval-
uation rules that are part of the definition of that judgment. The rule BIGN-APP adds one unit to
the number of steps. The rule BIGN-LET sums up the number of steps performed by each of its two
subterms.

BIGN-APP BIGN-LET
o= pfaet (el [/ 0/ 40t M e s (o/e)/s 4 oS
(v1 v2)/s T o' /o' (letz = tyinty)/s J(MFm2) 4 /"

Our cost-aware program logic does not assume programs to be instrumented with calls to pay.
Instead, we replace the reasoning rule for applications with a variant that enforces the spending
of one time credit. Concretely, we keep all the standard reasoning rules from Section 2.4.3, except
that we replace aApp with aApp-pAY. The only change is the appearance of $1 in the precondition.
This credit is effectively consumed when applying the rule for processing a function call.

APP APP-PAY
v = afdet {H) (/2] /10 {Q) w=ifdet {H} ([vo/2][v1/f]4) {Q)
(H} (v v2) {Q} (ST HY (v 02) {Q)

There remains to give a definition of triples relating the reasoning rules to the semantics. First,
let us recall the definition of triples for a plain Separation Logic. Definitions 2.4.2 and 2.4.3 provide
two equivalent definitions for triples (with respect to a semantics deterministic up to allocations).
Let us give a third, equivalent formulation, that is well-suited for an extension accounting for time
credits. Because we need an affine logic to be able to discard spare credits, let us also include in
the definition triple an affine top predicate (T), as done in Definition 3.1.4. Our baseline is thus
the following definition of affine triples.

Definition 7.4.1 (Alternative presentation of partially-affine Separation Logic triples)

_ / ! / t/s U’ U/S/

{H}t{Q} = VsH'.(H*H'")s = Jvs'. { (QusH' +T) s

Let us now refine the above definition to account for time credits. Recall that heap predicates
are now predicates over pairs of a state and a number of credits. In the definition shown below,
n denotes the number of steps of computation performed and ¢ denotes the number of credits
covered by the precondition. The variable ¢’ denotes the number of credits covered by the post-
condition (Q v) and by the affine top predicate (T). Thus, ¢’ may be greater than the number of
credits actually mentioned in the postcondition. Our definition enforces the constraint ¢ = n+ ¢/,
which means that the credits available initially in the precondition are distributed among (1) the
credits consumed by the computation steps, plus (2) the credits that remain in the postcondition,
plus (3) a nonnegative number of spare credits that have been discarded.

CHAPTER 7. RESOURCE ANALYSIS 92

Definition 7.4.2 (Separation Logic triples with support for time credits)

t/s " v/s
SEP+CREDITS (V¢ {Q} = VsH'c. (H x H') (s,¢) = Jvs'nc. (Qu+H' xT) (s,¢)
c=n-+c

In the case of a full program execution described by a triple of the form {$m} ¢ {_. []}, our
definition asserts that there exist ¢, v, s', n and ¢’ such thatt/@ || v/s’ andm = cand ¢ = n+ ¢/
and ¢ = 0. These arithmetic constraints imply n < m. In other words, a program proved correct
with m time credits terminates after at most m computation steps. In summary, our formalization
gives a foundational interpretation of time credits in terms of a cost-aware semantics.

7.5 Possibly Negative Time Credits

As explained earlier in Section 7.2, whereas the original presentation of time credits considered
credits in N [Charguéraud and Pottier, 2015], subsequent work [Guéneau et al., 2019b; Guéneau,
2019] introduced possibly negative time credits in Z—or in Q, if we were to consider the general-
ization necessary for fine-grained amortized analyses. We next describe the two most important
motivations for possibly negative credits.

Simplifying proof obligations associated with the spending of credits. Consider a situa-
tion where n credits are at hand and if one wishes to step over an operation whose cost is m. As
explained in Section 7.2, the relevant reasoning rule is: $n = $(n — m) * $m. Yet, when credits
are expressed in N, this rule only holds under the side condition m < n. This side condition gives
rise to a proof obligation at every place where time credits need to be spent.

Even worse, the size of such proof obligations tend to grow bigger as we make progress
through the code. To see why, assume that n credits are initially at hand, and suppose that we need
to step over a sequence of k operations whose costs are my, mo, ..., mg. Then, k distinct proof
obligations arise: n—m; > 0 and n—mj—my > 0 and and so on, untiln—m;—mo—...—my = 0.
In fact, these proof obligations are redundant: the last one alone implies all the previous ones. Un-
fortunately, in an interactive proof assistant such as Cogq, it is not easy to take advantage of this
fact and present only the last proof obligation to the user.

When credits are in Z, the rule $n = $(n — m) * $m has no side condition. Thus, stepping
over a sequence of k operations whose costs are my, ma, ..., my gives rise to no proof obligation
at all until reaching the end of the sequence. Then, at the end of the sequence, n — m; — mg —
... — my, credits remain, which the user typically wishes to discard (or rather, must discard, in
order to match the targeted postcondition). Discarding those credits by means of rule DISCARD-PRE
(Section 3.1.3) requires a proof of: affine ($n — m; — ma — ... — my). Recall from Section 7.2 that
only nonnegative credits are affine, as captured by the property n > 0 = affine ($n). Thus, to
discard the remaining credits, one must discharge the proof obligation: n—mj;—mo—...—my = 0.
As expected, this inequality captures the fact that the amount of credits that are spent must be less
than the amount of credits that are initially available. In summary, switching from N to Z greatly
reduces the number of proof obligations that appear about credits.

The case of a sequence of k operations is actually a simple pattern. In the proof of an incremen-
tal cycle detection algorithm (Section 8.7), we have encountered a more complex situation. There,
instead of looking at a straight-line sequence of operations, one is looking at a loop, whose body is
a sequence of operations, and which itself is followed with another sequence of operations. In our
proof carried out with credits in Z, we only needed to discharge a single proof obligation at the

CHAPTER 7. RESOURCE ANALYSIS 93

very end. Credits in N would have required not just a much larger number of proof obligations,
but also a nontrivial strengthening of the loop invariant.

Specification of function whose cost depends on the output value. Consider a function
called index_of_first_nonzero that takes as argument an array of integers that contains at
least one non-zero value (as captured by the predicate contains-a-nonzero), and that returns the
index of the first non-zero value found in the array. The implementation of this function traverses
the array and stops at the first non-zero value, found at some index ¢. Thus, the cost of this function
is 1 + 4, where 1 pays for the function call and 7 pays for reading the 7 first cells of the array.
When credits are expressed in N, the cost of a function must be covered by time credits vis-
ible in the precondition. Yet, this cost depends on the result value ¢, which is only bound in the
postcondition. To nevertheless state a correct specification, one needs to characterize, in the logic,
what the output value ¢ is going to be in terms of the contents of the array. Then, the cost of the
function is expressed as ¢ + 1, and the output of the function is specified to be equal to ¢. The
corresponding specification appears next, where L denotes the elements in the array.

contains-a-nonzeroL A 0 < i < |L| A L[{] #0 A (Vj.0<j <i= L[j]=0) =
{Array Lp » $(i + 1)}

(index_of_first_nonzerop)

{\i. Array Lp * [i' =i]}

In order to invoke the above specification, one must instantiate the specification with a suit-
able ¢. Exhibiting the value of ¢ in the proof essentially requires implementing a Coq function that
computes the first index of a nonzero element in a list L. In other words, in order to instantiate
the specification of the function index_of_first_nonzero, one needs to implement a purely
functional counterpart of it in the logic.

Alternatively, in a logic where Hilbert’s epsilon operator is available (e.g., in Coq extended
with strong classical logic), one can rewrite the above specification using a min operator in a
more succinct way, as shown below. One can instantiate this specification slightly more easily.
Yet, reasoning about the min operator still introduces a fair amount of clutter in proofs.

contains-a-nonzero L =

leti = miny(\i. L[] # 0)in
{Array Lp » $(i + 1)}
(index_of_first_nonzerop)
{\i!. Array Lp * [i' =i]}

In contrast, with time credits in Z, we can state a significantly simpler specification: a triple
of the form {$n » H} ¢t {A\r. H'} can be equivalently stated as: {H} t {\r. $(—n) ~ H'},
that is, with the opposite number of credits in the postcondition. (Reciprocally, credits that ap-
pear in the postcondition may be instead subtracted in the precondition.) The specification of
index_of_first_nonzero can now be expressed with a specification that can be smoothly
instantiated in proofs. The properties of the output value ¢, and the cost of the function expressed
as ¢ + 1, both appear in the postcondition.

contains-a-nonzero L =

{Array L p}

(index_of_first_nonzerop)

{Xi. Array Lp » $(—i—1) » [0<i <|L| A L[i] #0 A (V5. 0<j<i= L[j]=0)]}

CHAPTER 7. RESOURCE ANALYSIS 94

In summary, possibly negative time credits ease the statement of credits-based specifications
for functions whose cost is output-sensitive. Armaél Guéneau’s PhD thesis (§6.3.1) [2019] contains
another similar example, based on a function that traverses consecutive segments of an array.

7.6 Formal Analysis of the Union-Find Data Structure

Union Find and its complexity analysis. The Union-Find data structure, also known as a
disjoint set forest [Galler and Fischer, 1964; Cormen et al., 2009], maintains a collection of disjoint
sets and keeps track in each set of a distinguished element, known as the representative of this set.
It supports the following operations: make creates a new element, which forms a new singleton
set; £ind maps an element to the representative of its set; union merges the sets associated with
two elements.

Union-Find is among the simplest classic data structures, yet requires one of the most challeng-
ing complexity analyses. Tarjan [1975] and Tarjan and van Leeuwen [1984] prove, for an imple-
mentation of disjoint set forests exploiting path compression and linking-by-rank, that the worst-
case time required by a sequence of m operations involving at most n elements is O(m - a(n)).
There, the function « is the inverse of Ackermann’s function. It grows so slowly that «(n) does
not exceed 5 in practice. The analysis of Union-Find has been progressively simplified over the
years [Kozen, 1992], ultimately resulting in a readable 2.5-page proof that appears in Tarjan’s on-
line course notes [1999]. It also appears in the textbook Introduction to Algorithms [Cormen et al.,
2009], where it occupies about 8 small pages.

In that textbook presentation, the parameter n must be a priori fixed, and represents an upper
bound on the number of elements that can ever appear in the data structure. In more recent
work, Kaplan et al. [2002] and Alstrup et al. [2014] establish (among other results) a more precise
and more pleasant bound: each operation has worst-case amortized complexity O(a(n)), where
n is the number of elements in the data structure at the time this operation is performed.> Our
journal publication [Charguéraud and Pottier, 2019] formalizes Alstrup et al.’s proof [2014], which
removes the need to fix the maximal number of elements in advance, and leads to specifications
simpler and easier to use.

Mechanized Proofs of Union Find. The functional correctness of implementations Union
Find had been established before [Conchon and Filliatre, 2007; Chlipala et al., 2009a; Lammich
and Meis, 2012], but without considering bounds on the execution time. Our work [Charguéraud
and Pottier, 2015] has been the first to provide a mechanized proof of the mathematical analysis
of Union-Find, and the first to formalize time bounds for a concrete, executable implementation
of that data structure.

Before presenting the formal specifications, let us make two comments about the implemen-
tation. First, we represent the reverse forest using pointers. Our approach would also apply for
verifying an array-based implementation. The vast majority of the formal development would be
shared between the two implementations: only a small fraction of the proofs are specific to a par-
ticular implementation. Second, we assume that ranks are represented using arbitrary-precision
integers. Doing so enables us to ignore the possibility of integer overflow. To handle machine
integers, one could introduce additional assumptions of the form n < 22" to justify that ranks,
which are at most log, n, can be represented without overflow in a 64-bit OCaml program. Alter-
natively, one could attempt to avoid the introduction of such assumptions by following Clochard

*In fact, they prove even tighter results, stated in terms of the sizes of equivalence classes, as opposed to the size of
the entire data structure. For our purposes, taking n to be the current number of elements in the data structure seems
good enough, and allows exposing a specification that seems as simple as one might hope for.

CHAPTER 7. RESOURCE ANALYSIS 95

et al.’s [2015] “proof-of-work” argument, and argue that creating 22" elements is impossible in
practice, by sheer lack of time.

Specification. I here present slighly simplified specifications compared with the ones that ap-
pear in the publication [Charguéraud and Pottier, 2015], ignoring the extra feature that provides
the ability to associate a value to every representative.

The formal specification of the Union-Find interface appears in Figure 7.2. The specification
begins with the declaration of a representation predicate, UF. This predicate is abstract: the client
is not supposed to know how it is defined. The Separation Logic assertion UF D R claims the
existence (and unique ownership) of a Union-Find data structure, whose current state is summed
up by the parameters D and R. The parameter D gives the domain of the data structure, that is,
the set of all elements. The parameter R maps every element to its representative.

Since R maps an element to its representative, we expect it to be an idempotent function of
the set D into itself. Furthermore, although this is in no way essential, we decide that R should be
the identity outside D. These properties are captured by the theorem named UF_properties.
Its statement is of the form UF D R + UF D R [P], which means that, if one owns UF D R, then
the properties described by P hold.

The next theorem, UF_create, asserts that out of nothing one can create an empty Union-
Find data structure. Its statement is, again, an entailment. Creating an empty Union-Find data
structure is indeed a “ghost” operation: the OCaml code does not explicitly offer such an operation.

Next comes the specification of the OCaml function make. The precondition is the conjunction
of UF D R, which describes the pre-state, and of $ 3, which indicates that make works in constant
time. In the postcondition, z denotes the element returned by make. The postcondition describes
the post-state via the assertion UF D' R, where D’ is D U {x}, as the domain has grown. The
postcondition also asserts that = is new, that is, distinct from all previous elements. The new
element is its own representative: by our convention, R must be the identity outside D, so R«
must be z.

The next theorem provides a specification for £ind. The argument z must be a member of D.
In addition to UF D R, the precondition requires 2a.(|D|) + 4 credits. This reflects the amortized
cost of find. The formal definition of alpha, the inverse of Ackermann’s function, may be
found in [Charguéraud and Pottier, 2019, §6.4]. The postcondition asserts that find returns an
element y such that R« = y. In other words, £ind returns the representative of x. Furthermore,
the postcondition asserts that UF D R still holds. Even though path compression may update
internal pointers, the parameters D and R, which represent the client’s view of the state, are
unchanged.

The precondition of union requires UF D R together with 4c(|D|) + 12 time credits. The
postcondition indicates that union returns an element z, which is either x or y, and has the effect
of updating the data structure to UF D R/, where R’ maps to z every element that was equivalent
to 2 or y.* This means that the equivalence classes of = and y are merged and that, out of the two
pieces of user data associated with these classes, an arbitrary one is retained.

Amortized analysis. The representation predicate UF includes, as part of its definition, a certain
number of time credits, written $ ®. Their number corresponds to the current potential of the data
structure, in Tarjan’s terminology [1985]. These credits are “saved inside the data structure”, so
to speak. They can be used to pay in part for an operation and therefore decrease its apparent
cost. Conversely, if one chooses to advertise an apparent cost that is greater than the operation’s

* The construct If P then el else e2, where P is in Prop, is a nonconstructive conditional. It is defined
using the law of excluded middle and Hilbert’s e operator.

CHAPTER 7. RESOURCE ANALYSIS 96

DefinitionUF(D:set elem)(R:elem —elem): heap — Prop:=..
(* abstract for the client: implementation not revealed *)

Theorem UF_properties: VDR, UFDR - UFDR x\[
VX, R(RX)=RX) A
(Vx,xeD—>Rx€eD) A
(Vx,x¢D >Rx=X)].

Theorem UF_create:\[] -+ UF &J(fun x = x).

Theoremmake_spec: VDRV,
TRIPLE (make ())
PRE (UF DR * $3)
POST (funx =UF (D U {x})R*\[x¢D]).

Theorem find_spec:VDRXx,xeD —
TRIPLE (find x)
PRE (UFDR x$(2 +» alpha (card D) + 4))
POST (funy =UFDR*\[Rx=Y]).

Theoremunion_spec:YDRxy,xeD —->yeD —
TRIPLE (union xy)
PRE (UFDR »$(4 » alpha (card D) + 12))
POST (fun z =
UFD (funw=If Rw=RxVvRw=Ry)thenzelseRw)x\[z=Rxvz=RYy])

Figure 7.2: Specification of Union-Find

CHAPTER 7. RESOURCE ANALYSIS 97

actual cost, then the extra credits provided by the caller can be “saved”, that is, used to justify an
increase of ®.

When we formally verify the code, we are required to prove that, for each operation, the initial
potential ®, plus the number of credits brought by the caller, covers the new potential ®’, plus the
number of credits consumed during the operation.

® + advertised cost of operation > @ + actual cost of operation

For instance, the specification of find requires 2a(|D|) + 4 credits, where |D| denotes the
current number of elements in the data structure. This is its apparent cost. Its actual cost, i.e.,
the number of (abstract) computation steps that it actually performs may be lower or higher.
The reasoning associated with the verification of £ind is as follows. The precondition of find
includes 2a(|D|) + 4 credits from the apparent cost plus the ® credits from the potential. To
establish the postcondition of £ind, one must show that, after spending as many time credits as
computation steps executed by find, there remains @' credits, where ®' denotes the potential of
the updated internal state of the data structure—the internal state may have changed as a result of
a path compression operation. In summary, the bound that explicitly appears in the precondition
of £ind, namely 2a/(|D|) + 4, is a worst-case amortized time complexity bound.

This concludes the presentation of this case study. In the next chapter, I explain how to state
the time bound in the form O(«(|D])), that is, using the big-O notation to abstract away from
implementation details.

Chapter 8

Big-O Notation for Time Bounds

I start by explaining the motivation for using the big-O notation in formal proofs (Sec-
tion 8.1), and explain the challenges associated with the big-O notation, especially in the
multivariate case (Section 8.2). I then review prior work on mechanizing the big-O nota-
tion (Section 8.3), and present our solution to formalizing the mathematical concept using
filters and domination relations (Section 8.4). I next describe our approach to integrating
dominating functions in formal specifications (Section 8.5). Finally, I present a number of
small case studies representative of various types of big-O bounds (Section 8.6), as well
as a major case study that consists in the formal verification of functional correctness and
asymptotic time bounds for a state-of-the-art incremental cycle detection algorithm (Sec-
tion 8.7).

The contents of this section corresponds to the PhD work of Armaél Guéneau, co-advised
by Francois Pottier and myself. The technical text of this section is a mildly revised version
of the text that appeared in our ESOP’18 paper [Guéneau et al., 2018]. The notion of fil-
ters had been already mechanized in other contexts; the Coq definitions that we use were
contributed by Francois Pottier. The incremental cycle detection case study presented at
the end of the section corresponds to our ITP’19 publication [Guéneau et al., 2019b], work
for which we were joined by Jacques-Henri Jourdan. All the work presented here has been
formalized in Coq as an extension of CFML.

8.1 Motivation for the Asymptotic Notation

The use of asymptotic complexity in the analysis of algorithms (on paper), initially advocated by
Hopcroft and by Tarjan [Hopcroft, 1987; Tarjan, 1987], has been widely successful and is nowadays
standard practice. It may be worth recalling that this idea has not always been taken for granted.
Hopcroft [1987] gives the following historical account.

During the 1960s, research on algorithms had been very unsatisfying. A researcher would
publish an algorithm in a journal along with execution times for a small set of sample
problems, and then several years later, a second researcher would give an improved algo-
rithm along with execution times for the same set of sample problems. The new algorithm
would invariably be faster, since in the intervening years, both computer performance
and programming languages had improved. [...]

98

CHAPTER 8. BIG-O NOTATION FOR TIME BOUNDS 99

I set out to demonstrate that a theory of algorithm design based on worst-case asymp-
totic performance could be a valuable aid to the practitioner. The idea met with much
resistance. People argued that faster computers would remove the need for asymptotic
efficiency. Just the opposite is true, however, since as computers become faster, the size of
the attempted problems becomes larger, thereby making asymptotic efficiency even more
important.

In early 1970, I took a year-long sabbatical at Stanford University, where I met and shared
an office with Robert Tarjan, a second-year graduate student. The research recognized
by the 1986 Turing Award took place during that period of collaboration.

In our formalization of the Union-Find data structure [Charguéraud and Pottier, 2019], spec-
ifications involved concrete cost functions. For instance, the precondition of the function find
indicates that calling find requires and consumes $(2a(n) + 4), where n is the current number
of elements in the data structure, and where « denotes an inverse of Ackermann’s function. We
would prefer the specification to give the asymptotic complexity bound O(«(n)), which means
that, for some function f € O(a(n)), calling find requires and consumes $f(n).

At a superficial level, the use of asymptotic bounds reduces clutter in specifications and proofs:
O(mmn) is more compact and readable than 3mn + 2nlogn + 5n + 3m + 2. We argue, however
that the use of asymptotic bounds, such as O(«(n)), is more than a syntactic convenience. We
claim that it is necessary for complexity analysis to be applicable at scale. Indeed, it is crucial for
stating modular specifications, which hide the details of a particular implementation. Exposing
the fact that find costs 2a(n) + 4 is undesirable: if a tiny modification of the Union-Find module
changes this cost to 2a(n) + 5, then all direct and indirect clients of the Union-Find module must
be updated, which is intolerable.

We would like to stress an important practical limitation of asymptotic bounds: a loop that
counts up from 0 to 2% has complexity O(1), even though it typically won’t terminate in a life-
time. Although this is admittedly a potential problem, traditional program verification falls prey
to analogous pitfalls: for instance, a program that attempts to allocate and initialize an array of
size (say) 2*8 can be proved correct, even though, on contemporary desktop hardware, it will typ-
ically fail by lack of memory. In spite of these limitations, we believe that there is value in formal
asymptotic analysis.

8.2 Challenges with Big-O

When informally reasoning about the complexity of a function, or of a code block, it is custom-
ary to make assertions of the form “this code has asymptotic complexity O(1)”, “that code has
asymptotic complexity O(n)”, and so on. Yet, these assertions are too informal: they do not have
sufficiently precise meaning, and can be easily abused to produce flawed paper proofs.

A striking example appears in Figure 8.1, which shows how one might “prove” that a recursive
function has complexity O(1), whereas its actual cost is O(n). The flawed proof exploits the
(valid) relation O(1) + O(1) = O(1), which means that a sequence of two constant-time code
fragments is itself a constant-time code fragment. The flaw lies in the fact that the O notation hides
an existential quantification, which is inadvertently swapped with the universal quantification
over the parameter n. Indeed, the claim is that “there exists a constant ¢ such that, for every
n, waste(n) runs in at most ¢ computation steps”. However, the proposed proof by induction
establishes a much weaker result, to wit: “for every n, there exists a constant ¢ such thatwaste(n)
runs in at most ¢ steps”. This result is certainly true, yet does not entail the claim.

CHAPTER 8. BIG-O NOTATION FOR TIME BOUNDS 100

Incorrect claim: The OCaml function waste has asymptotic complexity O(1).

let rec waste n =
if n > 0 then waste (n-1)

Flawed proof:
Let us prove by induction on n that waste(n) costs O(1).

« Case n < 0: waste(n) terminates immediately. Therefore, its cost is O(1).

« Casen > 0: A call to waste(n) involves constant-time processing, followed with a
call to waste(n — 1). By the induction hypothesis, the cost of the recursive call is
O(1). We conclude that the cost of waste(n) is O(1) + O(1), that is, O(1).

Figure 8.1: A flawed proof that waste(n) costs O(1), when its actual cost is O(n).

Incorrect claim: The OCaml function f has asymptotic complexity O(1).

let g (n, m) =
for i = 1 to n do
for j = 1 to m do () done
done
let £ n=¢g (n, 0)

Flawed proof:

« g(n,m) involves nm inner loop iterations, thus costs O(nm).

« The cost of £(n) is the cost of g(n,0), plus O(1). As the cost of g(n, m) is O(nm),
we find, by substituting 0 for m, that the cost of g(n,0) is O(0). Thus, £(n) is O(1).

Figure 8.2: A flawed proof that £(n) costs O(1), when its actual cost is O(n).

An example of a different nature appears in Figure 8.2. There, the auxiliary function g takes
two integer arguments n and m and involves two nested loops, over the intervals [1,n] and [1, m].
Its asymptotic complexity is O(n+nm), which, under the hypothesis that m is large enough, can be
simplified to O(nm). The reasoning, thus far, is correct. The flaw lies in our attempt to substitute
0 for m in the bound O(nm). Because this bound is valid only for sufficiently large m, it does
not make sense to substitute a specific value for m. In other words, from the fact that “g(n, m)
costs O(nm) when n and m are sufficiently large”, one cannot deduce anything about the cost of
g(n,0). To repair this proof, one must take a step back and prove that g(n,m) has asymptotic
complexity O(n + nm) for sufficiently large n and for every m. This fact can be instantiated with
m = 0, allowing one to correctly conclude that g(n,0) costs O(n).

Howell [2008] presents a slightly more technical counterexample to illustrate how one can
abuse the argument that “the asymptotic cost of a loop is the sum of the asymptotic costs of its
iterations”. In may be found in the ESOP’18 paper [Guéneau et al., 2018, §2].

All these examples show that the informal reasoning style of paper proofs, where the O no-
tation is used in a loose manner, is unsound. One cannot hope, in a formal setting, to faithfully
mimic this reasoning style. In our work, we do assign O specifications to functions, because we

CHAPTER 8. BIG-O NOTATION FOR TIME BOUNDS 101

believe that this style is elegant, modular and scalable. However, during the analysis of a function
body, we generally have to abandon the O notation. Instead, we first synthesize a cost expres-
sion for the function body, then check that this expression is indeed dominated by the asymptotic
bound that appears in the specification.

8.3 Prior Work on Formal Definitions for Big-O

The O notation and its siblings are documented in numerous textbooks, e.g. [Graham et al., 1994;
Brassard and Bratley, 1996; Cormen et al., 2009]. Such textbooks provide a rigorous definition for
the notation O in the case where a single variable is involved. Then, further on, they exploit the
notation with multiple variables, as in, e.g., O(nm). Yet, these textbooks omit to give a definition
for how to interpret the multivariate case. In fact, they fail to even mention the fact that there
might be complications with the design of a multivariate definition.

We have found only one textbook that draws attention to the subtleties of the multivariate
case: that of Howell [2012]. He points out that one cannot take for granted that the properties
of the O notation, which in the univariate case are well-known, remain valid in the multivariate
case. Howell [2008] published a technical report, whose abstract reads as follows.

We show that it is impossible to define big-O notation for functions on more than one
variable in a way that implies the properties commonly used in algorithm analysis. We
also demonstrate that common definitions do not imply these properties even if the func-
tions within the big-O notation are restricted to being strictly nondecreasing. We then
propose an alternative definition that does imply these properties whenever the function
within the big-O notation is strictly nondecreasing.

Concretely, Howell states several properties which, at first sight, seem natural and desirable,
then proceeds to show that they are inconsistent—no definition of the O notation can satisfy them
all. He then proposes a candidate notion of domination between functions whose domain is N*.
His notation, f € O(g), is defined as the conjunction of f € O(g) and f € O(g), where the
function f is a “running maximum” of the function f, and is by construction monotonic. He
shows that this notion satisfies all the desired properties, provided some of them are restricted by
additional side conditions, such as monotonicity requirements.

In our work, we go slightly further than Howell, in that we consider functions whose domain
is an arbitrary filtered type A, rather than necessarily N¥. We give a standard definition of O and
verify all of Howell’s properties, again restricted with certain side conditions. We find that we do
not need O, which is fortunate, as it seems difficult to define f in the general case where f is a
function of domain A. The monotonicity requirements that we impose are not exactly the same
as Howell’s, but we believe that the details of these administrative conditions do not matter much,
as all the functions that we manipulate in practice are everywhere nonnegative and monotonic.

Avigad and Donnelly [2004] formalize the O notation in Isabelle/HOL. They consider functions
of type A — B, where A is arbitrary and B is an ordered ring. Their definition of “f = O(g)”
requires | f(z)| < c|g(x)| for every x, as opposed to “when x is large enough”. Thus, they get
away without equipping the type A with a filter. The price to pay is an overly restrictive notion
of domination, except in the case where A is N, where both Vz and Uz yield the same notion of
domination—this is Brassard and Bratley’s “threshold rule” [1996]. Avigad and Donnelly suggest
defining “f = O(g) eventually” as an abbreviation for 3f/, (f' = O(g) A Uz.f(z) = f'(z)). In
our eyes, this is less elegant than parameterizing O with a filter in the first place.

Eberl [2017] formalizes the Akra-Bazzi method [Akra and Bazzi, 1998; Leighton, 1996], a gen-
eralization of the well-known Master Theorem [Cormen et al., 2009], in Isabelle/HOL. He creates

CHAPTER 8. BIG-O NOTATION FOR TIME BOUNDS 102

a library of Landau symbols specifically for this purpose. Although his paper does not mention
filters, his library in fact relies on filters, whose definition appears in Isabelle’s Complex library.
Eberl’s definition of the O symbol is identical to ours. That said, because he is concerned with
functions of type N — R or R — R, he does not define product filters, and does not prove any lem-
mas about domination in the multivariate case. Eberl sets up a decision procedure for domination
goals, like z € O(x3), as well as a procedure that can simplify, say, O(z® + x2) to O(z3).

Boldo et al. [2013] use Coq to verify the correctness of a C program which implements a
numerical scheme for the resolution of the one-dimensional acoustic wave equation. They define
an ad hoc notion of “uniform O” for functions of type R? — R, which we believe can in fact be
viewed as an instance of our generic definition of domination, at an appropriate product filter.
Subsequent work on the Coquelicot library for real analysis [Boldo et al., 2015] includes general
definitions of filters, limits, little-o and asymptotic equivalence. A few definitions and lemmas in
Coquelicot are identical to ours, but the focus in Coquelicot is on various filters on R, whereas we
are more interested in filters on Z*.

8.4 Formalization of Big-O

In many textbooks, the fact that f is bounded above by g asymptotically, up to constant factor,
is written “f = O(g)” or “f € O(g)”. However, the former notation is quite inappropriate, as it
is clear that “f = O(g)” cannot be literally understood as an equality. Indeed, if it truly were an
equality, then, by symmetry and transitivity, fi = O(g) and fo = O(g) would imply f; = fo.
The latter notation makes much better sense: O(g) is then understood as a set of functions. This
approach has in fact been used in formalizations of the O notation [Avigad and Donnelly, 2004].
Yet, we prefer to think directly in terms of a domination preorder between functions. Thus, instead
of “f € O(g)”, we write f < g.

Although the O notation is often defined in the literature only in the special case of functions
whose domain is N, Z or R, we must define domination in the general case of functions whose
domain is an arbitrary type A. By later instantiating A with a product type, such as Z*, we get a
definition of domination that covers the multivariate case. Thus, let us fix a type A, and let f and
g inhabit the function type A — Z.!

Fixing the type A, it turns out, is not quite enough. In addition, the type A must be equipped
with a filter [Bourbaki, 1995]. To see why that is the case, let us work towards the definition
of domination. As is standard, we wish to build a notion of “growing large enough” into the
definition of domination. That is, instead of requiring a relation of the form |f(x)| < ¢ |g(x)| to
be “everywhere true”, we require it to be “ultimately true”, that is, “true when x is large enough”.?
Thus, f < g should mean, roughly: “up to a constant factor, ultimately, | f| is bounded above by
|g|” That is, somewhat more formally: “for some ¢, for every sufficiently large z, | f ()| < ¢|g(z)|”

In mathematical notation, we would like to write: Jc. Uz. |f(x)| < c¢|g(z)|. For such a
formula to make sense, we must define the meaning of the formula Ux. P, where x inhabits the
type A. This is the reason why the type A must be equipped with a filter U, which intuitively
should be thought of as a quantifier, whose meaning is “ultimately”. Let us briefly defer the defi-
nition of a filter and sum up what has been explained so far:

! At this time, we require the codomain of f and g to be Z. Following Avigad and Donnelly [2004], we could allow
it to be an arbitrary nondegenerate ordered ring. We have not yet needed this generalization.

*When A is N, provided g(z) is never zero, requiring the inequality to be “everywhere true” is in fact the same as
requiring it to be “ultimately true”. Outside this special case, however, requiring the inequality to hold everywhere is
usually too strong.

CHAPTER 8. BIG-O NOTATION FOR TIME BOUNDS 103

Definition 8.4.1 (Domination) Let A be a filtered type, that is, a type A equipped with a filter
U4. The relation <4 on A — Z is defined as follows:

f<ag = 3cUgz |f(z)] <clgz)

Whereas Vx. P means that P holds of every x, and 3x.P means that P holds of some x, the
formula Uz.P should be taken to mean that P holds of every sufficiently large x, that is, P ul-
timately holds. The formula Ux.P is short for U (Az.P). If x ranges over some type A, then
U must have type P(P(A)), where P(A) is short for A — Prop. To stress this better, although
Bourbaki [1995] states that a filter is “a set of subsets of A”, it is crucial to note that P(P(A)) is
the type of a quantifier in higher-order logic.

Definition 8.4.2 (Filter) A filter [Bourbaki, 1995] on a type A is an object U of type P(P(A)) that
enjoys the following four properties, where Ux. P is short for U (Az.P):

(1) (Py = P) = Uxz.P, = Ux.P, (covariance)

(2a) Uzx.P; A Uz.Py = Uzx.(Py A P») (stability under binary intersection)
(2b) Uz.True (stability under 0-ary intersection)
(3) Uz.P = Jz.P (nonemptiness)

Properties (1)—-(3) are intended to ensure that the intuitive reading of Uz.P as: “for suffi-
ciently large =, P holds” makes sense. Property (1) states that if P} implies P» and if P; holds
when z is large enough, then P, too, should hold when x is large enough. Properties (2a) and
(2b), together, state that if each of P, ..., Px independently holds when « is large enough, then
Py, ..., Py should simultaneously hold when z is large enough. Properties (1) and (2b) together
imply Vz.P = Ux.P. Property (3) states that if P holds when z is large enough, then P should
hold of some z. In classical logic, it would be equivalent to —(Ux.False).

In the following, we let the metavariable A stand for a filtered type, that is, a pair of a carrier
type and a filter on this type. By abuse of notation, we also write A for the carrier type. (In Coq,
this is permitted by an implicit projection.) We write U4 for the filter.

When U is the order filter associated with the ordering <, the formula Uz.Q)(x) means that,
when 2 becomes sufficiently large with respect to <, the property Q(x) becomes true.

Definition 8.4.3 (Order filter) Let (T, <) be a nonempty ordered type, such that every two ele-
ments have an upper bound. Then A\Q).3xo.Vx > xo. Q(x) is a filter on T.

The order filter associated with the ordered type (Z, <) is the most natural filter on the type Z.
Equipping the type Z with this filter yields a filtered type, which, by abuse of notation, we also
write Z. Thus, the formula Uz z.Q(z) means that Q(x) becomes true “as z tends towards infinity”.

By instantiating Definition 8.4.1 with the filtered type Z, we recover the classic definition of
domination between functions of Z to Z:

f <z g < 3Fc.Ing. Yn =ng. |f(n)|] < clg(n)|

We now turn to the definition of a filter on a product type A; x Ay, where A; and Ay are
filtered types. Such a filter plays a key role in defining domination between functions of several
variables. The following product filter is the most natural construction, although there are others:

Definition 8.4.4 (Product filter) Let Ay and A be filtered types. Then
[UA1 xy. Ql

AQ3Q1,Q2. ¢ A Ua,z2. Qo
AN Vl’l,l'g. Ql(ml) AN Qg(ajg) = Q(l‘l,wg)

is a filter on the product type A1 x As.

CHAPTER 8. BIG-O NOTATION FOR TIME BOUNDS 104

To understand this definition, it is useful to consider the special case where A; and A, are
both Z. Then, for i € {1,2}, the formula Uy, z;. (); means that the predicate ; contains an
infinite interval of the form [a;, 00). Thus, the formula Vx1,z9. Q1(z1) A Q2(z2) = Q(x1,z2)
requires the predicate () to contain the infinite rectangle [a1,20) X [a2, ©0). Thus, a predicate () on
72 is “ultimately true” w.r.t. to the product filter if and only if it is “true on some infinite rectangle”.
In Bourbaki’s terminology [Bourbaki, 1995, Chapter 1, §6.7], the infinite rectangles form a basis
of the product filter.

We view the product filter as the default filter on the product type A; x As. Whenever we
refer to A1 x A in a setting where a filtered type is expected, the product filter is intended.

We stress that there are several filters on Z, including the universal filter and the order filter,
and therefore several filters on Z*. Therefore, it does not make sense to use the O notation without
specifying which filter one considers. Consider again the function g(n, m) in Figure 8.2. One can
prove that g(n,m) has complexity O(nm + n) with respect to the standard filter on Z2. With
respect to this filter, this complexity bound is equivalent to O(mn), as the functions A(m, n).mn+
n and A(m,n).mn dominate each other. Unfortunately, this does not allow deducing anything
about the complexity of g(n,0), since the bound O(mn) holds only when n and m grow large.
An alternate approach is to prove that g(n,m) has complexity O(nm + n) with respect to a
stronger filter, namely the product of the standard filter on Z and the universal filter on Z. With
respect to that filter, the functions A(m,n).mn + n and A(m,n).mn are not equivalent. This
bound does allow instantiating m with 0 and deducing that g(n, 0) has complexity O(n).

Several useful properties of the domination relation with respect to a given filter, such as the
summation lemma, may be found in [Guéneau, 2019, §3.4].

8.5 Using Big-O Notation in Specifications

As a running example, consider a function that computes the length of a list:

let rec length 1 =

match 1 with

| [1 ->0

| _ :: 1 ->1 + length 1

About this function, one can prove the following statement:
V(A : Type)(l:listA). {$(|I|+1)} (Lengthl) {\y.[y = [I|]}

The postcondition \y. [y = |I|] asserts that the call 1ength [returns the length of the list /. The
precondition $(|I| 4+ 1) asserts that this call requires |I| 4+ 1 credits.

The above specification guarantees that length thus runs in linear time. It does not allow
predicting how much real time is consumed by a call to 1ength. Thus, this specification is already
rather abstract. Yet, it is still too precise. Indeed, we believe that it would not be wise for a list
library to publish a specification of 1ength whose precondition requires exactly || + 1 credits.
Indeed, there are implementations of 1ength that do not meet this specification. For example,
the tail-recursive implementation found in the OCaml standard library, which in practice is more
efficient than the naive implementation shown above, involves exactly |I| 4 2 function calls, there-
fore requires |/| + 2 credits. By advertising a specification where || + 1 credits suffice, one makes
too strong a guarantee, and rules out the more efficient implementation.

After initially publishing a specification that requires $(|I| 4+ 1), one could of course still switch
to the more efficient implementation and update the published specification so as to require

CHAPTER 8. BIG-O NOTATION FOR TIME BOUNDS 105

$(]I| + 2) instead of $(|I| + 1). However, that would in turn require updating the specification
and proof of every (direct and indirect) client of the list library, which is intolerable.

To leave some slack, one should publish a more abstract specification. For example, one could
advertise that the cost of 1ength [is an affine function of the length of the list [, that is, the cost
isa - || 4+ b, for some constants a and b:

(a,b:Z). V(A : Type)(l : list A). {$(a-|l| +b)} (Lengthl) {\y.[y = |I|]}

This is a better specification, in the sense that it is more modular. The naive implementation of
length shown earlier and the efficient implementation in OCaml’s standard library both satisfy
this specification, so one is free to choose one or the other, without any impact on the clients of the
list library. In fact, any reasonable implementation of 1ength should have linear time complexity
and therefore should satisfy this specification.

That said, the style in which the above specification is written is arguably slightly too low-
level. Instead of directly expressing the idea that the cost of 1ength [is O(|l|), we have written
this cost under the form a - |I| + b. It is preferable to state at a more abstract level that cost is dom-
inated by An.n: such a style is more readable and scales to situations where multiple parameters
and nonstandard filters are involved. Thus, we propose the following statement:

cost <z An.n

Hcost = 4 = Z. { V(A : Type)(l: list A). {Scost(]l])} (Lengthl) {A\y.[y =]}

Thereafter, we refer to the function cost as the concrete cost of length, as opposed to the asymp-
totic bound, represented here by the function An.n. This specification asserts that there exists
a concrete cost function cost, which is dominated by An.n, such that cost(]l|) credits suffice to
justify the execution of length [. Thus, cost(|l|) is an upper bound on the actual number of pay
instructions that are executed at runtime.

The above specification informally means that length [has time complexity O(n) where the
parameter n represents |I], that is, the length of the list [. The fact that n represents |I| is expressed
by applying cost to |l| in the precondition. The fact that this analysis is valid when n grows large
enough is expressed by using the standard filter on Z in the assertion cost <z An.n.

In general, it is up to the user to choose what the parameters of the cost analysis should
be, what these parameters represent, and which filter on these parameters should be used. The
example of the Bellman-Ford algorithm (Section 8.6) illustrates this.

The specifications presented in the previous section share a common structure. We define a
record type that captures this common structure, so as to make specifications more concise and
more recognizable, and so as to help users adhere to this specification pattern.

This type, specoO, is defined in Figure 8.3. The first three fields in this record type correspond
to what has been explained so far. The first field asserts the existence of a function cost of A to Z,

Record specO(A: filterType)(le: A —A —Prop)
(bound:A —Z)(P:(A—Z)—Prop)
i={cost:A—7Z
cost_spec:P cost;
cost _dominated:dominated A cost bound;
cost_nonneg:Vx,0 < cost x;
cost_monotonic:monotonic le Z.1le cost;}.

Figure 8.3: Definition of specO.

CHAPTER 8. BIG-O NOTATION FOR TIME BOUNDS 106

where A is a user-specified filtered type. The second field asserts that a certain property P cost
is satisfied,; it is typically a Separation Logic triple whose precondition refers to cost. The third
field asserts that cost is dominated by the user-specified function bound. The last two fields,
which restrict cost functions to be nonnegative and monotonic, are included for technical reasons
that are explained in [Guéneau, 2019, §4.4 and §4.5].

Using this definition, our proposed specification of 1ength is stated in concrete Coq syntax
as follows:

Theorem length_spec:
specOZ_filterType Z.1le (funn =n) (fun cost =
VA (1:1ist A), TRIPLE (length 1)
PRE ($ (cost |1)))
POST (funy =\[y=1|1]])

The key elements of this specification are Z_filterType, which is Z, equipped with its stan-
dard filter; the asymptotic bound fun n = n, which means that the time complexity of length
is O(n); and the Separation Logic triple, which describes the behavior of 1ength, and refers to
the concrete cost function cost.

One key technical point is that specO is a strong existential, whose witness can be referred to
via to the first projection, cost. For instance, the concrete cost function associated with length
can be referred to as cost length_spec. Thus, at a call site of the form length xs, the
number of required credits is cost length_spec [xs|.

To prove a specification lemma, such as 1ength_spec, one must construct a specO record.
By definition of specO (Figure 8.3), this means that one must exhibit a concrete cost function
cost and prove a number of properties of this function, including the fact that, when supplied
with $(cost ...), the code runs correctly (cost_spec) and the fact that cost is dominated by the
desired asymptotic bound (cost_dominated).

Thus, the very first step in a naive proof attempt would be to guess an appropriate cost function
for the code at hand. However, such an approach would be painful, error-prone, and brittle. It
seems much preferable, if possible, to enlist the machine’s help in synthesizing a cost function
at the same time as we step through the code—which we have to do anyway, as we must build a
Separation Logic proof of the correctness of this code. Armaaél Guéneau developed a framework
for user-guided synthesis of cost functions [Guéneau, 2019, §5].

8.6 Small Case Studies

Binary Search. We prove that binary search has time complexity O(logn), where n = j —i
denotes the width of the search interval [, j). The code is as in Figure 7.1, except that the flaw is
fixed by replacing i+1 with k+1 on the last line. We synthesize the following recurrence equation
on the cost function f:

FO)+3<f1) A ¥n=0.1<f(n) A ¥n=2 f(n/2)+3<f(n)

To derive the asymptotic cost, we apply the substitution method and search for a solution of
the form An. if n < 0 then 1 else alogn + b, which is dominated by An. log n. Substituting this
shape into the above constraints, we find that they boil downto (4 < b)A(0 < anl < b)A(3 < a).
Finally, we guess a solution, namely a := 3 and b := 4.

Dependent Nested Loops. Many algorithms involve dependent nested for loops, that
is, nested loops, where the bounds of the inner loop depend on the outer loop index, as in the
following simplified example:

CHAPTER 8. BIG-O NOTATION FOR TIME BOUNDS 107

for i = 1 to n do
for j = 1 to i do () done
done

For this code, the cost function An. > (1 + 22:1 1) is synthesized. There remains to
prove that it is dominated by An.n?. We could recognize and prove that this function is equal to
/\n.w, which clearly is dominated by An.n?. This works because this example is trivial, but,
in general, computing explicit closed forms for summations is challenging, if at all feasible.

A higher-level approach is to exploit the fact that, if f is monotonic, then > " | f(¢) isless than
n- f(n). Applying this lemma twice, we find that the above cost function is less than An. > | (1+
i) which is less than An.n(1 + n) which is dominated by An.n?. This simple-minded approach,
which does not require a summation lemma, is often applicable.

A Loop Whose Body Has Exponential Cost. This example illustrates a situation where to
exploit the summation lemma—see [Guéneau, 2019, Lemma 5.3.8]. In this example, the loop body
is just a function call:

for i = 0 to n-1 do b(i) done

Thus, the cost of the loop body is not known exactly. Instead, let us assume that a specification
for the auxiliary function b has been proved and that its cost is O(2?), that is, cost b <z \i. 2°
holds. We then wish to prove that the cost of the whole loop is also O(2").

For this loop, the cost function An. Y (1 + cost b (¢)) is automatically synthesized. We
have an asymptotic bound for the cost of the loop body, namely: \i. 1 + cost b (i) <z \i. 2%
The side conditions of the summation lemma are met: in particular, the function A\i. 1+cost b (i)
is monotonic. The lemma yields An. . (1 + cost b (i)) <z An. Y, ;2" Finally, we have
An. 3820 = An. 27T — 1 <z An. 2"

The Bellman-Ford Algorithm. We verify the asymptotic complexity of an implementation
of Bellman-Ford algorithm, which computes shortest paths in a weighted graph with n vertices
and m edges. The algorithm involves an outer loop that is repeated n — 1 times and an inner
loop that iterates over all m edges. The specification asserts that the asymptotic complexity is
O(nm):

cost <z2 A(m,n).nm

72
Jeost : 7% — 7. { {$cost(#edges(g), #vertices(g))} (bellmanford g) {...}

By exploiting the fact that a graph without duplicate edges must satisfy m < n?

the complexity of the algorithm, viewed as a function of n, is O(n?).

, we prove that

cost <z An.n>

dcost : 2 — L. { {$cost(#vertices(g))} (bellmanford g) {...}

To prove that the former specification implies the latter, one instantiates m with n?, that is, one
exploits a composition lemma [Guéneau, 2019, Lemma 5.3.16]. In practice, we publish both speci-
fications and let clients use whichever one is more convenient.

Union-Find. In our original formalization of Union-Find [Charguéraud and Pottier, 2019],
we proved that the (amortized) concrete cost of find is 2a(n) + 4, where n is the number of
elements. With a few lines of proof, we can now derive a specification where the cost of find is
expressed under the form O(«(n)):

specOZ_filterType Z.le (funn = alphan)(fun cost =
VDRVX,xeD—triple (UnionFind_ml.find x)

CHAPTER 8. BIG-O NOTATION FOR TIME BOUNDS 108

PRE (UFDRV x$(cost (card D)))
POST (funy =UFDRV*\[Rx =Yy])).

Union-Find is a mutable data structure, whose state is described by the abstract predicate
UF DRV. In particular, the parameter D represents the domain of the data structure, that is, the
set of all elements created so far. Thus, its cardinal, card D, corresponds to n. This case study
illustrates a situation where the cost of an operation depends on the current state of a mutable
data structure.

8.7 Formal Analysis of Incremental Cycle Detection

This section discusses our mechanized proof [Guéneau et al., 2019b] of an incremental cycle de-
tection algorithm for directed graphs [Bender et al,, 2016]. The aim of such an algorithm is to
receive queries for adding vertices and edges (arcs) to a graph, and to detect the first edge whose
insertion creates a cycle.

In terms of applications, Haeupler et al. [2008] write: “This problem arises in incremental circuit
evaluation, pointer analysis, management of compilation dependencies, and deadlock detection.” Let
us also mention two specific applications in the field of programming languages. First, Jacques-
Henri Jourdan [2016] has deployed an (as-yet-unverified) incremental cycle detection algorithm
in the kernel of the Coq proof assistant [The Coq development team, 2020], where it is used to
check the satisfiability of universe constraints [Sozeau and Tabareau, 2014, §2]. Second, the Dune
build system [Jane Street, 2018] needs an incremental cycle detection algorithm in order to reject
circular build dependencies as soon as possible.

Bender, Fineman, Gilbert, and Tarjan [Bender et al., 2016] proposed an algorithm that provides
an asymptotic improvement over the best previously-known bounds. The complexity of this algo-
rithm for building a directed graph of n vertices and m edges, while incrementally ensuring that
no edge insertion creates a cycle, is O(m - min(m'/2,n*3) + n). Although the implementation
of this algorithm is relatively straightforward, its design is subtle, and it is far from obvious, by
inspection of the code, that the advertised complexity bound is respected.

We actually consider a slightly enhanced variant of Bender et al.’s algorithm. To handle the
insertion of a new edge, the original algorithm depends on a runtime parameter, which limits the
extent of a certain backward search. This parameter influences only the algorithm’s complexity,
not its correctness. Bender et al. show that setting it to min(m!/2, n%3) throughout the execution
of the algorithm allows achieving the advertised complexity. This means that, in order to run
the algorithm, one must anticipate the final values of m and n. This seems at least awkward, or
even impossible, if one wishes to use the algorithm in an online setting, where the sequence of
operations is not known in advance. Instead, we proposed a modified algorithm, where the extent
of the backward search is limited by a value that depends only on the current state. Our modified
algorithm has the same complexity as the original algorithm and is a genuine online algorithm.

Pseudocode. The pseudocode appears in Figure 8.4. Observe that the algorithm is from first
principles: it relies solely on carefully controlled depth-first searches, and labelling of vertices.

When the user requests the creation of an edge from v to w, finding out whether this operation
would create a cycle amounts to determining whether a path already exists from w to v. A naive
algorithm could search for such a path by performing a forward search, starting from w and
attempting to reach v. To achieve improved bounds, Bender et al.’s algorithm (and our variant)
exploit 3 key ingredients.

The first ingredient is to associate, to every vertex v, a positive integer level L(v). The fol-
lowing invariant is maintained: L forms a pseudo-topological numbering. That is, “no edge goes

CHAPTER 8. BIG-O NOTATION FOR TIME BOUNDS 109

To insert a new edge from v to w and detect potential cycles:
— If L(v) < L(w), insert the edge (v, w), declare success, and exit
— Perform a backward search:
— start from v
— follow an edge (backward) only if its source vertex x satisfies L(z) = L(v)
— if w is reached, declare failure and exit
— if L(v) edges have been traversed, interrupt the backward search
— If the backward search was not interrupted, then:
— if L(w) = L(v), insert the edge (v, w), declare success, and exit
— otherwise set L(w) to L(v)
— If the backward search was interrupted, then set L(w) to L(v) + 1
— Perform a forward search:
— start from w
— upon reaching a vertex x:
— if x was visited during the backward search, declare failure and exit
— if L(z) = L(w), do not traverse through
—if L(z) < L(w), set L(x) to L(w) and traverse z
— Finally, insert the edge (v, w), declare success, and exit

Figure 8.4: Pseudocode for our online variant of Bender et al.’s cycle detection algorithm.

down”: if there is an edge from v to w, then L(v) < L(w) holds. The presence of levels can be
exploited to accelerate a search: for instance, during a forward search whose purpose is to reach
the vertex v, any vertex whose level is greater than that of v can be disregarded. The price to pay
is that the invariant must be maintained: when a new edge is inserted, the levels of some vertices
must be adjusted.

A second key ingredient of the algorithm is that it not only performs a forward search, but
begins with a backward search that is both restricted and bounded. 1t is restricted in the sense
that it searches only one level of the graph: starting from v, it follows only horizontal edges, that
is, edges whose endpoints are both at the same level. Therefore, all the vertices that it discovers
are at level L(v). It is bounded in the sense that it is interrupted, even if incomplete, after it has
processed L(v) edges.’

A third key ingredient of the algorithm is the manner in which levels are updated so as to
maintain the invariant when a new edge is inserted. Bender et al. adopt the policy that the level
of a vertex can never decrease. Thus, when an edge from v to w is inserted, all the vertices that
are accessible from w must be promoted to a level that is at least the level of v. In principle,
there are many ways of doing so. Bender et al. proceed as follows: if the backward search was
not interrupted, then w and its descendants are promoted to the level of v; otherwise, they are
promoted to the next level, L(v) + 1. In the latter case, L(v) + 1 is possibly a new level. We see
that such a new level can be created only if the backward search has not completed, that is, only if
there exist at least /" edges at level L(v). In short, a new level may be created only if the previous
level contains sufficiently many edges. This mechanism is used to control the number of levels.
Bounding this number is key to establishing the bound O(m - min(m!/2,n%3) + n). I wrote a
high-level explanation of why this bound holds in [Guéneau et al., 2019b, §6 and Appendix A].

> Whereas we interrupt the backward search after processing L(v) edges, Bender et al.’s original algorithm inter-
rupts it after processing min(m*2, n*?) edges, where m and n are upper bounds on the final numbers of edges and
vertices in the graph, and not the current values. Requiring m and n to be known ahead of time mean that Bender et
al.’s algorithm is not truly online.

CHAPTER 8. BIG-O NOTATION FOR TIME BOUNDS 110

COMPLEXITY
nonnegative ¢ A monotonic ¢ A
Y <zxz A(m, n) (m . min(ml/Q, n2/3) + n)

INITGRAPH
Jk. {$k} init_graph() {\g.IsGraph g @}

ADDEDGE
ADDVERTEX Vg Gow.
Vg Gu. let m,n :=|edges G|, |vertices G| in
let m,n :=|edges G/, |vertices G| in v, w € vertices G A (v,w) ¢ edges G =
v ¢ vertices G = IsGraph g G *
IsGraph g G * { $(¢p (m +1,n) — 1 (m,n)) }
{ $(v (m,n +1) — 4 (m,n)) } (add_edge_or_detect_cycle g v w)
(add_vertex g v) Ares. match res with
A().IsGraph g (G + v) | Ok = IsGraphg (G + (v, w))
{ } *[VIL‘. x —I_;Ct%(v,w) l‘]

| Cycle = [w —¢ v]

Figure 8.5: Specification of an incremental cycle detection algorithm.

Formal specification. We next present the key elements of the specifications, which formally
establishes that the incremental cycle detection algorithm indeed correctly detects cycles, and
moreover admits the complexity bound O(m - min(m'/2,n*3) + n). Figure 8.5 shows the formal
specification. It consists of three public operations: init_graph, which creates a fresh empty graph,
add_vertex, which adds a vertex, and add_edge_or_detect_cycle, which either adds an edge or re-
port that this edge cannot be added because it would create a cycle. Specifications are expressed
using the representation predicate IsGraph g GG, which asserts that, at address g in memory, one
finds a well-formed data structure that represents the mathematical graph G. Internally, this as-
sertion stores a certain number of time credits—the potential. The specification consists of four
statements.

CoMPLEXITY asserts the existence of a function v, whose exact definition is not exposed, but
that satisfies the expected asymptotic bound: 1 (m, n) € O(m-min(m'/? n?/3)+n). (The relation
<7x7 1is a domination relation between functions of type Z x Z — Z.) Intuitively, 1)(m, n) is meant
to represent the advertised cost of a sequence of n vertex creation and m edge creation operations.
In other words, it is the number of credits that one must pay in order to create n vertices and
m edges.

INITGRAPH states that the function call init_graph() creates a valid data structure, which rep-
resents the empty graph @, and returns its address g. Its cost is k, where k is an unspecified
constant; in other words, its complexity is O(1).

ADDVERTEX states that add_vertex requires a valid data structure, described by the assertion
IsGraph g G, and returns a valid data structure, described by IsGraph g (G + v). Here, G + v
denotes the result of extending the mathematical graph G with a new vertex v and G + (v, w) for
the result of extending G with a new edge from v to w. In addition, add_vertex requires 1) (m, n +
1) — 1p(m,n) credits. These credits are not returned: they do not appear in the postcondition.
They either are actually consumed or become stored inside the data structure for later use. Thus,
one can think of ¢(m,n + 1) — ¢(m, n) as the amortized cost of add_vertex.

ADDEDGE states that the cost of add_edge_or_detect_cycle is ¢¥)(m + 1,n) — ¥ (m,n). This
postcondition distinguishes two cases. If the operation returns Ok, then the graph has been suc-

CHAPTER 8. BIG-O NOTATION FOR TIME BOUNDS 111

cessfully extended with a new edge from v to w. The assertion Vz. x —|—>g Fow) T asserts that
the extended graph does not contain any cycle. If, however, the operation returns Cycle, then the
edge from v to w is not added because the graph G already contains a path from w to v. In the
latter case, the data structure is invalidated: the assertion IsGraph g G is not returned. Thus,
in that case, no further operations on the graph are allowed. (An additional rollback mechanism
would be needed to allow resuming after a cycle detection.)

By combining the three triples in Figure 8.5, a client can verify that a call to init_graph, fol-
lowed with an arbitrary interleaving of n calls to add_vertex and m successful calls to the func-
tion add_edge_or_detect_cycle, satisfies the specification {$(k + ¢¥)(m,n))} ... {T}, where k is
the cost of init_graph. Indeed, the cumulated cost of the calls to the functions add_vertex and
add_edge_or_detect_cycle forms a telescopic sum that adds up to »(m, n) — (0, 0), which itself
is bounded by v (m, n).

Closing words on formal big-O bounds. This case study shows that our program logic allows
to simultaneously verify the correctness and complexity of a production-ready implementation of
a state-of-the-art algorithm—our verified implementation runs in production in the Dune build
system [Jane Street, 2018] since 2019.

Our public specification exposes an asymptotic complexity bound: no literal constants appear
in it. There, the use of the big-O notation in specifications is a significant improvement compared
with concrete bounds, which are verbose, reveal implementation detail, and lack modularity. We
remark, however, that it is sometimes difficult to use something that resembles the O notation for
reasoning about the costs involved in the implementation of a complex algorithm or data structure.
Indeed, it may be the case that an existential quantifier must be hoisted very high, so that its
scope encompasses not just a single statement, but possibly a group of definitions, statements,
and proofs.

Chapter 9

Space Bounds for Garbage-Collected
Heap Space

This chapter presents the key ideas associated with the set up of a Separation Logic with
space credits that allows establishing space bounds for programs equipped with a garbage
collector. Doing so involves, in particular, reasoning about roots and about unreachabil-
ity. To begin with, we need to formalize the notion of roots, in a way that matches the
definition used in practice by compilers (Section 9.1). We distinguish, for the purpose of
inductive reasoning about programs, the notion of visible roots from that of invisible roots
(Section 9.2). I will not present the reasoning rules of the logic, but only explain the intu-
ition behind the key logical deallocation rule (Section 9.3) and a novel Stackable assertion
(Section 9.4). I then explain how to set up a semantics that account for the physical garbage
collection steps (Section 9.5), and how to state the soundness theorem that expresses the
bound on the maximal space usage (Section 9.6). Finally, I present an example application
involving a modular construction of a stack of stacks (Section 9.7).

The contents of this section corresponds to the beginning of the PhD Alexandre Moine, co-
advised by Francois Pottier and myself. The text of this section is a mildly revised version of
the text that appeared in our POPL’23 paper [Moine et al., 2023]. Our program logic builds
on prior work by Jean-Marie Madiot and Francois Pottier, published at POPL’22 [Madiot
and Pottier, 2022]. In that prior work, they tackled the problem of space bounds for an
artificial language in which the notion of roots considered by the garbage collector is made
trivial. Our main contributions were to generalize the work to target a standard ML-style
language satisfying the free variable rule (used to determine the roots), to add reasoning
rules for function closures, and to cover more challenging examples. Each of these aspects
required significant technical additions. Alexandre Moine formalized all the program logic
and the accompanying examples in Coq using the Iris framework [Jung et al., 2018b], which
provides fractional permissions and advanced forms of ghost state that we rely upon.

9.1 Reachability, Roots, and The Free Variable Rule

An allocation consumes a number of space credits, depending on the size of the requested block.
These credits can be reclaimed upon deallocation. Yet, in the absence of a memory deallocation

112

CHAPTER 9. SPACE BOUNDS FOR GARBAGE-COLLECTED HEAP SPACE 113

instruction in the language, deallocation points are not explicit. A tracing garbage collector (GC)
can be invoked at arbitrary points in time, and may deallocate any subset of the unreachable blocks.
An unreachable block is a block that is not reachable from any root via a path in the heap. Thus,
deallocation takes the form of a logical operation: it is up to the person who verifies the program
to decide at which program points an unreachable memory block should be reclaimed. The GC
may physically deallocate a block before or after the point where the user chooses to logically
deallocate this block.

The heap-allocated data forms a graph, where allocated blocks correspond to the vertices, and
where pointers stored in the blocks correspond to edges. Certain blocks have their addresses regis-
tered as roots. To enable modular reasoning about unreachability, we exploit pointed-by assertions
[Kassios and Kritikos, 2013]. Such assertions record the predecessors of a memory block. They
may be divided into fractions, allowing for modular reasoning about predecessors. At some point
through the reasoning about a program, it becomes possible to assert that a memory block has
no heap predecessors. If, furthermore, the block is not a root, then this block can be logically
deallocated.

A central question is to formalize the notion of root. What is a root? How can this concept
be reflected in a small-step, substitution-based operational semantics? A commonly agreed-upon
answer is given by the free variable rule (FVR) [Felleisen and Hieb, 1992; Morrisett et al., 1995].
Technically, this rule states that a root is a memory location £ such that £ occurs in the term that is
undergoing reduction. In slightly more informal words, ¢ is a root if and only if it appears possible
that ¢ might be used in the future, based on the existence of a path from the current program
point to a program point where / is used. The FVR represents a conservative approximation of
the locations that will be accessed in the future: indeed, depending on which branches are taken,
it may turn out that £ is in fact never accessed.

Our starting point is an operational semantics where the FVR is built in. We propose a pro-
gram logic that is sound with respect to this semantics, and we use this logic to establish worst-
case space complexity bounds. To obtain a binary program that respects the complexity bounds
established using our logic, one needs a compiler (and runtime system) that respect the FVR. As
a prominent example, the CakeML compiler [Tan et al., 2019], provably respects the FVR.! More
precisely, Gémez-Londorfio et al. [2020] prove that CakeML respects the operational semantics
of its source language, and respects a cost model that is defined at the level of an intermediate
language named DataLang.

Our work is complementary with that of CakeML: whereas its authors prove that the CakeML
compiler respects this cost model, we propose a program logic that allows establishing space com-
plexity bounds, based on a similar cost model. Adapting in the future our program logic to Data-
Lang would allow obtaining an end-to-end guarantee, that is, establishing a space complexity
bound about a source CakeML program and deriving a bound about the compiled program.

9.2 Visible and Invisible Roots

One may wonder why the FVR is so named, since its statement does not contain the word “vari-
able”. The answer lies in the gap between the programmer’s point of view and the semantic point
of view. A programmer may like to think that the roots are variables. When the programmer
focuses on a certain program point, corresponding to a subterm ¢, a variable = that occurs free
in t can be regarded by the programmer as a root at this program point—whence the name of

1 As far as we know, many real-world implementations of garbage-collected languages, such as OCaml, SML, Scala,
Java, and many more, are meant to respect the FVR. Unfortunately, this intention is often undocumented.

CHAPTER 9. SPACE BOUNDS FOR GARBAGE-COLLECTED HEAP SPACE 114

1 let rec rev_append(xs,ys)=
2 if is_nil(xs) thenyselse
3 let x =head(xs) in

4 let xs’=tail(xs) in

5 let ys’=cons(x,ys) in

6 rev_append(xs’, ys’)

Figure 9.1: An implementation of linked list reversal

the “free variable rule”. In contrast, in the operational semantics, there are no variables: they are
substituted away and replaced with closed values. Thus, in the operational semantics and in our
reasoning rules, the roots are memory locations. When we write that “the address x is a root” at
a certain program point, we mean that, once this program point is reached, the memory location
with which the variable x has been replaced is a root.

Let us illustrate reasoning about roots via the example of the function rev_append (Fig-
ure 9.1). This function expects two linked lists and returns a linked list. A call to the function
rev_append(xs, ys) returns a list whose elements are the elements of xs in reverse order
followed with the elements of ys. This code is expressed in an untyped language using ML syntax.
For simplicity, we do not use pattern matching; instead, we use the auxiliary functions is_nil,
head, tail, and cons, whose definitions are omitted. A linked list is represented as a heap block
whose first field holds the integer tag 0 or 1. If the tag is 0, then there are no more fields; if the tag
is 1, then there are two more fields, holding the head and tail of the list. We now wish to explain
which locations are roots, at each program point in rev_append, according to the FVR. Before
doing so, however, we must point out that, when one reasons about rev_append in isolation,
its calling context is unknown. By inspecting the code of this function, one can tell that certain
memory locations are roots at certain points; we refer to these as the visible roots. However, in
addition, every caller along the unknown call chain may have retained certain memory locations.
One can think of them as locations that appear “in the stack”. From a semantic point of view, these
locations occur in the evaluation context, so, according to the FVR, they are also roots. We refer to
them as the invisible roots. The set of all roots is the union of the sets of visible roots and invisible
roots. These sets may overlap.

At the entry point of rev_append (at the beginning of line 2), the locations xs and ys are
visible roots, because the variables xs and ys occur free in the code that remains to be executed
(that is, the whole function body). Upon entering the el se branch, on line 3, xs and ys are still
roots. At the beginning of line 5, after reading the “head” and “tail” fields of the first list cell, two
more variables (namely, x and xs *) are visible roots, but xs is no longer one, as it does not occur
on lines 5-6. A somewhat subtle phenomenon takes place at this point: the location xs may or
may not be an invisible root. If it is not an invisible root, which means that no caller has retained
the address of the list xs, then this address is not a root at all, which means that the first list
cell can be reclaimed at this program point by the GC. Otherwise, this cell cannot be reclaimed.
On line 5, a fresh cell, named ys’, is allocated. At the beginning of line 6, ys is no longer a
visible root, but ys’ is one. The location ys remains reachable via ys’, thus the list ys cannot
be deallocated. Finally, on line 6, a tail-recursive call is made. The locations xs’ and ys’ cease to
be roots for this instance of rev_append, but immediately become roots for the new instance
of rev_append.

What is the (heap) space complexity of rev_append? Two distinct answers can be given.
On the one hand, without any assumption about the calling context, one can state that the space
complexity is linear in the length of the list xs. This is due to the allocation of a new cell at line 5.
On the other hand, under the assumption that the address xs is not retained by the calling context

CHAPTER 9. SPACE BOUNDS FOR GARBAGE-COLLECTED HEAP SPACE 115

(that is, xs is not an invisible root), rev_append runs in constant heap space.” Indeed, in that
case, the cost of allocating a new cell at line 5 can be compensated by deallocating the cell xs,
which is no longer a root, also at line 5. There is no guarantee that the GC will deallocate the
cell xs at this point, but it can do so, which is what matters.

9.3 Logical Deallocation and its Requirements

Suppose one wishes to verify the claim that rev_append runs in constant space, under the
assumption that xs is not an invisible root—that is, under the assumption that rev_append,
when called, holds the unique pointer onto its argument xs.

A key step in this proof takes place at the beginning of line 5. There, one must apply a logical
deallocation rule to the list cell xs, so as to recover a number of space credits, which can then be
used to pay for the allocation of a new cell on the same line. Our logical deallocation rule requires
proving that xs has no predecessors (in the heap) and is not a (visible or invisible) root. More
specifically, its requirements are as follows:

« Asin traditional Separation Logic [Reynolds, 2002], a full points-to assertion for the memory
block at address xs is required. This assertion is obtained by unfolding the representation
predicate for lists, used to express assumptions about the lists xs and ys.

« Asin Madiot in Pottier’s system [2022], a full pointed-by assertion for xs, carrying an empty
multiset of predecessors, is required. This assertion too is obtained by unfolding the repre-
sentation predicate for lists.

« A proof that xs is not a visible root is required. To establish this fact, one first computes
the visible roots at the beginning of line 5: they are the addresses x, xs’, and ys. Then,
one must prove that the address xs is not a member of this set. This check is not syntactic:
proving that the address xs is distinct from the addresses x, xs ’, and ys requires Separation
Logic reasoning. For instance, proving that xs and ys are distinct addresses follows from
the presence of separate list assertions about xs and ys.

« A proof that xs is not an invisible root is required. In other words, a proof that no direct
or indirect caller has retained the address xs is required. Here, the only way of proving
this property is to make it an assumption, that is, to let it appear in the precondition of the
function rev_append. We express this assumption using our novel Stackable assertions.

Another key step in the proof takes place at the recursive call rev_append(xs’, ys’) on
line 6. To prove that this call is permitted, one must prove that the precondition of rev_append,
instantiated with the actual parameters xs’ and ys’, is satisfied. Thus, according to the last
bullet point above, one must prove that xs’ is not an invisible root. In other words, one must
prove that the cell that follows the cell xs in the linked list is not an invisible root. Where might
this evidence come from? The most natural answer, we argue, is to bake it in the definition of the
list representation predicate: the definition of a valid linked list must state that a cell that is the
destination of a link is never an invisible root.

In summary, we have outlined the requirements of our logical deallocation rule and explained
the need for a new Separation Logic assertion, which guarantees that a memory location ¢ is not
an invisible root. This assertion, written Stackable ¢ 1, is described next.

’Because rev_append is tail-recursive, it runs in constant stack space as well, but that is another story. In this
paper, we are not concerned with stack space usage.

CHAPTER 9. SPACE BOUNDS FOR GARBAGE-COLLECTED HEAP SPACE 116

9.4 Reasoning about Invisible Roots

To understand how one might keep track in Separation Logic of which memory locations are or
are not invisible roots, one must first have a clear picture of what this means and at what points
in a proof a location becomes or ceases to be an invisible root.

A proof in Separation Logic is carried out under an unknown context. That is, one reasons
about a term ¢ without knowing in what evaluation context K this term is placed. There are
specific points in the proof where this unknown context grows and shrinks. As an archetypical
example, consider the sequencing construct letz = ¢; inty. To reason about this construct, one
first focuses on the term ¢;, thereby temporarily forgetting the frame letz = []int2, which is
pushed onto the unknown context. After the verification of ¢; is completed, this focusing step is
reversed: the frame let x = []in ¢ is popped and one continues with the verification of ¢2. These
focusing and defocusing steps are described by the “bind” rule of Separation Logic [Jung et al.,
2018a, §6.2].

An invisible root is a memory location that occurs in the unknown context K. When this
context grows and shrinks, the set of invisible roots grows and shrinks as well. More specifically,
when the user of the program logic focuses on ¢, a location ¢ that occurs in the frame letz =
[]int2 (that is, a location that occurs in ¢2) becomes an invisible root: it is “pushed onto the stack”,
so to speak. (This location may have been an invisible root already, prior to this focusing step.)
This is undone when this focusing step is reversed: this location is “popped off the stack”.

To keep track in Separation Logic, on a per-location basis, of whether a location may be or
definitely is not an invisible root, we propose the following discipline.

« We introduce an assertion Stackable £ p, where p is a rational number such that 0 < p < 1.
The presence of a fraction allows Stackable assertions to be split and joined.

« The assertion Stackable ¢ 1 appears when a fresh memory block is allocated at address /,
and is eventually consumed when this block is logically deallocated.

« When / is “pushed onto the stack” in an application of the “bind” rule, an assertion of the
form Stackable ¢ p is consumed, where the choice of p is up to the user; when / is later
“popped off the stack”, as part of the same application of the “bind” rule, this assertion
reappears.

One can see that “pushing a location ¢ onto the stack” requires an assertion Stackable ¢ p.
Thus, this fractional assertion can be intuitively regarded as a permission to push ¢ onto the stack,
whence the name Stackable. Because this assertion is splittable, it allows pushing ¢ onto the stack
as many times as one wishes. One can also see intuitively that if the full assertion Stackable ¢ 1
is at hand, then no fraction of it has been consumed, so ¢ currently is not “on the stack”, that is,
not an invisible root. Thus, Stackable ¢ 1 serves as a witness that ¢ currently is not an invisible
root. It is one of the key novel requirements of our logical deallocation rule.

The presentation of the reasoning rules of our program logic may be found in [Moine et al,,
2023]. The paper also includes predicates for reasoning about function closures, which, via their
environment, may hold pointers to private or shared memory blocks. Additional technical details
on the reasoning rules are beyond the scope of the present manuscript. I nevertheless wish to
explain the statement of the soundness theorem, stated with respect to a semantics that explicitly
account for a garbage collector. The remaining of this section includes a presentation of that
semantics (Section 9.5), followed with the presentation of the soundness theorem (Section 9.6).

CHAPTER 9. SPACE BOUNDS FOR GARBAGE-COLLECTED HEAP SPACE 117

HeaDALLOC
(¢ dom(o) o =[l:=()"]c size(c’) < S

T ; P Other rules for t /0 — t' /¢’ are not shown.
allocn/oc — {/o

STEPCTX

STEPHEAD EDGE
tio — t' /0’ t/o Bt/ q! o) =d @)=V
t/o st o K[t]/o 2 K[t']/ o’ by U
GC
/
. N) =)
dom(c") = dom(o) Ve e dom(o’). { val)=% A = (FreR, rwoto)
R o £ o
REDGC REDSTEP
locs(t) o 55 o’ tio L ¢/ o!
t/o SHLIES 4o t/o SLLUES) 5!

Figure 9.2: Semantics with a garbage collector
9.5 Semantics Aware of Garbage Collection

I next present our semantics that accounts for garbage collection steps. The garbage collector is
viewed as a nondeterministic operation that might collect any unreachable block. It may do so at
any time, that is, in between every two small-step reductions. The semantics is parameterized by
a bound S on the maximal size of the heap. The small-step evaluation rule for allocation requires
in its premise that the size of the extended heap does not exceed S. This bound S also appears in
the final soundness theorem. To define the semantics, we introduce five judgments, whose rules
appear in Figure 9.2.

The head reduction relation, written ¢t /0 — t'/0’, corresponds to the standard small-step
reductions. We only show one rule, namely HeapArroc. This rule asserts that an allocation in-
struction that attempts to exceed this limit cannot take a step: this is expressed by the premise
size(c’) < S. The freshly allocated space is initialized with unit values, written ()™.

The reduction under context relation, written ¢ /o 2> ¢/ / o/, allows one head reduction step
under an evaluation context K. It is defined by the rules STepHeaD and SterCrx, which allow
performing head reduction steps and reduction steps under evaluation contexts, respectively.

The edge relation, written ¢ v, (', asserts the existence of an edge in the memory graph
associated with o from the block at location ¢ towards the block at location ¢. This relation is
defined by the rule Epce. There, i/ denotes the contents of the fields of the block at location .
The premise w(¢) = ¢ indicates that the i-th field of the block stores the location ¢’. The reflexive
and transitive closure of the edge relation, written ¢ ¥ ¢/ asserts the existence of a path in the
store o from £ to ¢'. Blocks reachable from a root may not be deallocated.

The garbage collection relation R - o £5 ¢’ is defined by the rule GC. It captures when it is
possible for a store o to evolve to a store o’ through a GC step that respects a set of roots R. During
such a GC step, any location £ that is unreachable from every root r € R may be deallocated. This
is reflected by setting o’ (¢) to the token #, which is the marker for deallocated blocks. Other blocks
remain unchanged.

The main reduction relation is written ¢ / 0 22225 ¢/ 5/ 1t is defined by the rules RepGC and
RepSteP, which allow performing garbage collection steps and reductions under context, respec-
tively. In RenGC, the parameter R, which represents the set of roots that the GC must respect, is

CHAPTER 9. SPACE BOUNDS FOR GARBAGE-COLLECTED HEAP SPACE 118

{oA} (create []) {M. Stack [] g}

{— &
1L < C"
ey 4 TR (push [v:0)) (A Stack (v:2L) ¢}
v
Stack L ¢
({0}) { Stack (v::L) £} (pop [€]) {/\v. <>BQ }
Stack L ¢ o(A+ B x |L|)
(v25) = (eoelB)

Figure 9.3: A (slightly simplified) interface for possibly-bounded stacks

instantiated with locs(t), the set of all locations that occur in the term ¢. This expresses the free
variable rule (Section 9.1).

9.6 Soundness Theorem with Space Bounds

We are now ready to state the soundness theorem associated with our program logic.

A configuration t1 /07 is final if the term ¢; is a value. A configuration ¢; /o7 is reducible if,
after the garbage collection of zero, one or several blocks, the configuration can take a proper
reduction step: that is, if there exist two stores o] and o9 and a term to such that locs(t1) +
o1 55 o) and t1/ 0} 25 t5/ 05 hold. A configuration is stuck if it is neither final nor reducible.
A program t is safe if, for any execution prefix described by ¢/ ¢ XL2ES* ¢, /5 it is the case
that the configuration ¢; / o1 is either final or reducible—therefore not stuck.

In our setting, the notion of a stuck configuration is more subtle than usual. On the one hand,
the limit on the size of the heap may block allocations. On the other hand, garbage collection
steps may reduce the size of the heap. Thus, a program is stuck if, no matter how much memory
the GC is able to reclaim, it cannot avoid growing the heap beyond the size S. In other words, a
program is stuck if its live heap size is about to exceed S. In the contrapositive form, if a program
is safe, then its live heap size never exceeds S.

Our soundness theorem states that if a program can be verified, using our program logic, under
an allowance of S space credits, then this program is safe.

Theorem 9.6.1 (Soundness with space bounds) If{cS} ¢t {_. "True'} holds, thent is safe.

Therefore, if a program can be verified under S space credits, then its live heap size never
exceeds S. This result holds for every .S. Thus, the space bounds that are established via our
program logic are indeed correct. The proof of the theorem is described at a high-level in in [Moine
et al., 2023, Appendix]; further details may be found in the Coq formalization.

9.7 Case Study: Stacks of Stacks

To illustrate the ability of our program logic to establish nontrivial space bounds for practical data
structures, we present specifications for three implementations of stacks, which have a common
behavior, but different space usage. The first implementation demonstrates a use of our linked
lists. The second implementation relies on a mutable array, and demonstrates that if one omits to
overwrite an array slot when a value is popped off the stack, then a memory leak appears and the
code cannot be verified. The third implementation is a generic construction of a stack as a stack

CHAPTER 9. SPACE BOUNDS FOR GARBAGE-COLLECTED HEAP SPACE 119

of stacks. It demonstrates modular reasoning as well as an amortized space complexity analysis
that exploits rational number of space credits.

We show, in particular, how to instantiate this generic construction to obtain a linked list
of fixed-capacity arrays, a.k.a. chunked stacks. This data structure is a practical, time-efficient
and space-efficient implementation of stacks. Compared with stacks implemented using linked
lists, chuncked stacks are much more compact, moreover they avoid numerous indirections in
traversals. Compared with stacks implemented using vectors, chunked stacks are also much more
compact, moreover they avoid disruptive resize operations.

Figure 9.3 presents a common interface for all our stacks. In the pre- and postconditions,
the vertically stacked items are implicitly separated by a star symbol. Before explaining all the
symbols that appear in the figure, let us point out that this interface gives a slightly simplified
specification, specialized to the case where the stack holds the unique pointer onto each of its
elements. The specification covering the general case, where elements might also be pointed at
from outside the stack, may be found in [Moine et al., 2023, §8]. In recent work, we have also
refined the specification and proofs to verify that push and pop operations indeed execute in
amortized constant time.

The specification consists of three triples, for the functions create, push and pop, and of one
ghost update, which describes the logical deallocation of a stack. Two of the triples feature a
leading annotation ({£}). At a high-level, this annotation indicates that the caller to the function
keeps at hand the pointer / onto the stack. It is an additional feature of our logic that saves the
need to thread assertions of the form Stackable ¢ p throughout the proof.

In contrast, the fact that v does not appear in this leading annotation, together with the pre-
condition v <« J in push indicates that the caller to the function is expected to transfer the
unique pointer onto the value v to the stack. Dually, the postcondition v «— ¢ in pop asserts
that the caller receives a unique pointer onto the value v extracted from the stack. Similarly, the
assertion ¢ <« ¢ in the postcondition of create asserts that the location ¢ returned is a unique
pointer onto the fresh stack that has just been allocated.

The representation predicate Stack L ¢ is standard: it asserts that at address ¢ there is a valid
stack whose elements are described by the mathematical list L. This list is empty in create, it
grows by one element in push, and shrinks by one element in pop. Our interface for possibly-
bounded stacks is parameterized with a capacity C, which is either an integer or +00. The pure
precondition "|L| < C" asserts that the stack size should not exceed C. This requirement is
trivially satisfied if C' is +oo0.

Our interface is also parameterized with two constants. First, A denotes the number of credits
required to allocate an empty stack. The space credits assertion ©A appears in the precondition
of create. Second, B denotes the number of credits required for a push operation. The assertion
©oB appears in the precondition of push, which consumes space, and in the postcondition of pop,
which frees space.

The ghost update operation at the bottom of Figure 9.3 describes the logical deallocation of the
stack. We emphasize that the deallocation of a stack is an implicit operation at runtime: there is no
code for it. Nevertheless, a deallocation lemma must be included in the stack API and must be es-
tablished inside the abstraction boundary of stacks. This logical deallocation operation consumes
the ownership of a unique pointer ¢ onto a stack, and the representation predicate for the stack. It
returns not just the number A space credits consumed at stack creation, but also B space credits
for each of the elements that remain in the deallocated stack. Thus, in total, A + B X |L| space
credits can be reclaimed for a stack with contents L. Furthermore, it returns the ownership of the
unique pointers associated with each of the elements remaining in that stack. These assertions
may be further exploited for reclaiming the space associated with those values.

CHAPTER 9. SPACE BOUNDS FOR GARBAGE-COLLECTED HEAP SPACE 120

Our three implementations of stacks (whose code is not shown here) differ in their space
complexity. Each of them is verified with respect to a particular instantiation of the parameters A,
B, and C.

Our first implementation consists of a mutable reference to a linked list. The reference oc-
cupies 2 words (one for the header and one for the contents), an empty list occupies 1 word (we
represent empty lists using an allocated block, but we plan to later refine the formalization so
that empty list are represented as non-allocated constants), and each list cell occupies 3 words
(for storing the header, a value, and a tail pointer). This implementation satisfies our common
interface for the parameters A = 3, B = 3, and C = +00. Thus, a stack implemented as a plain
linked list has infinite capacity and requires 3n + 3 words in memory for storing n elements.

Our second implementation consists of a record where one field holds the logical size of the
stack and one field holds a pointer to an array of fixed capacity 7. Every unused cell in this array
is filled with a unit value. This implementation satisfies our interface with creation cost A = T'+4
(3 words for the 2-field record and its header, and T' + 1 for the array of size T' and its header),
insertion cost B = 0, and bounded capacity C = T'. Thus, this implementation provides stacks
of bounded capacity 7’; such a stack requires 7' + 4 words in memory, regardless of the number n
of elements that it stores, where n < T

Our third implementation is generic: it is a functor that expects two implementations of stacks,
say X -stacks and Y -stacks, and produces a new implementation, say Z-stacks. A Z-stack is imple-
mented as a record made of (1) a nonempty Y -stack storing the elements at the top of the stack, (2)
a X -stack of full Y -stacks, storing all the remaining elements, and (3) an optional, empty Y -stack,
called the “spare”. Keeping a spare Y -stack at hand rather than immediately deallocating the top
Y -stack when it becomes empty is necessary to achieve O(1) amortized time bounds. Figure 9.4
shows the code for the key operations. There, we use OCaml syntax for the presentation; we
verified untyped code written in Iris’ HeapLang language, deeply embedded in Coq.

To simplify the explanations, we assume that Y -stacks are bounded—an assumption that our
formalization does not make. Let us write X.A and X.B and X.C for the space complexity param-
eters of X-stacks, and likewise for Y -stacks. We formally establish that our Z-stacks have creation
cost A = X.A+ 2-Y.A + 4, have insertion cost B = Y.B + (Y.A + X.B)/Y.C, and have
capacity C' = X.C x (1 + Y.C'). The insertion cost is of particular interest. An empty Y-stack is
allocated and pushed on the X-stack only every Y.C' push operations on the Z-stack: this explains
the fractional cost (Y.A+ X.B)/Y.C. Obtaining this bound requires rational space credits and an
amortized analysis. Moreover, it involves defining a suitable potential function and saving space
credits in the definition of Stack for Z-stacks.

By applying the functor to our previous two implementations of stacks as arrays and stacks as
linked lists, we obtain a linked list of fixed-capacity arrays, a.k.a. chunked stacks. Recall that the
space usage of a stack satisfying our interface is Bn + A, where n denotes the number of elements.
By suitably instantiating the parameters A and B associated with our functor, we derive from our
formal analysis that a linked list of fixed-capacity arrays of capacity 1" require (1+ %) ‘n+(2T+15)
words. Asymptotically, chunked stacks are thus not far from optimal in terms of space usage. For
example, for 7' = 128, the asymptotic space usage is less than 1.055n, that is, 5.5% above optimal.
In comparison, the asymptotic space usage for linked lists is 3n, and that for vectors is 4n (or 2n
if pop operations are disallowed). In summary, our program logic supports the formal verification
of nontrivial space bounds for a practical, state-of-the-art data structure.

CHAPTER 9. SPACE BOUNDS FOR GARBAGE-COLLECTED HEAP SPACE

let empty () =
let front = Y.empty in
{ front = front;
tail = X.empty;
spare = front; }

(* The equality [s.spare = s.front] means "s has no spare" *)

let push v s =

let front = s.front in

if Y.is_full front then begin
let newfront =

if front == s.spare then begin

let newfront = Y.empty() in
s.spare <- newfront;
newfront
end else
spare
in
s.front <- newfront;
X.push front s.tail;
Y.push v newfront
end else

Y.push v front

let pop s =
let front =

s.front in
let x =

Y.pop front in
if Y.is_empty front then begin

let tail = s.tail in

if not (X.is_empty tail) then begin
let newfront = X.pop tail in

s.spare <- front;

s.front <- newfront;

end

end;

X

Figure 9.4: Functor for building a X-stack of Y-stacks, where X and Y denote two abstract stack
implementations, of either bounded or unbounded capacity. Untyped code written in ML syntax.

121

Chapter 10

A Survey of Separation Logic for
Sequential Programs

This chapter focuses on research on Separation Logic, excluding work on concurrent Sep-
aration Logic. In Section 10.1, I start by listing the ingredients that were already present
in the seminal papers on Separation Logic [O’Hearn et al., 2001; Reynolds, 2002]. In Sec-
tion 10.2, I try to trace the origin of every other ingredient. In Section 10.3, I give a tour
of the work that involves mechanized presentations of Separation Logic. Finally, in Sec-
tion 10.4, I review existing course notes on Separation Logic.

For a broader survey of Separation Logic, I refer to O’Hearn’s CACM paper [2019]. In
particular, the appendix to his survey covers practical automated and semi-automated tools
based on Separation Logic, such as Infer [Calcagno et al., 2015], VeriFast [Philippaerts et al.,
2014], or Viper [Miiller et al., 2016].

The survey is, up to minor updates, what was published in my ICFP’20 paper [Charguéraud,
2020, §10]. I wish to thank once more Andrew Appel, Lars Birkedal, Adam Chlipala, Mag-
nus Myreen, Gerwin Klein, Peter Lammich, Xavier Leroy, Francois Pottier, and Zhong Shao,
who kindly answered my questions about historical and technical details associated with
the Separation Logic literature. The chapter ends with a discussion focused on the handling
of partial correctness and proofs of termination (Section 10.5).

10.1 Original Presentation of Separation Logic

Traditional presentations of Separation Logic target command-based languages, which involve
mutable variables in addition to heap-allocated data. In that setting, the statement of the frame
rule involves a side-condition to assert that the mutable variables occurring in the framed heap
predicate are not modified by the command. Up to minor differences in presentation, many fun-
damental concepts appeared in the first descriptions of Separation Logic [O’Hearn et al., 2001;
Reynolds, 2002]:

« the grammar of heap predicate operators, except the pure heap predicate [P], and with the
limitation that quantifiers 3. H and Y. H range only over integer values;

122

CHAPTER 10. A SURVEY OF SEPARATION LOGIC FOR SEQUENTIAL PROGRAMS 123

the rule of consequence and the frame rule;

+ avariant of the rule Ex1sTs, named Ex1sTs2 in the discussion further below;

« the fundamental properties of the star operator described in Lemma 2.2.2;

« the small footprint specifications for primitive state-manipulating operations,

« the definition of Mlist, stated by pattern-matching over the list structure like in Defini-
tion 2.1.2;

« the characterization of the magic wand operator via characterizations (1), (3) and (4) from
Definition 2.5.1, but not characterization (2), which involves quantification over heap pred-
icates;

« the example of a copy function for binary trees;
« the encoding of records and arrays using pointer arithmetics.
My presentation of structural reasoning rules (Lemma 2.4.1) features two extraction rules

named PROP and EXISTS. These rules did not appear in that form in the original papers on Sepa-
ration Logic. Instead, these papers included the following two rules.

Ve {H}EQ) lo/a) 14Q) e

{Fz. H} t { . Fz. (Qv)} {Vx. H} t {Q}

The rules ex1sTs and Ex1sTS2 yield equivalent expressive power, that is, they may be derived
from one another (in the presence of the rule CONSEQUENCE, and EXISTS-R and EXISTs-L from
Figure 2.1). Compared with Ex1sTS2, the statement of EXISTS is more concise and better-suited
for practical purpose. The rule prop for extracting pure facts may be seen as a particular instance
of the rule ExisTs for extracting existential quantifiers. Indeed, as pointed out in Remark 2.2.1,
the heap predicate [P] is equal to 3(p : P).[]. The rule ForALL does not need to be included in
the core set of rules. Indeed, it is derivable, via the rule of CONSEQUENCE, from the rule FORALL-L,
which enables instantiating universal quantifiers in entailments (Figure 2.1).

10.2 Additional Features of Separation Logic

The original presentation of Separation Logic consists of a first-order logic for a first-order lan-
guage. Follow-up work aimed for higher-order logics and languages.

Biering et al. [2005, 2007] tackled the generalization to higher-order quantification—the possi-
bility to quantify over propositions and heap predicates—using BI-hyperdoctrines. Krishnaswami
et al. [2007] formalized the subject-observer pattern with a strong form of information hiding
between the subject and the client. This work illustrated how higher-order Separation Logic sup-
ports data abstraction.

Birkedal et al. [2005, 2006] tackled the generalization of Separation Logic to higher-order lan-
guages, where functions may take functions as arguments. To avoid complications with muta-
ble variables, the authors considered a version of Algol with immutable variables and first-order
heaps—heap cells can only store integer values. Specifications are presented using dependent
types: a triple { H} t {Q} is expressed by the fact that the term ¢ admits the type “{ H} - {Q}”. One
key idea from this work is to bake-in the frame rule into the interpretation of triples, that is, to
quantify over a heap predicate describing the rest of the state, as in Definition 2.4.2. The technique
of the baked-in frame rule later proved successful in mechanized proofs. For example, it appears
in the HOL4 formalization by Myreen and Gordon [2007] (see §3.2, as well as §2.4 from Myreen’s
PhD thesis [2008]) and in the Coq formalization by [Appel and Blazy, 2007] (see Definition 9).

CHAPTER 10. A SURVEY OF SEPARATION LOGIC FOR SEQUENTIAL PROGRAMS 124

Reus and Schwinghammer [2006] presented a generalization of Separation Logic to higher-
order stores, where heap cells may store functions whose execution may act over the heap. The
former work targets a language that features storable, parameter-less procedures. Its model, de-
veloped on paper, was then simplified by Birkedal et al. [2008] using the technique of the baked-in
frame rule.

Another approach to tackling the circularity issues associated with higher-order quantification
and higher-order stores consists of using the step indexing technique [Appel and McAllester, 2001;
Ahmed, 2004; Appel et al.,, 2007]. In that approach, a heap predicate depends not only on a heap
but also on a natural number, which denotes the number of execution steps for which the predicate
is guaranteed to hold. This approach was later exploited in VST, which provided the first higher-
order concurrent Separation Logic [Hobor et al., 2008], and in Iris [Jung et al., 2017].

Ni and Shao [2006] presented the XCAP framework, formalized in Coq. It targets an assembly-
level language with embedded code pointers, thereby supporting both higher-order functions
and higher-order stores. XCAP features impredicative polymorphism, allowing heap predicates
to quantify over heap predicates. This work addresses the same problem as the aforementioned
work through a more syntactic approach.

When reasoning about first-class functions, the notion of nested triple naturally appears: triples
may occur inside the pre- or post-condition of other triples. Nested triples were described in work
by Schwinghammer et al. [2009] for functions stored in the heap, and in work by Svendsen et al.
[2010] for higher-order functions (more precisely, for delegate functions). Nested triples are natu-
rally supported by shallow embeddings of Separation Logic in higher-order logic proof assistants.
This possibility is mentioned explicitly by Wang et al. [2011], but was already implicitly available
in earlier formalizations, e.g. [Appel and Blazy, 2007].

Krishnaswami et al. [2010] introduced the idea of a ramified frame rule. The general statement
of the ramified rule stated as in Lemma 2.5.4 appeared in [Hobor and Villard, 2013]. Users of the
tools VST [Cao et al., 2018b] and Iris [Jung et al., 2017] have advertised for the interest of this rule.

The magic wand between postconditions, written Q1 —* (Q2, as opposed to the use of an explicit
quantification Yv. Q1 v—+Q2 v, appears to have first been employed by Bengtson et al. [2012]. This
operator is described in the book by Appel et al. [2014]. The five equivalent characterizations of
this operator give in Definition 2.5.2 appear to be a (minor) contribution of Charguéraud [2020].

Regarding while loops, the possibility to frame over the remaining iterations (Section 3.5) is
inherently available when a loop is encoded as a recursive function, or when a loop is presented in
CPS-style—typical with assembly-level code [Ni and Shao, 2006; Chlipala, 2011]. The statement of
a reasoning rule directly applicable to a non-encoded loop construct, and allowing to frame over
the remaining iterations, has appeared independently in work by Charguéraud [2010] and Tuerk
[2010].

A number of interesting extensions of Separation Logic for deterministic sequential programs
are beyond the scope of the present survey. Let us cite a few.

« Fractional permissions have been introduced by Boyland [2003] in the context of a type sys-
tem with linear capabilities. Soon afterwards, the idea was identified as essential for speci-
fying concurrent threads in Separation Logic [Bornat et al., 2005]. It appears that fractions
may also be useful for reasoning about sequential programs. For example, we use them per-
vasively for keeping track of pointers when reasoning about space usage in the presence of
a garbage collector [Moine et al., 2023].

« The higher-order frame [Birkedal et al., 2005, 2006] and the higher-order anti-frame [Pot-
tier, 2008; Schwinghammer et al., 2010] allow reasoning about hidden state in sequential
programs.

CHAPTER 10. A SURVEY OF SEPARATION LOGIC FOR SEQUENTIAL PROGRAMS 125

« The notion of Separation Algebra [Calcagno et al., 2007; Dockins et al., 2009; Gotsman et al.,
2011; Klein et al., 2012] is useful for developing a Separation Logic framework independently
of the details of the programming language.

« Costanzo and Shao [2012] present a refined definition of local reasoning to ensure that,
whenever a program runs safely on some state, adding more state would have no effect
on the program’s behavior; their definition is useful in particular for nondeterministic pro-
grams and programs executed in a finite memory.

« Fictional Separation Logic [Jensen and Birkedal, 2012] generalizes the interpretation of sep-
arating conjunction beyond physical separation, and explains how to combine several sep-
aration algebras.

+ Temporary read-only permissions [Charguéraud and Pottier, 2017] provide a simpler alter-
native to fractional permission for manipulating duplicatable read-only resources in a se-
quential program.

+ Time credits allow for amortized cost analysis [Charguéraud and Pottier, 2015; Charguéraud
and Pottier, 2019]. Time receipts provide the dual notion: they may be used to establish lower
bounds on the execution time. Mével et al. [2019] formalize time credits and time receipts
in Iris. Spies et al. [2021] introduce transfinite time credits in Iris for reasoning about the
termination of programs whose execution time cannot be bound upfront.

10.3 Mechanized Presentations of Separation Logic

Gordon [1989] presents the first mechanization of Hoare logic in higher-order logic, using the
HOL tool. Gordon’s pioneering work was followed by numerous formalizations of Hoare logic,
targeting various programming languages. Mechanizations of Separation Logic appeared later.
Here again, we restrict our discussion to the verification of sequential programs.

Yu et al. [2003, 2004] present the CAP framework, implemented in Coq. It supports reason-
ing about low-level code using Separation Logic-style rules, and is applied to the verification of
a dynamic storage allocation library. Ni and Shao [2006] present the XCAP framework, already
mentioned in the previous section, to reason about embedded code pointers. XCAP was also ap-
plied to reasoning about x86 context management code [Ni et al., 2007]. Feng et al. [2006] present
the SCAP framework, for reasoning about stack-based control abstractions, including exceptions
and setjmp/longjmp operations. SCAP is also applied to the verification of Baker’s incremental
copying garbage collector [McCreight et al., 2007]. Feng et al. [2007] present the OCAP framework
that generalizes XCAP for supporting interoperability of different verification systems, including
SCAP. Cai et al. [2007] present the GCAP framework for reasoning about self-modifying code, and
apply Separation Logic to support local reasoning on both program code and regular data struc-
tures. Feng et al. [2008] presents the first verified implementation of a preemptive thread runtime
that exploits hardware interrupts; this runtime is linked to verified context switch primitives,
using the OCAP and the SCAP frameworks. Wang et al. [2011] present ISCAP, a step-indexed,
direct-style operational semantics with support for first-class pointers.

Weber [2004] formalizes in Isabelle/HOL a first-order Separation Logic for a simple while
language. This work includes a soundness proof for the frame rule, and the verification of the
classic in-place list reversal example.

Preoteasa [2006] formalize in PVS a first-order Separation Logic, with the additional feature
that it supports recursive procedures. This work includes the verification of a collection of recur-
sive procedures for computing the parse tree associated with an arithmetic expression.

CHAPTER 10. A SURVEY OF SEPARATION LOGIC FOR SEQUENTIAL PROGRAMS 126

Marti et al. [2006] formalize in Coq a Separation Logic library, and used it for the verification
of the heap manager of an operating system.

Tuch et al. [2007] present a shallow embedding of Separation Logic in Isabelle/HOL, for a
subset of the C language, with support for interpreting values at the byte level when required.
Their framework is applied to the verification of the memory allocator of a microkernel. Its logic
was later extended to support predicates for mapping virtual to physical addresses, and thereby
reason about the effects of virtual memory [Kolanski and Klein, 2009]. Klein et al. [2012] present
a re-usable library for Separation Algebras, including support for automation.

Appel and Blazy [2007] formalize in Coq a Separation logic for Cminor. This work led to the
VST tool, which supports the verification of concurrent C code [Appel, 2011; Appel et al.,, 2014;
Cao et al, 2018a]. VST leverages step-indexed definitions and features a later modality [Hobor
et al.,, 2008; Dockins et al., 2008; Hobor et al., 2010].

Myreen and Gordon [2007] formalize Separation Logic in HOL4. This work eventually lead to
the CakeML compiler, described further on.

Varming and Birkedal [2008] demonstrate the possibility to formalize higher-order Separation
Logic as a shallow embedding in Isabelle/HOLCF.

Nanevski et al. [2008b] and Chlipala et al. [2009b] present the Ynot tool, which consists of an
axiomatic embedding in Coq of Hoare Type Theory (HTT) [Nanevski et al., 2006, 2008a]. HTT
is a presentation of higher-order Separation Logic with higher-order stores in the form of a type
system for a dependently typed functional language. In Ynot, like in HTT, a Coq term ¢ admits
the Coq type “ST H QQ” to express the specification {H} t {Q}. In Ynot, programs are shallowly
embedded in Coq: they are expressed using Coq primitive constructs and axiomatized monadic
constructs for effects. The frame rule takes the form of an identity coercion of type STH @Q —
ST(H ~ H'") (M. Qv H'). For specifications involving auxiliary variables, Ynot supports ghost
arguments, which appear like normal function arguments except that they are erased at runtime.

Charguéraud [2011] presents the CFML tool, which supports the verification of OCaml pro-
grams. CFML does not state reasoning rules directly in Cogq; instead, a program is verified by
means of its characteristic formula, which corresponds to a form of strongest postcondition. These
characteristic formulae are generated as Coq axioms by an external tool that parses input pro-
grams in OCaml syntax. CFML was extended to support asymptotic cost analysis [Charguéraud
and Pottier, 2015; Charguéraud and Pottier, 2019]. CFML initially hard-wired fully-affine triples,
featuring unrestricted discard rules, and later integrated the customizable predicate haffine (Sec-
tion 3.1) [Guéneau et al., 2019a].

Tuerk [2011] presents in HOL4 the Holfoot tool, formalizing in particular the rules of Abstract
Separation Logic [Calcagno et al., 2007].

Chlipala [2011, 2013] presents in Coq the Bedrock framework, for the verification of programs
written at the assembly level. Bedrock has been, for example, put to practice to verify a coopera-
tive threading library and an implementation of a domain-specific language for XML processing.
These software components were interfaced with hardware components of mobile robots [Chli-
pala, 2015].

Bengtson et al. [2011] present a shallow embedding of higher-order Separation Logic in Cogq,
demonstrating the use of nested triples for reasoning about object-oriented code. Following up
on that work, Bengtson et al. [2012] developed in Coq the Charge! tool, which handles a subset of
Java.

Jensen et al. [2013] give a modern presentation of a Separation Logic for low-level code, ex-
ploiting in particular the (higher-order) frame connective [Birkedal et al., 2005; Birkedal and Yang,
2007; Krishnaswami, 2012]. Building on that work, Kennedy et al. [2013] show how to write as-
sembly syntax and generate x86 machine code inside Cogq.

CHAPTER 10. A SURVEY OF SEPARATION LOGIC FOR SEQUENTIAL PROGRAMS 127

The CakeML verified compiler [Kumar et al., 2014], implemented in HOL, takes SML-like pro-
grams as input and produces machine code as output. It exploits Separation Logic to prove the
garbage collector [Sandberg Ericsson et al., 2019]. It also exploits Separation Logic to set up a
CFML-style characteristic formulae generator, extended with support for catchable exceptions
and I/O [Guéneau et al., 2017]. The characteristic formulae are used to verify the standard library
for CakeML.

The Iris framework [Jung et al., 2015, 2016; Krebbers et al., 2017; Jung et al.,, 2017, 2018b],
implemented in Coq, supports higher-order concurrent Separation Logic. Like VST, Iris features
a later modality and step-indexed definitions. Iris exploits weakest-precondition style reasoning
rules (Section 2.6) and function specifications are stated as in Lemma 2.6.5, although using syntac-
tic sugar to make specifications resemble conventional triples. Iris is defined as a fully-affine logic,
with an affine entailment. Tassarotti et al. [2017b] present an extension of Iris featuring linear heap
predicates, and an affine modality written A(H). An alternative approach is proposed by Bizjak
et al. [2019], who present the encoding on top of Iris of two logics that enable tracking of linear
resources, transferable among dynamically allocated threads. The first one, called Iron, leverages
fractional permissions to encode trackable resources, and allow, e.g., reasoning about deallocation
of shared resources. The second one, called Iron++, hides away the use of fractions, and offers the
user with the illusion of a linear Separation Logic with support for trackable invariants. Spies et al.
[2021] extend Iris with transfinite time credits for, in particular, reasoning about termination.

The Mosel framework [Krebbers et al., 2018] generalizes Iris’ tooling to a large class of sepa-
ration logics, targeting both affine and linear separation logics, and combinations thereof.

Bannister et al. [2018] discuss techniques for forward and backward reasoning in Separation
Logic. Their work, presented in Isabelle/HOL, introduces the separating coimplication operator
to improve automation. Separating coimplication is the dual of separating conjunction, just like
septraction [Vafeiadis and Parkinson, 2007] is the dual of separating implication. Separating coim-
plication forms a Galois connection with septraction, just like separating conjunction forms a
Galois connection with separating implication.

Lammich [2019b] present a refinement framework that leverages Separation Logic to refine
from Isabelle/HOL definitions to verified code in LLVM intermediate representation. It is applied
to the production of a number of algorithms, including an efficient KMP string search implemen-
tation [Lammich, 2019a].

10.4 Course Notes on Separation Logic

There exists a number of course notes on Separation Logic. Many of them follow the presentation
from Reynolds’ article [2002] and course notes [2006]. These course notes consider languages with
mutable variables, whose treatment adds complexity to the reasoning rules. The Separation Logic
is presented as a first-order logic on its own, without attempt to relate it in a way or another to
the higher-order logic of a proof assistant. The soundness of the logic is generally only skimmed
over, with a few lines explaining how to justify the frame rule.

A few courses present Separation Logic in relation with its application in mechanized proofs.
Appel’s book Program Logics For Certified Compilers [2014] presents a formalization of a Separa-
tion Logic targeting the C semantics from CompCert [Leroy, 2009]. More recently, Appel and Cao
[2020] published a volume part of the Software Foundations series, entitled Verifiable C. This vol-
ume is a tutorial for VST [Cao et al., 2018a], a tool that supports reasoning about actual C code. As
of 2022, the tutorial covers the verification of data structures, including linked lists, stacks, hashta-
bles, as well as string-manipulating functions. The presence of mutable variables, in addition to
other specificities of the C memory model, makes the presentation unnecessarily complex for a

CHAPTER 10. A SURVEY OF SEPARATION LOGIC FOR SEQUENTIAL PROGRAMS 128

first exposure to Separation Logic and to its soundness proof. I am aware of two other mechanized
Separation Logic tutorials that target a A-calculus based language, with immutable variables and
return values for terms.

The Iris tutorial by Birkedal and Bizjak [2018] presents the core ideas of Iris’ concurrent Sepa-
ration Logic [Krebbers et al., 2017; Jung et al., 2018b]. Chapters 3 and 4 introduce heap predicates
and Separation Logic for sequential programs. Unlike in Iris’ Coq formalization, which leverages
a shallow embedding of Separation Logic, the tutorial presents the heap predicate in deep embed-
ding style, via a set of typing rules for heap predicates. The realization of these predicates is not
explained, and the tutorial does not discuss how the reasoning rules are proved sound with respect
to the small-step semantics of the language. The logic presented targets partial correctness, not
total correctness, and only the case of an affine logic is covered. Dietrich [2021] wrote, as part
of her Bachelor’s thesis, A beginner’s guide to Iris, Coq and Separation Logic. It provides a gentle
introduction on how to use the framework in practice, illustrated with a few case studies.

Chlipala’s course notes [Chlipala, 2018a] feature a chapter on Separation Logic, accompanied
with a corresponding Coq formalization meant to be followed by students [Chlipala, 2018b]. The
material includes a proof of soundness, as well as the verification of a few example programs.
Chlipala’s chapter focuses on the core of Separation Logic—it does not cover any of the enhance-
ments listed in the introduction. The programming language is described in mixed-embedding
style: the syntax includes a constructor Bind, which represents bindings using Coq functions, in
higher-order abstract syntax style. The rest of the syntax consists of operations for allocation and
deallocation, for reading and writing integer values into the heap, plus the constructors Return,
Loop, and Fail. These constructs are dependently-typed: a term that produces a value of type «
admits the type cmd a.. Altogether, this design allows for a concise formalization of the source lan-
guage, yet, we believe, at the price of an increased cost of entry for the reader unfamiliar with the
techniques involved. The core heap predicates are formalized like in Ynot [Chlipala et al., 2009b].
Triples are defined in deep embedding style, via an inductive definition whose constructors corre-
spond to the reasoning rules. This deep embedding presentation requires “not-entirely-obvious”
inversion lemmas, which are not needed in our approach. The soundness proof establishes a
partial correctness result expressed via preservation and progress lemmas. Chlipala’s approach
appears well suited for reasoning about an operating system kernel that should never terminate,
or reasoning about concurrent code. However, for reasoning about sequential executions of func-
tions that do terminate, a total correctness proof carried out with respect to a big-step semantics
yields a stronger result, via a simpler proof.

I'wrote an all-in-Coq course entitled Foundations of Separation Logic [Charguéraud, 2021]. This
course is distributed as Volume 6 of the Software Foundations Series, edited by Benjamin C. Pierce.
The current version of this course covers most of the material from Chapters 2, 3, 4 and 5 of the
present manuscript. The course moreover includes two introductory chapters with verification of
example programs via CFML-style proofs.

10.5 Partial Correctness and Termination

In this last section, I compare the treatment of termination in CFML and other frameworks.

Partial correctness, modalities and step-indexing—and their absence in CFML. A partial-
correctness triple asserts that, under the precondition, if the term terminates, then its output sat-
isfies the postcondition. A partial-correctness triple says nothing about termination, and says
nothing about programs that diverge. Refinements of partial-correctness triples exist for reac-
tive programs, which perform infinite sequence of I/O operations. For such programs, triples are

CHAPTER 10. A SURVEY OF SEPARATION LOGIC FOR SEQUENTIAL PROGRAMS 129

extended with means of specifying the set of valid traces of interaction.

Partial-correctness rules may be useful for reasoning about reactive programs, which do not
terminate. Partial-correctness rules may also useful for reasoning about concurrent programs
whose progress or termination may depend on subtle ways on the fairness of the scheduler. In
that case, establishing a partial-correctness result provides a way to decouple the reasoning on
functional correctness from the reasoning on progress. For some applications, a mix of partial and
total-correctness may be relevant. For example, Erbsen et al’s work [2021] formalizes the code of
an embedded system, whose main routine consists of an infinite loop, but where the contents of
that loop consists of a terminating procedure is entirely verified using total-correctness reasoning.

When considering partial-correctness triples, one can establish a triple for the diverging term
f 0 where f is defined as 1et rec £ x = £ x. The partial-correctness reasoning rule for recursive
functions provides, for reasoning about the body, a hypothesis describing recursive calls. Con-
cretely, to prove that £ 0 admits a particular partial-correctness behavior, it is sound to assume
that any occurrence of £ 0 appearing in the body of the definition of £ does satisfy that behavior.

Intuitively, the soundness of partial-correctness reasoning can be justified as follows: if the
program terminates, then one could have established a total-correctness triple using a proof car-
ried by induction over the length of the execution trace; and if the program diverges, then the
partial-correctness triples asserts nothing, so the triple holds. Technically, partial-correctness rea-
soning rules can be formalized and justified by means of the later modality, as done e.g. in Iris [Jung
et al., 2015, 2018b], where that modality is defined with respect to the step-indexing.

In summary, Iris provides support for reasoning about partial correctness of sequential and
concurrent programs, with proofs involving modalities, based on a framework grounded on step-
indexing. In contrast, CFML provides support for reasoning about total correctness of sequential
programs, with proofs carried out by means of standard logical induction, without need for any
modality nor any form of step-indexing.

There are situations where it might be interesting to combine Iris and CFML proof style.
Indeed, a concurrent program may include numerous functions involving only sequential, ter-
minating code. Maybe we could support reasoning about those subcomponents using totally-
correctness, modality-free reasoning, and then be able to lift the results into the partial-correctness
triples that may be exploited for reasoning about the parts of the code involving concurrency.

About transfinite proofs for reasoning about termination Reasoning about termination in
the context of a step-indexed program logic has shown to be technically challenging, with the
need to introduced generalized notion of transfinite step-indices and transfinite time credits [Spies
et al, 2021]. In CFML, however, proofs of termination, including for programs involving recursive
functions and while loops, are established without the need to introduce any explicit transfinite
features. How is that possible? Let us try to give some intuition.

Time credits have been first introduced as an extension to CFML for establishing amortized
complexity bounds [Charguéraud and Pottier, 2015; Charguéraud and Pottier, 2019]. Concretely,
whereas a plain CFML proof would already establish only termination, a proof in CFML with
credits would establish an explicit complexity bound. Subsequently, Mével et al. [2019] formalized
time credits in Iris. Whereas Iris provides only partial correctness results, a proof in Iris with time
credits provides a proof of termination with an explicit complexity bound.

Reasoning in Iris with time credits applies to all programs that do admit a complexity bound.
Yet, there exists interesting programs that do terminate but do not admit a complexity bound.
Consider the following example program: let n = rand()in for i =1 ton do ()done. Assume
a semantics with idealized integers, and assume that the random number generator executes in
constant time, and returns an unbounded integer. (No hardware can meet these constraints, but

CHAPTER 10. A SURVEY OF SEPARATION LOGIC FOR SEQUENTIAL PROGRAMS 130

let us ignore that aspect, which is orthogonal to the point we are trying to illustrate.)

This program is a classic example illustrating the notion of infinitely-branching nondetermin-
ism. In particular, it is mentioned in Spies et al. [2021, §5.1]. The point of this program is that it
terminates, no matter the value returned by the random-number generator. This program can be
trivially proved to terminate in CFML. Yet, this program does not admit any time bound. Thus,
it cannot be verified by means of (original) time credits. The point of the research by Spies et al.
[2021] is to develop a version of Iris with a generalized form of time credits that could allow prov-
ing the termination of sequential programs such as the one above. To achieve that, they introduce
the notions of transfinite step-indices and transfinite time credits. So, how does CFML get away
without transfinite features?

The short story is that CFML leverages Coq’s logic and that the proof trees built during a CFML
proof are themselves transfinite objects. Concretely, the proof of the example program above
involves a premise with the statement: for any value of n, the term for i = 1 to n do ()Jdone does
terminate. This universal quantification involves an infinitely-branching proof term, yielding (as
far as I understand) the expressive power of transfinite reasoning.

A follow-up question: for reasoning about terminating, sequential programs, what are the
benefits of Iris’s transfinite time credits compared with CFML (as of 2022)? One decisive argu-
ment is the support for Iris’ invariants, which allow hiding pieces of internal mutable state from
specifications. Spies et al. [2021] wrote the following paragraph in their related work section.

Yoshida et al. [63] and Charguéraud [17] introduce program logics capable of handling
liveness reasoning, even in higher-order stateful settings. The fundamental difference
to our work is that all of these logics are not step-indexed. In this paper, we have
focused on enabling liveness in a step-indexed setting, allowing us to use features
like L6b induction, guarded recursion, and impredicative invariants. It was precisely
the combination of these features that allowed us to prove a generic specification
for memo_rec [(a combinator for recursive memoization)] and then instantiate it for
multiple clients. To the best of our knowledge, verifying memo_rec generically is
not possible in the above logics.

As I have shown, CFML can be used to reason about a memoization combinator, as well as a
fixed-point combinator using a knot in the store (a.k.a. Landin’s knot).!

Yet, because CFML does not feature Iris’ style invariants, the internal mutable state associated
with the memoization function or the fixed point combinator cannot be hidden from the client.
The resulting specifications are therefore not pretty, and I did not include them in any of my
publications. In other words, these two programs and their clients can be verified using CFML,
yet only with unsatisfying specifications that do not hide from the client the existence of a piece
of internal mutable state.

Here again, there might be interesting research directions in trying to combine the best of the
features of CFML and Iris.

These proofs do not appear in any of my research paper; they may be found in the folders examples/Landin-
sKnot and examples/Memoization of the deprecated CFML repository (https://gitlab.inria.fr/charguer/cfml).

https://gitlab.inria.fr/charguer/cfml

Chapter 11

Perspectives

I next list a few directions that I would like to investigate in future work.

Combining CFML and Iris. On the one hand, CFML provides characteristic formulae, more-
over with lifting, and provides customizable affinity for heap predicates. On the other hand,
Iris [Jung et al., 2018b] provides modular constructions for describing ghost state, and means
of reasoning about concurrent programs. A natural question to ask is: can we combine the ben-
efits of the two frameworks into one? I plan to investigate this question together with several of
my colleagues, who are experts in both CFML and Iris. Besides, regarding termination proofs for
sequential programs, it would be interesting to investigate how proofs carried out by induction
with respect to the omni-big-step judgment (Chapter 4) compare with proofs carried out with re-
spect to transfinite time credits [Spies et al., 2021], and whether there are interesting connections
between the two forms of proofs (Section 10.5).

Integration with formally verified compilers. An interactive framework for verifying code
is only one element of the chain. Down the chain, the verified code needs to be compiled. A
short-term project is to connect the semantics of CFML with that of CakeML [Kumar et al., 2014],
a verified ML compiler, and with that of CompCert [Leroy, 2009], a verified C compiler. A use-
ful addition to CFML would be to add support for reasoning about machine integers, and about
floating-point programs by leveraging the Gappa tool [Boldo et al., 2009; Boldo and Melquiond,
2017]. Higher-up in the chain, we may be interested in providing a concise surface language for
end-users to read and write specifications. I am a member of the Gospel project, which inves-
tigates the design of such a surface specification language with applications to OCaml. I have
co-authored a preliminary paper published at FM’19 [Charguéraud et al., 2019]. Further research
on Gospel is funded by an ANR (national) project, lead by Francois Pottier, since October 2022.

Code optimization with formal guarantees. Before the code is compiled, we may be inter-
ested in optimizing it. The cost of verifying an unoptimized code is already quite high. Verifying
a manually-optimized code can be prohibitive. These observations motivated me to investigate
means of verifying unoptimized code and then deriving optimized code, with formal guarantees.
Concretely, the idea is to describe optimizations as code transformations that carry through pro-
gram invariants, in such a way that program invariants remain available at every step for justifying
the correctness of the optimizations being performed. In particular, this approach enables one to
write and verify code in a modular way, and then apply optimizations across abstraction barri-
ers. The OptiTrust project aims at producing such a programmer-guided, trustworthy, source-to-

131

CHAPTER 11. PERSPECTIVES 132

source transformation framework. Research on OptiTrust has previously been funded by Inria,
and is funded since October 2022 by an ANR project, for which I am the principal investigator.

Verification of parallel programs. My work has focused mainly on the verification of sequen-
tial programs. There is a long line of work on the development of Concurrent Separation Logic,
culminating with the development of the Iris framework [Jung et al., 2018b]. Reasoning about
concurrency is usually quite complex; it is not unusual to see developments with thousands of
lines of Coq script for just a couple dozen of lines of code. I would be particularly interested in fo-
cusing on the verification of parallel programs. Parallel programs are expressed using high-level
programming constructs, such as fork-join, async-finish, and parallel-for loops. They may also
leverage concurrent data structures (viewed as black boxes), as well as well-delimited, restricted
forms of concurrent programming patterns. I think that it would be particularly interesting to
derive high-level reasoning principles for parallel programs. Regarding applications, I have in
mind the verification of state-of-the-art multicore algorithms, such as those developed by Guy
Blelloch and his colleagues [Shun et al., 2012; Anderson et al., 2022; Acar and Blelloch, 2022]. I
will certainly be tempted to also prove the correctness and efficiency of the work-efficient, parallel
unordered depth-first search algorithm that I have developed with Umut Acar and Mike Rainey and
published at SuperComputing’15 [Acar et al., 2015].

Scaling up to larger programs. CFML has been used to reason so far to reason about a couple
thousand lines of OCaml code. I would be interested in verifying an advanced data structure li-
brary such as Sek [Charguéraud and Pottier, 2021; Moine et al., 2022], which provides a transient
sequence data structure, i.e., one that features both an ephemeral and a persistent interface, as
well as conversion functions between the two. This library consists of nearly 10k lines of code.
Beyond this particular library, a large-scale verification project would presumably involve lever-
aging several such libraries. The long-term question that I have in mind is: what would it take to
support the interactive verification of a hundred thousand lines of code? In that endeavour, several
critical obstacles need to be overcome.

First, we need to be able to leverage a robust, well-organized, easy-to-use, library of standard
mathematics. None of the existing proof assistants provide a sufficiently-complete mathematical
library for carrying out verification of common programs. Many results are available only in some
proof assistants but not others—and porting results from one prover to another is a daunting task.
Many other results have simply never been formalized. The design of an ideal library is certainly
an enormous task. Yet, it is a necessary one.

Second, we need to overcome performance bottlenecks. In CFML, easy gains could be made by
abandoning Ltac and reimplementing entailment simplifying tactics in OCaml. Coq-related bot-
tlenecks are more challenging. For example, optimizing (the elaboration phase of) type-checking
could be achieved by introducing caching mechanisms for typeclass resolution. As another ex-
ample, optimizing user development time could be achieved by making the proof assistant more
incremental. Yet, such optimizations have far-reaching consequences, and are tremendously hard
to implement in Coq’s legacy code base.

Third, we need to decrease the cost of verifying code. When verifying a program in prac-
tice, there is an incompressible effort associated with coming up with the appropriate invariants.
There is also a large share of the work that consists of proving a large number of relatively “triv-
ial” facts. These facts are trivial in the sense that we would “reasonably” expect an automated
tool to verify these facts using either an appropriate decision procedure, or using brute-force with
limited exploration depth. To increase the fraction of proof obligations that can be automati-
cally discharged, we need to better integrate state-of-the-art work on hammers, on SMT-solvers,

CHAPTER 11. PERSPECTIVES 133

as well as on domain-specific decision procedures. Also very important are simplification proce-
dures, generalizing Coq’s autorewrite tactic to help the user avoid numerous bookkeeping steps
for normalizing expressions involving, e.g., arithmetic operators, polynomials, sets, etc.

Unlike the other research directions, the three items listed above have the specificity that
they involve far too much work for a small team of researchers. Developing libraries of mathe-
matics, high-performance theorem provers, and fast-and-robust proof automation does require a
community-wide effort. I plan to contribute, in particular, by providing benchmarks that consist
of example proofs and collection of proof obligations that arise from the interactive verification
of data structure and algorithms. Just like the SMT-Comp benchmarks have had a great impact
on the field of SMT provers, I speculate that new benchmarks could motivate and guide research
and development of novel techniques for improving practical tools for interactive program verifi-
cation.

Further production of teaching material. Following up on the writing of Separation Logic
Foundations, Volume 6 of the Software Foundations series, I am looking forward to writing a second
all-in-Coq book. This second book will focus on the practice of interactive program verification
using Separation Logic. The book by Nipkow et al. [2021] presents formal specifications for purely
functional algorithms and data structures, but it—deliberately—does not focus on the presentation
of the interactive Isabelle/HOL proofs. The all-in-Coq book by Appel [2022], Volume 3 of Software
Foundations, covers fewer data structures, but goes much more in-depth in the explanations of
interactive Coq proofs.

Regarding interactive verification of imperative data structure and algorithms, the only book
available to date is that by Appel et al. [2022] (Volume 5 of Software Foundations). This volume,
shorter than the others from the series, aims at verifying idiomatic C code directly. I believe that
aiming for a cleaner, ML-style language can reduce the amount of technicalities involved in the
proofs, and thereby allows to go further in terms of contents. I plan to cover the verification of
numerous classical imperative data structures and algorithms, a large number of which I (or my
collegues) have already verified using CFML. The book will also cover specification techniques,
including the treatment of first-order and higher-order iterators [Pottier, 2017; Moine et al., 2022],
and of polymorphic containers that store mutable data structures—the recursive ownership pattern
described in my CPP’16 paper [Charguéraud, 2016].

I believe that interactive program verification tools have reached—or almost reached—a suf-
ficient degree of maturity to be usable for teaching at the undergrad level. The production of
teaching material thus appears essential: what will be the impact of interactive verification tools if
there are too few engineers able to use them?

Bibliography

Umut A. Acar and Guy E. Blelloch. Algorithms: Parallel and Sequential, may 2022. URL https://www.
umut-acar.org/algorithms-book. Draft book developed for a course at Carnegie Mellon University.

Umut A. Acar, Arthur Charguéraud, and Mike Rainey. A Work-Efficient Algorithm for Parallel Unordered
Depth-First Search. In Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC *15, New York, NY, USA, 2015. Association for Computing Machinery.
ISBN 9781450337236. doi: 10.1145/2807591.2807651. URL https://doi.org/10.1145/2807591.2807651.

Amal Jamil Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton University, 2004. URL
http://www.cs.indiana.edu/~amal/ahmedsthesis.pdf.

Mohamad A. Akra and Louay Bazzi. On the Solution of Linear Recurrence Equations. Comp. Opt. and Appl.,
10(2):195-210, 1998. URL https://doi.org/10.1023/A:1018373005182.

Stephen Alstrup, Mikkel Thorup, Inge Li Gortz, Theis Rauhe, and Uri Zwick. Union-Find with Constant
Time Deletions. ACM Transactions on Algorithms, 11(1):6:1-6:28, 2014. URL http://doi.acm.org/10.1145/
2636922.

Roberto M. Amadio, Nicholas Ayache, Francois Bobot, Jaap Boender, Brian Campbell, Ilias Garnier, An-
toine Madet, James McKinna, Dominic P. Mulligan, Mauro Piccolo, Randy Pollack, Yann Régis-Gianas,
Claudio Sacerdoti Coen, Ian Stark, and Paolo Tranquilli. Certified Complexity (CerCo). In Foundational
and Practical Aspects of Resource Analysis, volume 8552 of Lecture Notes in Computer Science, pages 1-18.
Springer, August 2014. URL http://dx.doi.org/10.1007/978-3-319-12466-7_1.

Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, Magdalen Dobson, and Yihan Sun. The Problem-
Based Benchmark Suite (PBBS), V2. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’22, page 445-447, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450392044. doi: 10.1145/3503221.3508422. URL https://doi.org/10.
1145/3503221.3508422.

Andrew W. Appel. Verified Software Toolchain. In Proceedings of the 20th European Conference on Program-
ming Languages and Systems: Part of the Joint European Conferences on Theory and Practice of Software,
ESOP’11/ETAPS’11, page 1-17, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 9783642197178. URL
https://doi.org/10.1007/978-3-642-28891-3_2.

Andrew W Appel. Program logics for certified compilers. Cambridge University Press, 2014. URL https:
//doi.org/10.1017/CB0O9781107256552. With Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah
Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy.

Andrew W. Appel. Verified Functional Algorithms, volume 3 of Software Foundations. Electronic textbook,
2022. URL http://softwarefoundations.cis.upenn.edu. Version 1.5.2.

Andrew W Appel and Sandrine Blazy. Separation logic for small-step Cminor. In Klaus Schneider and
Jens Brandt, editors, International Conference on Theorem Proving in Higher Order Logics, pages 5-21,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-74591-4. URL https://doi.org/10.
1007/978-3-540-74591-4_3.

Andrew W. Appel and Qinxiang Cao. Verifiable C, volume 5beta of Software Foundations. Electronic text-
book, 2020. URL http://softwarefoundations.cis.upenn.edu. Version 0.9.5.

Andrew W. Appel and David McAllester. An Indexed Model of Recursive Types for Foundational Proof-
Carrying Code. ACM Trans. Program. Lang. Syst., 23(5):657-683, September 2001. ISSN 0164-0925. doi:
10.1145/504709.504712. URL https://doi.org/10.1145/504709.504712.

Andrew W. Appel, Paul-André Melliés, Christopher D. Richards, and Jérome Vouillon. A Very Modal Model
of a Modern, Major, General Type System. In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT

134

https://www.umut-acar.org/algorithms-book
https://www.umut-acar.org/algorithms-book
https://doi.org/10.1145/2807591.2807651
http://www.cs.indiana.edu/~amal/ahmedsthesis.pdf
https://doi.org/10.1023/A:1018373005182
http://doi.acm.org/10.1145/2636922
http://doi.acm.org/10.1145/2636922
http://dx.doi.org/10.1007/978-3-319-12466-7_1
https://doi.org/10.1145/3503221.3508422
https://doi.org/10.1145/3503221.3508422
https://doi.org/10.1007/978-3-642-28891-3_2
https://doi.org/10.1017/CBO9781107256552
https://doi.org/10.1017/CBO9781107256552
http://softwarefoundations.cis.upenn.edu
https://doi.org/10.1007/978-3-540-74591-4_3
https://doi.org/10.1007/978-3-540-74591-4_3
http://softwarefoundations.cis.upenn.edu
https://doi.org/10.1145/504709.504712

BIBLIOGRAPHY 135

Symposium on Principles of Programming Languages, POPL *07, page 109-122, New York, NY, USA, 2007.
Association for Computing Machinery. ISBN 1595935754. doi: 10.1145/1190216.1190235. URL https:
//doi.org/10.1145/1190216.1190235.

Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds, Gordon Stewart, San-
drine Blazy, and Xavier Leroy. Program Logics for Certified Compilers. Cambridge University Press, USA,
2014. ISBN 110704801X. URL https://doi.org/10.1017/CB09781107256552.

Andrew W. Appel, Lennart Beringer, and Qinxiang Cao. Verifiable C, volume 5 of Software Foundations.
Electronic textbook, 2022. URL http://softwarefoundations.cis.upenn.edu. Version 1.2.1.

David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang Loidl, and Alberto Momigliano. A
program logic for resources. Theoretical Computer Science, 389(3):411-445, 2007. URL https://www.tcs.
ifi.lmu.de/mitarbeiter/martin-hofmann/publikationen-pdfs/j25-ProgramLogisResources.pdf.

Robert Atkey. Amortised Resource Analysis with Separation Logic. In European Symposium on Program-
ming (ESOP), volume 6012 of Lecture Notes in Computer Science, pages 85-103. Springer, 2010. URL
http://personal.cis.strath.ac.uk/~raa/amortised-sep-logic.pdf.

Robert Atkey. Amortised Resource Analysis with Separation Logic. Logical Methods in Computer Science, 7
(2:17), 2011. URL http://bentnib.org/amortised-sep-logic-journal.pdf.

Jeremy Avigad and Kevin Donnelly. Formalizing O Notation in Isabelle/HOL. In International Joint Confer-
ence on Automated Reasoning, volume 3097 of Lecture Notes in Computer Science, pages 357-371. Springer,
July 2004. URL https://www.andrew.cmu.edu/user/avigad/Papers/bigo.pdf.

Callum Bannister, Peter Hofner, and Gerwin Klein. Backwards and Forwards with Separation Logic.
In Jeremy Avigad and Assia Mahboubi, editors, Interactive Theorem Proving, pages 68-87, Cham,
2018. Springer International Publishing. ISBN 978-3-319-94821-8. URL https://doi.org/10.1007/
978-3-319-94821-8_5.

Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Robert E. Tarjan. A New Approach to Incremental
Cycle Detection and Related Problems. ACM Transactions on Algorithms, 12(2):14:1-14:22, 2016. URL
https://doi.org/10.1145/2756553.

Jesper Bengtson, Jonas Braband Jensen, Filip Sieczkowski, and Lars Birkedal. Verifying Object-Oriented
Programs with Higher-Order Separation Logic in Coq. In Marko van Eekelen, Herman Geuvers, Julien
Schmaltz, and Freek Wiedijk, editors, Interactive Theorem Proving, pages 22-38, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg. ISBN 978-3-642-22863-6. URL https://doi.org/10.1007/978-3-642-22863-6_5.

Jesper Bengtson, Jonas Braband Jensen, and Lars Birkedal. Charge! In Lennart Beringer and Amy Felty,
editors, Interactive Theorem Proving, pages 315-331, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
ISBN 978-3-642-32347-8. URL https://doi.org/10.1007/978-3-642-32347-8_21.

Martin Berger, Kohei Honda, and Nobuko Yoshida. A logical analysis of aliasing in imperative higher-order
functions. In International Conference on Functional Programming (ICFP), pages 280-293, September 2005.
URL http://doi.acm.org/10.1145/1086365.1086401.

Bodil Biering, Lars Birkedal, and Noah Torp-Smith. BI Hyperdoctrines and Higher-Order Separation Logic.
In Proceedings of the 14th European Conference on Programming Languages and Systems, ESOP’05, page
233-247, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3540254358. doi: 10.1007/978-3-540-31987-0_
17. URL https://doi.org/10.1007/978-3-540-31987-0_17.

Bodil Biering, Lars Birkedal, and Noah Torp-Smith. BI-Hyperdoctrines, Higher-Order Separation Logic,
and Abstraction. ACM Trans. Program. Lang. Syst., 29(5):24—es, August 2007. ISSN 0164-0925. doi:
10.1145/1275497.1275499. URL https://doi.org/10.1145/1275497.1275499.

Lars Birkedal and Ales Bizjak. Lecture Notes on Iris: Higher-Order Concurrent Separation Logic, 2018. URL
https://iris-project.org/tutorial-material. html.

Lars Birkedal and Hongseok Yang. Relational Parametricity and Separation Logic. In Helmut Seidl, editor,
Foundations of Software Science and Computational Structures, pages 93-107, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg. ISBN 978-3-540-71389-0. URL https://doi.org/10.1007/978-3-540-71389-0_8.

Lars Birkedal, Noah Torp-Smith, and Hongseok Yang. Semantics of separation-logic typing and higher-
order frame rules. In 20th Annual IEEE Symposium on Logic in Computer Science (LICS’05), pages 260-269.
IEEE, 2005. URL https://doi.org/10.1109/LICS.2005.47.

Lars Birkedal, Noah Torp-smith, and Hongseok Yang. Semantics of separation-logic typing and higher-
order frame rules for algol-like languages. volume 2. Logical Methods in Computer Science e.V., Nov
2006. doi: 10.2168/lmcs-2(5:1)2006. URL http://dx.doi.org/10.2168/LMCS-2(5:1)2006.

https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1017/CBO9781107256552
http://softwarefoundations.cis.upenn.edu
https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/publikationen-pdfs/j25-ProgramLogisResources.pdf
https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/publikationen-pdfs/j25-ProgramLogisResources.pdf
http://personal.cis.strath.ac.uk/~raa/amortised-sep-logic.pdf
http://bentnib.org/amortised-sep-logic-journal.pdf
https://www.andrew.cmu.edu/user/avigad/Papers/bigo.pdf
https://doi.org/10.1007/978-3-319-94821-8_5
https://doi.org/10.1007/978-3-319-94821-8_5
https://doi.org/10.1145/2756553
https://doi.org/10.1007/978-3-642-22863-6_5
https://doi.org/10.1007/978-3-642-32347-8_21
http://doi.acm.org/10.1145/1086365.1086401
https://doi.org/10.1007/978-3-540-31987-0_17
https://doi.org/10.1145/1275497.1275499
https://iris-project.org/tutorial-material.html
https://doi.org/10.1007/978-3-540-71389-0_8
https://doi.org/10.1109/LICS.2005.47
http://dx.doi.org/10.2168/LMCS-2(5:1)2006

BIBLIOGRAPHY 136

Lars Birkedal, Bernhard Reus, Jan Schwinghammer, and Hongseok Yang. A Simple Model of Separation
Logic for Higher-Order Store. In Luca Aceto, Ivan Damgard, Leslie Ann Goldberg, Magnis M. Halldérs-
son, Anna Ing6lfsdottir, and Igor Walukiewicz, editors, Automata, Languages and Programming (ICALP),
pages 348-360, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-70583-3. URL
https://doi.org/10.1007/978-3-540-70583-3_29.

Ales Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. Iron: Managing Obligations in Higher-
Order Concurrent Separation Logic. Proc. ACM Program. Lang., 3(POPL), January 2019. doi: 10.1145/
3290378. URL https://doi.org/10.1145/3290378.

Sylvie Boldo and Guillaume Melquiond. Computer Arithmetic and Formal Proofs: Verifying Floating-point
Algorithms with the Coq System. Elsevier, 2017.

Sylvie Boldo, Jean-Christophe Filliatre, and Guillaume Melquiond. Combining Coq and Gappa for certifying
floating-point programs. In International Conference on Intelligent Computer Mathematics, pages 59-74.
Springer, 2009.

Sylvie Boldo, Frangois Clément, Jean-Christophe Fillidtre, Micaela Mayero, Guillaume Melquiond, and
Pierre Weis. Wave Equation Numerical Resolution: a Comprehensive Mechanized Proof of a C Program.
Journal of Automated Reasoning, 50(4):423-456, April 2013. URL https://hal.inria.fr/hal-00649240.

Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Coquelicot: A User-Friendly Library of Real
Analysis for Coq. Mathematics in Computer Science, 9(1):41-62, March 2015. URL https://hal.inria.fr/
hal-00860648.

Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. Permission accounting in
separation logic. In Principles of Programming Languages (POPL), pages 259-270, January 2005. URL
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/permissions_paper.pdf.

Nicolas Bourbaki. General Topology, Chapters 1-4. Springer, 1995. URL https://doi.org/10.1007/
978-3-642-61701-0.

John Boyland. Checking Interference with Fractional Permissions. In Static Analysis Symposium (SAS),
volume 2694 of Lecture Notes in Computer Science, pages 55-72. Springer, June 2003. URL http://www.cs.
uwm.edu/~boyland/papers/permissions.pdf.

Gilles Brassard and Paul Bratley. Fundamentals of algorithmics. Prentice Hall, 1996.

R. M. Burstall. Some Techniques for Proving Correctness of Programs which Alter Data Structures. In
B. Meltzer and D. Mitchie, editors, Machine Intelligence 7, pages 23-50. Edinburgh University Press, Ed-
inburgh, Scotland., 1972.

Hongxu Cai, Zhong Shao, and Alexander Vaynberg. Certified Self-Modifying Code. SIGPLAN Not., 42(6):
66-77, June 2007. ISSN 0362-1340. doi: 10.1145/1273442.1250743. URL https://doi.org/10.1145/1273442.
1250743.

Cristiano Calcagno and Dino Distefano. Infer: An Automatic Program Verifier for Memory Safety of C
Programs. In NASA Formal Methods (NFM), volume 6617 of Lecture Notes in Computer Science, pages
459-465. Springer, April 2011. URL http://www.eecs.qmul.ac.uk/~ddino/papers/nasa-infer.pdf.

Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local Action and Abstract Separation Logic.
In Logic in Computer Science (LICS), pages 366—378, July 2007. URL http://www.doc.ic.ac.uk/~ccris/ftp/
asl-short.pdf.

Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino Luca, Peter
O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez. Moving Fast with Software
Verification. In Klaus Havelund, Gerard Holzmann, and Rajeev Joshi, editors, NASA Formal Methods,
pages 3—-11, Cham, 2015. Springer International Publishing. ISBN 978-3-319-17524-9. URL https://doi.
0rg/10.1007/978-3-319-17524-9_1.

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W Appel. VST-Floyd: A
separation logic tool to verify correctness of C programs. Journal of Automated Reasoning, 61(1-4):367-
422, 2018a. URL https://doi.org/10.1007/s10817-018-9457-5.

Qinxiang Cao, Shengyi Wang, Aquinas Hobor, and Andrew W. Appel. Proof pearl: Magic wand as frame,
2018b. Unpublished.

Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong Shao. End-to-end verification of
stack-space bounds for C programs. In Programming Language Design and Implementation (PLDI), pages
270-281, June 2014. URL http://flint.cs.yale.edu/flint/publications/veristack.pdf.

https://doi.org/10.1007/978-3-540-70583-3_29
https://doi.org/10.1145/3290378
https://hal.inria.fr/hal-00649240
https://hal.inria.fr/hal-00860648
https://hal.inria.fr/hal-00860648
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/permissions_paper.pdf
https://doi.org/10.1007/978-3-642-61701-0
https://doi.org/10.1007/978-3-642-61701-0
http://www.cs.uwm.edu/~boyland/papers/permissions.pdf
http://www.cs.uwm.edu/~boyland/papers/permissions.pdf
https://doi.org/10.1145/1273442.1250743
https://doi.org/10.1145/1273442.1250743
http://www.eecs.qmul.ac.uk/~ddino/papers/nasa-infer.pdf
http://www.doc.ic.ac.uk/~ccris/ftp/asl-short.pdf
http://www.doc.ic.ac.uk/~ccris/ftp/asl-short.pdf
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/s10817-018-9457-5
http://flint.cs.yale.edu/flint/publications/veristack.pdf

BIBLIOGRAPHY 137

Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. Compositional certified resource bounds. In
Programming Language Design and Implementation (PLDI), pages 467-478, June 2015. URL https:
/Iwww.cs.yale.edu/homes/hoffmann/papers/amort_imp15.pdf.

Quentin Carbonneaux, Noam Zilberstein, Christoph Klee, Peter W. O’Hearn, and Francesco Zappa Nardelli.
Applying Formal Verification to Microkernel IPC at Meta. In Proceedings of the 11th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2022, page 116-129, New York, NY, USA,
2022. Association for Computing Machinery. ISBN 9781450391825. doi: 10.1145/3497775.3503681. URL
https://doi.org/10.1145/3497775.3503681.

Arthur Charguéraud. Program Verification Through Characteristic Formulae. In International Conference
on Functional Programming (ICFP), pages 321-332, September 2010. URL http://www.chargueraud.org/
research/2010/cfml/main.pdf.

Arthur Charguéraud. Characteristic Formulae for the Verification of Imperative Programs. In International
Conference on Functional Programming, ICFP ’11, pages 418-430, New York, NY, USA, 2011. Association
for Computing Machinery. ISBN 9781450308656. doi: 10.1145/2034773.2034828. URL https://doi.org/10.
1145/2034773.2034828.

Arthur Charguéraud. Separation Logic for Sequential Programs (Functional Pearl). Proc. ACM Program.
Lang., 4(ICFP), August 2020. doi: 10.1145/3408998. URL https://doi.org/10.1145/3408998.

Arthur Charguéraud and Francois Pottier. Verifying the Correctness and Amortized Complexity of a Union-
Find Implementation in Separation Logic with Time Credits. Journal of Automated Reasoning (JAR), 62
(3):331-365, March 2019. ISSN 0168-7433. doi: 10.1007/s10817-017-9431-7. URL https://doi.org/10.1007/
s10817-017-9431-7.

Arthur Charguéraud and Francois Pottier. Sek, 2021. URL https://gitlab.inria.fr/fpottier/sek/.

Arthur Charguéraud, Jean-Christophe Fillidtre, Claudio Lourenc¢o, and Mario Pereira. GOSPEL - Providing
OCaml with a Formal Specification Language. In Formal Methods (FM), volume 11800 of Lecture Notes in
Computer Science, pages 484-501. Springer, October 2019. URL https://hal.inria.fr/hal-02157484v2.

Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Gruetter. Omnisemantics: Smooth Han-
dling of Nondeterminism. To appear in ACM Transactions on Programming Languages and Systems
(TOPLAS), September 2022. URL https://hal.inria.fr/hal-03255472.

Arthur Charguéraud. Characteristic Formulae for Mechanized Program Verification. PhD thesis, Université
Paris 7, December 2010. URL http://www.chargueraud.org/research/2010/thesis/thesis_final.pdf.

Arthur Charguéraud. Higher-order representation predicates in separation logic. In Certified Programs and
Proofs (CPP), pages 3-14, January 2016. URL https://hal.inria.fr/hal-01408670.

Arthur Charguéraud. Separation Logic Foundations, volume 6 of Software Foundations. 2021. http:
//softwarefoundations.cis.upenn.edu.

Arthur Charguéraud and Frangois Pottier. Machine-Checked Verification of the Correctness and Amortized
Complexity of an Efficient Union-Find Implementation. In Interactive Theorem Proving (ITP), volume 9236
of Lecture Notes in Computer Science, pages 137-153. Springer, August 2015. URL http://cambium.inria.
fr/~fpottier/publis/chargueraud-pottier-uf.pdf.

Arthur Charguéraud and Francois Pottier. Temporary Read-Only Permissions for Separation Logic. In
European Symposium on Programming (ESOP), volume 10201 of Lecture Notes in Computer Science, pages
260-286. Springer, April 2017. URL http://cambium.inria.fr/~fpottier/publis/chargueraud-pottier-slro.
pdf.

Arthur Charguéraud and Francois Pottier. Verifying the Correctness and Amortized Complexity of a Union-
Find Implementation in Separation Logic with Time Credits. Journal of Automated Reasoning, 62(3):
331-365, March 2019. URL http://cambium.inria.fr/~fpottier/publis/chargueraud-pottier-uf-sltc.pdf.

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich.
Using Crash Hoare Logic for Certifying the FSCQ File System. In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP ’15, page 18-37, New York, NY, USA, 2015. Association for Computing
Machinery. ISBN 9781450338349. doi: 10.1145/2815400.2815402. URL https://doi.org/10.1145/2815400.
2815402.

Adam Chlipala. Mostly-automated verification of low-level programs in computational separation logic. In
Programming Language Design and Implementation (PLDI), pages 234-245, June 2011. URL http://adam.
chlipala.net/papers/BedrockPLDI11/BedrockPLDI11.pdf.

https://www.cs.yale.edu/homes/hoffmann/papers/amort_imp15.pdf
https://www.cs.yale.edu/homes/hoffmann/papers/amort_imp15.pdf
https://doi.org/10.1145/3497775.3503681
http://www.chargueraud.org/research/2010/cfml/main.pdf
http://www.chargueraud.org/research/2010/cfml/main.pdf
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/3408998
https://doi.org/10.1007/s10817-017-9431-7
https://doi.org/10.1007/s10817-017-9431-7
https://gitlab.inria.fr/fpottier/sek/
https://hal.inria.fr/hal-02157484v2
https://hal.inria.fr/hal-03255472
http://www.chargueraud.org/research/2010/thesis/thesis_final.pdf
https://hal.inria.fr/hal-01408670
http://softwarefoundations.cis.upenn.edu
http://softwarefoundations.cis.upenn.edu
http://cambium.inria.fr/~fpottier/publis/chargueraud-pottier-uf.pdf
http://cambium.inria.fr/~fpottier/publis/chargueraud-pottier-uf.pdf
http://cambium.inria.fr/~fpottier/publis/chargueraud-pottier-slro.pdf
http://cambium.inria.fr/~fpottier/publis/chargueraud-pottier-slro.pdf
http://cambium.inria.fr/~fpottier/publis/chargueraud-pottier-uf-sltc.pdf
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1145/2815400.2815402
http://adam.chlipala.net/papers/BedrockPLDI11/BedrockPLDI11.pdf
http://adam.chlipala.net/papers/BedrockPLDI11/BedrockPLDI11.pdf

BIBLIOGRAPHY 138

Adam Chlipala. The Bedrock Structured Programming System: Combining Generative Metaprogram-
ming and Hoare Logic in an Extensible Program Verifier. In Proceedings of the 18th ACM SIGPLAN
International conference on Functional programming, volume 48, page 391-402, New York, NY, USA,
September 2013. Association for Computing Machinery. doi: 10.1145/2544174.2500592. URL https:
//doi.org/10.1145/2544174.2500592.

Adam Chlipala. From Network Interface to Multithreaded Web Applications: A Case Study in Modular
Program Verification. In Principles of Programming Languages (POPL), pages 609-622, January 2015.
URL http://adam.chlipala.net/papers/BedrockPOPL15/BedrockPOPL15.pdf.

Adam Chlipala. Formal reasoning about programs, 2018a. URL http://adam.chlipala.net/frap/frap_book.pdf.
Course notes.

Adam Chlipala. Formal reasoning about programs, Coq material for Chapter 14, 2018b. URL https://github.
com/achlipala/frap/blob/master/SeparationLogic.v.

Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wisnesky. Effective interac-
tive proofs for higher-order imperative programs. In International Conference on Functional Programming
(ICFP), pages 79-90, September 2009a. URL http://ynot.cs.harvard.edu/papers/icfp09.pdf.

Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wisnesky. Effective Inter-
active Proofs for Higher-Order Imperative Programs. In ACM International Conference on Functional Pro-
gramming (ICFP), ICFP 09, page 79-90, New York, NY, USA, 2009b. Association for Computing Machin-
ery. ISBN 9781605583327. doi: 10.1145/1596550.1596565. URL https://doi.org/10.1145/1596550.1596565.

Martin Clochard, Jean-Christophe Fillidtre, and Andrei Paskevich. How to avoid proving the absence of
integer overflows. In Verified Software: Theories, Tools and Experiments, volume 9593 of Lecture Notes in
Computer Science, pages 94-109. Springer, July 2015. URL https://hal.inria.fr/hal-01162661.

Sylvain Conchon and Jean-Christophe Fillidtre. A persistent union-find data structure. In ACM Workshop
on ML, pages 37-46, October 2007. URL https://www.Iri.fr/~filliatr/puf/.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms
(Third Edition). MIT Press, 2009. URL http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=
11866.

David Costanzo and Zhong Shao. A Case for Behavior-Preserving Actions in Separation Logic. In Ranjit
Jhala and Atsushi Igarashi, editors, Programming Languages and Systems, pages 332-349, Berlin, Heidel-
berg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-35182-2. doi: 10.1007/978-3-642-35182-2_24.

Karl Crary and Stephanie Weirich. Resource bound certification. In Principles of Programming Languages
(POPL), pages 184-198, January 2000. URL http://www.cs.cornell.edu/talc/papers/resource_bound/res.
pdf.

Nils Anders Danielsson. Lightweight Semiformal Time Complexity Analysis for Purely Functional Data
Structures. In Principles of Programming Languages (POPL), January 2008. URL http://www.cse.chalmers.
se/~nad/publications/danielsson-popl2008.pdf.

Elizabeth Dietrich. A beginner guide to Iris, Coq and separation logic. CoRR, abs/2105.12077, 2021. URL
https://arxiv.org/abs/2105.12077.

Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. Communi-
cations of the ACM, 18(8):453-457, 1975. URL http://doi.acm.org/10.1145/360933.360975.

Robert Dockins, Andrew W. Appel, and Aquinas Hobor. Multimodal Separation Logic for Reasoning About
Operational Semantics. Electronic Notes in Theoretical Computer Science, 218:5 — 20, 2008. ISSN 1571-0661.
doi: https://doi.org/10.1016/j.entcs.2008.10.002. URL http://www.sciencedirect.com/science/article/pii/
S1571066108003964. Proceedings of the 24th Conference on the Mathematical Foundations of Program-
ming Semantics (MFPS XXIV).

Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A Fresh Look at Separation Algebras and Share
Accounting. In Zhenjiang Hu, editor, Programming Languages and Systems, pages 161-177, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-10672-9. URL https://doi.org/10.1007/
978-3-642-10672-9_13.

Manuel Eberl. Proving Divide and Conquer Complexities in Isabelle/HOL. Journal of Automated Reasoning,
58(4):483-508, 2017. URL https://www21.in.tum.de/~eberlm/divide_and_conquer_isabelle.pdf.

Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam Chlipala. Integration Verification
Across Software and Hardware for a Simple Embedded System. PLDI’21, 2021. https://doi.org/10.1145/
3453483.3454065.

https://doi.org/10.1145/2544174.2500592
https://doi.org/10.1145/2544174.2500592
http://adam.chlipala.net/papers/BedrockPOPL15/BedrockPOPL15.pdf
http://adam.chlipala.net/frap/frap_book.pdf
https://github.com/achlipala/frap/blob/master/SeparationLogic.v
https://github.com/achlipala/frap/blob/master/SeparationLogic.v
http://ynot.cs.harvard.edu/papers/icfp09.pdf
https://doi.org/10.1145/1596550.1596565
https://hal.inria.fr/hal-01162661
https://www.lri.fr/~filliatr/puf/
http://mitpress.mit.edu/catalog/item/ default.asp?ttype=2&tid=11866
http://mitpress.mit.edu/catalog/item/ default.asp?ttype=2&tid=11866
http://www.cs.cornell.edu/talc/papers/resource_bound/res.pdf
http://www.cs.cornell.edu/talc/papers/resource_bound/res.pdf
http://www.cse.chalmers.se/~nad/publications/danielsson-popl2008.pdf
http://www.cse.chalmers.se/~nad/publications/danielsson-popl2008.pdf
https://arxiv.org/abs/2105.12077
http://doi.acm.org/10.1145/360933.360975
http://www.sciencedirect.com/science/article/pii/S1571066108003964
http://www.sciencedirect.com/science/article/pii/S1571066108003964
https://doi.org/10.1007/978-3-642-10672-9_13
https://doi.org/10.1007/978-3-642-10672-9_13
https://www21.in.tum.de/~eberlm/divide_and_conquer_isabelle.pdf
https://doi.org/10.1145/3453483.3454065
https://doi.org/10.1145/3453483.3454065

BIBLIOGRAPHY 139

Matthias Felleisen and Robert Hieb. The Revised Report on the Syntactic Theories of Sequential Control
and State. Theoretical Computer Science, 103(2):235-271, 1992. URL https://www2.ccs.neu.edu/racket/
pubs/tcs92-th.pdf.

Xinyu Feng, Zhong Shao, Alexander Vaynberg, Sen Xiang, and Zhaozhong Ni. Modular Verification of
Assembly Code with Stack-Based Control Abstractions. SIGPLAN Not., 41(6):401-414, June 2006. ISSN
0362-1340. doi: 10.1145/1133255.1134028. URL https://doi.org/10.1145/1133255.1134028.

Xinyu Feng, Zhaozhong Ni, Zhong Shao, and Yu Guo. An Open Framework for Foundational Proof-
Carrying Code. In Proc. 2007 ACM SIGPLAN International Workshop on Types in Language Design
and Implementation (TLDI'07), pages 67-78, New York, NY, USA, January 2007. ACM Press. URL
https://doi.org/10.1145/1190315.1190325.

Xinyu Feng, Zhong Shao, Yuan Dong, and Yu Guo. Certifying Low-Level Programs with Hardware In-
terrupts and Preemptive Threads. In Proceedings of the 29th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI *08, page 170-182, New York, NY, USA, 2008. Asso-
ciation for Computing Machinery. ISBN 9781595938602. doi: 10.1145/1375581.1375603. URL https:
//doi.org/10.1145/1375581.1375603.

R. W. Floyd. Assigning meanings to programs. In Mathematical Aspects of Computer Science, volume 19
of Proceedings of Symposia in Applied Mathematics, pages 19-32. American Mathematical Society, 1967.
URL https://people.eecs.berkeley.edu/~necula/Papers/FloydMeaning.pdf.

Bernard A. Galler and Michael J. Fischer. An improved equivalence algorithm. Communications of the ACM,
7(5):301-303, 1964. URL http://doi.acm.org/10.1145/364099.364331.

Alejandro Gémez-Londofio, Johannes Aman Pohjola, Hira Tagdees Syeda, Magnus O. Myreen, and
Yong Kiam Tan. Do you have space for dessert? A verified space cost semantics for CakeML pro-
grams. Proceedings of the ACM on Programming Languages, 4(OOPSLA):204:1-204:29, 2020. URL
https://doi.org/10.1145/3428272.

Google. Announcing KataOS and Sparrow, oct 2022. URL https://opensource.googleblog.com/2022/10/
announcing-kataos-and-sparrow.html.

Michael]J. C. Gordon. Mechanizing Programming Logics in Higher Order Logic, page 387-439. Springer-
Verlag, Berlin, Heidelberg, 1989. ISBN 0387969888. URL https://doi.org/10.1007/978-1-4612-3658-0_10.
Alexey Gotsman, Josh Berdine, and Byron Cook. Precision and the Conjunction Rule in Concurrent Sepa-
ration Logic. Electronic Notes in Theoretical Computer Science, 276:171-190, 2011. URL http://wwwo0.cs.

ucl.ac.uk/staft/b.cook/pdfs/precision_and_the_conjunction_rule_in_concurrent_seperation_logic.pdf.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics: a foundation for computer
science. Addison-Wesley, 1994. URL http://www-cs-faculty.stanford.edu/~knuth/gkp.html.

Armaél Guéneau. Mechanized Verification of the Correctness and Asymptotic Complexity of Programs. PhD
thesis, Université de Paris, December 2019. URL https://tel.archives-ouvertes.fr/tel-02437532.

Armaél Guéneau. Mechanized verification of the correctness and asymptotic complexity of programs : the right
answer at the right time. PhD thesis, 2019. URL http://www.theses.fr/2019UNIP7110. Thése de doctorat
dirigée par Francgois Pottier et Arthur Charguéraud; Informatique Université Paris Cité 2019.

Armaél Guéneau, Magnus O. Myreen, Ramana Kumar, and Michael Norrish. Verified Characteristic For-
mulae for CakeML. In Hongseok Yang, editor, European Symposium on Programming (ESOP), pages
584-610, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg. ISBN 978-3-662-54434-1. URL https:
//doi.org/10.1007/978-3-662-54434-1_22.

Armaél Guéneau, Arthur Charguéraud, and Francois Pottier. A Fistful of Dollars: Formalizing Asymptotic
Complexity Claims via Deductive Program Verification. In Amal Ahmed, editor, European Symposium on
Programming (ESOP), volume 10801 of Lecture Notes in Computer Science, pages 533-560. Springer, April
2018. URL http://cambium.inria.fr/~fpottier/publis/gueneau-chargeraud-pottier-esop2018.pdf.

Armaél Guéneau, Jacques-Henri Jourdan, Arthur Charguéraud, and Francois Pottier. Formal Proof and
Analysis of an Incremental Cycle Detection Algorithm. In Interactive Theorem Proving (ITP), volume
141 of Leibniz International Proceedings in Informatics, pages 18:1-18:20, September 2019a. URL http:
//cambium.inria.fr/~fpottier/publis/gueneau-jourdan-chargueraud-pottier-2019.pdf.

Armaél Guéneau, Jacques-Henri Jourdan, Arthur Charguéraud, and Frangois Pottier. Formal Proof and
Analysis of an Incremental Cycle Detection Algorithm. In John Harrison, John O’Leary, and Andrew Tol-
mach, editors, Interactive Theorem Proving (ITP), volume 141 of Leibniz International Proceedings in Infor-
matics, pages 18:1-18:20, Dagstuhl, Germany, September 2019b. Schloss Dagstuhl-Leibniz-Zentrum fuer

https://www2.ccs.neu.edu/racket/pubs/tcs92-fh.pdf
https://www2.ccs.neu.edu/racket/pubs/tcs92-fh.pdf
https://doi.org/10.1145/1133255.1134028
https://doi.org/10.1145/1190315.1190325
https://doi.org/10.1145/1375581.1375603
https://doi.org/10.1145/1375581.1375603
https://people.eecs.berkeley.edu/~necula/Papers/FloydMeaning.pdf
http://doi.acm.org/10.1145/364099.364331
https://doi.org/10.1145/3428272
https://opensource.googleblog.com/2022/10/announcing-kataos-and-sparrow.html
https://opensource.googleblog.com/2022/10/announcing-kataos-and-sparrow.html
https://doi.org/10.1007/978-1-4612-3658-0_10
http://www0.cs.ucl.ac.uk/staff/b.cook/pdfs/precision_and_the_conjunction_rule_in_concurrent_seperation_logic.pdf
http://www0.cs.ucl.ac.uk/staff/b.cook/pdfs/precision_and_the_conjunction_rule_in_concurrent_seperation_logic.pdf
http://www-cs-faculty.stanford.edu/~knuth/gkp.html
https://tel.archives-ouvertes.fr/tel-02437532
http://www.theses.fr/2019UNIP7110
https://doi.org/10.1007/978-3-662-54434-1_22
https://doi.org/10.1007/978-3-662-54434-1_22
http://cambium.inria.fr/~fpottier/publis/gueneau-chargeraud-pottier-esop2018.pdf
http://cambium.inria.fr/~fpottier/publis/gueneau-jourdan-chargueraud-pottier-2019.pdf
http://cambium.inria.fr/~fpottier/publis/gueneau-jourdan-chargueraud-pottier-2019.pdf

BIBLIOGRAPHY 140

Informatik. URL http://cambium.inria.fr/~fpottier/publis/gueneau-jourdan-chargueraud-pottier-2019.
pdf.

Bernhard Haeupler, Telikepalli Kavitha, Rogers Mathew, Siddhartha Sen 0001, and Robert Endre Tarjan.
Faster Algorithms for Incremental Topological Ordering. In Luca Aceto, Ivan Damgérd, Leslie Ann
Goldberg, Magnus M. Halldorsson, Anna Ingélfsdottir, and Igor Walukiewicz, editors, Automata, Lan-
guages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, Fuly 7-11, 2008,
Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, volume 5125 of Lecture Notes
in Computer Science, pages 421-433. Springer, 2008. ISBN 978-3-540-70574-1.

Maximilian P. L. Haslbeck and Peter Lammich. For a Few Dollars More - Verified Fine-Grained Algorithm
Analysis Down to LLVM. In European Symposium on Programming (ESOP), volume 12648 of Lecture Notes
in Computer Science, pages 292-319. Springer, March 2021. URL https://www21.in.tum.de/~haslbema/
documents/Haslbeck_Lammich_LLVM_with_Time.pdf.

Maximilian P. L. Haslbeck and Tobias Nipkow. Hoare Logics for Time Bounds: A Study in Meta Theory.
In Tools and Algorithms for Construction and Analysis of Systems (TACAS), volume 10805 of Lecture Notes
in Computer Science, pages 155-171. Springer, April 2018. URL https://www21.in.tum.de/~nipkow/pubs/
tacas18.pdf.

Guanhua He, Shengchao Qin, Chenguang Luo, and Wei-Ngan Chin. Memory Usage Verification Using
Hip/Sleek. In Automated Technology for Verification and Analysis (ATVA), volume 5799 of Lecture Notes
in Computer Science, pages 166—181. Springer, October 2009. URL https://dro.dur.ac.uk/6241/.

Matthew Hennessy and Robin Milner. Algebraic Laws for Nondeterminism and Concurrency. J. ACM, 32
(1):137-161, jan 1985. ISSN 0004-5411. doi: 10.1145/2455.2460. URL https://doi.org/10.1145/2455.2460.
C. A.R.Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576-580,

1969. URL http://doi.acm.org/10.1145/363235.363259.

Aquinas Hobor and Jules Villard. The Ramifications of Sharing in Data Structures. In Proceedings of the
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, page
523-536, New York, NY, USA, 2013. Association for Computing Machinery. ISBN 9781450318327. doi:
10.1145/2429069.2429131. URL https://doi.org/10.1145/2429069.2429131.

Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. Oracle Semantics for Concurrent Sep-
aration Logic. In Sophia Drossopoulou, editor, Programming Languages and Systems, pages 353-367,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-78739-6. URL https://doi.org/10.
1007/978-3-540-78739-6_27.

Aquinas Hobor, Robert Dockins, and Andrew W. Appel. A Theory of Indirection via Approximation.
SIGPLAN Not., 45(1):171-184, January 2010. ISSN 0362-1340. doi: 10.1145/1707801.1706322. URL
https://doi.org/10.1145/1707801.1706322.

Jan Hoffmann and Martin Hofmann. Amortized Resource Analysis with Polynomial Potential. In European
Symposium on Programming (ESOP), volume 6012 of Lecture Notes in Computer Science, pages 287-306.
Springer, March 2010. URL http://www.cs.yale.edu/homes/hoffmann/papers/aapoly_conference.pdf.

Martin Hofmann. A type system for bounded space and functional in-place update. Nordic Journal of
Computing, 7(4):258-289, 2000. URL http://www.dcs.ed.ac.uk/home/mxh/nordic.ps.gz.

Martin Hofmann and Steffen Jost. Type-Based Amortised Heap-Space Analysis. In European Sym-
posium on Programming (ESOP), volume 3924 of Lecture Notes in Computer Science, pages 22-37.
Springer, March 2006. URL https://www.tcs.ifi.Imu.de/mitarbeiter/martin-hofmann/publikationen-pdfs/
c36-typebasedamortisedheap-space.pdf.

John E. Hopcroft. Computer Science: The Emergence of a Discipline. Communications of the ACM, 30(3):
198-202, 1987. URL https://doi.org/10.1145/214748.214750.

Rodney R. Howell. On Asymptotic Notation with Multiple Variables. Technical Report 2007-4, Kansas State
University, January 2008. URL http://people.cs.ksu.edu/~rhowell/asymptotic.pdf.

Rodney R. Howell. Algorithms: A Top-Down Approach, July 2012. URL http://people.cs.ksu.edu/~rhowell/
algorithms-text/text/. Draft.

Samin S. Ishtiaq and Peter W. O’Hearn. Bl as an assertion language for mutable data structures. In Princi-
ples of Programming Languages (POPL), pages 14-26, January 2001. URL http://www.cs.ucl.ac.uk/staff/p.
ohearn/papers/bi-assertion-lan.pdf.

Jane Street. Dune: A composable build system, 2018. URL https://dune.build/.

http://cambium.inria.fr/~fpottier/publis/gueneau-jourdan-chargueraud-pottier-2019.pdf
http://cambium.inria.fr/~fpottier/publis/gueneau-jourdan-chargueraud-pottier-2019.pdf
https://www21.in.tum.de/~haslbema/documents/Haslbeck_Lammich_LLVM_with_Time.pdf
https://www21.in.tum.de/~haslbema/documents/Haslbeck_Lammich_LLVM_with_Time.pdf
https://www21.in.tum.de/~nipkow/pubs/tacas18.pdf
https://www21.in.tum.de/~nipkow/pubs/tacas18.pdf
https://dro.dur.ac.uk/6241/
https://doi.org/10.1145/2455.2460
http://doi.acm.org/10.1145/363235.363259
https://doi.org/10.1145/2429069.2429131
https://doi.org/10.1007/978-3-540-78739-6_27
https://doi.org/10.1007/978-3-540-78739-6_27
https://doi.org/10.1145/1707801.1706322
http://www.cs.yale.edu/homes/hoffmann/papers/aapoly_conference.pdf
http://www.dcs.ed.ac.uk/home/mxh/nordic.ps.gz
https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/publikationen-pdfs/c36-typebasedamortisedheap-space.pdf
https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/publikationen-pdfs/c36-typebasedamortisedheap-space.pdf
https://doi.org/10.1145/214748.214750
http://people.cs.ksu.edu/~rhowell/asymptotic.pdf
http://people.cs.ksu.edu/~rhowell/algorithms-text/text/
http://people.cs.ksu.edu/~rhowell/algorithms-text/text/
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/bi-assertion-lan.pdf
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/bi-assertion-lan.pdf
https://dune.build/

BIBLIOGRAPHY 141

Jonas B. Jensen, Nick Benton, and Andrew Kennedy. High-Level Separation Logic for Low-Level Code.
SIGPLAN Not., 48(1):301-314, January 2013. ISSN 0362-1340. doi: 10.1145/2480359.2429105. URL https:
//doi.org/10.1145/2480359.2429105.

Jonas Braband Jensen and Lars Birkedal. Fictional Separation Logic. In Helmut Seidl, editor, Programming
Languages and Systems, pages 377-396, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-
3-642-28869-2. URL https://doi.org/10.1007/978-3-642-28869-2_19.

Jacques-Henri Jourdan. New implementation of cycle detection in univ.ml, 2016. https://github.com/coq/
coq/pull/90.

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek
Dreyer. Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’15,
page 637-650, New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450333009.
doi: 10.1145/2676726.2676980. URL https://doi.org/10.1145/2676726.2676980.

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-Order Ghost State. SIGPLAN Not.,
51(9):256-269, September 2016. ISSN 0362-1340. doi: 10.1145/3022670.2951943. URL https://doi.org/10.
1145/3022670.2951943.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. RustBelt: Securing the Foundations
of the Rust Programming Language. Proc. ACM Program. Lang., 2(POPL), December 2017. doi: 10.1145/
3158154. URL https://doi.org/10.1145/3158154.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ale$ Bizjak, Lars Birkedal, and Derek Dreyer. Iris from
the ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional
Programming, 28:e20, 2018a. URL https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ale§ Bizjak, Lars Birkedal, and Derek Dreyer. Iris from
the ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional
Programming, 28, 2018b. URL https://doi.org/10.1017/50956796818000151.

Haim Kaplan, Nira Shafrir, and Robert E. Tarjan. Union-find with deletions. In Symposium on Discrete
Algorithms (SODA), pages 19-28, January 2002. URL http://dl.acm.org/citation.cfm?id=545381.545384.
Ioannis T. Kassios and Eleftherios Kritikos. A Discipline for Program Verification Based on Backpointers
and Its Use in Observational Disjointness. In European Symposium on Programming (ESOP), volume 7792
of Lecture Notes in Computer Science, pages 149-168. Springer, March 2013. URL https://doi.org/10.1007/

978-3-642-37036-6_10.

Andrew Kennedy, Nick Benton, Jonas B. Jensen, and Pierre-Evariste Dagand. Coq: The World’s Best Macro
Assembler? In Proceedings of the 15th Symposium on Principles and Practice of Declarative Program-
ming, PPDP ’13, page 13-24, New York, NY, USA, 2013. Association for Computing Machinery. ISBN
9781450321549. doi: 10.1145/2505879.2505897. URL https://doi.org/10.1145/2505879.2505897.

Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip Derrin, Dhammika
Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. selL4: formal verification of an operating-system kernel. Communications of the ACM, 53(6):
107-115, 2010. URL http://ertos.nicta.com.au/publications/papers/Klein_ EHACDEEKNSTW_10.pdf.

Gerwin Klein, Rafal Kolanski, and Andrew Boyton. Mechanised Separation Algebra. In Lennart Beringer
and Amy Felty, editors, Interactive Theorem Proving, pages 332-337, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg. ISBN 978-3-642-32347-8. URL https://doi.org/10.1007/978-3-642-32347-8_22.

Rafal Kolanski and Gerwin Klein. Types, Maps and Separation Logic. In Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, pages 276—292,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-03359-9. URL https://doi.org/10.
1007/978-3-642-03359-9_20.

Dexter C. Kozen. The design and analysis of algorithms. Texts and Monographs in Computer Science.
Springer, 1992. URL http://www.cs.cornell.edu/~kozen/papers/daa.pdf.

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. The
Essence of Higher-Order Concurrent Separation Logic. In Proceedings of the 26th European Sympo-
sium on Programming Languages and Systems - Volume 10201, page 696-723, Berlin, Heidelberg, 2017.
Springer-Verlag. ISBN 9783662544334. doi: 10.1007/978-3-662-54434-1_26. URL https://doi.org/10.1007/
978-3-662-54434-1_26.

https://doi.org/10.1145/2480359.2429105
https://doi.org/10.1145/2480359.2429105
https://doi.org/10.1007/978-3-642-28869-2_19
https://github.com/coq/coq/pull/90
https://github.com/coq/coq/pull/90
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3022670.2951943
https://doi.org/10.1145/3022670.2951943
https://doi.org/10.1145/3158154
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://doi.org/10.1017/S0956796818000151
http://dl.acm.org/citation.cfm?id=545381.545384
https://doi.org/10.1007/978-3-642-37036-6_10
https://doi.org/10.1007/978-3-642-37036-6_10
https://doi.org/10.1145/2505879.2505897
http://ertos.nicta.com.au/publications/papers/Klein_EHACDEEKNSTW_10.pdf
https://doi.org/10.1007/978-3-642-32347-8_22
https://doi.org/10.1007/978-3-642-03359-9_20
https://doi.org/10.1007/978-3-642-03359-9_20
http://www.cs.cornell.edu/~kozen/papers/daa.pdf
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-662-54434-1_26

BIBLIOGRAPHY 142

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany,
Arthur Charguéraud, and Derek Dreyer. MoSeL: A General, Extensible Modal Framework for Interactive
Proofs in Separation Logic. Proc. ACM Program. Lang., 2(ICFP), July 2018. doi: 10.1145/3236772. URL
https://doi.org/10.1145/3236772.

Neel R. Krishnaswami, Lars Birkedal, and Jonathan Aldrich. Verifying Event-Driven Programs Using Rami-
fied Frame Properties. In Proceedings of the 5th ACM SIGPLAN Workshop on Types in Language Design and
Implementation, TLDI ’10, page 63-76, New York, NY, USA, 2010. Association for Computing Machinery.
ISBN 9781605588919. doi: 10.1145/1708016.1708025. URL https://doi.org/10.1145/1708016.1708025.

Neelakantan R. Krishnaswami. Verifying Higher-Order Imperative Programs with Higher-Order Separation
Logic. PhD thesis, School of Computer Science, Carnegie Mellon University, 2012. URL http://www.cs.
cmu.edu/~neelk/thesis.pdf.

Neelakantan R. Krishnaswami, Jonathan Aldrich, and Lars Birkedal. Modular verification of the subject-
observer pattern via higher-order separation logic. In In Proceedings of Formal Techniques for Java-like
Programs (FIfJP), 2007.

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML: A Verified Implementa-
tion of ML. In Principles of Programming Languages (POPL), pages 179-191. ACM Press, January 2014.
doi: 10.1145/2535838.2535841. URL https://cakeml.org/popl14.pdf.

Peter Lammich. Refinement to Imperative HOL. Journal of Automated Reasoning, 62(4):481-503, April
2019a. URL https://www21.in.tum.de/~lammich/pub/jar_ref imp_hol.pdf.

Peter Lammich. Refinement to Imperative HOL. Journal of Automated Reasoning (JAR), 62(4):481-503, April
2019b. ISSN 0168-7433. doi: 10.1007/s10817-017-9437-1. URL https://doi.org/10.1007/s10817-017-9437-1.

Peter Lammich and Rene Meis. A Separation Logic Framework for Imperative HOL. Archive of Formal
Proofs, 2012. URL http://afp.sourceforge.net/entries/Separation_Logic_Imperative_HOL.shtml.

Tom Leighton. Notes on better Master theorems for divide-and-conquer recurrences, 1996. URL http:
//courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf.

Xavier Leroy. Formal Verification of a Realistic Compiler. Commun. ACM, 52(7):107-115, July 2009. ISSN
0001-0782. doi: 10.1145/1538788.1538814. URL https://doi.org/10.1145/1538788.1538814.

Jean-Marie Madiot and Francois Pottier. A Separation Logic for Heap Space under Garbage Collection.
Proceedings of the ACM on Programming Languages, 6(POPL), January 2022. URL http://cambium.inria.
fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf.

Nicolas Marti, Reynald Affeldt, and Akinori Yonezawa. Formal Verification of the Heap Manager of an
Operating System Using Separation Logic. In Proceedings of the 8th International Conference on Formal
Methods and Software Engineering, ICFEM’06, page 400-419, Berlin, Heidelberg, 2006. Springer-Verlag.
ISBN 3540474609. doi: 10.1007/11901433_22. URL https://doi.org/10.1007/11901433_22.

Jay A. McCarthy, Burke Fetscher, Max S. New, Daniel Feltey, and Robert Bruce Findler. A Coq Library for
Internal Verification of Running-Times. In Functional and Logic Programming, volume 9613 of Lecture
Notes in Computer Science, pages 144-162. Springer, March 2016. URL https://www.eecs.northwestern.
edu/~robby/pubs/papers/flops2016-mfnff.pdf.

Andrew McCreight, Zhong Shao, Chunxiao Lin, and Long Li. A General Framework for Certifying Garbage
Collectors and Their Mutators. In Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 07, page 468-479, New York, NY, USA, 2007. Association
for Computing Machinery. ISBN 9781595936332. doi: 10.1145/1250734.1250788. URL https://doi.org/10.
1145/1250734.1250788.

Glen Mével, Jacques-Henri Jourdan, and Frangois Pottier. Cosmo: A Concurrent Separation Logic for
Multicore OCaml. Proc. ACM Program. Lang., 4(ICFP), aug 2020. doi: 10.1145/3408978. URL https:
//doi.org/10.1145/3408978.

Alexandre Moine, Arthur Charguéraud, and Francois Pottier. Specification and Verification of a Tran-
sient Stack. In Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2022, page 82-99, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450391825. doi: 10.1145/3497775.3503677. URL https://doi.org/10.1145/3497775.3503677.

Alexandre Moine, Arthur Charguéraud, and Francois Pottier. A High-Level Separation Logic for Heap
Space under Garbage Collection. To appear at POPL’23, January 2023. URL http://www.chargueraud.
org/research/2022/space_with_gc/space_with_gc.pdf.

https://doi.org/10.1145/3236772
https://doi.org/10.1145/1708016.1708025
http://www.cs.cmu.edu/~neelk/thesis.pdf
http://www.cs.cmu.edu/~neelk/thesis.pdf
https://cakeml.org/popl14.pdf
https://www21.in.tum.de/~lammich/pub/jar_ref_imp_hol.pdf
https://doi.org/10.1007/s10817-017-9437-1
http://afp.sourceforge.net/entries/Separation_Logic_Imperative_HOL.shtml
http://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf
http://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf
https://doi.org/10.1145/1538788.1538814
http://cambium.inria.fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf
http://cambium.inria.fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf
https://doi.org/10.1007/11901433_22
https://www.eecs.northwestern.edu/~robby/pubs/papers/flops2016-mfnff.pdf
https://www.eecs.northwestern.edu/~robby/pubs/papers/flops2016-mfnff.pdf
https://doi.org/10.1145/1250734.1250788
https://doi.org/10.1145/1250734.1250788
https://doi.org/10.1145/3408978
https://doi.org/10.1145/3408978
https://doi.org/10.1145/3497775.3503677
http://www.chargueraud.org/research/2022/space_with_gc/space_with_gc.pdf
http://www.chargueraud.org/research/2022/space_with_gc/space_with_gc.pdf

BIBLIOGRAPHY 143

J. Gregory Morrisett, Matthias Felleisen, and Robert Harper. Abstract Models of Memory Management.
In Functional Programming Languages and Computer Architecture (FPCA), pages 66-77, June 1995. URL
https://www.cs.cmu.edu/~rwh/papers/gc/fpca9ds.pdf.

Peter Miiller, Malte Schwerhoff, and Alexander J. Summers. Viper: A Verification Infrastructure for
Permission-Based Reasoning. In Barbara Jobstmann and K. Rustan M. Leino, editors, Verification, Model
Checking, and Abstract Interpretation, pages 41-62, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.
ISBN 978-3-662-49122-5. doi: 10.1007/978-3-662-49122-5_2.

Magnus O Myreen. Formal verification of machine-code programs. PhD thesis, December 2008.

Magnus O. Myreen and Michael J. C. Gordon. Hoare Logic for Realistically Modelled Machine Code. In
Proceedings of the 13th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’07, page 568-582, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 9783540712084.
URL https://doi.org/10.1007/978-3-540-71209-1_44.

Glen Mével, Jacques-Henri Jourdan, and Francois Pottier. Time credits and time receipts in
Iris. In European Symposium on Programming (ESOP), volume 11423 of Lecture Notes in Com-
puter Science, pages 1-27. Springer, April 2019. URL http://cambium.inria.fr/~fpottier/publis/
mevel-jourdan-pottier-time-in-iris-2019.pdf.

Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphism and Separation in Hoare Type
Theory. SIGPLAN Not., 41(9):62-73, September 2006. ISSN 0362-1340. doi: 10.1145/1160074.1159812.
URL https://doi.org/10.1145/1160074.1159812.

Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Hoare Type Theory, Polymorphism and Sep-
aration. J Funct. Program., 18(5-6):865-911, September 2008a. ISSN 0956-7968. doi: 10.1017/
S0956796808006953. URL https://doi.org/10.1017/S0956796808006953.

Aleksandar Nanevski, Greg Morrisett, Avraham Shinnar, Paul Govereau, and Lars Birkedal. Ynot: Depen-
dent Types for Imperative Programs. SIGPLAN Not., 43(9):229-240, September 2008b. ISSN 0362-1340.
doi: 10.1145/1411203.1411237. URL https://doi.org/10.1145/1411203.1411237.

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. How
Amazon web services uses formal methods. Communications of the ACM, 58(4):66-73, 2015.

Zhaozhong Ni and Zhong Shao. Certified Assembly Programming with Embedded Code Pointers. In Confer-
ence Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’06, page 320-333, New York, NY, USA, 2006. Association for Computing Machinery. ISBN 1595930272.
doi: 10.1145/1111037.1111066. URL https://doi.org/10.1145/1111037.1111066.

Zhaozhong Ni, Dachuan Yu, and Zhong Shao. Using XCAP to Certify Realistic Systems Code: Machine
Context Management. In Klaus Schneider and Jens Brandt, editors, Theorem Proving in Higher Order
Logics, pages 189-206, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-74591-4.
URL https://doi.org/10.1007/978-3-540-74591-4_15.

Tobias Nipkow, Jasmin Blanchette, Manuel Eberl, Alejandro Gémez-Londofio, Peter Lammich, Chris-
tian Sternagel, Simon Wimmer, and Bohua Zhan. Functional Algorithms, Verified, 2021. URL https:
//functional-algorithms-verified.org/.

O’Hearn, Reynolds, and Yang. Local Reasoning about Programs that Alter Data Structures. In CSL:
15th Workshop on Computer Science Logic. LNCS, Springer-Verlag, 2001. URL https://doi.org/10.1007/
3-540-44802-0_1.

Peter W. O’'Hearn. Separation logic. Communications of the ACM, 62(2):86-95, 2019. doi: https://doi.org/
10.1145/3211968. URL https://dl.acm.org/doi/10.1145/3211968. The appendix is linked as supplementary
material from the ACM digital library.

Peter W. O’Hearn and David J. Pym. The Logic of Bunched Implications. The Bulletin of Symbolic Logic, 5
(2):215-244, 1999. ISSN 10798986. URL https://doi.org/10.2307/421090.

Pieter Philippaerts, Jan Tobias Miithlberg, Willem Penninckx, Jan Smans, Bart Jacobs, and Frank Piessens.
Software Verification with VeriFast: Industrial Case Studies. Sci. Comput. Program., 82:77-97, March
2014. ISSN 0167-6423. doi: 10.1016/j.scic0.2013.01.006. URL https://doi.org/10.1016/j.scico.2013.01.006.

Alexandre Pilkiewicz and Francois Pottier. The essence of monotonic state. In Types in Lan-
guage Design and Implementation (TLDI), January 2011. URL http://cambium.inria.fr/~fpottier/publis/
pilkiewicz-pottier-monotonicity.pdf.

Francois Pottier. Hiding local state in direct style: a higher-order anti-frame rule. In IEEE Symposium

https://www.cs.cmu.edu/~rwh/papers/gc/fpca95.pdf
https://doi.org/10.1007/978-3-540-71209-1_44
http://cambium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-time-in-iris-2019.pdf
http://cambium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-time-in-iris-2019.pdf
https://doi.org/10.1145/1160074.1159812
https://doi.org/10.1017/S0956796808006953
https://doi.org/10.1145/1411203.1411237
https://doi.org/10.1145/1111037.1111066
https://doi.org/10.1007/978-3-540-74591-4_15
https://functional-algorithms-verified.org/
https://functional-algorithms-verified.org/
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/3-540-44802-0_1
https://dl.acm.org/doi/10.1145/3211968
https://doi.org/10.2307/421090
https://doi.org/10.1016/j.scico.2013.01.006
http://cambium.inria.fr/~fpottier/publis/pilkiewicz-pottier-monotonicity.pdf
http://cambium.inria.fr/~fpottier/publis/pilkiewicz-pottier-monotonicity.pdf

BIBLIOGRAPHY 144

on Logic In Computer Science (LICS), pages 331-340, Pittsburgh, Pennsylvania, June 2008. URL https:
//doi.org/10.1109/LICS.2008.16.

Francois Pottier. Verifying a hash table and its iterators in higher-order separation logic. In Certified
Programs and Proofs (CPP), pages 3-16, January 2017. URL http://cambium.inria.fr/~fpottier/publis/
fpottier-hashtable.pdf.

Viorel Preoteasa. Mechanical Verification of Recursive Procedures Manipulating Pointers Using Separation
Logic. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM 2006: Formal Methods, pages
508-523, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-37216-5. URL https:
//doi.org/10.1007/11813040_34.

Bernhard Reus and Jan Schwinghammer. Separation Logic for Higher-Order Store. In Zoltan Esik, editor,
Computer Science Logic, pages 575-590, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-
3-540-45459-5. URL https://doi.org/10.1007/11874683_38.

John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In Annual IEEE Symposium
on Logic in Computer Science (LICS), pages 55-74, 2002. doi: 10.1109/LICS.2002.1029817.

John C Reynolds. A short course on separation logic, 2006. URL http://cs.ioc.ee/yik/schools/win2006/
reynolds/estslides.pdf.

Adam Sandberg Ericsson, Magnus O. Myreen, and Johannes Aman Pohjola. A Verified Generational
Garbage Collector for CakeML. Journal of Automated Reasoning (JAR), 63, 2019. doi: 10.1007/
$10817-018-9487-z. URL https://link.springer.com/content/pdf/10.1007%2Fs10817-018-9487-z.pdf.

Steven Schifer, Sigurd Schneider, and Gert Smolka. Axiomatic Semantics for Compiler Verification. In
Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pages 188-196, St.
Petersburg FL USA, January 2016. ACM. ISBN 978-1-4503-4127-1. doi: 10.1145/2854065.2854083. https:
//dl.acm.org/doi/10.1145/2854065.2854083.

Jan Schwinghammer, Lars Birkedal, Bernhard Reus, and Hongseok Yang. Nested Hoare Triples and Frame
Rules for Higher-Order Store. In Erich Gradel and Reinhard Kahle, editors, Computer Science Logic,
pages 440-454, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-04027-6. URL
https://doi.org/10.1007/978-3-642-04027-6_32.

Jan Schwinghammer, Hongseok Yang, Lars Birkedal, Francois Pottier, and Bernhard Reus. A Semantic
Foundation for Hidden State. In Luke Ong, editor, Foundations of Software Science and Computational
Structures, pages 2-17, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-12032-9.
URL https://doi.org/10.1007/978-3-642-12032-9_2.

Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola, Harsha Vardhan Simhadri,
and Kanat Tangwongsan. Brief Announcement: The Problem Based Benchmark Suite. In Proceedings
of the Twenty-Fourth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 12,
page 68-70, New York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450312134. doi:
10.1145/2312005.2312018. URL https://doi.org/10.1145/2312005.2312018.

Matthieu Sozeau and Nicolas Tabareau. Universe Polymorphism in Coq. In Interactive Theorem Proving
(I'TP), volume 8558 of Lecture Notes in Computer Science, pages 499-514. Springer, July 2014. URL https:
/Iwww.irif fr/~sozeau/research/publications/Universe_Polymorphism_in_Coq.pdf.

Simon Spies, Lennard Géher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer, and Lars
Birkedal. Transfinite Iris: Resolving an Existential Dilemma of Step-Indexed Separation Logic. In Pro-
ceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Im-
plementation, PLDI 2021, page 80-95, New York, NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450383912. doi: 10.1145/3453483.3454031. URL https://doi.org/10.1145/3453483.3454031.

Kasper Svendsen, Lars Birkedal, and Matthew Parkinson. Verifying Generics and Delegates. In Theo
D’Hondt, editor, ECOOP 2010 — Object-Oriented Programming, pages 175-199, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg. ISBN 978-3-642-14107-2. URL https://doi.org/10.1007/978-3-642-14107-2_9.

Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony C. J. Fox, Scott Owens, and Michael Norrish.
The verified CakeML compiler backend. Journal of Functional Programming, 29:e2, 2019. URL https:
//cakeml.org/jfp19.pdf.

Robert E. Tarjan. Disjoint Set Union. Class notes, 1999. URL http://www.cs.princeton.edu/courses/archive/
spr00/cs423/handout3.pdf.

Robert E. Tarjan and Jan van Leeuwen. Worst-Case Analysis of Set Union Algorithms. Journal of the ACM,
31(2):245-281, April 1984. URL http://dx.doi.org/10.1145/62.2160.

https://doi.org/10.1109/LICS.2008.16
https://doi.org/10.1109/LICS.2008.16
http://cambium.inria.fr/~fpottier/publis/fpottier-hashtable.pdf
http://cambium.inria.fr/~fpottier/publis/fpottier-hashtable.pdf
https://doi.org/10.1007/11813040_34
https://doi.org/10.1007/11813040_34
https://doi.org/10.1007/11874683_38
http://cs.ioc.ee/yik/schools/win2006/reynolds/estslides.pdf
http://cs.ioc.ee/yik/schools/win2006/reynolds/estslides.pdf
https://link.springer.com/content/pdf/10.1007%2Fs10817-018-9487-z.pdf
https://dl.acm.org/doi/10.1145/2854065.2854083
https://dl.acm.org/doi/10.1145/2854065.2854083
https://doi.org/10.1007/978-3-642-04027-6_32
https://doi.org/10.1007/978-3-642-12032-9_2
https://doi.org/10.1145/2312005.2312018
https://www.irif.fr/~sozeau/research/publications/Universe_Polymorphism_in_Coq.pdf
https://www.irif.fr/~sozeau/research/publications/Universe_Polymorphism_in_Coq.pdf
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1007/978-3-642-14107-2_9
https://cakeml.org/jfp19.pdf
https://cakeml.org/jfp19.pdf
http://www.cs.princeton.edu/courses/archive/spr00/cs423/handout3.pdf
http://www.cs.princeton.edu/courses/archive/spr00/cs423/handout3.pdf
http://dx.doi.org/10.1145/62.2160

BIBLIOGRAPHY 145

Robert Endre Tarjan. Efficiency of a Good But Not Linear Set Union Algorithm. Journal of the ACM, 22(2):
215-225, April 1975. URL http://www.csd.uwo.ca/~eschost/Teaching/07-08/CS445a/p215-tarjan.pdf.
Robert Endre Tarjan. Amortized Computational Complexity. SIAM Journal on Algebraic and Discrete Meth-

ods, 6(2):306-318, 1985. URL http://dx.doi.org/10.1137/0606031.

Robert Endre Tarjan. Algorithmic Design. Communications of the ACM, 30(3):204-212, 1987. URL https:
//doi.org/10.1145/214748.214752.

Joseph Tassarotti, Ralf Jung, and Robert Harper. A Higher-Order Logic for Concurrent Termination-
Preserving Refinement. In Hongseok Yang, editor, Programming Languages and Systems, pages 909-936,
Berlin, Heidelberg, 2017a. Springer Berlin Heidelberg. ISBN 978-3-662-54434-1.

Joseph Tassarotti, Ralf Jung, and Robert Harper. A Higher-Order Logic for Concurrent Termination-
Preserving Refinement. In European Symposium on Programming (ESOP), volume 10201 of Lecture
Notes in Computer Science, pages 909-936. Springer, April 2017b. URL https://iris-project.org/pdfs/
2017-esop-refinement-final.pdf.

The Coq development team. The Coq Proof Assistant, 2020. URL http://coq.inria.fr/.

Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, Bytes, and Separation Logic. SIGPLAN Not., 42
(1):97-108, January 2007. ISSN 0362-1340. doi: 10.1145/1190215.1190234. URL https://doi.org/10.1145/
1190215.1190234.

Thomas Tuerk. Local reasoning about while-loops. Unpublished, August 2010. URL http://www.cl.cam.ac.
uk/~tt291/talks/vstte10.pdf.

Thomas Tuerk. A separation logic framework for HOL. Technical Report UCAM-CL-TR-799, Uni-
versity of Cambridge, Computer Laboratory, June 2011. URL https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-799.pdf.

Viktor Vafeiadis and Matthew Parkinson. A Marriage of Rely/Guarantee and Separation Logic. In Luis
Caires and Vasco T. Vasconcelos, editors, CONCUR 2007 — Concurrency Theory, pages 256—271, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-74407-8. URL https://doi.org/10.1007/
978-3-540-74407-8_18.

Carsten Varming and Lars Birkedal. Higher-Order Separation Logic in Isabelle/HOLCF. Electronic Notes in
Theoretical Computer Science, 218:371 — 389, 2008. ISSN 1571-0661. doi: https://doi.org/10.1016/j.entcs.
2008.10.022. URL http://www.sciencedirect.com/science/article/pii/S1571066108004167. Proceedings of
the 24th Conference on the Mathematical Foundations of Programming Semantics (MFPS XXIV).

Wei Wang, Zhong Shao, Xinyu Jiang, and Yu Guo. A Simple Model for Certifying Assembly Programs
with First-Class Function Pointers. In Zhenhua Duan and C.-H. Luke Ong, editors, 5th IEEE International
Symposium on Theoretical Aspects of Software Engineering, TASE 2011, Xi’an, China, 29-31 August 2011,
pages 125-132. IEEE Computer Society, 2011. doi: 10.1109/TASE.2011.16. URL https://doi.org/10.1109/
TASE.2011.16.

Tjark Weber. Towards Mechanized Program Verification with Separation Logic. In Jerzy Marcinkowski
and Andrzej Tarlecki, editors, Computer Science Logic, pages 250-264, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg. ISBN 978-3-540-30124-0. URL https://doi.org/10.1007/978-3-540-30124-0_21.

Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang, and Zhaohui Li. A practical verification
framework for preemptive OS kernels. In Swarat Chaudhuri and Azadeh Farzan, editors, International
Conference on Computer Aided Verification, pages 59-79, Cham, 2016. Springer, Springer International
Publishing. URL https://doi.org/10.1007/978-3-319-41540-6_4.

Dachuan Yu, Nadeem A. Hamid, and Zhong Shao. Building Certified Libraries for PCC: Dynamic Storage
Allocation. In Pierpaolo Degano, editor, Programming Languages and Systems, pages 363-379, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-540-36575-4. URL https://doi.org/10.1007/
3-540-36575-3_25.

Dachuan Yu, Nadeem A. Hamid, and Zhong Shao. Building Certified Libraries for PCC: Dynamic Stor-
age Allocation. Science of Computer Programming, 50(1-3):101-127, 2004. URL https://doi.org/10.1007/
3-540-36575-3_25.

Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model Checking TLA+ Specifications. In Laurence
Pierre and Thomas Kropf, editors, Correct Hardware Design and Verification Methods, pages 54—66, Berlin,
Heidelberg, 1999. Springer Berlin Heidelberg. ISBN 978-3-540-48153-9.

http://www.csd.uwo.ca/~eschost/Teaching/07-08/CS445a/p215-tarjan.pdf
http://dx.doi.org/10.1137/0606031
https://doi.org/10.1145/214748.214752
https://doi.org/10.1145/214748.214752
https://iris-project.org/pdfs/2017-esop-refinement-final.pdf
https://iris-project.org/pdfs/2017-esop-refinement-final.pdf
http://coq.inria.fr/
https://doi.org/10.1145/1190215.1190234
https://doi.org/10.1145/1190215.1190234
http://www.cl.cam.ac.uk/~tt291/talks/vstte10.pdf
http://www.cl.cam.ac.uk/~tt291/talks/vstte10.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-799.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-799.pdf
https://doi.org/10.1007/978-3-540-74407-8_18
https://doi.org/10.1007/978-3-540-74407-8_18
http://www.sciencedirect.com/science/article/pii/S1571066108004167
https://doi.org/10.1109/TASE.2011.16
https://doi.org/10.1109/TASE.2011.16
https://doi.org/10.1007/978-3-540-30124-0_21
https://doi.org/10.1007/978-3-319-41540-6_4
https://doi.org/10.1007/3-540-36575-3_25
https://doi.org/10.1007/3-540-36575-3_25
https://doi.org/10.1007/3-540-36575-3_25
https://doi.org/10.1007/3-540-36575-3_25

	Introduction
	Context
	Separation Logic
	Contents

	Foundations of Separation Logic
	Overview of the Features of Separation Logic
	Heap Predicates and Entailment
	Language Syntax and Semantics
	Triples and Reasoning Rules
	The Magic Wand Operator
	Weakest-Precondition Style

	Language Extensions
	Partially-Affine Separation Logic
	Beyond A-normal Form: The Bind Rule
	Treatment of Functions of Several Arguments
	Treatment of Dynamic Checks
	Inductive Reasoning for Loops
	Arrays in an ML-like Language
	Arrays in a C-like Language
	Records

	Omni-Big-Step Semantics
	Definition of the Omni-Big-Step Judgment
	History of the Omni-Big-Step Judgment
	Properties of the Omni-Big-Step Judgment
	Frame Property for the Omni-Big-Step Judgment
	Definition of the Weakest-Precondition Predicate
	Definition of Triples w.r.t. Omni-Big-Step Semantics
	Other Applications of Omnisemantics

	Characteristic Formulae
	Principle of Characteristic Formulae
	Building a Characteristic Formulae Generator, Step by Step
	Properties and Definition of the ``framed'' Predicate
	Soundness of Characteristic Formulae
	Interactive Proofs using Characteristic Formulae
	Implementation of CFML-Style Tactics

	Lifting: from Program Values to Logical Values
	Motivation for Lifting
	A Typeclass for Encodable Coq Types
	Definition of Lifted Triples
	Lifted Representation Predicates
	Attempt at a Lifted Characteristic Formulae Generator
	An External Characteristic Formulae Generator
	Specifications for Operations on Lifted Records
	Validation of Lifted Characteristic Formulae

	Resource Analysis
	Motivation and Related Work on Resource Analysis
	Principle of Time Credits
	Realizing Time Credits as Ghost State
	Soundness of Time Credits with respect to the Semantics
	Possibly Negative Time Credits
	Formal Analysis of the Union-Find Data Structure

	Big-O Notation for Time Bounds
	Motivation for the Asymptotic Notation
	Challenges with Big-O
	Prior Work on Formal Definitions for Big-O
	Formalization of Big-O
	Using Big-O Notation in Specifications
	Small Case Studies
	Formal Analysis of Incremental Cycle Detection

	Space Bounds for Garbage-Collected Heap Space
	Reachability, Roots, and The Free Variable Rule
	Visible and Invisible Roots
	Logical Deallocation and its Requirements
	Reasoning about Invisible Roots
	Semantics Aware of Garbage Collection
	Soundness Theorem with Space Bounds
	Case Study: Stacks of Stacks

	A Survey of Separation Logic for Sequential Programs
	Original Presentation of Separation Logic
	Additional Features of Separation Logic
	Mechanized Presentations of Separation Logic
	Course Notes on Separation Logic
	Partial Correctness and Termination

	Perspectives

