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1 INTRODUCTION
Separation Logic brought a major breakthrough in the area of program verification [O’Hearn 2019]
(Gödel Prize citation). Since its introduction, Separation Logic has made its way into a number of
practical tools that are used on a daily basis for verifying programs ranging from operating systems
kernels [Xu et al. 2016] and file systems [Chen et al. 2015] to data structures [Pottier 2017] and graph
algorithms [Guéneau et al. 2019]. These programs are written in various programming languages,
including machine code [Myreen and Gordon 2007], assembly [Ni and Shao 2006][Chlipala 2013],
C-language [Appel and Blazy 2007], OCaml [Charguéraud 2011], SML [Kumar et al. 2014], and
Rust [Jung et al. 2017].

The key ideas of Separation Logic were devised by John Reynolds, inspired in part by older work
by Burstall [1972]. Reynolds presented his ideas in lectures given in the fall of 1999. The proposed
rules turned out to be unsound, but O’Hearn and Ishtiaq [2001] noticed a strong relationship with
the logic of bunched implications [O’Hearn and Pym 1999], leading to ideas on how to set up a
sound program logic. Soon afterwards, the seminal publications on Separation Logic appeared at
the CSL workshop [O’Hearn et al. 2001] and at the LICS conference [Reynolds 2002].

Today, when I teach students about Separation Logic, many of them find it hard to believe that
Separation Logic has not been around for ever, or at least for as long as program verification
exists. Perhaps the best way to truly value Reynold’s contribution is to realize that, following the
introduction of the first program logics in the late sixties [Floyd 1967; Hoare 1969], people have
tried for 30 years to verify programs without Separation Logic.

Given its great interest, Separation Logic should presumably be taught to most, if not all, students
in the field of programming languages. While Concurrent Separation Logic is a notoriously hard
topic [Jung et al. 2018; O’Hearn 2019], Separation Logic for sequential programs is accessible to
master students with basic knowledge in logic and semantics. There exists a number of courses
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116:2 Arthur Charguéraud

that cover Separation Logic for sequential programs, from Reynold’s course notes [2006] to modern
courses presenting Separation Logic in the context of mechanized proofs, e.g., [Appel 2014; Birkedal
and Bizjak 2018; Chlipala 2018a]. However, as we argue in detail in the related work section, existing
presentations of Separation Logic either axiomatize the logic and omit important aspects of the
soundness proof, or present a soundness proof that involves a number of technical obstacles that
get in the way of the students’ understanding.

This paper presents a formalization of Separation Logic for sequential programs that, we believe,
is simple enough that master students can follow through every detail of its soundness proof,
interactively in the Coq proof assistant. Actually, the main contribution of the work described
in this paper is a course, entitled Foundations of Separation Logic and written in the style of the
Software Foundations series [Pierce and many contributors 2016]. The present paper consists of a
summary of the material from that course, with formal definitions formatted using LaTeX. We refer
to the supplementary material [Charguéraud 2020] for the proofs omitted from this paper, as well
as numerous additional examples, exercises, comments, and discussion of alternative definitions.
This paper also includes the presentation five key features of Separation Logic that were intro-

duced after the seminal paper from 2002.

(1) The ramified frame rule is a concise and practical rule that combines the frame rule and the
rule of consequence into a single rule. The ramified frame rule is essential for automatically
simplifying entailments in a robust way (§7.3).

(2) The magic wand operator can be generalized from heap predicates to postconditions. The
magic wand operator for postconditions is useful for languages featuring terms with return
values, in particular to state the ramified frame rule.

(3) The inductive reasoning rule for loops allows applying the frame rule over the remaining
iterations of a loop. This rule typically saves the need to introduce list segments or tree
contexts in the statement of loop invariants. In particular, it saves a considerable amount of
work when verifying functions that go down a tree-shaped data structure using a while loop.
Such functions are pervasive in C implementations of tree-based containers.

(4) The weakest-precondition calculus is, just like in Hoare Logic, a central ingredient for setting
up practical verification tools for Separation Logic. In particular, the weakest-precondition
style presentation enables better factorization in the statement of reasoning rules, and sim-
plifies the set up of tactics that help instantiating the rules.

(5) The coexistence of linear heap predicates and affine heap predicates is a must-have for any
language equipped with a GC (§8.2). We explain how to set up a Separation Logic with
customizable control over which heap predicates are linear and which ones are affine. Such a
set up allows to control which heap predicates may be freely discarded.

The features listed above might appear to be somewhat technical, yet there are absolutely essential
for taking full advantage of Separation Logic.
The formalization of Separation Logic that we present targets a λ-calculus with imperative

features. We consider this language for two reasons. First, the λ-calculus has proved well-suited
for teaching programming language semantics in general, as it abstracts away from the details
of industrial programming languages. Second, targeting an ML-style language with immutable
variables andmutable heap-allocatedmemory cells leads to the simplest formulation of the reasoning
rules, avoiding a number of complications associated with mutable variables. In technical terms,
our Coq formalization relies on a standard deep embedding of an imperative λ-calculus. This
embedding features: an inductive definition of the abstract syntax tree, a recursive definition of the
capture-avoiding substitution function, and an inductive definition of the operational semantics.
We consider a big-step semantics to simplify the soundness proof.
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Our formalization targets the simplest variant of Separation Logic. The heap predicates are
defined as higher-order logic predicates, that is, as plain Coq definitions. The reasoning rules of the
logic are stated as lemmas that are proved correct with respect to the big-step evaluation rules. In
technically terms, our formalization consists of a shallow embedding of Separation Logic in Coq.
This approach naturally yields a very expressive higher-order Separation Logic. It is employed by
the majority of practical verification tools that embed Separation Logic in a proof assistant. It thus
makes sense to teach that approach to students that will use or develop those verification tools.
By presenting our course notes on Separation Logic, whose contents are summarized in the

present paper, we aim to make the following contributions.
(1) We present a mechanized soundness proof for Separation Logic for sequential programs that

we believe to be more accessible to students than previously-available proofs.
(2) We present the first course on Separation Logic written in the style of the Software Foundations

series. This presentation style, in which every definition and every lemma is presented via
its mechanized statement, has been successfully employed for teaching material related to
logic and programming languages. Note that the course is focused on the foundations of
Separation Logic and the description of its features. It does not (yet) include a large collection
of examples illustrating how to specify and verify data structures and algorithms.

(3) We present, within a same paper, five key features that were previously scattered in the
literature from the past decade: the ramified frame rule, the magic wand for postconditions,
the inductive reasoning technique for loops, the customizable control of affinity, and the
weakest-precondition style presentation of the reasoning rules.

This paper is organized as follows. We first give an overview of the key features of Separa-
tion Logic (§2). We then present the operators of the logic (§3), the syntax and semantics of the
language (§4), the definition of triples and the statement of the reasoning rules (§5). Next, we
describe additional techniques: inductive reasoning for loops (§6), the magic wand operator (§7),
the generalization to a partially-affine logic (§8), and the presentation in weakest-precondition
style (§9). Finally, we give references for all the ideas presented, and discuss related work (§10).

The supplementary material [Charguéraud 2020] accompanying the present submission contains:
(1) the full contents of the course, both in Coq and HTML format, (2) a file that contains just the
core definitions and soundness proof (SLFMinimal.v), and (3) an appendix to the present paper.
This appendix includes statistics on our soundness proof for Separation Logic (§A), background on
extensionality axioms (§B), the presentation of the proofs of representative reasoning rules (§C),
an example Separation Logic proof (§D), an illustration of the benefits of the frame rule in the
proof of recursive functions (§E), a solution to the cps-append verification challenge proposed
by Reynolds (§F), a discussion of alternative structural rules (§G), a description of the treatment
of assertions (§I), of arrays and records (§H), and n-ary functions (§J), and the description of an
algorithm for simplifying entailment relations (§K).

2 OVERVIEW OF THE FEATURES OF SEPARATION LOGIC
This section gives an overview of the features that are specific to Separation Logic: the separating
conjunction and the frame rule, which enable local reasoning and small-footprint specifications, the
treatment of aliasing, the specification of recursive pointer-based data structures such as mutable
linked lists, and the ability to ensure complete deallocation of all allocated data.

2.1 The Frame Rule
In Hoare logic, the behavior of a command t is specified through a triple, written {H } t {Q }, where
the precondition H describes the input state and the postcondition Q describes the output state.
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Whereas in Hoare Logic H and Q describe the whole memory state, in Separation Logic they
describe only a fragment of the memory state, a fragment that includes all the resources involved
in the execution of the command t .
The frame rule asserts that if a command t safely executes in a given piece of state, then it also

executes safely in a larger piece of state. More precisely, if t executes in a state described by H
and produces a final state described by Q , then this program can also be executed in a state that
extends H with a disjoint piece of state described by H ′. The corresponding final state consists
of Q extended with H ′, capturing the fact that the additional piece of state is unmodified by the
execution of t . The frame rule enables local reasoning, defined as follows [O’Hearn et al. 2001].

To understand how a program works, it should be possible for reasoning and specification
to be confined to the cells that the program actually accesses. The value of any other cell
will automatically remain unchanged.

The frame rule is stated using the separating conjunction, written ⋆, which is a binary operator
over heap predicates. In Separation Logic, pieces of states are traditionnally called heaps, and
predicate over heaps are called heap predicates. Given two heap predicates H and H ′, the heap
predicate H ⋆H ′ describes a heap made of two disjoint parts, one that satisfies H and one that
satisfies H ′. The statement of the frame rule, shown below, asserts that any triple remains valid
when extending both its precondition and its postcondition with an arbitrary predicate H ′.

{H } t {Q }

{H ⋆H ′} t {Q ⋆H ′}
frame-for-commands

where t is a command.

In this paper, we do not consider a language of commands but a language based on the λ-calculus,
with programs described as terms that evaluate to values. (The language is formalized in §4.1.) In
that setting, a specification triple takes the form {H } t {λx .H ′}, where H describes the input state,
x denotes the value produced by the term t , and H ′ describes the output state, with x bound in H ′.
For such triples, the frame rule is stated either as:

{H } t {λx . H ′′}

{H ⋆H ′} t {λx . H ′′ ⋆H ′}
frame where t is a term producing a value,

and x < fv(H ′)

or, more concisely, as:

{H } t {Q }

{H ⋆H ′} t {Q .⋆H ′}
frame

where Q .⋆H ≡ λv . (Q v ⋆H ).

2.2 Separation Logic Specifications
What makes Separation Logic work smoothly in practice is that specifications are expressed using a
small number of operators for defining heap predicates, such that these operators interact well with
the separating conjunctions. The most important operators are summarized below—they appear in
examples throughout the rest of this section, and are formally defined further on (§3.2).
• p ↪→ v , to be read “p points to v”, describes a single memory cell, allocated at address p, with
contents v .
• [ ] describes an empty state.
• [P] also describes an empty state, and moreover asserts that the proposition P is true.
• H1⋆H2 describes a heapmade of two disjoint parts, one described byH1 and another described
by H2.
• ∃∃x .H and ∀∀x .H are used to quantify variables in Separation Logic assertions.
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We call these operators the core heap predicate operators, because all the other Separation Logic
operators can be defined in terms of these core operators.
The heap predicate operators appear in the statement of preconditions and postconditions.

For example, consider the specification of the function incr, which increments the contents of a
reference cell. It is specified using a triple of the form {H } (incrp) {Q }.

Example 2.1 (Specification of the increment function).

∀p n. {p ↪→ n} (incrp) {λ_. p ↪→ (n + 1)}
The precondition describes the existence of a memory cell that stores an integer value, through the
predicate p ↪→ n. The postcondition describes the final heap in the form p ↪→ (n + 1), reflecting the
increment of the contents. The “λ_. ” symbol at the head of the postcondition indicates that the
value returned by incrp, namely the unit value, needs not be assigned a name.

Throughout the rest of the paper, the outermost universal quantifications (e.g., “∀p n.”) are left
implicit, following standard practice.

2.3 Implications of the Frame Rule
The precondition in the specification of incrp describes only the reference cell involved in the
function call, and nothing else. Consider now the execution of incrp in a heap that consists of two
distinct memory cells, the first one being described as p ↪→ n, and the other being described as
q ↪→ m. In Separation Logic, the conjunction of these two heap predicates are described by the
heap predicate (p ↪→ n) ⋆ (q ↪→m). There, the separating conjunction (a.k.a. the star) captures the
property that the two cells are distinct. The corresponding postcondition of incrp describes the
updated cell p ↪→ (n + 1) as well as the other cell q ↪→m, whose contents is not affected by the call
to the increment function. The corresponding Separation Logic triple is therefore stated as follows.

Example 2.2 (Application of the frame rule on the specification of the increment function).

{(p ↪→ n) ⋆ (q ↪→m)} (incrp) {λ_. (p ↪→ n + 1) ⋆ (q ↪→m)}

The above triple is derivable from the one stated in Example 2.1 by applying the frame rule to
add the heap predicate q ↪→m both to the precondition and to the postcondition. More generally,
any heap predicate H can be added to the original, minimalist specification of incrp. Thus we have:

{(p ↪→ n) ⋆H } (incrp) {λ_. (p ↪→ n + 1) ⋆H }.

2.4 Treatment of Potentially-Aliased Arguments
We next discuss the case of potentially-aliased reference cells. In the previous example, we have
considered two reference cells p and q assumed to be distinct from each other. Consider now
a function that expects as arguments two reference cells, at addresses p and q, and increments
both. Potentially, the two arguments might correspond to the same reference cell. The function
thus admits two specifications. The first one describes the case of two distinct arguments, using
separating conjunction to assert the difference. The second one describes the case of two aliased
arguments, that is, the case p = q, for which the precondition describes only one reference cell.

Example 2.3 (Potentially aliased arguments). The function:
let incr_two p q = (incr p; incr q)

admits the following two specifications.
{(p ↪→ n) ⋆ (q ↪→m)} (incr_two p q) {λ_. (p ↪→ n + 1) ⋆ (q ↪→m + 1)}

{p ↪→ n} (incr_two p p) {λ_. (p ↪→ n + 2)}

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 116. Publication date: August 2020.



116:6 Arthur Charguéraud

2.5 Small-Footprint Specifications
A Separation Logic triple captures all the interactions that a term may have with the memory
state. Any piece of state that is not described explicitly in the precondition is guaranteed to remain
untouched. Separation Logic therefore encourages small footprint specifications, i.e., specifications
that mention nothing but what is strictly needed. The small-footprint specifications for the primitive
operations ref, get and set are stated and explained next.

Example 2.4 (Specification of primitive operations on references).

{[ ]} (refv ) {λr . ∃∃p. [r = p] ⋆ (p ↪→ v )}
{p ↪→ v} (getp) {λr . [r = v] ⋆ (p ↪→ v )}
{p ↪→ v} (setpv ′) {λ_. (p ↪→ v ′)}

The operation refv can execute in the empty state, described by [ ]. It returns a value, named r ,
that corresponds to a pointer p, such that the final heap is described by p ↪→ v . In the postcondition,
the variable p is quantified existentially, and the pure predicate [r = p] denotes an equality between
the value r and the address p, viewed as an element from the grammar of values (formalized in
§4.1). The operation getp requires in its precondition the existence of a cell described by p ↪→ v .
Its postcondition asserts that the result value, named r , is equal to the value v , and that the final
heap remains described by p ↪→ v . The operation setpv ′ also requires a heap described by p ↪→ v .
Its postcondition asserts that the updated heap is described by p ↪→ v ′. The result value, namely
unit, is ignored.
The possibility to state a small-footprint specification for the allocation operation captures an

essential property: the reference cell allocated by ref is implicitly asserted to be distinct from any
pre-existing reference cell. This property can be formally derived by applying the frame rule to the
specification triple for ref. For example, the triple stated below asserts that if a cell described by
q ↪→ v ′ exists before the allocation operation refv , then the new cell described by p ↪→ v is distinct
from that pre-existing cell. This freshness property is captured by the separating conjunction
(p ↪→ v ) ⋆ (q ↪→ v ′).

Example 2.5 (Application of the frame rule to the specification of allocation).

{q ↪→ v ′} (refv ) {λr . ∃∃p. [r = p]⋆ (p ↪→ v ) ⋆ (q ↪→ v ′)}

The strength of the separating conjunction is even more impressive when involved in the
description of recursive data structures such as mutable lists, which we present next.

2.6 Representation of Mutable Lists
A mutable linked list consists of a chain of cells. Each cell contains two fields: the head field stores
a value, which corresponds to an item from the list; the tail field stores either a pointer onto the
next cell in the list, or the null pointer to indicate the end of the list.

Definition 2.6 (Representation of a list cell). A list cell allocated at address p, storing the value v
and the pointer q, is represented by two singleton heap predicates, in the form:

(p.head ↪→ x ) ⋆ (p.tail ↪→ q)

where “p.k” is a notation for the address p + k , and “head ≡ 0” and “tail ≡ 1” denote the offsets.

A mutable linked list is described by a heap predicate of the form MlistLp, where p denotes the
address of the head cell and L denotes the logical list of the elements stored in the mutable list. The
predicateMlist is called a representation predicate, because it relates the pair made of a pointer p
and of the heap-allocated data structure that originates at p together with the logical representation
of this data structure, namely the list L.
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The predicate Mlist is defined recursively on the structure of the list L. If L is the empty list,
then p must be null. Otherwise, L is of the form x :: L′. In this case, the head field of p stores the
item x , and the tail field of p stores a pointer q such that MlistL′ q describes the tail of the list. The
case disjunction is expressed using Coq’s pattern-matching construct.

Definition 2.7 (Representation of a mutable list).

MlistLp ≡ matchLwith
| nil ⇒ [p = null]
| x :: L′ ⇒ ∃∃q. (p.head ↪→ x ) ⋆ (p.tail ↪→ q) ⋆ (MlistL′ q)

Example 2.8 (Application of the predicate Mlist to a list of length 3). To see how Mlist unfolds on
a concrete example, consider the example of a mutable list storing the values 8, 5, and 6.

Mlist (8 :: 5 :: 6 :: nil) p ≡ ∃∃p1. (p.head ↪→ 8) ⋆ (p.tail ↪→ p1)
⋆ ∃∃p2. (p1.head ↪→ 5) ⋆ (p1.tail ↪→ p2)
⋆ ∃∃p3. (p2.head ↪→ 6) ⋆ (p2.tail ↪→ p3)
⋆ [p3 = null]

Observe how the definition ofMlist, by iterating the separating conjunction operator, ensures
that all the list cells are distinct from each other. In particular, Mlist precludes the possibility of
cycles in the linked list, and precludes inadvertent sharing of list cells with other mutable lists.
Definition 2.7 characterizes Mlist by case analysis on whether the list L is empty. Another,

equivalent definition instead characterizes Mlist by case analysis on whether the pointer p is null.
This alternative definition is very useful because most list-manipulating programs involve code
that tests whether the list pointer at hand is null.

Definition 2.9 (Alternative definition for Mlist).

MlistLp ≡ If (p = null)
then [L = nil]
else ∃∃xL′q. [L = x :: L′] ⋆ (p.head ↪→ x ) ⋆ (p.tail ↪→ q) ⋆ (MlistL′ q)

Note that this alternative definition is not recognized as structurally-recursive by Coq. Its
statement may be formulated as an equality, and proved correct with respect to Definition 2.7.

2.7 Operations on Mutable Lists
Consider a function that concatenates two mutable lists in-place. This function expects two pointers
p1 and p2 that denote the addresses of two mutable lists described by the logical lists L1 and L2,
respectively. The first list is assumed to be nonempty. The concatenation operation updates the last
cell of the first list so that it points to p2, the head cell of the second list. After this operation, the
mutable list at address p1 is described by the concatenation L1 ++ L2.

Example 2.10 (Specification of in-place append for mutable lists).

p1 , null ⇒ {(MlistL1 p1) ⋆ (MlistL2 p2)} (mappendp1 p2) {λ_. Mlist (L1 ++ L2) p1}

Observe how the specification above reflects the fact that the cells of the second list are absorbed
by the first list during the operation. These cells are no longer independently available, hence the
absence of the representation predicate MlistL2 p2 from the postcondition.

Remark 2.11 (Alternative placement of pure preconditions). The hypothesis p1 , null from the
specification of the append function may be equivalently placed inside the precondition:

{[p1 , null] ⋆ (MlistL1 p1) ⋆ (MlistL2 p2)} (mappendp1 p2) {λ_. Mlist (L1 ++ L2) p1}.

Yet, in general, leaving pure hypotheses as premises outside of triples tends to improve readability.
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As second example, consider a function that takes as argument a pointer p to a mutable list, and
allocates an entirely independent copy of that list, made of fresh cells. This function is specified as
shown below. The precondition describes the input list asMlistLp, and the postcondition describes
the output heap as MlistLp ⋆ MlistLp ′, where p ′ denotes the address of the new list.

Example 2.12 (Specification of a copy function for mutable lists).

{MlistLp} (mcopyp) {λr . ∃∃p ′. [r = p ′] ⋆ (MlistLp) ⋆ (MlistLp ′)}

The separating conjunction from the postcondition asserts that the original list and its copy do
not share any cell: they are entirely disjoint from each other. An implementation and a proof for
the function mcopy is given in the appendix. The key steps of that proof are summarized next.

Proof. The specification of mcopy is proved by induction on the length of the list L. When the
list is nonempty, MlistLp unfolds as (p.head ↪→ x ) ⋆ (p.tail ↪→ q) ⋆ (MlistL′ q). The induction
hypothesis allows to assume the specification to hold for the recursive call of mcopy on the tail
of the list, with the precondition MlistL′ q. Over the scope of that call, the frame rule is used to
put aside the head cell, described by (p.head ↪→ x ) ⋆ (p.tail ↪→ q). Let q′ denote the result of the
recursive call, and let p ′ denote the address of a freshly-allocated list cell storing the value x and
the tail pointer q′. The final heap is described by:

(p.head ↪→ x ) ⋆ (p.tail ↪→ q) ⋆ (MlistL′ q) ⋆ (p ′.head ↪→ x ) ⋆ (p ′.tail ↪→ q′) ⋆ (MlistL′ q′)

which may be folded to (MlistLp) ⋆ (MlistLp ′), matching the claimed postcondition. □

In the above proof, the frame rule enables reasoning about a recursive call independently of all
the cells that have already been traversed by the outer recursive calls to mcopy. Without the frame
rule, one would have to describe the full list at an arbitrary point during the recursion. Doing so
requires describing the list segment made of cells ranging from the head of the initial list up to the
pointer on which the current recursive call is made. Stating an invariant involving list segments
is doable, yet involves more complex definitions and assertions. More generally, for a program
manipulating tree-shaped data structures, the frame rule saves the need to describe a tree with a
subtree carved out of it, thereby saving a significant amount of proof effort.

2.8 Reasoning about Deallocation
Consider a programming language with explicit deallocation. For such a language, proofs in
Separation Logic guarantee two essential properties: (1) a piece of data is never accessed after its
deallocation, and (2) every allocated piece of data is eventually deallocated.
The operation freep deallocates the reference cell at address p. This deallocation operation is

specified through the following triple, whose precondition describes the cell to be freed by the
predicate p ↪→ v , and whose postcondition is empty, reflecting the loss of that cell.

Definition 2.13 (Specification of the free operation).

{p ↪→ v} (freep) {λ_. [ ]}

There is no way to get back the predicate p ↪→ v once it is lost. Because p ↪→ v is required
in the precondition of all operations involving the reference p, Separation Logic ensures that no
operations on p can be performed after its deallocation.

The next examples show how to specify the deallocation of a list cell and of a full list.

Example 2.14 (Deallocation of a list cell). The function mfree_cell deallocates a list cell.

{(p.head ↪→ x ) ⋆ (p.tail ↪→ q)} (mfree_cellp) {λ_. [ ]}.
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Example 2.15 (Deallocation of a mutable list). The function mfree_list deallocates a list by
recursively deallocating each of its cells. Its implementation is shown below (using ML syntax,
even though the language considered features null pointers and explicit deallocation).

let rec mfree_list p =

if p != null then (let q = p.tail in mfree_cell p; mfree_list q)

The specification of mfree_list admits the precondition MlistLp, describing the mutable list to be
freed, and admits an empty postcondition, reflecting the loss of that list.

{MlistLp} (mfree_listp) {λ_. [ ]}

Remark 2.16 (Languages with implicit garbage collection). For languages equipped with a garbage-
collector, Separation Logic can be adapted to allow freely discarding heap predicates (see §8).

3 HEAP PREDICATES AND ENTAILMENT
3.1 Representation of Heaps
Let loc denote the type of locations, i.e., of memory addresses. This type may be realized using,
e.g., natural numbers. Let val denote the type of values. The grammar of values depends on the
programming language. Its formalization is postponed to §4.

A heap (i.e., a piece of memory state) may be represented as a finite map from locations to values.
The finiteness property is required to ensure that fresh locations always exist. Let fmapα β denote
the type of finite maps from a type α to an (inhabited) type β .

Definition 3.1 (Representation of heaps). The type heap is defined as “fmap loc val”.

Thereafter, let h denote a heap, that is, a piece of state. Let h1 ⊥ h2 assert that two heaps have
disjoint domains, i.e., that no location belongs both to the domain of h1 and to that of h2. Let h1 ⊎h2
denote the union of two disjoint heaps. (The union operation may return arbitrary results when
applied to non-disjoint arguments, i.e., arguments with overlapping domains.)

3.2 Heap Predicates
A heap predicate, written H , is a predicate that asserts properties of a heap.

Definition 3.2 (Heap predicates). A heap predicate is a predicate of type heap→ Prop.

The core heap predicate operators, informally introduced in §2.2, are realized as predicates over
heaps, as shown below and explained next.

Definition 3.3 (Core heap predicates).

Heap predicate operator Notation Definition
empty predicate [ ] λh. h = ∅
pure fact [P] λh. h = ∅ ∧ P
singleton p 7→ v λh. h = (p → v ) ∧ p , null
separating conjunction H1 ⋆H2 λh. ∃h1h2. h1 ⊥ h2 ∧ h = h1 ⊎ h2 ∧ H1 h1 ∧ H2 h2
existential quantifier ∃∃x .H λh. ∃x . H h
universal quantifier ∀∀x .H λh. ∀x . H h

The definitions for the core heap predicates all take the form λh. P , where P denotes a proposition.
The empty predicate, written [ ], characterizes a heap equal to the empty heap, written ∅. The pure
predicate, written [P], also characterizes an empty heap, and moreover asserts that the proposition P
is true. The singleton heap predicate, written p 7→ v , characterizes a heap described by a singleton
map, written p → v , which binds p tov . This predicate embeds the property p , null, capturing the
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invariant that no data may be allocated at the null location. The separating conjunction, written
H1 ⋆ H2, characterizes a heap h that decomposes as the disjoint union of two heaps h1 and h2,
with h1 satisfying H1 and h2 satisfying H2. The existential and universal quantifiers of Separation
Logic allow quantifying entities at the level of heap predicates (heap→ Prop), in contrast to the
standard Coq quantifiers that operate at the level of propositions (Prop). Note that the quantifiers
∃∃x .H and ∀∀x .H may quantify values of any type, without restriction. In particular, they allow
quantifying over heap predicates or proof terms.

Remark 3.4 (Encodings between the empty and the pure heap predicate). In Coq, the pure heap
predicate [P] can be encoded as “∃∃(p : P ). [ ]”, that is, by quantifying over the existence of a proof
term p for the proposition P . Note that the empty heap predicate [ ] is equivalent to [True].

Remark 3.5 (Other operators). Traditional presentations of Separation Logic include four addi-
tional operators, ⊥, ⊤, ∨∨, and ∧∧. These four operators may be encoded in terms of the ones from
Definition 3.3, with the help of Coq’s conditional construct. The table below presents the relevant
encodings, in addition to providing direct definitions of these operators as predicates over heaps.

Heap predicate operator Notation Definition Encoding
bottom ⊥ λh. False [False]
top ⊤ λh. True ∃∃(H : heap→ Prop).H
disjunction H1 ∨∨ H2 λh. (H1 h ∨ H2 h) ∃∃(b : bool). If b then H1 else H2
non-separating conjunction H1 ∧∧ H2 λh. (H1 h ∧ H2 h) ∀∀(b : bool). If b then H1 else H2

Definition 3.6 (Representation predicate for lists defined with disjunction). The representation
predicate for lists introduced in Definition 2.8 can be reformulated using the disjunction operator
instead of relying on pattern-matching. The corresponding definition, which may be useful if the
host logic does not feature a pattern-matching construct, is as follows.

MlistLp ≡
(
[p = null] ⋆ [L = nil]

)
∨∨
(
[p , null] ⋆ ∃∃xL′q. [L = x :: L′] ⋆ (p.head ↪→ x ) ⋆ (p.tail ↪→ q) ⋆ (MlistL′ q)

)
3.3 Entailment
The entailment relation, written H1 ⊢ H2, asserts that any heap satisfying H1 also satisfies H2.

Definition 3.7 (Entailment relation).

H1 ⊢ H2 ≡ ∀h. H1 h ⇒ H2 h

Entailment is used to state reasoning rules and to state properties of the heap predicates operators.
The entailment relation defines an order relation on the set of heap predicates.

Lemma 3.8 (Entailment defines an order on the set of heap predicates).
himpl-refl

H ⊢ H

himpl-trans
H1 ⊢ H2 H2 ⊢ H3

H1 ⊢ H3

himpl-antisym
H1 ⊢ H2 H2 ⊢ H1

H1 = H2

The antisymmetry property concludes on an equality between two heap predicates. To establish
such an equality, it is necessary to exploit the principle of predicate extensionality. This principle
asserts that if two predicates P and P ′, when applied to any argument x , yield logically equivalent
propositions, then these two predicates can be considered equal in the logic. (See the appendix for
details.) The antisymmetry property plays a critical role for stating the key properties of Separation
Logic operators in the form of equalities, as detailed next.
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pure-l
P ⇒ (H ⊢ H ′)

([P]⋆H ) ⊢ H ′

exists-l
∀x . (H ⊢ H ′)

(∃∃x .H ) ⊢ H ′

forall-l
([a/x]H ) ⊢ H ′

(∀∀x .H ) ⊢ H ′

exists-monotone
∀x . (H ⊢ H ′)

(∃∃x .H ) ⊢ (∃∃x .H ′)

pure-r
(H ⊢ H ′) P

H ⊢ (H ′ ⋆ [P])

exists-r
H ⊢ ([a/x]H ′)
H ⊢ (∃∃x .H ′)

forall-r
∀x . (H ⊢ H ′)

H ⊢ (∀∀x .H ′)

forall-monotone
∀x . (H ⊢ H ′)

(∀∀x .H ) ⊢ (∀∀x .H ′)

Fig. 1. Useful properties for pure facts and quantifiers, with respect to entailment.

There are 6 fundamental properties of the separating conjunction operator. The first three
capture the fact that (⋆, [ ]) forms a commutative monoid: the star is associative, commutative, and
admits the empty heap predicate as neutral element. The next two describe how quantifiers may be
extruded from arguments of the star operator. The extraction rule star-exists is stated using an
equality because the entailment relation holds in both directions. On the contrary, the extraction
rule star-forall is stated using a simple entailment relation because the reciprocal entailment
does not hold—for a counterexample, consider the case where the type of x is unhabited. The rule
star-monotone-r describes a monotonicity property; it is explained afterwards.

Lemma 3.9 (Fundamental properties of the star).
star-assoc: (H1 ⋆H2) ⋆H3 = H1 ⋆ (H2 ⋆H3)
star-comm: H1 ⋆H2 = H2 ⋆H1
star-neutral-r: H ⋆ [ ] = H
star-exists: (∃∃x .H1) ⋆H2 = ∃∃x . (H1 ⋆H2) (if x < H2)
star-forall: (∀∀x .H1) ⋆H2 ⊢ ∀∀x . (H1 ⋆H2) (if x < H2)

star-monotone-r:
H1 ⊢ H

′
1

H1 ⋆H2 ⊢ H
′
1 ⋆H2

The monotonicity rule can be read from bottom to top: when facing a proof obligation of the
form H1 ⋆H2 ⊢ H

′
1 ⋆H2, one may cancel out H2 on both sides, leaving the proof obligation H1 ⊢ H

′
1.

Remark 3.10 (Symmetric version of the monotonicity rule). The monotonicity rule is sometimes
also presented in its symmetric variant, stated below. It is provably equivalent to star-monotone-r.

H1 ⊢ H
′
1 H2 ⊢ H

′
2

H1 ⋆H2 ⊢ H
′
1 ⋆H

′
2

star-monotone

The useful properties associated with pure facts and quantifiers appear in Fig. 1. The application
of a number of reasoning rules for entailment can be automated bymeans of a tactic. (One such tactic
is described in the appendix.) Other properties may also be derived, such as ([P1]⋆[P2]) = [P1∧P2].
Yet, when a simplification tactic is available, one does not need to state such properties explicitly.

The entailment relation may be employed to express how a specific piece of information can be
extracted from a given heap predicate. For example, from p ↪→ v , one can extract the information
p , null. Likewise, from a heap predicate of the form p ↪→ v1 ⋆p ↪→ v2, where the same location p
is described twice, one can derive a contradiction, because the separating conjunction asserts
disjointness. These two results are formalized as follows.

Lemma 3.11 (Properties of the singleton heap predicate).
single-not-null: (p ↪→ v ) ⊢ (p ↪→ v ) ⋆ [p , null]
single-conflict: (p ↪→ v1) ⋆ (p ↪→ v2) ⊢ [False]
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3.4 Generalization to Postconditions
In the imperative λ-calculus considered in this paper and formalized further on (§4), a term evaluates
to a value. A postcondition thus describes both an output value and an output state.

Definition 3.12 (Type of postconditions). A postcondition has type: val→ heap→ Prop.

Thereafter, we letQ range over postconditions. To obtain concise statements of the reasoning rules
of Separation Logic for an imperative λ-calculus, it is convenient to extend separating conjunction
and entailment to operate on postconditions. To that end, we generalize the predicates H ⋆H ′ and
H ⊢ H ′ by introducing the predicates Q .⋆H ′ and Q .⊢Q ′, written with a dot to suggest pointwise
extension. These two predicates are formalized next.

Definition 3.13 (Separating conjunction between a postcondition and a heap predicate).

Q .⋆H ≡ λv . (Q v ⋆H )

This operator appears for example in the statement of the frame rule (recall §2.1).
The entailment relation for postconditions is a pointwise extension of the entailment relation

for heap predicates: Q entails Q ′ if and only if, for any value v , the heap predicate Q v entails Q ′v .

Definition 3.14 (Entailment between postconditions).

Q .⊢Q ′ ≡ ∀v . (Q v ⊢ Q ′v )

This entailment defines an order on postconditions. It appears for example in the statement of the
consequence rule, which allows strengthening the precondition and weakening the postcondition.

Example 3.15 (Rule of consequence).

H ⊢ H ′ {H ′} t {Q ′} Q ′ .⊢Q
{H } t {Q }

conseqence

4 LANGUAGE SYNTAX AND SEMANTICS
The definition of triples depends on the details of the programming language. Thus, let us first
describe the syntax and the semantics of terms.

4.1 Syntax
We consider an imperative call-by-value λ-calculus. The syntactic categories are primitive func-
tions π , values v , and terms t . The grammar of values is intended to denote closed values, that
is, values without occurrences of free variables. This design choice leads to a simple substitution
function, which may be defined as the identity over all values.

The primitive operations fall in two categories. First, they include the state-manipulating opera-
tions for allocating, reading, writing, and deallocating references. Second, they include Boolean
and arithmetic operations. For brevity, we include only the addition and division operations.
The values include the unit value tt, boolean literals b, integer literals n, memory locations p,

primitive operations π , and recursive functions µ̂ f .λx .t . The latter construct is written with a hat
symbol to denote the fact this value is closed.
The terms include variables, values, function invocation, sequence, let-bindings, conditionals,

and function definitions. The latter construct is written µ f .λx .t , this time without a hat symbol.

Definition 4.1 (Syntax of the language).

π := ref | get | set | free | (+) | (÷)
v := tt | b | n | p | π | µ̂ f .λx .t
t := v | x | (t t ) | letx = t in t | if t then t else t | µ f .λx .t
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eval-val

v/s ⇓ v/s

eval-fix

(µ f .λx .t )/s ⇓ (µ̂ f .λx .t )/s

eval-app
v1 = µ̂ f .λx .t ([v2/x] [v1/f ] t )/s ⇓ v ′/s ′

(v1v2)/s ⇓ v
′/s ′

eval-let
t1/s ⇓ v1/s

′ ([v1/x] t2)/s ′ ⇓ v/s ′′

(letx = t1 in t2)/s ⇓ v/s ′′

eval-if
If b then (t1/s ⇓ v

′/s ′) else (t2/s ⇓ v
′/s ′)

(if b then t1 else t2)/s ⇓ v ′/s ′

eval-ref
p < dom s

(refv )/s ⇓ p/(s[p := v])

eval-free
p ∈ dom s

(freep)/s ⇓ tt/(s ∖ p)

eval-get
p ∈ dom s

(getp)/s ⇓ (s[p])/s

eval-set
p ∈ dom s

(setpv )/s ⇓ tt/(s[p := v])

eval-add

((+) n1 n2)/s ⇓ (n1 + n2)/s

eval-div
n2 , 0

((÷) n1 n2)/s ⇓ (n1 ÷ n2)/s

Fig. 2. Evaluation rules, in big-step style

A non-recursive function λx . t may be viewed as a recursive function µ f .λx .t with a dummy
name f . Likewise, a sequence (t1 ; t2) may be viewed as a let-binding of the form letx = t1 in t2 for
a dummy name x . The Coq formalization actually includes these two constructs explicitly in the
grammar to avoid unnecessary complications associated with the elimination of dummy variables.
Although our syntax technically allows for arbitrary terms, for simplicity we assume terms

to be written in “administrative normal form” (A-normal form), that is, “letx = t1 in t2” is the
sole sequencing construct: no sequencing is implicit in any other construct. For instance, the
conditional construct “if t then t1 else t2” must be encoded as “letx = t in if x then t1 else t2”. This
presentation is intended to simplify the statement of the evaluation rules and reasoning rules. Note
that many practical program verification tools perform code normalization as a preliminary step.

4.2 Semantics
Thereafter, we use the meta-variable s to denote a variable of type heap that corresponds to a full
memory state at a given point in the execution, in contrast to the meta-variable h, which denotes a
heap that may correspond to only a piece of the memory state.
The semantics of the language is described by the big-step judgment t/s ⇓ v/s ′, which asserts

that the term t , starting from the state s , evaluates to the value v and the final state s ′.

Definition 4.2 (Semantics of the language). The evaluation rules appear in Fig. 2.

The rules are standard. A value evaluates to itself. Likewise, a function evaluates to itself.
The evaluation rules for function calls and let-bindings involve the standard (capture-avoiding)
substitution operation: [v/x] t denotes the substitution of x by v throughout the term t . The
evaluation rule for conditionals is stated concisely using Coq’s conditional construct. The primitive
operations on reference cells are described using operations on finite maps: dom s denotes the
domain of the state s , the operation s[p] returns the value associated with p, the operation s ∖ p
removes the binding on p, and the operation s[p := v] sets or updates a binding from p to v .
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5 TRIPLES AND REASONING RULES
5.1 Separation Logic Triples
Separation Logic is a refinement of Hoare logic. Interestingly, Separation Logic triples can be
defined in terms of Hoare triples.

A Hoare triple, written HOARE{H } t {Q }, asserts that in any state s satisfying the precondition H ,
the evaluation of the term t terminates and produces output valuev and output state s ′, as described
by the evaluation judgment t/s ⇓ v/s ′. Moreover, the output value and output state satisfy the
postcondition Q , in the sense that Q v s ′ holds. This definition captures termination: it defines a
total correctness triple. (The definition can be easily adapted to capture partial correctness only.)

Definition 5.1 (Total correctness Hoare triple).
HOARE{H } t {Q } ≡ ∀s . H s ⇒ ∃v . ∃s ′. (t/s ⇓ v/s ′) ∧ (Q v s ′)

Whereas a Hoare triple describes the evaluation of a term with respect to the whole memory
state, a Separation Logic triple describes the evaluation of a term with respect to only a fragment
of the memory state. To relate the two concepts, it suffices to quantify over “the rest of the state”,
that is, the part of the state that the evaluation of the term is not concerned with.
A Separation Logic triple, written {H } t {Q }, asserts that, for any heap predicate H ′ describing

the “rest of the state”, the Hoare triple HOARE{H ⋆H ′} t {Q .⋆H ′} holds. This formulation effectively
bakes in the frame rule, by asserting from the very beginning that specifications are intended to
preserve any resource that is not mentioned in the precondition.

Definition 5.2 (Total correctness Separation Logic triple).

{H } t {Q } ≡ ∀H ′. HOARE{H ⋆H ′} t {Q .⋆H ′}

To fully grasp the meaning of a Separation Logic triple, it helps to contemplate an alternative
definition expressed directly with respect to the evaluation judgment. This alternative definition,
shown below, reads as follows: if the input state decomposes as a part h1 that satisfies the precon-
dition H and a disjoint part h2 that describes the rest of the state, then the term t terminates on
a value v , producing a heap made of a part h′1 and, disjointly, the part h2 which was unmodified;
moreover, the value v and the heap h′1 together satisfy the postcondition Q .

Definition 5.3 (Alternative definition of total correctness Separation Logic triples).

{H } t {Q } ≡ ∀h1.∀h2.

{
H h1
h1 ⊥ h2

⇒ ∃v . ∃h′1.



h′1 ⊥ h2
t/(h1 ⊎ h2) ⇓ v/(h

′
1 ⊎ h2)

Q v h′1

The reasoning rules of Separation Logic fall in three categories. First, the structural rules: they do
not depend on the details of the language. Second, the reasoning rules for terms: there is one such
rule for each term construct of the language. Third, the specification of the primitive operations:
there is one such rule for each primitive operation. All these rules are presented next.

5.2 Structural Rules
The structural rules of Separation Logic include the consequence rule and the frame rule, which
were already discussed, and two rules for extracting pure facts and existential quantifiers out of
preconditions. (The role of these rules is illustrated in the example proof presented in the appendix.)

Lemma 5.4 (Structural rules of Separation Logic). The following reasoning rules can be
stated as lemmas and proved correct with respect to the interpretation of triples given by Definition 5.2.
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consequence
H ⊢ H ′ {H ′} t {Q ′} Q ′ .⊢Q

{H } t {Q }

frame
{H } t {Q }

{H ⋆H ′} t {Q .⋆H ′}

prop
P ⇒ {H } t {Q }

{[P]⋆H } t {Q }

exists
∀x . {H } t {Q }

{∃∃x .H } t {Q }

The frame rule may be exploited in practice as a forward reasoning rule: given a triple {H } t {Q },
one may derive another triple by extending both the precondition and the postcondition with a
heap predicate H ′. This rule is, however, almost unusable as a backward reasoning rule: indeed, it
is extremely rare for a proof obligation to be exactly of the form {H ⋆H ′} t {Q .⋆H ′}. In order to
exploit the frame rule in backward reasoning, one usually needs to first invoke the consequence
rule. The effect of a combined application of the consequence rule followed with the frame rule is
captured by the combined consequence-frame rule, stated below.

Lemma 5.5 (Combined conseqence-frame rule).

H ⊢ H1 ⋆H2 {H1} t {Q1} Q1 .⋆H2 .⊢Q

{H } t {Q }
consequence-frame

This combined rule applies to a proof obligation of the form {H } t {Q }, with no constraints on the
precondition nor the postcondition. To prove this triple from an existing triple {H1} t {Q1}, it suffices
to show that the preconditionH decomposes asH1⋆H2, and to show that the postconditionQ can be
recovered fromQ1 .⋆H2. The “framed” heap predicateH2 can be computed as the difference between
H and H1. In practice, though, rather than trying to instantiate H2 in the consequence-frame rule,
it is more effective to exploit the ramified frame rule (§7.3).

5.3 Rules for Terms
The program logic includes one rule for each term construct. The corresponding rules are stated
below and explained next.

Lemma 5.6 (Reasoning rules for terms in Separation Logic). The following rules can be stated
as lemmas and proved correct with respect to the interpretation of triples given in Definition 5.2.

H ⊢ (Q v )

{H } v {Q }
val

H ⊢ (Q (µ̂ f .λx .t ))

{H } (µ f .λx .t ) {Q }
fix

v1 = µ̂ f .λx .t {H } ([v2/x] [v1/f ] t ) {Q }
{H } (v1v2) {Q }

app

{H } t1 {λv .H
′} {H ′} t2 {Q }

{H } (t1 ; t2) {Q }
seq

{H } t1 {Q
′} ∀v . {Q ′v} ([v/x] t2) {Q }
{H } (letx = t1 in t2) {Q }

let

b = true ⇒ {H } t1 {Q } b = false ⇒ {H } t2 {Q }

{H } (if b then t1 else t2) {Q }
if

The rules val and fix apply to terms that correspond to closed values. A value evaluates to
itself, without modifying the state. If the heap at hand is described in the precondition by the
heap predicate H , then this heap, together with the value v , should satisfy the postcondition.
This implication is captured by the premise H ⊢ Q v . Note that the rules val and fix can also be
formulated using triples featuring an empty precondition.

Lemma 5.7 (Small-footprint reasoning rules for values).

{ [ ] } v {λr . [r = v]}
val’

{ [ ] } (µ f .λx .t ) {λr . [r = (µ̂ f .λx .t )]}
fix’
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The app rule merely reformulates the β-reduction rule. It asserts that reasoning about the
application of a function to a particular argument amounts to reasoning about the body of this
function in which the name of the argument gets substituted with the value of the argument
involved in the application. This rule is typically exploited to begin the proof of the specification
triple for a function. Once established, such a specification triple may be invoked for reasoning
about calls to that function.

The seq rule asserts that a sequence “t1 ; t2” admits preconditionH and postconditionQ provided
that t1 admits the precondition H and a postcondition describing a heap satisfying H ′, and that t2
admits the precondition H ′ and the postcondition Q . (The result value v produced by t1 is ignored.)

The let rule enables reasoning about a let-binding of the form “letx = t1 in t2”. It reads as follows.
Assume that, in the current heap described by H , the evaluation of t1 produces a postcondition Q ′.
Assume also that, for any value v that the evaluation of t1 might produce, the evaluation of [v/x] t2
in a heap described by Q ′v produces the postcondition Q . Then, under the precondition H , the
term “letx = t1 in t2” produces the postcondition Q .
The if rule enables reasoning about a conditional. Its statement features two premises: one for

the case where the condition is the value true, and one for the case where it is the value false.

5.4 Specification of Primitive Operations
The third and last category of reasoning rules corresponds to the specification of the primitive
operations of the language. The operations on references have already been discussed (§2.5 and
§2.8). The arithmetic operations admit specifications that involve only empty heaps.

Lemma 5.8 (Specification for primitive operations).
ref: {[ ]} (refv ) {λr . ∃∃p. [r = p] ⋆ (p ↪→ v )}
get: {p ↪→ v} (getp) {λr . [r = v] ⋆ (p ↪→ v )}
set: {p ↪→ v} (setpv ′) {λ_. (p ↪→ v ′)}
free: {p ↪→ v} (freep) {λ_. [ ]}
add: {[ ]} ((+) n1 n2) {λr . [r = n1 + n2]}
div: n2 , 0 ⇒ {[ ]} ((÷) n1 n2) {λr . [r = n1 ÷ n2]}

This completes the presentation of the reasoning rules of Separation Logic. Technically, these
18 reasoning rules suffice to verify imperative programs, although additional infrastructure helps
obtain more concise proof scripts. The Coq formalization of the material from Sections §3, §4, and
§5 amount to 564 non-blank lines of Coq script. It includes 23 definitions, 59 lemmas, 24 lines of
tactic definitions, and 117 lines of proofs. We encourage the reader to check out the corresponding
file, which is called SLFMinimal.v in the supplementary material [Charguéraud 2020].

6 INDUCTIVE REASONING FOR LOOPS
Pointer-manipulating programs are typically written using loops. Although loops can be simulated
using recursive functions, it simplifies the proofs to include direct reasoning rules for them. Let us
assume in this section the presence of a while-loop construct, written “while t1 do t2”.
A loop “while t1 do t2” is equivalent to its one-step unfolding: if t1 evaluates to true, then t2

is executed and the loop proceeds; otherwise the loop terminates on the unit value. The rules
eval-while and while shown below capture this one-step unfolding principle.

Lemma 6.1 (Evaluation rule and reasoning rules for while loops).
eval-while
(if t1 then (t2 ; while t1 do t2) else tt)/s ⇓ v/s ′

(while t1 do t2)/s ⇓ v/s ′

while
{H } (if t1 then (t2 ; while t1 do t2) else tt) {Q }

{H } (while t1 do t2) {Q }
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One may establish a triple about the behavior of a while loop by conducting a proof by induction
over a decreasing measure or well-founded relation, exploiting the induction hypothesis to reason
about the “remaining iterations”. Note that this approach is essentially equivalent to encoding the
loop as a tail-recursive function, yet without the boilerplate associated with an encoding.

Example 6.2 (Length of a list using a while loop). Consider the following code fragment, which
sets the contents of s to the length of the mutable list at location p.

let r = ref p and s = ref 0 in

while !r != null do (incr s; r := !r.tail) done

The triple {MlistLp ⋆ r ↪→ p ⋆ s ↪→ 0} (while ... done) {λ_.MlistLp ⋆ r ↪→ null ⋆ s ↪→
|L|} specifies the behavior of the loop. Its proof is conducted by induction on the statement:
∀Lnp. {MlistLp ⋆ r ↪→ p ⋆ s ↪→ n} (while ... done) {λ_.MlistLp ⋆ r ↪→ null ⋆ s ↪→ n + |L|}.
Applying the while rule reveals the conditional on whether !r is null. In the case where it is not
null, s is incremented, r is set to the tail of the current list, and the loop starts over. To reason
about this “recursive invocation” of the while-loop, it suffices to apply the frame rule to put aside
the head cell described by a predicate of the form (p.head ↪→ x ) ⋆ (p.tail ↪→ q), and to apply the
induction hypothesis to the tail of the list described by MlistL′ q, where L = x :: L′.

The above example shows that, by carrying a proof by induction, it is possible to apply the frame
rule over the remaining iterations of a loop. Doing so would not be possible with a reasoning rule
that imposes a loop invariant to be valid both at the entry point and exit point of the loop body.
Indeed, such a loop invariant would necessarily involve the description of a list segment.

7 THE MAGIC WAND OPERATOR
7.1 Definition and Properties of the Magic Wand
The magic wand, also known as separating implication, is an additional heap predicate operator,
writtenH1−⋆H2, and read “H1 wandH2”. Although it is technically possible to carry out all Separation
Logic proofs without the magic wand, this operator helps to state several reasoning rules and
specifications more concisely.
Intuitively, H1 −⋆H2 defines a heap predicate such that, if starred with H1, it produces H2. In

other words, the magic wand satisfies the cancellation rule H1 ⋆ (H1 −⋆H2) ⊢ H2. The magic wand
operator can be formally defined in at least four different ways.

Definition 7.1 (Magic wand). The magic wand operator is equivalently characterized by:

(1) H1 −⋆H2 ≡ λh.
(
∀h′. h ⊥ h′ ∧ H1 h

′ ⇒ H2 (h ⊎ h
′)
)

(2) H1 −⋆H2 ≡ ∃∃H0. H0 ⋆
[
(H1 ⋆H0) ⊢ H2

]

(3) H0 ⊢ (H1 −⋆H2) ⇔ (H1 ⋆H0) ⊢ H2

(4) H1 −⋆H2 satisfies the following introduction and elimination rules.

(H1 ⋆H0) ⊢ H2

H0 ⊢ (H1 −⋆H2)
wand-intro

H1 ⋆ (H1 −⋆H2) ⊢ H2
wand-cancel

The first characterization asserts that H1 −⋆H2 holds of a heap h if and only if, for any disjoint
heap h′ satisfying H1, the union of the two heaps h ⊎ h′ satisfies H2.
The second characterization describes a heap satisfying a predicate H0 that, when starred with

H1 entails H2. This characterization shows that the magic wand can be encoded using previously-
introduced concepts from higher-order Separation Logic.
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The third characterization consists of an equivalence that provides both an introduction rule and
an elimination rule. The left-to-right direction is equivalent to the cancellation rule wand-cancel
stated in definition (4). The right-to-left direction corresponds exactly to the introduction rule from
definition (4), namely wand-intro, which reads as follows: to show that a heap described by H0
satisfies the magic wand H1 ⋆H2, it suffices to prove that H1 starred with H0 entails H2.

In practice, the following properties are useful for working with the magic wand and for imple-
menting a tactic that simplifies the proof obligations that arise from the ramified frame rule (§7.3).

Lemma 7.2 (Useful properties of the magic wand).
wand-monotone
H ′1 ⊢ H1 H2 ⊢ H ′2

(H1 −⋆H2) ⊢ (H ′1 −⋆H
′
2)

wand-self

[ ] ⊢ (H −⋆H )

wand-pure-l
P

([P] −⋆H ) = H

wand-curry

((H1 ⋆H2) −⋆H3) = (H1 −⋆(H2 −⋆H3))

wand-star

((H1 −⋆H2) ⋆H3) ⊢ (H1 −⋆(H2 ⋆H3))

Lemma 7.3 (Partial concellation of a magic wand). If the left-hand side of a magic wand
involves the separating conjunction of several heap predicates, it is possible to cancel out just one of
them with an occurrence of the same heap predicate occurring outside of the magic wand. For example,
the entailment H2 ⋆

(
(H1 ⋆H2 ⋆H3) −⋆H4

)
⊢
(
(H1 ⋆H3) −⋆H4

)
is obtained by cancelling H2.

7.2 Magic Wand for Postconditions
Just as useful as the magic wand is its generalization to postconditions, which is involved for
example in the statement of the ramified frame rule (§7.3). This operator, written Q1 .–⋆ Q2, takes
as argument two postconditions Q1 and Q2 and produces a heap predicate.

Definition 7.4 (Magic wand for postconditions). The operator (.–⋆ ) is equivalently defined by:
(1) Q1 .–⋆ Q2 ≡ ∀∀v .

(
(Q1v ) −⋆(Q2v )

)
(2) Q1 .–⋆ Q2 ≡ λh.

(
∀vh′. h ⊥ h′ ∧ Q1v h

′ ⇒ Q2v (h ⊎ h′)
)

(3) Q1 .–⋆ Q2 ≡ ∃∃H0. H0 ⋆
[
(Q1 .⋆H0) .⊢ Q2

]

(4) H0 ⊢ (Q1 .–⋆ Q2) ⇔ (Q1 .⋆H0) .⊢Q2

(5) Q1 .–⋆ Q2 satisfies the following introduction and elimination rules.
(Q1 .⋆H0) .⊢Q2

H0 ⊢ (Q1 .–⋆ Q2)
qwand-intro

Q1 .⋆ (Q1 .–⋆ Q2) .⊢Q2
qwand-cancel

Lemma 7.5 (Useful properties of the magic wand for postconditions).
qwand-monotone
Q ′1 .⊢ Q1 Q2 .⊢ Q ′2

(Q1 .–⋆ Q2) ⊢ (Q ′1 .–⋆ Q ′2)

qwand-self

[ ] ⊢ (Q .–⋆ Q )

qwand-star

((Q1 .–⋆ Q2) .⋆H ) ⊢ (Q1 .–⋆ (Q2 ⋆H ))

qwand-specialize(
Q1 .–⋆ Q2

)
⊢
(
(Q1v ) .–⋆ (Q2v )

)
7.3 Ramified Frame Rule
One key practical application of the magic wand operator appears in the statement of the ramified
frame rule. This rule reformulates the consequence-frame rule in a manner that is both more
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concise and better-suited for automated processing. Recall the rule conseqence-frame, which
is reproduced below. To exploit it, one must provide a predicate H2 describing the “framed” part.
Providing the heap predicate H2 by hand in proofs involves a prohibitive amount of work; it is
strongly desirable that H2 may be inferred automatically.

The predicateH2 can be computed as the difference betweenH andH1. Automatically computing
this difference is relatively straightforward in simple cases, however this task becomes quite
challenging when H and H1 involve numerous quantifiers. Indeed, it is not obvious to determine
which quantifiers from H should be cancelled against those from H1, and which quantifiers should
be carried over to H2.

The benefit of the ramified frame rule is that it eliminates the problem altogether. The key idea
is to observe that the premise Q1 .⋆ H2 .⊢ Q from the conseqence-frame rule is equivalent to
H2 .⊢ (Q1 .–⋆ Q ), by the 4th characterization of Definition 7.4. Thus, in the other premiseH ⊢ H1⋆H2,
the heap predicate H2 may be replaced with Q1 .–⋆ Q . The ramified-frame rule appears below.

Lemma 7.6 (Ramified frame rule). ramified-frame reformulates consequence-frame.

consequence-frame
H ⊢ H1 ⋆H2 {H1} t {Q1} Q1 .⋆H2 .⊢Q

{H } t {Q }

ramified-frame
{H1} t {Q1} H ⊢ H1 ⋆ (Q1 .–⋆ Q )

{H } t {Q }

8 PARTIALLY-AFFINE SEPARATION LOGIC
8.1 Linear and Affine Heap Predicates
The Separation Logic presented so far is well-suited for a language with explicit deallocation. It is,
however, impractical for a language equipped with a garbage collector. Indeed, it does not provide
any rule for discarding the description of pieces of state that are ready for the garbage collector to
dispose of. The aim of this section is to refine the definitions presented so far to support rules that
enable discarding certain heap predicates from either the precondition or the postcondition.
The formalization presented is general enough to allow fine-tuning between affine heap pred-

icates, which may be freely discarded, and linear heap predicates, which, on the contrary, must
remain accounted for. For example, linearity is useful to ensure that every file handle opened
eventually gets closed, or to ensure that every lock acquired eventually gets released. To that end,
the reasoning rules should not allow discarding the heap predicates that represent linear resources.

In technical terms, a Separation Logic is said to be linear if no heap predicates can be discarded—
like in original presentations of Separation Logic. A Separation Logic is said to be affine if any
heap predicates may be freely discarded at any time. The purpose of this section is to set up a
partially-affine Separation Logic, in which both linear and affine heap predicates may coexist.

8.2 Customizable Characterization of Affine Heap Predicates
The predicate affineH asserts that the heap predicate H may be freely discarded. This predicate is
defined in terms of a lower-level predicate, written haffineh, that characterizes which heaps may
be discarded. This predicate is axiomatized. Two specific instantiations are presented: one that
treats all heaps as discardable, leading to a fully-affine logic, and one that treats none of them as
discardable, leading to a fully-linear logic, equivalent to the logic developed so far.

Definition 8.1 (Axiomatization of affine heaps). The predicate haffineh must satisfy two rules:

haffine∅
staffine-empty

haffineh1 haffineh2 h1 ⊥ h2

haffine (h1 ⊎ h2)
staffine-union

The predicate affineH characterizes heap predicates that hold only of affine heaps.
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Definition 8.2 (Definition of affine heap predicates).

affineH ≡ ∀h. H h ⇒ haffineh

The rules presented next establish that the composition of affine heap predicates yield affine
heap predicates. In other words, the predicate affine is stable by composition. For example, a heap
predicate H1⋆H2 is affine provided that H1 and H2 are both affine. A heap predicate ∃∃x .H is affine
provided that H is affine for any variable x . Likewise, a heap predicate ∀∀x .H is affine provided
that H is affine for any variable x , with a technical restriction asserting that the type of x must be
inhabited (because, otherwise, the hypothesis would be vacuous).

Lemma 8.3 (Sufficient conditions for affinity of a heap predicate).

affine-empty

affine [ ]

affine-pure

affine [P]

affine-star
affineH1 affineH2

affine (H1 ⋆H2)

affine-exists
∀x . affineH

affine (∃∃x .H )

affine-forall
∀x . affineH the type of x is inhabited

affine (∀∀x .H )

affine-star-pure
P ⇒ affineH

affine ([P]⋆H )

In practice, the application of these rules is automated using a tactic, thus the process of justifying
that a heap predicate is affine is in most cases totally transparent for the user.

To state the reasoning rules that enable discarding affine heap predicates, it is helpful to introduce
the affine top heap predicate, which is written ⊤⊤. Whereas the top heap predicate (written ⊤ and
defined as “λh. true”) holds of any heap, the affine top predicate holds only of any affine heap.

Definition 8.4 (Affine top). The predicate ⊤⊤ can be equivalently defined in two ways.
(1) ⊤⊤ ≡ λh. haffineh (2) ⊤⊤ ≡ ∃∃H . [affineH ]⋆H

There are three important properties of ⊤⊤. The first one asserts that any affine heap predicate H
entails ⊤⊤. The second one asserts that the predicate ⊤⊤ is itself affine. The third one asserts that
several copies of ⊤⊤ are equivalent to a single ⊤⊤.

Lemma 8.5 (Properties of affine top).
affineH

H ⊢ ⊤⊤
atop-r

affine⊤⊤
affine-atop

(⊤⊤⋆⊤⊤) = ⊤⊤
star-atop-atop

All the aforementioned definitions and lemmas hold for any predicate haffine satisfying the ax-
iomatization from Definition 8.1. Two extreme instantiations of haffine are particularly interesting.

Example 8.6 (Fully-affine Separation Logic). The definition “haffineh ≡ True” satisfies the re-
quirements of Definition 8.1, and leads to a Separation Logic where all heap predicates may be
freely discarded. In that setting, (affineH ) ⇔ True, and ⊤⊤ = ⊤ = (λh. true) = (∃∃H .H ).

Example 8.7 (Fully-linear Separation Logic). The definition “haffineh ≡ (h = ∅)” satisfies the
requirements of Definition 8.1, and leads to a Separation Logic where no heap predicate may be
freely discarded. In that setting, (affineH ) ⇔ (H ⊢ [ ]), and ⊤⊤ = [ ] = (λh.h = ∅).

8.3 Triples for a Partially-Affine Separation Logic
To accommodate reasoning rules that enable freely discarding affine heap predicates, it suffices
to refine the definition of a Separation Logic triple (Definition 5.2) by integrating the affine top
predicate ⊤⊤ into the postcondition of the underlying Hoare triple, as formalized next.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 116. Publication date: August 2020.



Separation Logic for Sequential Programs (Functional Pearl) 116:21

Definition 8.8 (Refined definition of triples for Separation Logic).

{H } t {Q } ≡ ∀H ′. HOARE{H ⋆H ′} t {Q .⋆H ′ .⋆⊤⊤}

Note that, with the fully-linear instantiation described in Example 8.7, the predicate ⊤⊤ is equiva-
lent to the empty heap predicate, therefore Definition 8.8 is strictly more general than Definition 5.2.

Lemma 8.9 (Reasoning rules for refined Separation Logic triples). All the previously-
mentioned reasoning rules, in particular the structural rules (Lemma 5.4) and the reasoning rules for
terms (Lemma 5.6), remain correct with respect to the refined definition of triples (Definition 8.8).

The discard rules, which enable discarding affine heap predicates, may be stated in a number of
ways. The three variants that are most useful in practice are shown below. These three variants
have equivalent expressive power with respect to discarding heap predicates.
The rule discard-pre allows discarding a user-specified predicate H ′ from the precondition,

provided that H ′ is affine. Without this rule, the user would have to carry this heap predicate H ′
through the proof until it appears in a postcondition.
The rule atop-post allows extending the postcondition with ⊤⊤, allowing a subsequent proof

step to yield an entailment relation of the form Q1 .⊢ (Q .⋆⊤⊤), allowing to discard unwanted pieces
from Q1. This rule is useful in “manual” proofs, i.e., proofs carried out with limited tactic support.

The rule ramified-frame-atop extends the ramified frame rule so that its entailment integrates
the predicate⊤⊤, allowing to discard unwanted pieces from eitherH orQ1. This rule is a key building
block for a practical tool that implements a partially-affine Separation Logic.

Lemma 8.10 (Discard rules).
discard-pre
{H } t {Q } affineH ′

{H ⋆H ′} t {Q }

atop-post
{H } t {Q .⋆⊤⊤}

{H } t {Q }

ramified-frame-atop
{H1} t {Q1} H ⊢ H1 ⋆ (Q1 .–⋆ (Q .⋆⊤⊤))

{H } t {Q }

9 WEAKEST-PRECONDITION STYLE
9.1 Semantic Weakest Precondition
The notion of weakest precondition has been used pervasively in the development of practical tools
based on Hoare logic. Recent work has shown that this notion also helps streamlining the set up of
practical tools based on Separation Logic.

The semantic weakest precondition of a term t with respect to a postcondition Q denotes a heap
predicate, written wp t Q , which corresponds to the weakest precondition H satisfying the triple
{H } t {Q }. The notion of “weakest” is to be understood with respect to the entailment relation,
which induces an order relation on the set of heap predicates (recall Lemma 3.8). The definition of
the predicate wp can be formalized in at least five different ways. The corresponding definitions
are shown below and commented next.

Definition 9.1 (Semantic weakest precondition). The predicate wp is equivalently characterized by:
(1) wp t Q ≡ min(⊢)

{
H ��� {H } t {Q }

}

(2)
(
{wp t Q } t {Q }

)
∧
(
∀H . {H } t {Q } ⇒ H ⊢ wp t Q

)
(3) wp t Q ≡ λh.

(
{λh′.h′ = h} t {Q }

)
(4) wp t Q ≡ ∃∃H . H ⋆

[
{H } t {Q }

]

(5) H ⊢ wp t Q ⇔ {H } t {Q }

The first characterization asserts that wp t Q is the weakest precondition: it is a valid precondition
for a triple for the term t with the postcondition Q . Moreover, any other valid precondition H for a
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triple involving t and Q entails wp t Q . The second characterization consists of a reformulation of
the first characterization in terms of basic logic operators.

The third characterization defines wp t Q as a predicate over a heap h, asserting that wp t Q holds
of the heap h if and only if the evaluation of the term starting from a heap equal to h produces the
postcondition Q .
The fourth characterization asserts that wp t Q is entailed by any heap predicate H satisfying

the triple {H } t {Q }. This characterization shows that the notion of weakest precondition can be
expressed as a derived notion in terms of the core heap predicate operators.
The fifth characterization asserts that any triple of the form {H } t {Q } may be equivalently

reformulated by replacing this triple with H ⊢ wp t Q .
The developer of a practical tool based on Separation Logic may choose to take either triples or

weakest-preconditions as a primitive notion; the other notion may then be derived in terms of that
primitive notion. The notion of triple is typically defined in terms of wp using characterization (5),
in the right-to-left direction. Reciprocally, the definition of wp can be defined in terms of triples.
The choice of the encoding depends on the strength of the host logic with respect to existential
quantification. Definition (3) makes weaker assumptions, whereas Definition (4) leverages the
ability to existentially quantify over heap predicates. Definition (4), which is expressed at the level
of heap predicates, is generally much simpler to manipulate in proofs.

9.2 WP-Style Structural Rules
The structural reasoning rule can be reformulated in weakest-precondition style, as follows.

Lemma 9.2 (Structural rules in weakest precondition style).

Q .⊢ Q ′

wp t Q ⊢ wp t Q ′
wp-consequence

(wp t Q ) ⋆H ⊢ wp t (Q .⋆H )
wp-frame

affineH

(wp t Q ) ⋆H ⊢ (wp t Q )
wp-discard-pre

wp t (Q .⋆⊤⊤) ⊢ wp t Q
wp-atop-post

The rule wp-conseqence captures a monotonicity property. The rule wp-frame reads as
follows: if I own a heap in which the execution of t produces the postconditionQ , and, separately, I own
a heap satisfying H , then, altogether, I own a heap in which the execution of t produces both Q and H .
These four structural rules may be combined into a single rule, called wp-ramified-frame-atop,
which subsumes all the other structural rules of Separation Logic.

Lemma 9.3 (Ramified frame rule in weakest precondition style).

(wp t Q ) ⋆ (Q .–⋆ (Q ′ .⋆⊤⊤)) ⊢ (wp t Q ′)
wp-ramified-frame-atop

9.3 WP-Style Rules For Terms
The weakest-precondition style reformulation of the reasoning rules for terms yields rules that are
similar to the corresponding Hoare logic rules. For example, the rule for sequence is as follows.

wp t1 (λv . wp t2Q ) ⊢ wp (t1 ; t2)Q
wp-seq

This rule can be read as follows: if I own a heap in which the execution of t1 produces a heap in
which the execution of t2 produces the postcondition Q , then I own a heap in which the execution of
the sequence “t1 ; t2” produces Q . The other reasoning rules for terms appear below.
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Lemma 9.4 (Reasoning rules for terms in weakest precondition style).

wp-val

Q v ⊢ wpvQ

wp-fix

Q (µ̂ f .λx .t ) ⊢ wp (µ f .λx .t )Q

wp-app
v1 = µ̂ f .λx .t

wp ([v2/x] [v1/f ] t )Q ⊢ wp (v1v2)Q

wp t1 (λv . wp ([v/x] t2)Q ) ⊢ wp (letx = t1 in t2)Q
wp-let

If b then (wp t1Q ) else (wp t2Q ) ⊢ wp (if b then t1 else t2)Q
wp-if

9.4 WP-Style Function Specifications
Function specifications were so far expressed using triples of the form {H } ( f v ) {Q }. These
specifications may be equivalently expressed using assertions of the form H ⊢ wp ( f v )Q .
The primitive operations are specified using wp as shown below. For example, the allocation

operation refv produces a postcondition Q , provided that the result of extending the current
precondition with p ↪→ v yields Q p. In the formal statement of the specification wp-ref, observe
how the address p is quantified universally in the left-hand side of the entailment.

Lemma 9.5 (Specification of primitive operations in weakest-precondition style).

wp-ref : ∀Q v .
(
∀∀p. (p ↪→ v ) −⋆(Q p)

)
⊢ wp (refv )Q

wp-get : ∀Q p. (p ↪→ v ) ⋆
(
(p ↪→ v ) −⋆(Q v )

)
⊢ wp (getp)Q

wp-set : ∀Q pv v ′. (p ↪→ v ) ⋆
(
∀∀r . (p ↪→ v ′) −⋆(Q r )

)
⊢ wp (setpv ′)Q

wp-free : ∀Q pv . (p ↪→ v ) ⋆
(
∀∀r . (Q r )) ⊢ wp (freep)Q

Remark: wp-set and wp-free can also be stated by specializing the variable r to the unit value tt.

There exists a general pattern for translating from conventional triples to weakest-precondition
style specifications. The following lemma covers the case of a specification involving a single
auxiliary variable named x . It may easily be generalized to a larger number of auxiliary variables.

Lemma 9.6 (Specifications in weakest-precondition style). Let v denote a value that may
depend on a variable x , and let H ′ denote a heap predicate that may depend on the variables x and r .(

{H } t {λr . ∃∃x . [r = v]⋆H ′}
)
⇔
(
∀Q . H ⋆ (∀∀x . H ′ −⋆(Q v )) ⊢ wp t Q

)
Stating specifications in weakest-precondition style is not at all mandatory for working with

reasoning rules in weakest-precondition style. Indeed, one may continue stating specifications
using conventional triples, which one might find more intuitive to read, and exploit the following
rule for reasoning about function applications.

Lemma 9.7 (Variant of the ramified frame rule for proof obligations in wp style).
{H1} t {Q1} H ⊢ H1 ⋆ (Q1 .–⋆ Q )

H ⊢ wp t Q
ramified-frame-for-wp

10 RELATEDWORK
For a broad survey of Separation Logic, we refer to O’Hearn’s CACM paper [2019]. In particular, its
appendix covers practical automated and semi-automated tools based on Separation Logic, such
as Infer [Calcagno et al. 2015], VeriFast [Philippaerts et al. 2014], or Viper [Müller et al. 2016]. In
this related work section, we focus on tools that leverage Separation Logic in interactive proofs
assistants for verifying sequential programs, and on the comparison with other teaching material.
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10.1 Original Presentation of Separation Logic
Traditional presentations of Separation Logic target command-based languages, which involve
mutable variables in addition to heap-allocated data. In that setting, the statement of the frame rule
involves a side-condition to assert that the mutable variables occurring in the framed heap predicate
are not modified by the command. Up to minor differences in presentation, many fundamental
concepts appeared in the first descriptions of Separation Logic [O’Hearn et al. 2001; Reynolds 2002]:

• the grammar of heap predicate operators, except the pure heap predicate [P], and with the
limitation that quantifiers ∃∃x .H and ∀∀x .H range only over integer values;
• the rule of consequence and the frame rules;
• a variant of the rule exists (this variant is named exists2 in the appendix);
• the fundamental properties of the star operator described in Lemma 3.9;
• the small footprint specifications for primitive state-manipulating operations,
• the definition ofMlist, stated by pattern-matching over the list structure like in Definition 2.7;
• the characterization of the magic wand operator via characterizations (1), (3) and (4) from
Definition 7.1, but not characterization (2), which involves quantification over heap predicates;
• the example of a copy function for binary trees;
• the encoding of records and arrays using pointer arithmetics (described in the appendix).

10.2 Additional Features of Separation Logic
The original presentation of Separation Logic consists of a first-order logic for a first-order language.

Biering et al. [2005, 2007] tackled the generalization to higher-order quantification—the possibility
to quantify over propositions and heap predicates—through the introduction of BI-hyperdoctrines.
Krishnaswami et al. [2007] formalized the subject-observer patternwith a strong form of information
hiding between the subject and the client. This work illustrated how higher-order Separation Logic
supports data abstraction.

Birkedal et al. [2005, 2006] tackled the generalization of Separation Logic to higher-order languages,
where functions may take functions as arguments. To avoid complications with mutable variables,
the authors considered a version of Algol with immutable variables and first-order heaps—heap
cells can only store integer values. Specifications are presented using dependent types: a triple
{H } t {Q } is expressed by the fact that the term t admits the type “{H } · {Q }”. One key idea from
this work is to bake-in the frame rule into the interpretation of triples, that is, to quantify over a
heap predicate describing the rest of the state, as in Definition 5.2. The technique of the baked-in
frame rule later proved successful in mechanized proofs. For example, it appears in the HOL4
formalization by Myreen and Gordon [2007] (see §3.2, as well as §2.4 from Myreen’s PhD thesis
[2008]) and in the Coq formalization by [Appel and Blazy 2007] (see Definition 9).

Reus and Schwinghammer [2006] presented a generalization of Separation Logic to higher-order
stores, where heap cells may store functions whose execution may act over the heap. The former
work targets a language that features storable, parameter-less procedures. Its model, developed on
paper, was then simplified by Birkedal et al. [2008] using the technique of the baked-in frame rule.

Another approach to tackling the circularity issues associated with higher-order quantification
and higher-order stores consists of using the step indexing technique [Ahmed 2004; Appel and
McAllester 2001; Appel et al. 2007]. In that approach, a heap predicate depends not only on a
heap but also on a natural number, which denotes the number of execution steps for which the
predicate is guaranteed to hold. This approach was later exploited in VST, which provided the first
higher-order concurrent Separation Logic [Hobor et al. 2008].
Ni and Shao [2006] presented the XCAP framework, formalized in Coq. It targets an assembly-

level language with embedded code pointers, thereby supporting both higher-order functions
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and higher-order stores. XCAP features impredicative polymorphism, allowing heap predicates to
quantify over heap predicates. This work addresses the same problem as the aforementioned work
through a more syntactic approach.

When reasoning about first-class functions, the notion of nested triple naturally appears: triples
may occur inside the pre- or post-condition of other triples. Nested triples were described in work
by [Schwinghammer et al. 2009] for functions stored in the heap, and in work by [Svendsen et al.
2010] for higher-order functions (more precisely, for delegate functions). Nested triples are naturally
supported by shallow embeddings of Separation Logic in higher-order logic proof assistants. This
possibility is mentioned explicitly by [Wang et al. 2011], but was already implicitly available in
earlier formalizations, e.g. [Appel and Blazy 2007].
Krishnaswami et al. [2010] introduced the idea of a ramified frame rule. The general statement

of the ramified rule stated as in Lemma 7.6 appeared in Hobor and Villard [2013]. Users of the tools
VST [Cao et al. 2018b] and Iris [Jung et al. 2017] have advertised for the interest of this rule.

The magic wand between postconditions, written Q1 .–⋆ Q2, as opposed to the use of an explicit
quantification ∀∀v .Q1v −⋆Q2v , appears to have first been employed by Bengtson et al. [2012]. This
operator is described in the book by Appel et al. [2014]. The five equivalent characterizations of
this operator give in Definition 7.4 appear to be a (very minor) contribution of the present paper.
Regarding while loops, the possibility to frame over the remaining iterations (§6) is inherently

available when a loop is encoded as a recursive functions, or when a loop is presented in CPS-style—
typical with assembly-level code [Chlipala 2011; Ni and Shao 2006]. The statement of a reasoning
rule directly applicable to a non-encoded loop construct, and allowing to frame over the remaining
iterations, has appeared independently in work by Charguéraud [2010] and Tuerk [2010].
A number of interesting extensions of Separation Logic for deterministic sequential programs

were beyond the scope of the present paper. Let us cite a few.
The notion of Separation Algebra [Calcagno et al. 2007; Dockins et al. 2009; Gotsman et al.

2011; Klein et al. 2012] is useful for developing a Separation Logic framework independently from
the details of the programming language. Costanzo and Shao [2012] present a refined definition
of local reasoning to ensure that, whenever a program runs safely on some state, adding more
state would have no effect on the program’s behavior; their definition is useful in particular
for nondeterministic programs and programs executed in a finite memory. Fictional Separation
Logic [Jensen and Birkedal 2012] generalizes the interpretation of separating conjunction beyond
physical separation, and explains how to combine several separation algebras. Temporary read-only
permissions [Charguéraud and Pottier 2017] provide a simpler alternative to fractional permission for
manipulating duplicatable read-only resources in a sequential program. Time credits [Charguéraud
and Pottier 2015] allow for amortized cost analysis. Time receipts [Mével et al. 2019] may be used to
establish lower bounds on the execution time. The higher-order frame [Birkedal et al. 2005, 2006]
and the higher-order anti-frame [Pottier 2008; Schwinghammer et al. 2010] allow reasoning about
hidden state in sequential programs.

10.3 Mechanized Presentations of Separation Logic
Gordon [1989] presents the first mechanization of Hoare logic in higher-order logic, using the HOL
tool. Gordon’s pioneering work was followed by numerous formalizations of Hoare logic, targeting
various programming languages. Mechanizations of Separation Logic appeared later. Here again,
we restrict our discussion to the verification of sequential programs.

Yu et al. [2003, 2004] present the CAP framework, implemented in Coq. It supports reasoning
about low-level code using Separation Logic-style rules, and is applied to the verification of a
dynamic storage allocation library. Ni and Shao [2006] present the XCAP framework, already
mentioned in the previous section, to reason about embedded code pointers. XCAP was also applied
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to reasoning about x86 context management code [Ni et al. 2007]. Feng et al. [2006] present the
SCAP framework, for reasoning about stack-based control abstractions, including exceptions and
setjmp/longjmp operations. SCAP is also applied to the verification of Baker’s incremental copying
garbage collector [McCreight et al. 2007]. Feng et al. [2007] present the OCAP framework that
generalizes XCAP for supporting interoperability of different verification systems, including SCAP.
Cai et al. [2007] present the GCAP framework for reasoning about self-modifying code, and apply
Separation Logic to support local reasoning on both program code and regular data structures.
Feng et al. [2008] presents the first verified implementation of a preemptive thread runtime that
exploits hardware interrupts; this runtime is linked to verified context switch primitives, using the
OCAP and the SCAP frameworks. Wang et al. [2011] present ISCAP, a step-indexed, direct-style
operational semantics with support for first-class pointers.
Weber [2004] formalizes in Isabelle/HOL a first-order Separation Logic for a simple while

language. This work includes a soundness proof for the frame rule, and the verification of the
classic in-place list reversal example.

Preoteasa [2006] formalize in PVS a first-order Separation Logic, with the additional feature that
it supports recursive procedures. This work includes the verification of a collection of recursive
procedures for computing the parse tree associated with an arithmetic expression.

Marti et al. [2006] formalize in Coq a Separation Logic library, and used it for the verification of
the heap manager of an operating system.

Tuch et al. [2007] present a shallow embedding of Separation Logic in Isabelle/HOL, for a subset
of the C language, with support for interpreting values at the byte level when required. Their
framework is applied to the verification of the memory allocator of a microkernel. Its logic was
later extended to support predicates for mapping virtual to physical addresses, and thereby reason
about the effects of virtual memory [Kolanski and Klein 2009]. Klein et al. [2012] present a re-usable
library for Separation Algebras, including support for automation.
Appel and Blazy [2007] formalize in Coq a Separation logic for Cminor. This work led to the

VST tool, which supports the verification of concurrent C code [Appel 2011; Appel et al. 2014; Cao
et al. 2018a]. VST leverages step-indexed definitions and features a later modality [Dockins et al.
2008; Hobor et al. 2008, 2010].
Myreen and Gordon [2007] formalize Separation Logic in HOL4. This work eventually lead to

the CakeML compiler, described further on.
Varming and Birkedal [2008] demonstrate the possibility to formalize higher-order Separation

Logic as a shallow embedding in Isabelle/HOLCF.
Nanevski et al. [2008b] and Chlipala et al. [2009] present the Ynot tool, which consists of an

axiomatic embedding in Coq of Hoare Type Theory (HTT) [Nanevski et al. 2006, 2008a]. HTT is a
presentation of higher-order Separation Logic with higher-order stores in the form of a type system
for a dependently typed functional language. In Ynot, like in HTT, a Coq term t admits the Coq type
“STH Q” to express the specification {H } t {Q }. In Ynot, programs are shallowly embedded in Coq:
they are expressed using Coq primitive constructs and axiomatized monadic constructs for effects.
The frame rule takes the form of an identity coercion of type STH Q → ST (H ⋆H ′) (λv . Q v ⋆H ′).
For specifications involving auxiliary variables, Ynot supports ghost arguments, which appear like
normal function arguments except that they are erased at runtime.

Charguéraud [2011] presents the CFML tool, which supports the verification of OCaml programs.
CFML does not state reasoning rules directly in Coq; instead, a program is verified by means of its
characteristic formula, which corresponds to a form of strongest postcondition. These characteristic
formulae are generated as Coq axioms by an external tool that parses input programs in OCaml
syntax. CFML was extended to support asymptotic cost analysis [Charguéraud and Pottier 2015;
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Charguéraud and Pottier 2019]. CFML initially hard-wired fully-affine triples, featuring unrestricted
discard rules, and later integrated the customizable predicate haffine (§8) [Guéneau et al. 2019].
Tuerk [2011] presents in HOL4 the Holfoot tool, formalizing in particular the rules of Abstract

Separation Logic [Calcagno et al. 2007].
Chlipala [2011, 2013] presents in Coq the Bedrock framework, for the verification of programs

written at the assembly level. Bedrock has been, for example, put to practice to verify a cooperative
threading library and an implementation of a domain-specific language for XML processing. These
software components were interfaced with hardware components of mobile robots [Chlipala 2015].
Bengtson et al. [2011] present a shallow embedding of higher-order Separation Logic in Coq,

demonstrating the use of nested triples for reasoning about object-oriented code. Following up on
that work, Bengtson et al. [2012] developed in Coq the Charge! tool, which handles a subset of Java.

Jensen et al. [2013] give a modern presentation of a Separation Logic for low-level code, exploiting
in particular the (higher-order) frame connective [Birkedal et al. 2005; Birkedal and Yang 2007;
Krishnaswami 2012]. Building on that work, Kennedy et al. [2013] show how to write assembly
syntax and generate x86 machine code inside Coq.

The CakeML verified compiler [Kumar et al. 2014], implemented in HOL, takes SML-like programs
as input and produces machine code as output. It exploits Separation Logic to prove the garbage
collector [Sandberg Ericsson et al. 2019]. It also exploits Separation Logic to set up a CFML-style
characteristic formula generator, extended with support for catchable exceptions and I/O [Guéneau
et al. 2017]. The characteristic formulae are used to verify the standard library for CakeML.

The Iris framework [Jung et al. 2017, 2016, 2018, 2015; Krebbers et al. 2017], implemented in Coq,
supports higher-order concurrent Separation Logic. Like VST, Iris features a later modality and
step-indexed definitions. Iris exploits weakest-precondition style reasoning rules (§9) and function
specifications are stated as in Lemma 9.6, although using syntactic sugar to make specifications
resemble conventional triples. Iris is defined as a fully-affine logic, with an affine entailment.
Tassarotti et al. [2017] present an extension of Iris with linear heap predicates.

The Mosel framework [Krebbers et al. 2018] generalizes Iris’ tooling to a large class of separation
logics, targeting both affine and linear separation logics, and combinations thereof. On top of Iris,
Bizjak et al. [2019] present the encoding of two logics that enable tracking of linear resources that
are transferable among dynamically allocated threads. The first one, called Iron, leverages fractional
permissions to encode trackable resources, and allow, e.g., reasoning about deallocation of shared
resources. The second one, called Iron++, hides away the use of fractions, and recovers essentially
a linear Separation Logic with support for trackable invariants.
Bannister et al. [2018] discuss techniques for forward and backward reasoning in Separation

Logic. Their work, presented in Isabelle/HOL, introduces the separating coimplication operator
to improve automation. Separating coimplication is the dual of separating conjunction, just like
septraction [Vafeiadis and Parkinson 2007] is the dual of separating implication. Separating coimpli-
cation forms a Galois connection with septraction, just like separating conjunction forms a Galois
connection with separating implication.
Lammich [2019a,b] present a refinement framework that leverages Separation Logic to refine

from Isabelle/HOL definitions to verified code in LLVM intermediate representation. It is applied to
the production of a number of algorithms, including an efficient KMP string search implementation.

10.4 Tutorials on Separation Logic
There exists a number of course notes on Separation Logic. Many of them follow the presentation
from Reynolds’ article [2002] and course notes [2006]. These course notes consider languages with
mutable variables, whose treatment adds complexity to the reasoning rules. The Separation Logic
is presented as a first-order logic on its own, without attempt to relate it in a way or another to the
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higher-order logic of a proof assistant. The soundness of the logic is generally only skimmed over,
with a few lines explaining how to justify the frame rule.

A few courses present Separation Logic in relation with its application in mechanized proofs.
Appel’s book Program Logics For Certified Compilers [2014] presents a formalization of a Separation
Logic targeting the C semantics from CompCert [Leroy 2009]. More recently, Appel and Cao [2020]
published a volume part of the Software Foundations series, entitled Verifiable C. This volume is a
tutorial for VST [Cao et al. 2018a], a tool that supports reasoning about actual C code. As of 2020,
the tutorial covers the verification of data structures, including linked lists, stacks, hashtables, as
well as functions manipulating strings.

The presence of mutable variables, in addition to other specificities of the C memory model,
makes the presentation unnecessarily complex for a first exposure to Separation Logic and to its
soundness proof. The author is aware of two other mechanized Separation Logic tutorials that
target a λ-calculus based language, with immutable variables and return values for terms.

The Iris tutorial by Birkedal and Bizjak [2018] presents the core ideas of Iris’ concurrent Separation
Logic [Krebbers et al. 2017]. Chapters 3 and 4 introduce heap predicates and Separation Logic
for sequential programs. Unlike in Iris’ Coq formalization, which leverages a shallow embedding
of Separation Logic, the tutorial presents the heap predicate in deep embedding style, via a set
of typing rules for heap predicates. The realization of these predicates is not explained, and the
tutorial does not discuss how the reasoning rules are proved sound with respect to the small-step
semantics of the language. The logic presented targets partial correctness, not total correctness,
and only the case of an affine logic is covered.

Chlipala’s course notes [Chlipala 2018a] feature a chapter on Separation Logic, accompanied with
a corresponding Coq formalization meant to be followed by students [Chlipala 2018b]. The material
includes a proof of soundness, as well as the verification of a few example programs. Chlipala’s
chapter focuses on the core of Separation Logic—it does not cover any of the enhancements
listed in the introduction. The programming language is described in mixed-embedding style: the
syntax includes a constructor Bind, which represents bindings using Coq functions, in higher-order
abstract syntax style. The rest of the syntax consists of operations for allocation and deallocation, for
reading and writing integer values into the heap, plus the constructors Return, Loop, and Fail. These
constructs are dependently-typed: a term that produces a value of type α admits the type cmdα .
Altogether, this design allows for a concise formalization of the source language, yet, we believe, at
the price of an increased cost of entry for the reader unfamiliar with the techniques involved. The
core heap predicates are formalized like in Ynot [Chlipala et al. 2009]. Triples are defined in deep
embedding style, via an inductive definition whose constructors correspond to the reasoning rules.
This deep embedding presentation requires “not-entirely-obvious” inversion lemmas, which are not
needed in our approach. The soundness proof establishes a partial correctness result expressed via
preservation and progress lemmas. Chlipala’s approach appears well suited for reasoning about an
operating system kernel that should never terminate, or reasoning about concurrent code. However,
for reasoning about sequential executions of functions that do terminate, our total correctness
proof carried out with respect to a big-step semantics yields a stronger result, via a simpler proof.
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A STATISTICS ON THE MINIMAL SOUNDNESS PROOF FOR SEPARATION LOGIC

Number of Number of Lines of Lines of
definitions lemmas Tactic defs. Proofs

Syntax of the language 8
Substitution and big-step semantics 2
Tactic for heap equality and disjointness 5
Extensionality axioms 2
Core heap predicates 7
Entailment 2 4 2 4
Properties of separating conjunction 9 21
Properties of other operators 11 14
Tactic for entailments 2 17 3
Lemmas for heap-manipulating primitives 4 13
Hoare triples and associated rules 1 14 41
Separation Logic and associated rules 1 15 21
Total 23 59 24 117

Fig. 3. Statistics for the Coq formalization

B PREDICATE EXTENSIONALITY
In proof assistants such as HOL or Isabelle/HOL, extensionality is built-in. In Coq, it needs to be
either axiomatized, or derived from two more fundamental extensionality axioms: extensionality
for functions and extensionality for propositions.

These standard axioms are formally stated as follows.

predicate-extensionality: ∀A. ∀(P P ′ : A→ Prop). (P x ⇔ P ′ x ) ⇒ (P = P ′)
functional-extensionality: ∀AB. ∀( f f ′ : A→ B). ( f x = f ′ x ) ⇒ ( f = f ′)
propositional-extensionality: ∀(P P ′ : Prop). (P ⇔ P ′) ⇒ (P = P ′)

In summary, one may take functional-extensionality and propositional-extensionality
as axioms in Coq, then from these two derive predicate-extensionality and, as a corollary, the
antisymmetry rule for heap entailment (himpl-antisym).

C EXAMPLE PROOFS OF REASONING RULES
C.1 Proof of A Structural Rule
To illustrate the kind of reasoning involved in the proof of structural rules, consider the proof of
the combined consequence-frame rule.

Lemma C.1 (Combined conseqence-frame rule).

H ⊢ H1 ⋆H2 {H1} t {Q1} Q1 .⋆H2 .⊢Q

{H } t {Q }
consequence-frame

Proof. The consequence rule is straightforward to establish for Hoare triples, based on the
definition of entailment (Definitions 3.7 and 3.14) and of Hoare triples (Definition 5.1), in which the
precondition appears as hypothesis and the postcondition as conclusion of a logical implication.

Let us prove the consequence-frame rule with respect to the interpretation of Separation Logic
triples given in Definition 5.2.
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The conclusion {H } t {Q } is equivalent to ∀H ′. HOARE{H ⋆H ′} t {Q .⋆H ′}. Consider a particular
heap predicateH ′. Invoking the premise {H1} t {Q1} on the predicateH2⋆H

′ yields HOARE{H⋆ (H2⋆
H ′)} t {Q .⋆ (H2 ⋆H

′)}. By the consequence rule of Hoare logic, to derive HOARE{H ⋆H ′} t {Q .⋆H ′},
it suffices to establish the entailments H ⋆H ′ ⊢ H ⋆ (H2 ⋆H

′) and Q .⋆ (H2 ⋆H
′) .⊢Q .⋆H ′.

To prove the first entailment, first exploit rule star-assoc to rewrite it as H ⋆H ′ ⊢ (H ⋆H2)⋆H
′,

then observe that the resulting entailment follows from the premise H ⊢ H1 ⋆H2 by rule star-
monotone-r. To prove the second entailment, let us begin by revealing the definition of the
entailment for postconditions (recall Definition 3.14). The second entailment is equivalent to
(Q v )⋆ (H2⋆H

′) ⊢ (Q v )⋆H ′. It follows from the premiseQ1 .⋆H2 .⊢Q , which implies (Q1v )⋆H2 ⊢

(Q v ), by exploiting the rules star-assoc and star-monotone-r just like for the first entailment. □

C.2 Proof of a Reasoning Rule for Terms
To illustrate the kind of reasoning involved in the proof of reasoning rules for terms, consider the
case of sequences. The proof is two-step: first establish a Hoare logic reasoning rule for sequences,
then derive its Separation Logic counterpart.

Lemma C.2 (Reasoning rule for seqences in Hoare Logic).
HOARE{H } t1 {λv .H

′} HOARE{H ′} t2 {Q }
HOARE{H } (t1 ; t2) {Q }

hoare-seq

Proof. The evaluation rule for sequence is a simplified version of the evaluation rule for let-
bindings, stated as shown below.

t1/s ⇓ v1/s
′ t2/s

′ ⇓ v/s ′′

(t1 ; t2)/s ⇓ v/s ′′
eval-seq

Recall from Definition 5.1 the interpretation of Hoare triples. Consider a state s satisfying the
precondition H , that is, such that H s holds. The goal is to find v and s ′ such that (t1 ; t2)/s ⇓ v/s ′
and Q v s ′ hold.
By the first premise HOARE{H } t1 {λv .H

′} applied that state s , there exists v1 and s ′1 such that
t1/s ⇓ v1/s

′
1 and (λv .H ′)v1 s

′
1 hold. The latter simplifies to H ′ s ′1.

By the second premise {H ′} t2 {Q } applied to the state s ′1, which satisfies the precondition H ′,
there exists v and s ′ such that t2/s ⇓ v/s ′ and Q v s ′ hold. The latter corresponds to one half of the
conclusion.

Applying the evaluation rule for sequence eval-seq to the judgments t1/s ⇓ v1/s ′1 and t2/s ⇓ v/s
′

yields (t1 ; t2)/s ⇓ v/s ′, which corresponds to the second half of the conclusion. □

Lemma C.3 (Reasoning rule for seqences in Separation Logic).

{H } t1 {λv .H
′} {H ′} t2 {Q }

{H } (t1 ; t2) {Q }
seq

Proof. Recall from Definition 5.2 the interpretation of Separation Logic triples: {H } (t1 ; t2) {Q }
is equivalent to ∀H ′′. HOARE{H ⋆H ′′} (t1 ; t2) {Q .⋆H ′′}. Consider a particular heap predicate H ′′.

By the first premise {H } t1 {λv .H ′} applied to that H ′′, one derives HOARE{H ⋆H ′′} t1 {(λv .H
′) .⋆

H ′′}. In that judgment, the postcondition (λv .H ′) .⋆H ′′ simplifies to λv . (H ′ ⋆H ′′).
By the second premise {H ′} t2 {Q } applied to the sameH ′′, one derives HOARE{H ′⋆H ′′} t2 {Q .⋆H ′′}.
Applying the Hoare logic reasoning rule for sequences (hoare-seq from Lemma C.2) to the two

judgments HOARE{H ⋆H ′′} t1 {λv . (H
′ ⋆H ′′)} and HOARE{H ′ ⋆H ′′} t2 {Q .⋆H ′′} yields HOARE{H ⋆

H ′′} (t1 ; t2) {Q .⋆H ′′}, as required. □
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D VERIFICATION OF THE INCREMENT FUNCTION
To illustrate the use of the reasoning rules, let us present the proof of the increment function.
Consider the following implementation.

incr ≡ µ̂_ .λp. letn = getp in
letm = (+) n 1 in
setpm

Example D.1 (Verification of the increment function). The following statement holds.

∀p n. {p ↪→ n} (incrp) {λ_. p ↪→ (n + 1)}

Proof. Consider particular values of p and n.
• Applying rule app leaves:

{p ↪→ n} (letn = getp in letm = (+) n 1 in setpm) {λ_. p ↪→ (n + 1)}.

• Applying rule let with Q ′ instantiated as λr . [r = n] ⋆ (p ↪→ n) leaves two subgoals. The
first one is: {p ↪→ n} (getp) {λr . [r = n] ⋆ (p ↪→ n)}. It is an instance of the rule get. The
second subgoal is:

∀v . {[v = n] ⋆ p ↪→ n} (letm = (+)v 1 in setpm) {λ_. p ↪→ (n + 1)}.

• Introducing v , applying the rule prop to extract [v = n] from the precondition, then substi-
tuting n for v turns the proof obligation into:

{p ↪→ n} (letm = (+) n 1 in setpm) {λ_. p ↪→ (n + 1)}.

• Applying again the rule let, this time with Q ′ instantiated as λr . [r = n + 1] ⋆ (p ↪→ n).
leaves two subgoals. The first one is: {p ↪→ n} ((+) n 1) {λr . [r = n+1] ⋆ (p ↪→ n)}. Applying
the frame rule with H ′ instantiated as p ↪→ n yields an instance of the rule add. The second
subgoal is:

∀v . {[v = n + 1] ⋆ p ↪→ n} (setpv ) {λ_. p ↪→ (n + 1)}.

• Introducing and eliminating v simplifies the proof obligation into an instance of rule set:

{p ↪→ n} (setp (n + 1)) {λ_. p ↪→ (n + 1)}.

□

E BENEFITS OF THE FRAME RULE IN THE PROOF OF A RECURSIVE FUNCTION
The frame rule allows for simpler proofs than what could be achieved without it. To substantiate
this claim, let us present the proof of the copy function in Separation Logic, then discuss how it
would be more complicated without the frame rule.

let rec mcopy p =

if p == null

then null

else { head = p.head; tail = mcopy p.tail }

Proof. The proof of the specification stated in Example 2.12 is carried out by induction on the
length of the list L. The induction hypothesis allows in particular to assume the specification to
hold for the recursive call.
At the entry of the body of the function, the state corresponds to the precondition, that is, to

MlistLp. To reason by case analysis on whether p is null, we exploit Definition 2.9.
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• Case p = null. In this case, L = nil and the function returns the value null. This value is
named p ′ in the postcondition. The new piece of postcondition to establish isMlistLp ′. By
Definition 2.8, because L = nil, the predicate MlistLp ′ is equivalent to p ′ = null. Hence, the
postcondition is satisfied.
• Case p , null. In this case, L decomposes as x :: L′, and the current state is described by the
heap predicate (p.head ↪→ x ) ⋆ (p.tail ↪→ q) ⋆ (MlistL′ q). The operations performed by the
code are verified as follows.
– The read operation p.head returns the value x , and p.tail returns the address q.
– The recursive call mcopyq creates a copy of the list represented by L′. By induction hypoth-
esis applied to L′, this recursive call can be assumed to satisfy the triple:

{MlistL′ q} (mcopyq) {λr ′. ∃∃q′. [r ′ = q′]⋆ (MlistL′ q) ⋆ (MlistL′ q′)}.

– Applying the frame rule to that triple and to (p.head ↪→ x ) ⋆ (p.tail ↪→ q) yields the triple:

{(p.head ↪→ x ) ⋆ (p.tail ↪→ q) ⋆ (MlistL′ q)}
(mcopyq)

{λr ′. ∃∃q′. [r ′ = q′]⋆ (p.head ↪→ x ) ⋆ (p.tail ↪→ q) ⋆ (MlistL′ q) ⋆ (MlistL′ q′)}

which enables reasoning about the recursive call in the current state.
– Let q′ denote the result of the recursive call, and let p ′ denote the result of the record
allocation operation{ head = p.head; tail = q' } . This record allocation produces a heap
described by (q.head ↪→ x ) ⋆ (q.tail ↪→ q′).

– Thus, the final state is described by:

(p.head ↪→ x ) ⋆ (p.tail ↪→ q) ⋆ (MlistL′ q)
⋆ (p ′.head ↪→ x ) ⋆ (p ′.tail ↪→ q′) ⋆ (MlistL′ q′)

which may be folded to (MlistLp) ⋆ (MlistLp ′), matching the claimed postcondition. □

Intuitively, in the above reasoning, the frame rule is invoked at each recursive call on the head
cell of the input list. One is therefore able to reason about a recursive call to mcopy by assuming
that it makes a copy of a sublist, independently of all the cells that have already been traversed by
the outer recursive calls to mcopy.

Without the frame rule, one would have to describe the full list at an arbitrary point during the
recursion. Doing so requires describing the list segment made of cells ranging from the head of
the initial list up to the pointer on which the current recursive call is made. Stating an invariant
involving list segments is doable yet involves more complex definitions and assertions.
More generally, for a program manipulating tree-shaped data structures, the frame rule saves

the need to describe a tree with a subtree carved out of it. The ability to invoke the frame rule in
proofs carried out by induction allows to reason locally about the work performed by the recursive
call, without having to explicitly describe the whole context in which this recursive call is taking
place, thereby saving a significant amount of proof effort.

F REASONING ABOUT HIGHER-ORDER FUNCTIONS
Example F.1 (Reynold’s CPS-append challenge). Consider the (nontrivial) function shown below.

It takes as arguments two mutable lists, and returns an address describing the head of a list whose
cells correspond to the concatenation of the two input lists. The function is implemented by means
of a recursive function that expects a continuation, named k in the code, to be invoked on the
output list. Each recursive call is made with a fresh continuation, responsible for updating the tail
pointer of the list cell at hand before invoking the current continuation.
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let cps_append p1 p2 =

let rec aux p k =

if p == null

then k p2

else aux p.tail p2 (fun r => (p.tail <- r); k p)

in

aux p1 (fun r => r)

This function admits the following Separation Logic specification, which describes the two disjoint
input lists represented by L1 and L2, respectively, and the result list represented by (L1 ++ L2).

{(MlistL1 p1) ⋆ (MlistL2 p2)} (cps_appendp1 p2) {λr . ∃∃p3 [r = p3] ⋆ Mlist (L1 ++ L2) p3}

The crux of the proof consists of providing the appropriate specification for the internal recusive
function aux. This specification reads as follows. Assume the continuation k to admit the postcon-
dition Q when invoked on a list p3 describing a list of the form L ++ L2, and with an auxiliary heap
described by H . Then, the call auxp1 k also admits the postcondition Q (indeed, the ultimate action
performed by aux is to invoke its continuation k) under the precondition including (MlistLp),
which corresponds to a sublist of (MlistL1 p1), including (MlistL2 p2), which is exploited only in
the base case where p becomes null, and including H .

∀p k L.
(
∀p3. {Mlist (L ++ L2) p3 ⋆ H } (k p3) {Q }

)
⇒ {(MlistLp) ⋆ (MlistL2 p2) ⋆ H } (auxp1 k ) {Q }

In this statement, H describes, in an abstract way, the cells from list p1 that have already passed by.
The introduction of such an abstract heap predicate H is a common pattern for CPS-style functions.

The verification of the function cps_append was first conducted in XCAP [Ni and Shao 2006]. In
this pioneering work, the function is programmed in a assembly-level language with embedded
code pointers, and the proof involving several hundreds of lines of Coq script. The verification of
cps_append was later carried out in CFML [Charguéraud 2011]. In that framework, the function is
programmed in 4 lines of OCaml and verified using 9 lines of Coq proofs.

G ALTERNATIVE STRUCTURAL RULES
Lemma 5.4 presents 4 core structural reasoning rules: conseqence, frame, prop and exists.
The rule prop for extracting pure facts may in fact be seen as a particular instance of the rule

exists for extracting existential quantifiers. Indeed, as pointed out in Remark 3.4, the heap predicate
[P] is equal to ∃∃(p : P ). [ ]. Besides, the quantification “∀(p : P ). ...” is equivalent to the implication
“P ⇒ ...”.

The rule exists is very useful in practice, although its statement does not appear in the original
papers on Separation Logic. These papers instead formulated a rule featuring an existential quantifier
both in the precondition and the postcondition. In a ML-style language, it would corresponds to the
rule exists2 shown below. The rules exists and exists2 yield equivalent expressive power, that is,
they may be derived from one another (in the presence of the rule conseqence, and exists-r
and exists-l from Fig. 1). Compared with exists2, the statement of exists is more concise and
better-suited for practical purpose.
The rule forall, stated below, is also useful in practice. This rule is derivable from the conse-

qence, and forall-l from Fig. 1.
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Lemma G.1 (Other structural rules).

∀x . {H } t {Q }

{∃∃x .H } t {λv . ∃∃x . (Q v )}
exists2

{[a/x]H } t {Q }
{∀∀x .H } t {Q }

forall

H ARRAYS AND RECORDS
This section briefly summarizes the key ideas involved in the treatment of arrays and records.
Details may be found in the accompanying Coq development.
Note that the presentation does not take into account the notion of “allocated blocks”, and the

usual restriction that the free operation can only be invoked on the head of an allocated block. We
are currently working on a refinement of the definitions that would enforce this property.

H.1 Arrays
The programming language is assumed to include two additional primitive operations: allocn
for allocating n consecutive cells, and deallocnp for deallocating n consecutive cell starting from
address p. It is possible to refine the Separation Logic to ensure that deallocation operations are
only invoked on the head of allocated blocks—details are beyond the scope of the present paper.

The allocated cells are assigned as contents a special uninitialized value, written⊥. The semantics
of read operations may be adapted to prevent read operations in uninitialized cells, by adding a
premise of the form v , ⊥ to the specification of get.

The i-th cell of an array allocated at address p corresponds to the cell at address p + i .

Definition H.1 (Representation of consecutive cells). The heap predicate cellsLp describes consec-
utive cells allocated in the range [p,p + |L|), whose contents are the items from the list L.

cellsLp ≡ matchLwith | nil ⇒ [ ]
| x :: L′ ⇒ (p ↪→ x ) ⋆ (cellsL′ (p + 1))

Lemma H.2 (Specification of array operations).

n ≥ 0 ⇒ {[ ]} (allocn) {λr . ∃∃p. [r = p] ⋆ cells (List.maken⊥) p}
n = |L| ⇒ {cellsLp} (deallocnp) {λ_. [ ]}

0 ≤ i < |L| ⇒ {cellsLp} (array_get i p) {λr . [r = List.nth i L] ⋆ cellsLp}
0 ≤ i < |L| ⇒ {cellsLp} (array_set i v p) {λ_. cells (List.update i v L) p}

For functions that process an array by making recursive calls to increasingly-smaller segments
of the array, the following range-split lemma allows splitting the segment at hand and applying the
frame rule to the segment that is not involved in the recursive call. One thereby gets for free the
fact that cells in that segment are unmodified during the recursive call.

Lemma H.3 (Splitting a range of cells).

(cells (L1 ++ L2) p) = (cellsL1 p) ⋆ (cellsL2 (p + |L1 |))

Another useful result is the following focus lemma, which allows isolating the i-th cell out of a
range of consecutive cells starting at address p and described by a list L, so as to perform operations
on that cell in isolation from the rest of the range. Subsequently, the cell with its updated contentsv
may be merged back into the range. This logical operation involves cancelling a magic wand.

Lemma H.4 (Focusing on a cell from a range). Assume 0 ≤ i < |L|.(
cellsLp

)
⊢
(
(p + i ) ↪→ (List.nth i L)

)
⋆
(
∀∀v . ((p + i ) ↪→ v ) −⋆ cells (List.update i v L) p

)
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H.2 Records
Definition H.5 (Representation of record fields). A record field is represented by the heap predicate

p.k ↪→ v , which stands for (p + k ) ↪→ v .

Definition H.6 (Representation of records). Consider for example the record {head = x; tail = q} ,
with the offsets head ≡ 0 and tail ≡ 1. This record may be represented in three different ways:

(1) as “cells (x :: q :: nil) p”, just like an array of length 2,
(2) as “(p.head ↪→ x ) ⋆ (p.tail ↪→ q)”, with two separated fields,
(3) as “record (head,x ) :: (tail,q) :: nil) p”, where the heap predicate recordK p describes a record

at location p and whose field names and contents are described by the association list K .
recordK p ≡ matchK with | nil ⇒ [ ]

| (k,v ) :: K ′ ⇒ (p.k ↪→ v ) ⋆ (cellsK ′p)

To each of these three representations of records correspond different specifications for allocation,
deallocation, read and write operations. The third representation is the one that scales better to
large programs, because: (1) it groups the fields of a same record into a single predicate, thereby
reducing the number of conjuncts, (2) it allows describing the ownership of an arbitrary subset of
the fields, (3) it allows providing items in any order, and (4) with appropriate syntactic sugar it may
be written in the form p ↪→ {head := x ; tail := q}, which is easy to read.

I TREATMENT OF ASSERTIONS (DYNAMIC CHECKS)
The language construct “assert t” expresses a Boolean assertion. If the term t evaluates to the
value true, the assertion produces unit. Otherwise, the term “assert t” gets stuck—the program
halts on an error. The verification of a program should statically ensure that: (1) the body of
every assertion evaluates to true, and (2) the program remains correct when assertions are dis-
abled either via a compiler option such as -noassert in OCaml, or via the programming pattern
“if debug then assert t”, where debug denotes a compilation flag. The assert rule, shown below,
satisfies these two properties.

Lemma I.1 (Evaluation rules and reasoning rule for assertions).
eval-assert-enabled

t/s ⇓ true/s ′

(assert t )/s ⇓ tt/s ′

eval-assert-disabled

(assert t )/s ⇓ tt/s

assert
{H } t {λr . [r = true]⋆H }
{H } (assert t ) {λ_. H }

Remark I.2 (Assert false). The term “assert false” denotes inaccessible branches of the code. A
valid triple for this term can only be derived from a false precondition: {[False]} (assert false) {Q }.

Remark I.3 (Assertions involving write operations). Interestingly, the reasoning rule assert is not
limited to read-only terms. For example, consider the Union-Find data structure, which involves the
operation find that performs path compression. The evaluation of an assertion of the form assert
(find x = find y) may involve write operations. It nevertheless preserves all the invariants of
the data structure. These invariants would be captured by the heap predicate H from rule assert.

J TREATMENT OF FUNCTIONS OF SEVERAL ARGUMENTS
Functions of several arguments may be represented as curried functions (fun x y => t), as tupled
functions (fun (x,y) => t), or as native n-ary functions (like, e.g., in the C language),
The curried function µ f .λx1.λx2. t is represented as µ f .λx1.(µ_.λx2.t ). An application takes

the form (v0v1v2). The reasoning rule for such an application, app2, generalizes the rule app. A
version of this rule may be stated for every arity. Alternatively, an arity-generic rule may be devised,
although in practice it requires tactic support for synthesizing the lists of variables and arguments.
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Lemma J.1 (Reasoning rule for curried functions of arity 2).
v0 = µ̂ f .λx1x2.t {H } ([v2/x2] [v1/x1] [v0/f ] t ) {Q } noduplicates ( f :: x1 :: x2 :: nil)

{H } (v0v1v2) {Q }
app2

A language featuring primitive n-ary functions more naturally admits arity-generic reasoning
rules. In such a language, µ f .λx .t denotes a function f expecting a list x of arguments of the form
“x1 :: ... :: xn :: nil”, and the n-ary application term v0v denotes the application of a value v0 to a
list of arguments v of the form “v1 :: ... :: vn :: nil”.

Lemma J.2 (Reasoning rule for primitive n-ary functions).
v0 = µ̂ f .λx .t {H } [(v0 :: v )/( f :: x )] t {Q } |v | = |x | > 0 noduplicates ( f :: x )

{H } (v0v ) {Q }
apps

Remark: it is possible to set up coercions in Coq such that an application written in curried style
v0v1 ...vn gets interpreted as the n-ary application v0 (v1 :: ... :: vn :: nil).

K A TACTIC FOR SIMPLIFYING ENTAILMENTS
In practical proofs, entailment relations to be established typically involve dozens of tokens, e.g.:

∃∃v . (q ↪→ v ) ⋆ [n = 4]⋆ (p ↪→ n) ⋆H ⊢ ∃∃m. (p ↪→m) ⋆H ⋆ [m > 0]⋆⊤⊤
H1⋆H2⋆

(
(H1⋆H3) −⋆(H4 −⋆H5)

)
⋆H4 ⊢

(
(H2 −⋆H3) −⋆H5

)
.

Proving such entailment relations by manually invoking the appropriate reasoning rules involves an
overwhelming amount of work. Thus, for practical program verification, automation is a must-have.
Ideally, an automated procedure should not only be able to discharge true entailments, it should
also be able to perform all the “obvious” simplifications, leaving what remains of the entailment for
a manual processing step by the user. Nearly all practical verification framework come with some
amount of tooling for simplifying entailments.

One may also wish that the simplification tactic systematically produces as output an entailment
that is logically equivalent to its input. However, there are a number of simplifications that are
technically not equivalence-preserving, yet nearly always desirable to perform. It seems to make
sense to nevertheless apply these simplifications, taking into account that the user always has the
ability to “lock” certain subexpressions for preventing simplifications involving them.

In what follows, we describe (in informal terms) a strategy for simplifying triples in a systematic
and predictable manner. The corresponding tactic is named xsimpl in the Coq development. (It
is entirely implemented in Ltac.) The tactic named xpull is a variant of xsimpl that is limited to
performing simplifications only on the left-hand side.

Definition K.1 (Tactic for simplifying entailment). The tactic first attempts to perform simplifica-
tions in the left-hand side, then in the right-hand side, then it attempts to perform simplifications
that involve both sides. It may iterate this process several times, as long as progress is made.
(1) On each of the two sides, independently:
• Remove empty heap predicates and normalize expressions with respect to associativity.
• Collapse occurrences of the predicate ⊤⊤, so that there is at most one occurrence at top-level
on each side.
• Bring all existential quantifiers and pure facts to the front of each side.

(2) On the left-hand side:
• Pull out pure facts and existential quantifiers out into the Coq context.
• For each magic wand of the form (H1 ⋆ ...Hn ) −⋆H

′, if one of the Hi also occurs on the
left-hand side, cancel Hi out as explained Lemma 7.3.
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• For each magic wand of the formQ .–⋆ Q ′, if a predicate of the formQ v also occurs on the
left-hand side, then specialize this magic wand to Q v .–⋆ Q ′v , cancel out Q v , leaving Q ′v .

(3) On the right-hand side:
• If a pure fact [P] occurs on the right-hand side, remove it and generate a subgoal asserting
the proposition P .
• It a quantifier ∃∃x .H occurs on the right-hand side, instantiate x with a value v , leaving
[v/x]H . The value v may be provided by the user (via arguments passed to the tactic
xsimpl), or it may be realized as a Coq unification variable (a.k.a. evar).
• Remove expressions of the form H −⋆H or Q .–⋆ Q , which are entailed by [ ].

(4) On both sides:
• If a predicate H occurs on the both sides, and H is not ⊤⊤, then remove H from both sides.
• If the entailment is of the form H0 ⊢ (H1 −⋆H2), then replace it with (H1 ⋆ H0) ⊢ H2.
Likewise, replace H0 ⊢ (Q1 .–⋆ Q2) with (Q1 .⋆H0) .⊢ Q2.
• If the entailment is of the form [ ] ⊢ [ ], then the entailment is true.
• It the entailment is of the form H ⊢ ⊤⊤, replace it with the proof obligation affineH .
• If the entailment is of the form H ⊢ (∀∀x .H ′), replace it with the proof obligation ∀x . (H ⊢
H ′) and continue simplifying the inner entailment.
• If the goal is of the form Q .⊢ Q ′, replace it with the proof obligation ∀x . (Q x ⊢ Q ′ x ) and
continue simplifying the inner entailment.

Several papers investigate specifically the automation of entailment simplification or resolution,
e.g., [Hóu et al. 2015, 2017; Lee and Park 2014].
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